1 Detection of Dry-Down Events

The identification and selection of dry-down events required special attention. To obtain data that could be confidently assumed to be affected by soil-water limitation, I employed a selection procedure consisting of the sequential application of multiple conditions:

- 5 1. Periods with at least 15 successive days without precipitation.
 - 2. Both evapotranspiration (ET) and the evaporative fraction (EF) had a significant negative trend over the course of the precipitation-free period.
 - 3. ET had to be be controlled more by the diminishing supply of water rather than atmospheric demand.

The latter condition was implemented by combining two models that individually represented demand and supply limited 10 ET. For the demand limitation, ET was predicted as a linear function of Rg

$$\mathbf{ET} = a \cdot Rg + b,\tag{1}$$

where *a* and *b* are estimated regression parameters. For the supply limitation, ET was predicted as an exponential decrease with time:

$$\mathbf{ET} = \mathbf{ET}_0 \cdot e^{-k \cdot t},\tag{2}$$

15 where ET_0 denotes a parameter for the initial rate of ET at the beginning of the exponential decrease and k denotes the rate of the decay. The variable t denotes the days since the beginning of the selected period.

The demand model was applied to the beginning of any period fulfilling conditions 1. and 2. until a time $t = t_{\alpha}$, while the supply model was applied to the rest of the period. To find the time step after which supply limitation dominated ET dynamics, I initially set $t_{\alpha} = 5$ to allow at least 5 observations to be fitted with the demand model and all subsequent ones with the

supply model. The residuals of both models were concatenated and the root mean squared error (RMSE) was calculated. I then increased t_{α} by daily increments until the period fitted with the supply model contained only 5 observations. For each change of t_{α} the RMSE was noted.

The beginning of supply limitation could then be defined as the t_{α} for which the RMSE was smallest. As any further increase of t_{α} would result in a higher RMSE, this indicates that the ET following t_{α} was best approximated with the exponential decay function which in turn represents supply limitation.

Figure 1 exemplarily shows ET and RMSE for a period fulfilling conditions 1. and 2. The RMSE decreased until $t_{\alpha} = 12$ and increased gradually thereafter. This means that the ET past $t_{\alpha} = 12$ could be better predicted with the exponential decrease depending on time rather than the atmospheric demand.

To verify that the selected period did indeed show an approximately exponential decay of ET, we further required that ET 30 had to fit an exponential function with $R^2 > 0.6$.

2 List of Detected Dry-Down Events

25

Figure 1. RMSE sequence used to identify supply limited ET at the FLUXNET site AU-Dry. The dotted line denotes the day with the smallest RMSE of the combined models, thus indicating the beginning of supply limited ET.

Table 1. List of all detected dry-down events used in this study.

	Site	Start date	End date
1	AU-DaP	2009-4-8	2009-6-17
2	AU-DaS	2011-4-28	2011-6-30
3	AU-Dry	2013-4-13	2013-6-9
4	AU-Dry	2014-5-23	2014-10-31
5	AU-Gin	2012-3-4	2012-3-28
6	AU-How	2014-6-7	2014-10-13
7	AU-Stp	2012-5-24	2012-8-3
8	IT-Ro2	2011-8-8	2011-9-13
9	IT-Ro2	2011-10-14	2011-12-19
10	SD-Dem	2007-10-6	2008-4-17
11	US-Blo	2004-7-19	2004-9-18
12	US-SRG	2008-9-21	2008-10-9
12	US-SRG	2000 9 21	2000 10 9
14	US-SRG	2012-9-25	2012-11-7
15	US-SRO	2014-5-10	2014-4-17
15	US-SIM	2000-9-21	2000-11-23 2011-11 A
17	US-SKM	2011-10-2	2011-11-4
10		2002-0-0	2002-10-22
10	US-IOII	2003-0-20	2003-9-22
19	US-IOII	2000-3-27	2000-10-1
20	US-Whs	2014-10-20	2014-12-2
21	US-WKg	2004-10-3	2004-10-20
22	US-WKg	2011-9-22	2011-11-4
23	BW-Ghg	2003-3-16	2003-4-7
24	BW-Ghm	2003-3-15	2003-4-7
25	BW-Mal	2000-6-12	2000-9-14
26	BW-Mal	2000-12-31	2001-1-31
27	DE-Meh	2006-7-18	2006-7-29
28	ES-ES1	2003-7-2	2003-8-9
29	ES-ES1	2004-8-9	2004-8-29
30	ES-ES1	2005-12-5	2005-12-17
31	IL-Yat	2001-5-6	2001-11-12
32	IT-Amp	2003-7-18	2003-7-30
33	IT-LMa	2004-9-21	2004-10-3
34	ML-Kem	2007-12-2	2008-4-28
35	ML-Kem	2008-11-17	2008-12-29
36	PT-Esp	2003-7-23	2003-8-26
37	PT-Mi2	2006-7-31	2006-8-15
38	US-Arb	2006-7-20	2006-8-2
39	US-Arc	2006-7-16	2006-8-2
40	US-Aud	2003-10-15	2003-11-7
41	US-Aud	2004-4-21	2004-5-13
42	US-Bo1	1998-9-2	1998-9-11
43	US-Bo1	1999-9-3	1999-9-11
44	US-Bo1	2000-8-30	2000-9-9
45	US-Bo1	2005-9-2	2005-9-13
46	US-FR2	2005-9-17	2005-10-2
47	US-Fuf	2005-10-18	2006-1-17