
We thank the reviewers for taking the time to provide additional comments. Our reponses are inserted below the reviewer
comments in italics.

1 Review 1

Page 14 line 10: Update to “NPP turns negative does drought effect the vegetation.”5
1) Updated to include the next comment.

Page 14 line 9-10: Add in how drought impacts the vegetation currently. What are the effects of drought that take effect after
NPP turns negative for 5 years? Diminished productivity? Through percent reduction biomass? Total die-off?
2) NPP is the productivity, lower productivity of course also leads to lower biomass, the effect of five years negative NPP is10
that PFTs stop establishing. We changed the sentence, (also addresses previous comment) to:
...only if a 5 year average of NPP turns negative, PFTs stop to establish.

Page 14 line 11-12: “The excessive tree cover could be partly improved by improving the non-vegetated fraction which
decreases too fast with increasing precipitation.” The non-vegetated fraction decreases too quickly, implying that the vegeta-15
tion increases and controlling this vegetation response is important to addressing the excessive tree cover. What could be a
mechanism of improvement be for the drought response?
3) From this analysis it is not possible to draw conclusions about the mechanisms. The non-vegetated fraction depends on
vegetation productivity, therefore improvements in productivity might help, also the hydrology is an important process for the
drought response, we therefore mention the relation to these two processes as examples now:20
This non-vegetated fraction depends on the productivity of vegetation. Further investigation of effects of the soil moisture mem-
ory not only on climate (Hagemann and Stacke, 2015) but also on the vegetation might also lead to useful insights.

Page 14 line 25: I think you mean “lower sensitivity to fire due to higher bark thickness and taller crown leading to lower
probability of crown scorch.” Update.25
4) We removed the part on the crown, as the paragraph mostly focusses on the bark thickness.

Page 14 -15, pg14 lines 21 to pg 15 line 14. There are duplicate sentences and redundancies in this paragraph. Improve the
organization of the paragraph and remove redundancies. Specifically, the sentence about JSBACH-SPITFIRE and bark thick-
ness is duplicated.30
5) We removed the duplicate sentence and restructured and shortened the paragraph.

Page 15 line 11: SPITFIRE quantifies fire intensity. Are the fires more frequent and of lower intensity once the tree cover
has decreased?
6) Fire frequency increases with decreasing tree cover as seen here in Figure 4,6 and 7 and in Lasslop et al. 2015. Fire line35
intensity however does not decrease with increasing burned area (Figure 1. We add the figure to the supplement.

Page 15 line 15-21: Complete this paragraph with a concluding statement of how including saplings and adult long lived
trees may impact the balance of tree cover to bare fraction or fire behavior in SPITFIRE.
7) We included:40
Including a sapling state could therefore increase tree cover in frequently burned areas, while decreasing tree cover (as de-
scribed above) in areas that are too dry to provide fuel for frequent burning.

Page 16 line 7: Update to “. . . climate models have problems representing extremes. . . ”
8) We updated the text as suggested.45
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Figure 1. Relationship between annual burned area and fire line intensity. The expected decrease in fire line intensity for frequently burning
areas is not found in the simulation results and might indicate that the feedback between fire occurrence, fuel load and fire intensity is too
weak.

Page 16 line 15: “ fire is quite sensitive to the length of dry seasons” add references supporting this statement.
9) change to number of dry days reference to Bistinas, also reference to correlation between dry days and mean precipitation
in supplement.

Page 17 line 1-3: The evidence that increases in managed land leads to decreased burned area is supported in the recent5
literature as referenced in the manuscript. Remove the sentence about roads as a fire break or provide a citation recognizing
this link within the tropics. Roads are often a source of ignitions that also impact the spatial variability of burned area (Loboda
and Csiszar 2007 RSE; Syphard et al 2007 Eco. Appl.; Syphard et al 2008 Int J Wild Fire; Narayanaraj and Wimberly 2012
Appl. Geog; Faivre et al 2014 Int J Wild Fire).
Additionally, there is evidence that forest fragmentation due to land cover change by humans leads to increases in fires. This10
type of fragmentation is shown to alter micro-climate conditions within forest canopies and lead to increased understory igni-
tions and fires. (Morton et al 2013 Philos Trans R Soc; Brando et al 2014 PNAS; Soares-Filho B et al. 2012 Landscape Ecol.)
This connection is not well represented in models, but, as detailed in these references, representation of forest fragmentation
specifically is an important component of capturing the relationship between humans, land use and fire. Further, as demon-
strated by and detailed within these references there is an expanding understanding of the relationships between humans, land15
use and fire. Acknowledge that this research is progressing, alongside the need to improve this representation in models.
10) We remove the sentence about roads. The studies mentioned here are on a much smaller scale than our simulations, global
large scale analysis so far only support the decrease of burned area due to humans. We mention that work on local scale helps
to increase the understanding, however a generalization to the large scale is still needed to be able to represent it in global
models. As this is not the working scale of our model we do not include all 8 additional references, but only the most recent20
ones:
The mechanism behind the reduction in burned area due to croplands is however likely a fragmentation of the landscape, which
is not explicitly accounted for in the model. On local scale understanding on these relationships is increasing, for instance the
relation between fire and roads (Faivre et al., 2014; Narayanaraj and Wimberly, 2012) or between fire and land management
(Morton et al., 2013; Brando et al., 2014). However, a generalization to an approach that would be suitable for global models25
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is still missing.

2 Review 2

We only include the points where the reviewer disagrees to shorten the text and time needed to read it.
5

The remaining main concern of the reviewer is summarized in the beginning of the review:
However, I remain concerned about the response to the “choice of JSBACH driving data”, although after clarification on the
aims of the analysis, I am no longer sure if the this is an issue with using ESM model output itself or the way this is used to
infer areas for improvement of JSBACH.
11) The main concern of the reviewer with respect to the climate biases is the seasonality of the rainfall. We therefore per-10
formed an additional analysis comparing the number of dry days and the rainfall seasonality of the forcing data used here to
the CRUNCEP observational model forcing dataset (used in the FireMIP simulations, a setup that was suggested by the re-
viewer). We define rainfall seasonality as the number of days needed to reach 80% of the annual precipitation, and dry days as
days with less rainfall than 3 mm. The CRUNCEP dataset is a reanalysis dataset commonly used in offline model comparisons
(Rabin et al., 2017). This analysis (, now a figure in the supplement) shows that the number of dry days in dry regions is well15
comparable between model and CRUNCEP, for moister regions the number of dry days is even higher in the forcing dataset
(MPI-ESM output) used here. We therefore confirm that our conclusions are unlikely affected by biases of rainfall seasonality.
The reviewer now also mentions existing biases in shortwave radiation. Of courser biases always exist, here, however, it is
important whether the climate biases could have such a strong effect as the reviewer claims. Shortwave radiation does not
affect the tree cover in JSBACH, we quickly tested it by applying a multivariate regression, precipitation is highly significant,20
radiation is not significant if only these two variables are used in a multivariate linear regression. As so far there is no discus-
sion on shortwave radiation and how it influences the model in the paper, we did not include this in the manuscript as it would
require several paragraphs to be added.
Choice of JSBACH driving data

The authors have clarified the three aims:25
1. Develop a simple multivariate technique to explore the difference between modelled and observed vegetation, fire and cli-
mate.
2. Use these differences to evaluate the simulation of, and coupling between, tree cover and burnt area in JSBACH
3. To do this within the MPI-ESM framework, achieved by driving JSBACH offline but with MPI-ESM model output.
There is nothing wrong with the aims, and I like that the authors attempt to at keep the methodology relatively simple. Driving30
the JSBACH as configured for use in MPI-ESM, offline with ESM output also makes sense, and in their response and sug-
gested changes to the manuscript, the authors have justified the choice of driving data. The authors also discuss the weaknesses
associated with this method in the revision of section 4.1, which is also a welcome addition to the paper. However, to critique
solely the land surface component in an ESM setup such as this, as if it were independent of other potential climate model
biases seems to contradicts the 3rd aim above and introduces the methodological inconsistency which I don’t feel have been35
adequately addressed. To phrase in terms of the multivariate approach, the authors have diagnosed the vegetation cover and fire
axis, but not the climate axis.
12) We also already mentioned climate biases in the revised version of the manuscript in more detail. The expected drizzle,
which seems to be the main concern of the reviewer, however, is not present in our climate forcing as our new analysis shows.
See also reply 11. Our proposed method clearly goes beyond the normal variable by variable comparison. Including all vari-40
ables that might be important in the coupled system of fire, vegetation and climate would be optimal in a certain sense but
would then suffer from the complexity of the necessary approach and difficulties in interpretation. As stated in the manuscript
we use precipitation as a proxy for climate and precipiation is included as one of the axis. The same critisim, that there could
be biases not in the mean but in another characteristic of precipitation, could apply to fire and vegetation cover. We simply use
annual burned area as a proxy for the fire regime, but fire intensity and seasonality and extremes can be important character-45
istics too. For tree and grass cover we also summarized two PFTs into one variable. This is the compromise we did to allow a
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Figure 2. Relationship between annual precipitation and precipitation seasonality and number of dry days for the ECHAM simulation used
as meteorological forcing for the JSBACH simulations used here and the CRUNCEP dataset.

simple interpretable approch.

The authors state in their response that “regarding the conclusions we draw from our comparison we don’t see a strong
point that they would be strongly affected.” Here are just some examples from the (revised) paper where climate biases could
potentially affect either the results, discussion and/or conclusion:5
1. Surprisingly the observations show a higher Spearman correlation between tree cover and precipitation than the models
(Table 1). The lower correlation of the modelled relationship most likely originates from the lower precipitation regions (<500
mm year-1 where the maximum tree cover is very low in the observations and both models strongly overestimate the maximum
tree cover (Figure 4).
The correlation between MAP and other climate variables that influence tree cover could also break down in the MPI-ESM10
driving JSBACH. As already noted, length of dry seasons are likely to be shorter in seasonal climates. Most GCMS models
(although I don’t know if MPI-ESM is amongst them) also suffer from biases in downward SW (Li et al. 2013) which could
influence tree cover, particularly at the higher tree cover range, where figure 5 also indicates mismatches beetween model and
observation in some continents, particularly Asia.
13) Radiation could have a considerable influence on the productivity of PFTs, but is very unlikely to influence tree cover15
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in JSBACH for the tropics based on the way the model is build. We tested this also quickly with a multivariate regression
TC=a1*P+a2*R for the modelled variables where the influence of radiation is not significant. It is therefore unlikely that
biases in radiation would show up in tree cover. We now show that the number of dry days is not less in the ECHAM forcing.
See also reply 11 and 12.

5
2. JSBACH overestimates tree cover for low precipitation on all tropical continents. The drizzle problem already discussed

seems like an obvious candidate to affect vegetation cover at low precipitations, either through decreasing the length of dry
periods or due to associated changes in cloud cover changing evaporative demand and hence available moisture. Despite not
ruling out additional climate problems, the authors use this simulated mismatch at low tree covers to justify planned changes
to tree to vegetation dynamics: only if a 5 year average of NPP turns negative, drought effects on the dynamic vegetation take10
effect. Other models require a minimum of 100 mm year-1 precipitation for sapling establishment (Sitch et al., 2003). The
too high excessive tree cover could be partly improved by improving the non-vegetated fraction which decreases too fast with
increasing precipitation and Tree-grass competition for water could for example be improved in the model by introducing the
a sapling stage of trees, which are competitively inferior to grasses (D’Onofrio et al., 2015). Including this mechanism could
improve the balance between tree and grass cover, but it could also reduce the establishment rate of trees and therefore the tree15
cover in the dry regions with excessive tree cover. Including a PFT-specific rooting depth of vegetation would be an important
extension of the model to improve the competition for water between grasses saplings and adult trees. These three fundamental
changes to the dynamics of JSBACH are suggested without establishing that the problem is with JSBACH itself. While it is
often necessary reparameterize components of ESMs to compensate for biases in other model components, this should always
been done in the knowledge that it is to compensate for other these other biases, and the suggested changes to JSBACH above20
go beyond a standard re-parameterization.
14) Our analysis shows that there is no drizzle problem see reply 11. The suggestions made here are also based on the too
strong dominance of trees in dry regions, grasses can only exist if fire is present, effects of climate on productivity would not
make a difference about this in the model. Even if there were other climate biases or other problems in the model, the processes
discussed here are known to be crucial for the vegetation composition in dry areas, therefore suggesting that including them25
could help the model be better is in our opinion reasonable. We add in the manuscript:
The suggested processes are known to be important for the vegetation distribution and it seems plausible that they can help to
improve the vegetation distribution.

3.For Australia underestimation of burned area for both fire models is strong (Figure 4). In a previous evaluation where30
the model was forced with observed climate and vegetation cover was prescribed (in contrast to the dynamic vegetation cover
and climate modelled by the MPI-ESM) JSBACH-SPITFIRE showed better results for Australia (Hantson et al., 2015). An
improved response of vegetation cover dynamics to precipitation will therefore likely improve the patterns of burned area. The
better simulation of fire in Hantson et al. 2015 could also be due to better representation of rainfall timing and distribution,
temperatures or any number of climate factors from being driven by observed climate. Also, better representation of vegetation35
cover would hopefully have been achieved in Hantson et al. 2015 with observed rather than simulated climate. Again, parame-
terization of either JSBACH or SPITFIRE to account for additional climate biases may be necessary in an Earth System model,
but here the author imply the the problem is with JSBACH itself.
15) A reduction in tree cover would lead to an increase in burned area, therefore what we write is correct. Or vice versa the
high burned fraction observed in Australia cannot be achieved with SPITFIRE if such a high tree cover is present. The JSBACH40
model is parameterized for the coupled setting not for the observational dataset. The model shows between 10 and 30% tree
cover for any precipitation below 500mm per year, while the observations a maximum of 10%. The discrepancy is rather large
and it seems unlikely that a different distribution of rainfall can explain the difference. Also the reviewer does not give any
references that climate model biases can have such a big effect. Of course any of the climate parameters used can be wrong,
but the same would be true for any observational dataset used as model forcing.45

4.This indicates that not an improvement of the fire model but improved modelling of drought effects on the vegetation
dynamics will improve the response of vegetation to climate in dry regions. Again, another likely explanation is MPI-ESM
rainfall distribution or the impact of other climate factors on available moisture etc.

5



16) In regions where fire is absent trees always win the competition in JSBACH, it is therefore impossible that other climate
factors can solve this, the only reasonable reason is the absence of drought effects on vegetation cover in the model.

5.Intercontinental variation in the relationship between precipitation and maximum tree cover is much smaller for the mod-
els compared to the observations. Known variations in vegetation are not sufficiently understood to be represented in models.5
However our finding that models do show differences in the fire-vegetation-climate relationships between continents shows that
further exploration why models show differences can be helpful to better understand causes for intercontinental differences. If
this is meant purely for land surface modelling, then there is little in the results of this paper to justify this statement. That there
is a modelled difference in fire-vegetation-climate relationships between continents would be more valid if the authors made it
clear that this statement is about the ESM setup as a whole.10
17) This comment is unclear, the variations that are mentioned are observed and the model also shows some variations. We do
not see how the ESM setup as a whole comes in here.

6.Overall the multivariate model evaluation highlights the potential for more targeted model improvements with respect to
the interactions between climate vegetation and fire, which are crucial for our understanding of future vegetation projections.15
Again, this is fine as a statement about the ESM setup as a whole, but not focusing solely on the land surface component. Of
course, there are more suggest model improvements in the manuscript where inherent climate biases from MPI-ESM have (to
my mind at least) no obvious impact. However, even in these cases, the authors should be careful at presenting potential new
model processes without first checking for the influence in other climate biases. The apparently stronger correlation between
fire and tree cover compared to observations, for example, is used to suggest inclusion of resprouting and adaptive bark thick-20
ness or fuel feedbacks that might influence fire intensity and hence tree mortality. Again, there are no end of climate biases
that could affect intensity which would not be picked up by a straight MAP-tree cover-bunt area comparison. And again, these
changes go far beyond standard reparameterization of a land surface model in an ESM. To be fair to the authors, they have
included the statement “exact parameterization and needs to be tested with stepwise model development and factorial simula-
tions” which does help mitigate some concern with model changes such as this.25
18) Climate biases can clearly influence the burned area, and its spatial patterns, but I do not see a way that climate biases will
turn around the impact of fire on tree cover that much in SPITFIRE, except for the fire-fuel feedback mentioned by the reviewer
here. This feedback is already included in the model and different climate forcing leading to different fuel loads could maybe
strengthen the feedback. However, in that case it would make sense to reparameterize the model to strengthen the feedback in
the Earth system model setting.30

The authors suggest in their response that only way to address this contradiction is the do detailed assessment of the at-
mospheric component of the model, or perform complex experiments or analysis using additional model driving data. This is
almost certainly not the case, and it would be a shame if further revisions did make the analysis more complicated. However,
some additional, simple analysis might resolve the issue. Here are some examples based on the author responses:35
We use the standard JSBACH setup, which is the combination of JSBACH with MPI-ESM meteorology. As the fire is sensitive
to a number of variables, evaluation of the model in a different setup wouldn’t help to guide model development for a model
that is almost only run in the coupled setup.
A run with observed climate obviously wouldn’t be used as a basis for further model development if your aiming to improve
JSBACH when driven with ESM meteorology. But it would help the authors determine if the deficiencies already identified are40
due to simulated climate biases or due to the vegetation component, and would place their discussion on much firmer ground.
This is part of the justification for offline land surface model runs required for MIPs associated with CMIP6, e.g (van den Hurk
et al. 2016; Lawrence et al. 2016).
19) Using observed climate is obviously most useful when looking at the spatial patterns, which we avoid with our method. It
is certainly an important approach, our aim here was to evaluate the model for the Earth system model setup.45

our motivation here is to evaluate the land surface model, a detailed evaluation of climate biases in the ECHAM model is
therefore out of scope
There is no need to do a detailed evaluation of climate biases in ECHAM (which would indeed be out of the scope of this
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paper). However, the authors should ascertain if problems in land surface simulation are caused by either problems in the
simulation of the land surface or problems with the information it receives from the atmospheric component - a rather basic
first order assessment of any land surface model within an earth system framework. I was able to give a few pointer to potential
climate biases from my limited knowledge of climate intermodel comparison literature in my last review. The authors should
be able to identify other MPI-specific climate biases that they could at least discuss if not to test. As stated in the last review,5
there are two of instances where climate model deficiencies are discussed (i.e, when explaining discrepancies in simulated
spatial patterns and when discussing calculation of lightning ignitions). At the very least, these types of discussions should be
included when critiquing the rest of JSBACH.
20) We adressed the problem of the drizzle now, showing that the seasonality and number of dry days is comparable in ECHAM
and a observational model forcing dataset. We already discuss model deficiencies in the revised version in appropriate sec-10
tions, more specifically in the section where discuss potential model improvements, repeating these in more parts would lead
to redundancies.

Understanding potential influences of certain climate biases (such as extremes) on the simulation would require specific
factorial experiments15
and
While certainly more parameters influence tree cover distribution an increasing number of variables included to explain pat-
terns would require a totally different appraoch
Not necessarily. A first step could be to simply show if other climate information (no. dry days, downward SW etc) are causing
some of the relationships you see using the exact same approach used for MAP. It may well be that this shows that using MAP20
alone does do a sufficient enough job as a proxy for climate space, which will then support the rest of the papers discussion. If
not, then any additional climate variable that explains some discrepancy could be included in the same way that grass and tree
cover are interchanged at various stages in the manuscript.
21) Precipitation is the main driver of vegetation cover in the tropics. Removing the main driver from this analysis and ex-
changing it with other potential climatic drivers that are correlation with Precipitation would likely lead to correlations be-25
tween vegetation and the climatic driver mainly because of the correlation between the two drivers. The relationship would
then still be caused by precipitation. We do not see a way for a useful interpretation of such relationships without removing the
effect of precipitation, which would require a more complex approach. Exchanging tree and grass cover is different as both are
mainly driven by precipitation and fire.

30
Mean annual precipitation explains a large part of the tree cover variability and therefore is a useful proxy for climate

Obviously not enough in JSBACH when driven by MPI climate data - the range of TC at a given MAP is one of the features
JSBACH as driven by MPI data does not replicate, and there is no other result to help indicate how much of this discrepancy
is due to simulation of vegetation cover or other climate biases. While I do not expect the authors to address all these points
in the manuscript (that would be a very long paper!), I hope that I have demonstrated they are certainly not without options.35
Picking up on one or two of these point, or anything else which can either show MAP really is enough by itself to account for
all other climate biases or that can truly attribute problems with model performance to either JSBACH or MPI-ESM climate,
will be sufficient.
22) The reviewer agrees that JSBACH is not enough driven by mean annual precipitation, our previous comment cited here ref-
ered to observed relationships (although this may have been not exactly clear). He also agrees that adressing all his comments40
is outside of the scope of this paper or would make the paper too long. We hope that the additional analysis with the number
of dry days, which supports that our main discrepancy between model and observations (the overestimation of tree cover for
dry regions is a problem of JSBACH not the forcing data, adresses most of the reviewers concerns.

As the authors are only able to use MPI-ESM model output till 2005 to drive JSBACH, they have to make a rather awkward45
choice about comparison time periods, as identified in the last review. An ideal solution to this would be to run MPI-ESM
beyond 2005, something that could be happening as part of CMIP6 simulations? However, I realise that this is probably not
possible, and the MPI-ESM may well be configured differently for CMIP6 simulations. I would like to hear to authors thoughts
changing the comparison periods though. The authors state that “Using only the overlapping period (2001-2005) would de-
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crease the robustness of the mean fire regime and climate characterization”. This is certainly true for fire regime. However,
tree cover is normally more stable, and as trees take a few years to establish, the cover found during 2001-2005 would of also
be a consequence of burnt area and climate before this period. Perhaps a better choice is to split comparison periods based on
variable rather then on model/observation. i.e, when performing analysis, take modelled and observed burnt area and climate
from 1996-2005 (climate data, MPI and GFED overlap) and tree cover from 2001-2005. While this is still a rather pragmatic5
solution to the mismatch in modelled and observed time periods, it might make more sense then the pragmatic solution outlined
in the manuscript?
23) We prefer to keep the same averaging periods for all variables. If the goal was to only evaluate tree cover it would likely be
a good idea. The goal here is however to evaluate the interactions. Tree cover influences the fire regime therefore having the
same averaging period for these two variables seems plausible to us. Also the GFED data have more problems for the earlier10
years and are more reliable from 2001 on.

I am happy with all changes except for a couple of small details:
39 and 45) Kelley and Harrison 2014 should probably be changed to Kelley et al. 2014:
Kelley, D. I., Sandy P. Harrison, and I. C. Prentice. "Improved simulation of fire–vegetation interactions in the Land surface15
Processes and eXchanges dynamic global vegetation model (LPX-Mv1)." Geoscientific Model Development 7.5 (2014): 2411-
2433.
Kelley and Harrison 2014 looks at future changes in fire, whereas Kelley et al. 2014 is the paper describing model development
and benchmarking.
24) We thank the reviewer for finding this mistake, the reference is corrected.20

42) Was the “minor shifts between woody PFTs in a few cells” quantified? Quantifying equilibrium during spin-up should
really be a requirement for any modelling study, and if authors did quantify equilibrium in any way, then it would help the cause
to state how this was assessed. However, I do understand that quantifying equilibrium is unfortunately not standard practice,
and finding a way to do so is well outside the scope of this paper. So if it was not quantified, then leave this sentence as is.25
25) The minor shifts were not used to quantify equilibrium. We therefore leave the sentence as is.
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Abstract. The interactions between climate, vegetation and fire can strongly influence the future trajectories of vegetation

in Earth system models. We evaluate the relationships between tropical climate, vegetation and fire in the global vegetation

model JSBACH, using a simple fire scheme and the complex fire model SPITFIRE with the aim to identify potential for model

improvement. We use two remote sensing products (based on MODIS and Landsat) in different resolutions to assess the ro-

bustness of the obtained observed relationships. We evaluate the model using a multivariate comparison that allows to focus5

on the interactions between climate, vegetation and fire and test the influence of land use change on the modelled patterns.

Climate-vegetation-fire relationships are known to differ between continents we therefore perform the analysis for each conti-

nent separately.

The observed relationships are similar in the two satellite datasets, but maximum tree cover is reached at higher precipitation

values for coarser resolution. The model captures the broad spatial patterns with regional differences, which are partly due to10

the climate forcing derived from an Earth system model. SPITFIRE strongly improves the spatial pattern of burned area and

the distribution of burned area along increasing precipitation compared to the simple fire scheme. Surprisingly the correlation

between precipitation and tree cover is higher in the observations than in the largely climate driven vegetation model, with

both fire models. The multivariate comparison identifies an excessive tree cover in low precipitation areas and a too strong

relationship between high fire occurrence and low tree cover for the complex fire model. We therefore suggest that drought15

effects on tree cover and the impact of burned area on tree cover or the adaptation of trees to fire can be improved.

The observed variation of the relationship between precipitation and maximum tree cover is higher than the modelled variation.

Land use contributes to the intercontinental differences in fire regimes with SPITFIRE and strongly overprints the modelled

multimodality of tree cover with SPITFIRE.

The multivariate model-data comparison used here has several advantages: it improves the attribution of model-data mis-20

matches to model processes, it reduces the impact of biases in the meteorological forcing on the evaluation and it allows to

evaluate not only a specific target variable but also the interactions.
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1 Introduction

Capturing the interactions of vegetation cover and composition with the climatic drivers and related disturbances in Earth sys-

tem models is crucial to provide reliable changes of vegetation for a changing climate. Climate is the main driver of global

vegetation patterns, but also vegetation has crucial impacts on the Earth system, due to its influence on the surface albedo and5

the water cycle (Bonan, 2008; Brovkin et al., 2009). The importance of vegetation type has been assessed in various studies:

when compared to grasslands, forests in tropical areas cool the climate due to higher evapotranspiration while in boreal regions,

forests warm the climate due to a reduction of the albedo (Bathiany et al., 2010). The relevance of vegetation also shows when

contrasting vegetated and non-vegetated surfaces: in the Sahel region this difference is of major importance for the climatic

conditions (Brovkin et al., 1998).10

Interactions between vegetation, fire and climate are particularly important to understand the spatial patterns in tropical vegeta-

tion, which is characterized by strong gradients from deserts to tropical rainforests. Remotely sensed tropical tree cover shows

a bimodality between forest (T>60%) and savanna (T<60%) states for grid cells with similar climate. Intermediate tree cover

fractions (e.g. 60%) are virtually absent (Hirota et al., 2011; Staver et al., 2011b). The occurrence of this “gap” in tree cover was

suggested to be caused by a feedback between fire and vegetation. Although the reliability of remotely sensed tree cover sets to15

diagose this “gap” was recently questioned (Gerard et al., 2017), the bimodality in the distribution is also confirmed by canopy

height (Xu et al., 2016) or biomass (Yin et al., 2014). The occurrence of both forest and savanna states under similar climate

conditions due to a feedback between fire and vegetation is supported by conceptual (Staver et al., 2011a) and process-based

models (Higgins and Scheiter, 2012; Moncrieff et al., 2014; Lasslop et al., 2016) .

While data analysis can provide insights on driving factors for certain variables, process-based models summarize the process20

understanding and allow us to perform experiments that are impossible in reality. Dynamic global vegetation models (DGVMs)

were developed to understand ecosystem dynamics, the carbon cycle and biosphere-atmosphere interactions (Sitch et al., 2003).

Many of them are part of Earth system models (ESMs), to represent the dynamics of the land surface within the climate system.

It is therefore important that DGVMs include appropriate representations of vegetation to obtain reliable simulations of the

Earth system(e.g. Baudena et al., 2015).25

The development of remotely sensed global burned area products facilitated the implementation and evaluation of complex

fire models within DGVMs (Hantson et al., 2016). Over the recent years these models were applied to address the impact of

fire on the carbon cycle (Li et al., 2014; Yue et al., 2016), the land surface temperature (Li et al., 2017) or the sensitivity of

the fire model to driving factors (Kloster et al., 2010; Lasslop and Kloster, 2015). Evaluation of fire models mostly focused on

evaluating the burned area and carbon emissions, but also the importance of benchmarking effects on vegetation has been noted30

(Hantson et al., 2016) and applied in model development studies (Kelley and Harrison, 2014; Lasslop et al., 2014)
::::::::::::::::
(Kelley et al., 2013).

The evaluation, however, is based on comparing variables one by one and not the relationships between them. Baudena et al.

(2015) go beyond the geographic comparison by analyzing the relationship between tree cover and the main climatic driver
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(precipitation). Also the relationship between precipitation and climate
::::::
climate

::::
and

:::
fire

:
was evaluated in previous studies

(Prentice et al., 2011). However, to our knowledge, climate, vegetation and fire have not been combined in a multivariate

model-observation comparison.

Here, we aim 1) to assess the robustness of observed climate-vegetation-fire relationships across the tropical continents based

on two remotely sensed tree cover datasets; 2) to test a multivariate model evaluation to identify opportunities for model im-5

provements in JSBACH, the vegetation model used within the MPI Earth system model, and 3) to test the contribution of land

use change on the obtained relationships.

2 Model and Data

To investigate the climate-fire-vegetation relationships in the tropical regions we represent climate by the mean annual precip-

itation (P), vegetation by the tree (TC), grass (GC) and non-vegetated cover and fire as the burned fraction (BF).10

We define the tropical region as between -30° and 30° latitude. As continental limits we chose -20° to 60° longitude and -30°

to 30° latitude for Africa, -130° to -30° longitude and -30° to 30° latitude for South America, 60° to 160° longitude and -10°

to 30° latitude for Asia and 100° to 160° longitude and -30° to -10° latitude for Australia.

2.1 Model and simulation description

We use the JSBACH land surface model (Reick et al., 2013), which is the land component of the MPI Earth system model15

(MPI-ESM) (Giorgetta et al., 2013). JSBACH simulates the terrestrial carbon and water cycle in a process based way. We

use two fire algorithms, a simple empirical model (Brovkin et al., 2009; Reick et al., 2013) and the process-based fire model

SPITFIRE (Lasslop et al., 2014; Thonicke et al., 2010). Results referring to simulations with the complex SPITFIRE model

are referred to as JSBACH-SPITFIRE, simulations with the simple JSBACH standard fire scheme are indicated as JSBACH-

standard. These two approaches span the range of complexity of currently used global scale fire models (Hantson et al.,20

2016). The JSBACH-standard fire computes burned area based on a minimum burned fraction which increases as a function

of the litter carbon pools and relative humidity averaged over the last three weeks. It was tuned to yield reasonable global

emission estimates (around 2PG
::::::
carbon) and to improve the tree cover, which is clearly too high without fire. SPITFIRE

computes burned area based on human and lightning ignitions, fire spread rate and a fire duration. SPITFIRE distinguishes

between different fuel particle sizes and uses a combination of minimum and maximum temperature, precipitation and soil25

moisture to determine the fuel moisture. Both fire models interact with the vegetation model as follows: JSBACH provides

fuel amounts, vegetation composition and soil moisture as inputs to the fire model. The fire model in turn reduces the carbon

pools of JSBACH according to the simulated carbon combustion of vegetation fires and reduces the cover fractions of burned

vegetation. In the JSBACH-standard fire scheme the burned area directly translates into a reduction of the cover fractions of the

plant functional types (PFTs) (100% of the cover fractions on burned area are removed). Whereas in SPITFIRE the mortality30

of woody vegetation depends on the fire intensity, fire residence time, the vegetation height and bark thickness. The model’s

plant functional types for the tropics include C3 and C4 grass, tropical evergreen and deciduous trees, and rain green shrubs.
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Shrubs and trees compete according to their net primary productivity. Grasses and shrubs have an advantage compared to trees

in regions with disturbances due to their lower establishment time scale (Reick et al., 2013, grasses: 1 year, shrubs: 12 years,

tropical trees: 30 years). PFTs do not establish if the 5 years running mean net primary productivity (NPP) turns negative. Land

use is included following the protocol of Hurtt et al. (2011). The implementation is described in detail in (Reick et al., 2013).

Croplands are excluded from fire occurrence while pastures are treated as natural grasslands with a higher fuel bulk density5

within JSBACH-SPITFIRE (Rabin et al., 2017). The JSBACH-standard fire excludes fire occurrence on both anthropogenic

land cover types. JSBACH-SPITFIRE shows a reasonable agreement with remotely sensed data products for present day burned

area and carbon emissions for simulations with prescribed land cover (Lasslop et al., 2014). The present setup with dynamic

biogeography has been evaluated along the human dimensions population density and cropland fraction. The model tends to

overestimate burned fraction for high cropland fractions and underestimates burned fraction for very low and high population10

densities (Lasslop and Kloster, 2017).

2.1.1 Simulation setup

JSBACH was forced with meteorological data extracted from a coupled simulation with the MPI-ESM version 1.1 for the his-

torical period 1850-2005. The SPITFIRE model additionally uses a population density dataset (Klein Goldewijk, 2001) with

decadal resolution and a monthly lightning climatology (LIS/OTD product of the LIS/OTD Science Team, http://ghrc.msfc.nasa.gov)15

as input for the computation of ignitions. The model’s spatial resolution is 1.875° x 1.875°. The time step for plant productivity

and hydrology is 30 minutes, while the disturbance routine is called once per day. During the 1000 year spinup period the first

28 years of forcing (1850-1877) were recycled and CO2
::::
CO2 concentration fixed at the value of 1850 (284.725 ppm). At the

end of the 1000 years PFT distribution was largely in equilibrium with only minor shifts between woody PFTs in few grid

cells. The subsequent transient historical simulation (Hist) from 1850-2005 accounts for the changes in atmospheric CO2
:::
CO2,20

climate, population density and land use. A complementary simulation accounting only for the rise in atmospheric CO2
:::
CO2,

transient climate and population density but using the land use of 1850 for the whole period (cLU) is used to isolate the effect

of land use change on the climate - vegetation - fire relationships. When comparing the model output to observations, the

averaging period for the model simulations was 1996-2005, as the forcing was only available until 2005.

2.2 Datasets for model evaluation25

We averaged the remote sensing datasets over the years that were covered by all datasets (2001-2010). Model output is only

available until the year 2005. Using only the overlapping period (2001-2005) would decrease the robustness of the mean

fire regime and climate characterization. We therefore use different averaging periods for model (1996-2005) and observations

(2001-2010). The presentation of the relationship between precipitation, tree cover and burned fraction based on remote sensing

data is based on 0.25° resolution and for the comparison with the model the datasets were aggregated to the model resolution30

(1.875°x1.875°).

4



2.2.1 Vegetation and land cover

We use two tree cover datasets based on satellite data, one based on the MODIS (moderate-resolution imaging spectroradiome-

ter) sensor (Townsend et al., 2011), the other on the Landsat satellite (Hansen et al., 2013). Additionally we use the non-tree

vegetation cover and non-vegetation cover of the MOD44B product version 051 (downloaded 6/February 2017, using the R

modis package (Mattiuzzi and Detsch, 2018)). The datasets rely on different sensors, however, the algorithms to derive vegeta-5

tion cover are very similar and the datasets are therefore not completely independent. Nevertheless using the two datasets can

give a first insight on the robustness of the investigated patterns.

The maximum tree cover in the MODIS dataset is 80%. This however corresponds to 100% crown cover (Hansen et al., 2003).

The modelled cover fractions represent rather the crown cover with a 100% maximum, we therefore linearly rescaled the tree

cover data to improve the consistency between model and observations. The second dataset based on Landsat data builds on10

a high spatial resolution of 30m (Hansen et al., 2013). The dataset provides annual forest gain and loss over the period from

2000-2012. Alkama and Cescatti (2016) reconstructed the annual tree cover and aggregated the dataset to 0.05° . Here, we used

the mean over their reconstructed annual tree cover values from 2001-2010.

The MODIS collection 5 land cover dataset (Friedl et al., 2010) was used to test the influence of shrub lands (open and closed

shrub lands), as the tree cover data have a higher uncertainty for shrublands. The filtering was applied on 0.05° spatial reso-15

lution. This dataset is distributed by the Land Processes Distributed Active Archive Center (LP DAAC), located at the U.S.

Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center (lpdaac.usgs.gov), distributed in netCDF

format by the Integrated Climate Data Center (ICDC, http://icdc.cen.uni-hamburg.de) University of Hamburg, Hamburg, Ger-

many in 0.05° spatial resolution and annual time step.

2.2.2 Fire20

The global fire emissions database (GFED, http://www.globalfiredata.org/) provides globally gridded monthly burned area

based on the MODIS sensor. We used the version 4 of the dataset (Giglio et al., 2013).

2.2.3 Precipitation

The “TRMM and Other Data Precipitation Data Set” (TMPA) is based on the Version 7 TRMM Multi-satellite Precipitation

Analysis algorithm (Huffman et al., 2007, 2010). The product has near global coverage from 50° north to 50° south. The pre-25

cipitation estimate (including rain, drizzle, snow, graupel and hail) is based on a combination of multiple data sources including

precipitation gauges. The dataset is available online (http://disc.sci.gsfc.nasa.gov/gesNews/trmm_v7_multisat_precip).

2.3 Quantile regression

We use quantile regressions to characterize the relationship between precipitation and maximum tree cover. The quantile

regressions were computed with the R package quantreg (Koenker, 2018). We use the local quantile regression to characterize30

the shape of the increase in maxmimum tree cover for increasing precipitation. Moreover we quantify the deviation from a
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linear increase by also including the linear qunantile regression. Both regressions were computed for the 0.9 quantile. For the

local quantile regression the bandwidth parameter was set to 300 and the number of points where the function was estimated

was set to 10.

3 Results

We first give an overview over the geographical distribution of the used observation and model output datasets. The compar-5

ison of geographical patterns is an important assessment of model performance, it is however difficult to assess whether the

interactions between precipitation, fire and tree cover are well captured. Moreover as the JSBACH model is usually used as

a land surface model for the MPI-ESM and therefore also here forced with MPI-ESM output, biases in model forcing can

cause geographical biases of vegetation and fire variables even with a perfect fire and vegetation model. To reduce the in-

fluence of biases in forcing data on the model-data comparison and allow to more closely evaluate the interactions between10

model components we propose a multivariate evaluation of climate-fire-vegetation relationships. We assess the robustness of

observed relationships for two tree cover datasets and two spatial resolutions and compare them to the model simulations. The

last paragraph of this section adresses the influence of land use change on the simulated relationships.

3.1 Spatial distribution of vegetation cover, area burnt and precipitation in the tropics

The two observational satellite based tree cover datasets are consistent and show only small differences in their spatial pattern15

(Figure 1a). The overall clear pattern in tree cover is a transition from very high tree cover in moist rain forest regions to

low tree cover in the drier savannas to the absence of trees in the desert regions. Both models reproduce this overall observed

pattern, although with marked local differences. Both model versions overestimate tree cover in northern Australia to a simi-

lar extent. In the North-Eastern Amazon region the simulations underestimate tree cover compared to the observations. This

underestimation is much smaller for JSBACH-SPITFIRE. The simulations overestimate tree cover in Southern Hemisphere20

Africa, this overestimation is again smaller for JSBACH-SPITFIRE. The simulated grass cover has higher maximum values,

but generally is often lower than observed by satellite (Figure 1 d). The non-vegetated fraction is captured well by the models

(Figure 1 e).

Generally JSBACH-standard strongly underestimates the total area burnt and the spatial variability (Figure 1 b). JSBACH-

SPITFIRE improves the capability to represent fire regimes with high fire occurrences. The tropical average burned area25

per year is for JSBACH-standard 65 Mha, for JSBACH-SPITFIRE 242 Mha and for the satellite dataset 315 Mha. In South

America spatial patterns in JSBACH-standard are inconsistent with the observations (most burning in the Northeast). JSBACH-

SPITFIRE overestimates fire occurrence in South America but the spatial patterns are more similar to observations. In Africa

we find reasonable agreement between JSBACH-SPITFIRE and the observations. JSBACH-standard shows a strong underes-

timation of the burned fraction (max. 10% of the grid cell area year−1, while the observations show up to 100%). In Australia30

JSBACH-SPITFIRE and JSBACH-standard show similar patterns and both strongly underestimate the burned fraction.

Precipitation of the MPI-ESM forcing shows a dry bias in the East and central Amazon region, a dry bias in Asia, and moister
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Figure 1. Spatial distribution of modelled and observed datasets used in this study. (a): Spatial distribution of tree cover fraction over the

global tropics for the JSBACH-SPITFIRE and JSBACH-standard model simulation and the satellite data products from Landsat and MODIS.

(b): Burned fraction [year−1] as modeled by JSBACH-SPITFIRE and JSBACH-standard and the GFED v4 satellite product. (c): Precipitation

in mm year−1 of the MPI-ESM and the TMPA dataset. (d): Grass cover fraction, and (e): non-vegetated fraction of the grid cell for the models

and the MODIS satellite product. All datasets were remapped to the 1.875° model resolution.

conditions in the western part of southern hemisphere Africa (Figure 1 c). The dry bias in South America and Asia is known

from previous ECHAM model versions (Hagemann et al., 2013; Stevens et al., 2013). The dry bias in precipiation in the Ama-

zon may for instance explain the high bias in burned fraction in that region.

3.2 Climate-fire-vegetation relationships: comparison of observation datasets5

Maximum tree cover shows an increase along the precipitation gradient across all continents, with trees being absent until a

certain threshold (300-500 mm year−1), increasing maximum tree cover and saturation of maximum tree cover for high pre-

cipitation (between 1500 and 2000 mm year−1). The two remotely sensed tree cover datasets are consistent in their variation

along the precipitation gradient (Figure 2). Fire occurrence is much higher for the African and Australian continent compared

to South America and Asia. Burned fraction increases with increasing precipitation until around 1000mm mean annual pre-10

cipitation, due to the increasing availability of fuels. For tree cover fractions higher than 0.8, fire is virtually absent. Beyond
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Figure 2. Tree cover (TC) versus precipitation [mm year−1] with color coded burned fraction (BF) for different continents for the two

satellite datasets. Burned area is averaged over data points with the same precipitation (40 mm steps) and tree cover (in steps of 0.01) to

avoid over-plotting based on a spatial resolution of 0.25°. For Asia some higher precipitation values were cut off.

this distinction there is no visually clear increase in burned fraction for decreasing tree cover at a given precipitation value.

The Spearman rank correlation between burned fraction and tree cover for grid cells with mean annual precipitation higher

than 1000mm and tree cover lower than 0.8 is, however, significant for both datasets in the 0.25° resolution, in the model

resolution only the correlation with the MODIS dataset is significant. This correlation is much stronger for the MODIS tree

cover compare
::::::::
compared

:
to the LANDSAT tree cover (Table 1). For Australia and Africa fire occurrence is very low below a5

mean annual precipitation of 300 mm year−1, for South America and Asia already below 500 mm year−1.

The Spearman rank correlation between precipitation and tree cover is very similar for both tree cover datasets (Table 1). The

statistical precipitation thresholds for low (but higher than 0) and high tree cover differ by less than 100 mm. The aggregation

to the model resolution shows the strongest effect on the precipitation threshold for high tree cover and shifts this value to

higher precipitation. The association between precipitation and burned area is less sensitive to the aggregation: 80% of the10

global burned area occurs in regions with precipitation between 609 and 1518 mm on 0.25° resolution and between 635 and

1495 mm in 1.875° resolution.

3.3 Climate-fire-vegetation relationships: Evaluation of model results

In the tropics the observed burned area is strongly constrained by precipitation, around 80% of the burned area is observed15

in regions with mean annual precipitation between 600 and 1500 mm year−1 (Table 1). This precipitation range is slightly

larger for the model simulations (Table 1). JSBACH-SPITFIRE reproduces the increase in burned area for low precipitation,

but slightly overestimates the contribution of grid cells with precipitation higher than ca. 1300 mm year−1 to the total burned
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Table 1. Spearman rank correlation (R) between precipitation (P) and tree cover (TC), and rank correlation between burned fraction (BF)

and TC for data points with mean annual precipitation higher than 1000mm and tree cover less than 0.8. The required precipitation [mm

year−1] for 0.05 < TC < 0.15 and 0.85 < TC < 0.95, estimated as 0.05 quantile of precipitation for grid cells with the specific TC only, and

precipitation value [mm year−1] where 10% and 90% of the burned area (BA) originates from areas with lower precipitation. For the remote

sensing datasets TMPA was used as precipitation, for the simulations (Hist, cLU, and JSBACH-standard) the MPI-ESM precipitation was

used. Model results are all in 1.875° resolution.

Data R(P,TC) R(BF,TC) 0.05 quantile of P 0.05 quantile of P 10% of BA 90% of BA

for 0.05 < TC < 0.15 for 0.85 < TC < 0.95 has lower P has lower P

Landsat 0.25° 0.90 -0.05 568 1417

Landsat 1.875° 0.91 -0.08 569 1596

MODIS 0.25° 0.91 -0.26 425 1514

MODIS 1.875° 0.93 -0.4 462 1644

GFED v4 0.25° 607 1517

GFED v4 1.875° 635 1489

JSBACH-SPITFIRE Hist 0.79 -0.5 31 1268 652 1663

JSBACH-SPITFIRE cLU 0.78 -0.64 13 1000 700 1654

JSBACH-standard 0.87 0.17 34 1597 266 1519

area (Figure 3). JSBACH-standard overestimates the contribution of areas with low precipitation, but agrees well on the con-

tribution of areas with high precipitation (>1300 mm year−1) when compared to the satellite observations. Fire occurrence is

limited in regions with low precipitation due to low fuel availability (Krawchuk and Moritz, 2011). This low fire occurrence

is well reproduced by JSBACH-SPITFIRE and for most continents also by JSBACH-standard with the exception of Australia

where the burned fraction of JSBACH-standard shows almost no variability (Figure 4).5

Surprisingly the observations show a higher Spearman correlation between tree cover and precipitation than the models (Table

1). The lower correlation of the modelled relationship most likely originates from the lower precipitation regions (< 500 mm

year−1), where the maximum tree cover is very low in the observations and both models strongly overestimate the maximum

tree cover (Figure 4).

Models and observations generally agree on the absence of fire for very high tree cover (>0.8) and on the decrease of burned10

fraction for mean annual precipitation decreasing below 1000mm. However for regions with tree cover < 0.8 and mean annual

precipitation > 1000mm we find strong differences. JSBACH-SPITFIRE shows a strong negative Spearman rank correlation
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Figure 3. Cumulative burned area normalized with the total burned area for increasing precipitation. For the GFEDv4 burned area the TMPA

dataset was used, for the model simulations the MPI-ESM precipitation was used.

between burned fraction and tree cover, the observations show a weaker negative correlation, and JSBACH-standard shows

a positive correlation (Table 1). This can also be seen in Figure 4 where for the JSBACH-SPITFIRE simulation the highest

burned fractions (> 50% of grid cells year−1) are found in Africa for the lowest tree covers (0.1) and for precipitation between

1000-2000 mm year−1. JSBACH-standard in many grid cells shows low fire occurrence for low tree cover, especially for

South America (Figure 4), these grid cells have a high fraction of crops or pasture, which both are excluded from burning in5

JSBACH-standard (in SPITFIRE only crops are excluded). The observations (also Figure 4) show highest values of the burned

fraction for tree cover values up to 0.3 for MODIS and up to 0.5 for LANDSAT.

Burned fraction is much lower in Asia and South America compared to Australia and Africa in the observations. Both models

show an underestimation of the fire occurrence in Australia. SPITFIRE reproduces the fire regime with high annual burned

fraction in Africa. In JSBACH-standard the difference in burned fraction between the continents is smaller than in JSBACH-10

SPITFIRE (Figure 4).
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Figure 4. Modelled and observed tree cover (TC) versus precipitation (P), color coded burned area fraction (BF). Satellite datasets were

aggregated to model grid resolution (1.875°).

Models and observations show differences between continents in the relationship between precipitation and maximum tree

cover (Figure 5). For Africa, South America and Asia the relationship between maximum tree cover and precipiation shows a

saturation for high precipitation. For Australia maximum tree cover increases linearly with increasing precipitation for models

and observations, but the precipitation range also does not reach values where a clear saturation is reached for the other con-

tinents. For JSBACH-standard the curves are very similar for the different continents. JSBACH-SPITFIRE shows a stronger5

variation, this must be due to the differences in fire as the model is otherwise the same. The observations show an even stronger

variation between continent, with clearly lower tree cover valuse for Australia followed by Asia. For Africa local quantile

regression clearly differs from the linear quantile regression for the satellite data, indicating a sigmoid shape, while the other

continents show a rather linear increase until the saturation (Figure 5). JSBACH-SPITFIRE reproduces the higher tree cover

for South America compared to Africa (albeit the difference is stronger) for mean annual precipitation lower than 1000 mm,10
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Figure 5. Modelled and observed relatioship between precipitation and maximum tree cover based on a linear quantile regression (dashed

line) and a local quantile regression (solid line). Different colors indicate the different continents.

but also JSBACH-standard shows a small difference.

The grass cover has a much higher variability in the model compared to the MODIS data (Figure 6). The modelled non-

vegetated fraction decreases faster with increasing precipitation compared to the observations (Figure 6). The dominance of

trees (computed as TC/total vegetation cover) is strongly overestimated in the model for low precipitation (<500 mm year−1,

Figure 6). While the relationship between precipitation and non-vegetated fraction is similar between the continents, the re-5

lationship for grass cover differs (Figure 6). For Australia observations and modelled grass cover increases with increasing

precipitation. In Africa, South America and Asia grass cover first increases and then decreases with increasing precipitation.

3.4 Climate-fire-vegetation relationships: Influences of land use change

The simulation with preindustrial land use represents a state with low influence of land use change. The comparison to the10

historical simulation allows to assess the influence of land use change since 1850. The impact of fire on tree cover, as quantified

by the Spearman rank correlation, between burned fraction and tree cover is higher for the simulation with preindustrial land

use (Table 1). Land use change did not affect the rank correlation between precipitation and tree cover. The precipitation

range for 80% of the burned area is only slightly narrower for the simulation including land use change (Table 1). Tree cover,

however, is even higher for low precipiation and reaches canopy closure for lower precipitation (Table 1 and Figure 7 compared15

to Figure 4). The simulation with land use of 1850 shows a strong gap between the savanna systems (TC < 40%) and closed

forests (TC > 70%) for Africa and less strong for South America (Figure 7). For Australia and Asia the simulation does not

show this pattern. In the historical simulation land use overprints this gap of the natural vegetation dynamics. The difference

in fire occurrence between Africa and South America is smaller for the simulation with preindustrial land use compared to the

historical simulation (Figure 7 compared to Figure 4).20
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Figure 6. Modelled and observed grass cover (GC) and non-vegetated fraction over precipitation (P), with color coded burned area fraction

(BF) for the grass cover and dominance of trees as (TC/total vegetation cover) for the non-vegetated fraction.

4 Discussion

The multivariate model-data comparison identified differences and agreements between modelled and observed interactions

between fire, vegetation and climate. It goes beyond spatial comparisons by providing better guidance on which processes in

the model need improvement. Here we discuss which model improvements can help to address the differences, what causes

agreements in intercontinental differences and whether limitations of the observations might influence our findings.5
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Figure 7. Same as Figure 4 for JSBACH-SPITFIRE but with preindustrial land use.

4.1 Opportunities for model improvements

JSBACH overestimates tree cover for low precipitation on all tropical continents. In these dry regions no or only very low

burned fractions are observed, and SPITFIRE shows a good response to precipitation while JSBACH-standard already overes-

timates the burned area (Figure 3). The improved burned area pattern of SPITFIRE did not lead to an improvement in tree cover

for these dry regions. It is therefore unlikely that further improvements in burned fraction will improve this model-data mis-5

match for tree cover in dry regions, satellite data however indicate that the intensity of fires increases in these regions and might

help to explain the disappearance of trees (Hantson et al., 2017). The mechanisms however are not sufficiently understood to be

included in a model. The productivity of vegetation in the JSBACH model depends on the availability of water and is therefore

sensitive to drought. The establishment time scale of trees, however, is a constant (30 years for tropical PFTs) and only if a 5

year average of NPP turns negative, drought effects on the dynamic vegetation take effect
:::::
PFTs

:::
stop

::
to
::::::::
establish. Other models10

require a minimum of 100 mm year−1 precipitation for sapling establishment (Sitch et al., 2003). The excessive tree cover

could be partly improved by improving the non-vegetated fraction which decreases too fast with increasing precipitation.
::::
This

:::::::::::
non-vegetated

:::::::
fraction

:::::::
depends

:::
on

:::
the

::::::::::
productivity

::
of

:::::::::
vegetation.

:::::::
Further

::::::::::
investigation

:::
of

:::::
effects

:::
of

:::
the

:::
soil

::::::::
moisture

:::::::
memory

:::
not

::::
only

::
on

:::::::
climate

:::::::::::::::::::::::::::
(Hagemann and Stacke, 2015) but

::::
also

:::
on

:::
the

::::::::
vegetation

::::::
might

:::
also

::::
lead

::
to

::::::
useful

:::::::
insights.

:
The excessive

dominance of trees (Figure 5) however indicates that also the tree-grass competition is not well represented in the model.15

Tree-grass competition for water could for example be improved in the model by introducing a sapling stage of trees, which

are competitively inferior to grasses (D’Onofrio et al., 2015). Including this mechanism could improve the balance between

tree and grass cover, but it could also reduce the establishment rate of trees and therefore, the tree cover in the dry regions

with excessive tree cover. Including a PFT-specific rooting depth of vegetation would be an important extension of the model

to improve the competition for water between grasses, saplings and adult trees.20

The absence of fire for closed canopies is captured well by JSBACH-SPITFIRE, the modelled strong relationship between

higher burned fraction and lower tree cover for open canopies (Figure 4, with the exception of Australia, Table 1), how-

ever, is not found in the observations (Figure 2, 4, Table 1). Many general processes determining the savanna-forest bound-

ary are included in the JSBACH-SPITFIRE model: Increased tree cover leads to a suppression of fire by excluding grasses,

higher flammability of grasses leads to increases in fire occurrence with increasing grass biomass (Hoffmann et al., 2012). In25
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JSBACH-SPITFIRE bark thickness is PFT specific and depends on the biomass. Tropical trees are represented by two PFTs

one of them has a lower sensitivity to fire due to a higher bark thicknessand a higher stem leading to a lower probability of

crown scorch. This is also observed in field studies where savanna species show a higher ratio of bark thickness to stem

diameter (Hoffmann et al., 2003). Inclusion or improvement of several ecological processes might improve the modelled

relationship. Bark thickness is a key property of trees for the fire-related mortality. In JSBACH-SPITFIRE bark thickness5

is PFT specific and depends on the biomass. The adaptation of trees to frequent fires by increased bark thickness, and

therefore higher resistance of trees to fire (Pellegrini et al., 2017) would increase the tree cover in regions with high burned

fraction. This could be implemented in the model with more specific PFTs or by modifying the bark thickness according

:::
and

:::
are

:::::
more

:::::::
resistent

::
to

:::
fire

::::::::::::::::::::
(Hoffmann et al., 2003).

::::::::
However,

:::
the

::::::::
modelled

::::
bark

::::::::
thickness

::::
does

:::
not

:::::
adapt

:
to the fire regime

. Kelley and Harrison (2014)
:
as

:::::::::::
observations

:::::::
indicate

::::::::::::::::::::
(Pellegrini et al., 2017).

::::::::::::::::
Kelley et al. (2014) included bark thickness as10

an adaptive trait in the LPX model, which
::::::::
increasing

:::::
bark

::::::::
thickness

:::
for

::::
high

:::
fire

:::::::::::
frequencies.

::::
This increased and improved

the tree cover for Australia. Resprouting is another important mechanism
:
an

:::::::::
important

:::::
plant

:::::::::::
characteristic

:
that changes the

balance between mortality and recovery and also leads
:::
led

:
to an increase in tree cover in fire affected areas in a modelling

study (Kelley and Harrison, 2014). A second option
::::::::::::::::
(Kelley et al., 2014).

::
A

::::
third

::::::::::
mechanism to decrease the strong associating

:::::::::
association between high burned area and tree cover could be a negative feedback between fire occurrence and tree mortality:15

frequent fire occurrence leads to low fuel loads and low fuel loads allow only low intensity fires with associated lower mortal-

ity of trees. In consequence a high burning frequency could lead to lower tree mortality and therefore higher tree cover. This

feedback between fire, fuel load, fire intensity and tree mortality is included in the SPITFIRE model, but might
:
.
:::::::
However

:::::
there

:
is
:::
no

:::::::
decrease

::
in
::::
fire

:::
line

::::::::
intensity

::::
with

:::::::
incresing

::::::
annual

::::::
burned

::::
area

:::::::
(Figure

::::
C1).

::::
This

::::::::
feedback

:::::
might

:::::::
therefore

:
be too weak

and therefore result in the stronger correlation between burned fraction and tree cover (Table 1).20

A more detailed representation of vegetation structure including a sapling state of trees that is more sensitive to fire (e.g. Hig-

gins et al., 2000) and a long-lived adult tree state could also increase the survival of trees. The “fire trap” describes a mechanism

where in regions with frequent fires topkill of saplings maintains them in a nonreproductive state (Hoffmann et al., 2009). It

explains the importance of the fire free intervals to allow accumulation of sufficient bark to gain sufficient fire resistence. The

JSBACH model does not represent the age structure of vegetation, therefore fire always affects the average tree while in reality25

only trees that did not accumulate sufficient bark are affected (Hoffmann et al., 2012). Moreover, fire does not influence the

tree establishment in JSBACH, it can only lead to mortality.
:::::::
Including

::
a
::::::
sapling

:::::
state

:::::
could

::::::::
therefore

:::::::
increase

::::
tree

:::::
cover

::
in

::::::::
frequently

::::::
burned

:::::
areas,

:::::
while

:::::::::
decreasing

::::
tree

:::::
cover

:::
(as

::::::::
described

::::::
above)

::
in

:::::
areas

:::
that

:::
are

:::
too

:::
dry

::
to
:::::::
provide

::::
fuel

:::
for

:::::::
frequent

:::::::
burning.

For Australia underestimation of burned area for both fire models is strong (Figure 4). In a previous evaluation where the model30

was forced with observed climate and vegetation cover was prescribed (in contrast to the dynamic vegetation cover and cli-

mate modelled by the MPI-ESM) JSBACH-SPITFIRE showed better results for Australia (Hantson et al., 2015). An improved

response of vegetation cover dynamics to precipitation will therefore likely improve the patterns of burned area.

The rank correlation between precipitation and tree cover is higher for the observations compared to the model outputs (Ta-

ble 1). One reason might be the lower maximum tree cover for low precipitation in the observations which limits the range35
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of tree cover values in these regions. In JSBACH-standard the correlation between tree cover and precipitation is stronger

than in JSBACH-SPITFIRE. In the JSBACH-standard model, fire is only driven by meteorological variables and vegetation

properties (which also largely follow climatic gradients). JSBACH-SPITFIRE, however, also uses population density and light-

ning datasets as input, which are potentially inconsistent with the meteorological forcing derived from the MPI-ESM output.

This decoupling between climate and ignitions might cause the lower correlation for JSBACH-SPITFIRE compared to the5

JSBACH-standard simulation. For instance in the Northeast Amazon region precipitation of the MPI-ESM is too low, leading

to a decrease in tree cover in regions with closed canopy with the JSBACH-standard fire model. The very low ignitions in

JSBACH-SPITFIRE in that region contribute to a low fire occurrence compared to JSBACH-standard and in consequence to

higher tree cover (Figure 1). Lightning can be computed within climate models (Krause et al., 2014) and using these lightning

datasets based on the model not on observations would ensure consistency between meteorological forcing and the ignitions10

used in the fire model (Felsberg et al., 2018).

:::
The

:::::::::
suggested

::::::::
processes

:::
are

::::::
known

::
to

:::
be

::::::::
important

:::
for

:::
the

:::::::::
vegetation

::::::::::
distribution

:::
and

::
it
::::::
seems

::::::::
plausible

:::
that

::::
they

::::
can

::::
help

::
to

:::::::
improve

:::
the

::::::::
vegetation

:::::::::::
distribution. How exactly these plausible modifications would change the patterns of tree cover, fire

and their relation to climate likely strongly depends on the exact parameterization and needs to be tested with stepwise model

development and factorial simulations.15

Many climate models have problems to represent
::::::::::
representing

:
extremes, length of dry periods and tend to generate a perma-

nent drizzle (DeAngelis et al., 2013; Gutowski et al., 2003).
:::
We

:::
did

:::
not

::::
find

:::
this

:::::::
problem

:::
for

:::
the

:::::::
driving

::::
data

::::
used

::::
here

::::
(see

:::::
Figure

::::
B1).

:
With our approach we only include mean annual precipitation, other aspects of the modelled climate are neglected

but might contribute to model-data mismatches in the relationship between precipitation and other variables. Mean annual

precipitation is however a strong driver of vegetation patterns especially in the tropics and including more climate parameters20

would require an entirely different
:
a
:::::
more

:::::::
complex

:
approach and possibly limit visualization and interpretation of the results.

Including more climatic parameters could especially help to interpret more of the variability for mean annual precipitation

amounts that allow tree establishment but do not lead to complete canopy closure. The reasonable relationship of mean annual

precipitation and burned area however indicates either, that additional climate biases are not important as fire is quite sensitive

to the length of dry seasons, or that the fire model cancels out additional climate biases.25

4.2 Difference between continents

We find differences in the climate-vegetation-fire relationships between continents in the satellite products as well as in the

model simulations with JSBACH-SPITFIRE and the JSBACH standard model. Differences in the climate-vegetation-fire re-

lationships have been described based on site level datasets (Lehmann et al., 2014). They find that the response of tree basal

area to growth conditions (climate and nutrients) and disturbances differs between continents. The study suggests that the one30

climate–one vegetation paradigm which is an under-pinning of many global vegetation models cannot lead to vegetation pat-

terns that differ between continents under the same climatic conditions as the patterns depend on past environmental conditions

and evolution. Evolution is not accounted for in common vegetation models. In simulations with changing climatic forcing,

however, the vegetation is a function of previous environmental conditions and adapts to changes in climate with constant

16



PFT specific time scales. Additionally the human dimension is more and more included in DGVMs, primarily by including

anthropogenic land cover change. Moreover, in recent global fire models population density is a commonly used driver for

human ignitions and suppression of fires (Hantson et al., 2016).

Our model simulations show that also global vegetation models models can have differences in climate-vegetation-fire re-

lationships between continents. We seperated the effect of land use change by comparing the historical simulation to a5

simulation with preindustrial land use. We find that land cover change is influencing the differences in the modelled fire

regime between Africa and South America. Land cover change influences simulated fire occurrence as cropland areas are ex-

cluded from burning and pastures have a higher fuel bulk density in the JSBACH-SPITFIRE model. A reduction in burned

area due to increases in croplands is well supported by statistical analysis of satellite data for Africa (Andela and van der

Werf, 2014) and globally (Bistinas et al., 2014; Andela et al., 2017). The mechanism behind the reduction in burned area10

due to croplands is however likely a fragmentation of the landscape, which is not explicitly accounted for in the model.

Fragmentation of the landscape by for instance roads, can act as a fire break and therefore reduce the potential fire size.

The exact relationships between humans, land use and vegetation fires are still unknown and therefore not well represented

in models
::
On

:::::
local

::::
scale

::::::::::::
understanding

:::
on

:::::
these

::::::::::
relationships

::
is
::::::::::
increasing,

:::
for

:::::::
instance

:::
the

:::::::
relation

:::::::
between

:::
fire

::::
and

:::::
roads

::::::::::::::::::::::::::::::::::::::::::::::
(Faivre et al., 2014; Narayanaraj and Wimberly, 2012) or

:::::::
between

:::
fire

:::
and

::::
land

::::::::::
management

::::::::::::::::::::::::::::::::::
(Morton et al., 2013; Brando et al., 2014).15

::::::::
However,

:
a
::::::::::::
generalization

::
to

::
an

::::::::
approach

::::
that

:::::
would

::
be

:::::::
suitable

:::
for

::::::
global

::::::
models

::
is

:::
still

:::::::
missing.

Vegetation in the MPI Earth system model including SPITFIRE is not only a function of climate but also depends on the history

of previous vegetation due to the feedback between fire and vegetation (Lasslop et al., 2016). We did not isolate the effect of

the multi-stability in this study but initialized the model with the standard vegetation initialization of the MPI-ESM for the

year 1850. The SPITFIRE model also takes into account differences in the fire regime through spatially varying ignitions. In20

addition to the effect of land use on the differences between continents these spatial differences in ignitions might be important

and might explain the smaller differences for the purely climate and land use driven JSBACH-standard model.

The comparison of the increase in maximum tree cover with increasing precipiation shows that although the model shows

some variability between continents, it misses a large part of the observed variation. Finding the correct balance of the many

influencing factors, e.g. climate, fire, land use, evolutionary differences, will remain a challenge for the future.25

4.3 Limitations in the comparability between observations and modeled variables

We use two remotely sensed tree cover products, which show coherent patterns. Although these products are derived from

imagery with different spectral, temporal and spatial characteristics (MODIS and Landsat), they cannot be considered totally

independent because both are derived using a similar classification and regression tree method as well as reference data. The

observational tree cover datasets are limited to trees taller than 5 m and do not include shrubs. For the model however we30

included shrubs and all trees. Previously differences in the threshold where maximum tree cover is reached were attributed to

different precipitation datasets and ex- or inclusion of shrub cover (Devine et al., 2017). Filtering modelled and observed tree

cover based on the presence of shrubs in the MODIS land cover product leads to only small differences in the relationship

between tree cover and precipitation (Figure A1). Excluding grid cells where biomass indicates that the vegetation height is
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smaller than 5 m according to the allometric relationship used in SPITFIRE-JSBACH (Lasslop et al., 2014) did not lead to

substantially different relationships (Figure A2). Our conclusions are therefore not affected by the limitation of the datasets to

observe only trees taller than 5 m.

Compared to the satellite datasets, an African site level dataset shows lower thresholds of precipitation for the absence of trees

(ca. 100 mm year−1) and for reaching the highest tree cover values (>650 mm year−1) (Sankaran et al., 2005). The remote5

sensing datasets show for Africa an absence of tree cover for precipitation less than ca. 300 mm and canopy closure for 1500

mm year−1 in the model resolution (Figure 4). However, the general absence of trees for very low precipitation and increase

until a certain threshold is similar to the remote sensing datasets.

The maximum value of a variable can decrease due to spatial averaging. We tested this effect by not using the mean when

aggregating the satellite tree cover to the resolution of the precipitation dataset but instead using the maximum value of the10

underlying 0.05° grid cells of tree cover. Canopy closure can then be reached for all continents for mean precipitation values

around 500-1000 mm year−1 (Figure A3), which is more consistent with a published site level dataset (Sankaran et al., 2005).

This is consistent with the figures in (Hirota et al., 2011) where the MODIS tree cover is shown in 1km resolution. The scale

at which maximum tree covers are observed and the spatial scale of the model application therefore needs to be considered.

Moreover, as the thresholds found for the model are closer to the ones found for site-level and high resolution satellite datasets15

the model performance could improve if the spatial resolution of the model is increased.

Tree cover seems to be a clearly defined variable, but already varies between the two satellite datasets, the MODIS tree

cover dataset defines a maximum tree cover of 80%, while the LANDSAT tree cover dataset allows a cover of 100%. In

the observations not fully closed canopies due to low foliar biomass might be tracked as a reduced tree cover. In the model,

however, tree cover and biomass are two rather independent variables, meaning that tree cover can be high in spite of a low20

biomass. Biomass datasets might therefore give additional valuable insights and pan-tropical datasets are available (Saatchi

et al., 2011; Baccini et al., 2012; Avitabile et al., 2016).

The latest release of the GFED burned area and emissions datasets includes an extension for small fires (Randerson et al., 2012).

However these small fires are often related to cropland fires or deforestation fires. Neither of these fire types are modelled

explicitely in our model approaches and therefore could cause an unwanted mismatch. Cropland fires are not expected to25

strongly influence the vegetation cover, while deforestation is prescribed as described in the model and simulation paragraphs

and therefore the influence on vegetation cover is considered. Burned area datasets are generally uncertain mainly due to the

limited spatial and temporal resolution (Padilla et al., 2015), the difference in global burned area between the dataset including

small fires and the one not including small fires is 25%. The spatial patterns are less affected, but missed burned areas due to

high cloud cover certainly introduces also spatial biases. How important such errors are for a comparison as present here is30

unknown.
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5 Conclusions

This study combines two satellite datasets with model simulations using a simple and a complex fire algorithm to investigate

relationships between fire, vegetation and climate. Our analysis shows that the two satellite datasets are consistent in terms

of the relationship between tree cover, precipitation and fire occurrence, but the spatial scale needs to be considered as some

statistical characteristics change with the resolution.5

Our analysis showed the strength of the multivariate comparison to detect model inconsistencies and guide model development.

It goes beyond the insights gained by standard spatial comparisons. For JSBACH, independent of the fire model used, we find

an overestimation of tree cover for low precipitation where typically fire occurrence is low due to limited fuel availability. The

response of burned area to precipitation was captured well for SPITFIRE, but the simple fire scheme showed an overestimation

of burned area for dry regions. This indicates that not an improvement of the fire model but improved modelling of drought10

effects on the vegetation dynamics will improve the response of vegetation to climate in dry regions. Dry regions often show a

strong coupling between land and atmosphere (Koster et al., 2006), such an improvement has therefore also a high potential to

improve the performance of the coupled Earth system model.

While fire occurrence and vegetation patterns are well observed by remote sensing, the impact of fire on vegetation is much less

constrained by satellite observations limiting the possibilities of evaluating that part of fire models. The multivariate compari-15

son revealed a too strong impact of fire on tree cover for gridcells with very high fire occurrence, which leads to too low tree

cover. To boost the tree cover in exactly these regions with high fire occurrence possible model modifications are an adaptation

of trees to fire, by increasing bark thickness in reponse to high fire frequencies, or a stronger negative feedback between fire

occurrence and fuel load. This stronger feedback should then reduce fire intensity and consequently fire mortality.

The complex fire model SPITFIRE improves the difference in fire regimes between the continents, especially Africa and20

South America, compared to the simple fire model. The intercontinental variation in the relationship between precipitation and

maximum tree cover is much smaller for the models compared to the observations. Known variations in vegetation are not suf-

ficiently understood to be represented in models. However, our finding that models do show differences in the fire-vegetation-

climate relationships between continents shows that further exploration why models show differences can be helpful to better

understand causes for intercontinental differences.25

Overall the multivariate model evaluation highlights the potential for more targeted model improvements with respect to the

interactions between climate, vegetation and fire, which are crucial for our understanding of future vegetation projections.

Code and data availability. The observational datasets are freely available. The processed data and model output as displayed in this publi-

cation and the processing scripts are available upon request to publications@mpimet.mpg.de.30
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Figure A1. Same as figure 4 but tree cover filtered for the presence of shrub lands (using the MODIS open and closed shrub land classifica-

tion). This indicates a low sensitivity of the fire-vegetation-climate relationships to shrub lands.

Appendix A: Sensitivity of climate-vegetation-fire relationships to remapping, presence of shrubs and modelled tree

height

Appendix B:
:::::::::
Evaluation

::
of

::::::::::::
precipitation

::::::
forcing

::::::::::
Additionally

::
to

:::
the

::::
total

::::::
amount

::
of

:::::::
rainfall

::
the

::::::::::
seasonality

:::
can

::::
play

:::
role

:::
for

:::::::::
vegetation

::
or

:::
the

:::::
length

::
of

:::
dry

:::::::
periods.

:::
We

::::::::
therefore

:::::
assess

::::
here

:::::::
whether

:::
the

:::::::
rainfall

:::::::::
seasonality

::::
and

:::
the

:::::::
number

::
of

::::
dry

::::
days

:::
are

:::::::::
reasonable

::
in
::::

our
:::::::
climatic

:::::::
forcing.

:::
We

::::
use

:::
the5

::::::::::
CRU-NCEP

::
v5

::::::
dataset

:::::::::::::::::
(Wei et al., 2014) as

::
a

::::::::
reference

:::
and

:::::
define

:::::::
rainfall

:::::::::
seasonality

::
as

:::
the

:::::::
number

::
of

:::::
days

::::::
needed

::
to

:::::
reach

::::
80%

::
of

:::
the

:::::
annual

:::::::::::
precipitation,

::::
and

:::
dry

::::
days

::
as

::::
days

::::
with

:::
less

:::::::
rainfall

:::
than

::
3
::::
mm.

::
A

:::
low

:::::::
number

::
of

::::
days

::::
need

::
to

:::::
reach

:::
the

::::
80%

::::::
rainfall

:::::::
indicates

::
a
:::::
strong

::::::::::
seasonality,

:
a
::::
high

:::::::
number

::
of

::::
days

::
a
:::
low

::::::::::
seasonality.

::::
The

::::::::::
CRU-NCEP

::::::
dataset

::
is

:
a
:::::::::
reanalysis

::::::
dataset
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Figure A2. Modelled tree cover (TC) versus precipitation (P) [mm year-1]. Modelled tree cover was filtered for vegetation height of trees <5

m using the modelled vegetation height. This value is given as detection threshold for the satellite products. When filtering the model output

with this threshold the differences to the unfiltered dataset are very small (compare with Figure 4, panels for JSBACH-SPITFIRE).

Figure A3. Tree cover (TC) versus precipitation (P) with color coded burned fraction (BF). Tree cover was here remapped from 0.05°

resolution to 2° using the maximum value of the higher resolution instead of the mean.

:::::::::
commonly

::::
used

::
in

:::::
offline

::::::
model

::::::::::
comparisons

:::::::::::::::::
(Rabin et al., 2017).

:::
The

:::::::::
MPI-ESM

::::
does

:::
not

:::::
show

:
a
:::::::::
concerning

::::::::::::::
underestimation

::
of

:::
dry

::::
days

::
or

:::
too

::::
low

:::::::::
seasonality.

:

Appendix C:
:::::::::::
Relationship

:::::::
between

::::::::
modelled

:::::::
burned

::::
area

::::
and

:::
fire

::::::::
intensity

Author contributions. GL wrote the manuscript. GL and TM designed the study and performed the analysis. SH, DD, SK helped refine the

analysis and to develop and shape the manuscript.5
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Figure B1.
::::::::::
Relationship

::::::
between

:::::
annual

::::::::::
precipitation

:::
and

:::::::::
precipitation

:::::::::
seasonality

:::
and

::::::
number

:
of
:::
dry

::::
days

::
for

:::
the

:::::::
ECHAM

::::::::
simulation

::::
used

:
as
::::::::::::

meteorological
:::::
forcing

:::
for

:::
the

:::::::
JSBACH

::::::::
simulations

::::
used

::::
here

:::
and

::
the

::::::::::
CRU-NCEP

::::::
dataset.
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Figure C1.
::::::::::
Relationship

::::::
between

:::::
annual

::::::
burned

:::
area

:::
and

:::
fire

:::
line

:::::::
intensity.

:::
The

:::::::
expected

::::::
decrease

::
in

:::
fire

:::
line

::::::
intensity

:::
for

::::::::
frequently

::::::
burning

::::
areas

:::
due

::
to

::
the

:::::::
feedback

:::::::
between

:::
fire

:::
and

:::
fuel

::::
load

:
is
:::
not

:::::
found

::
in

::
the

::::::::
simulation

::::::
results

:::
and

::::
might

:::::::
indicate

:::
that

::
the

:::::::
feedback

:::::::
between

:::
fire

::::::::
occurrence,

::::
fuel

:::
load

:::
and

:::
fire

:::::::
intensity

:
is
:::
too

:::::
weak.

References

Alkama, R. and Cescatti, A.: Biophysical climate impacts of recent changes in global forest cover, Science (80-. )., 351, 600–604,

https://doi.org/10.1126/science.aac8083, http://www.sciencemag.org/cgi/doi/10.1126/science.aac8083, 2016.

Andela, N. and van der Werf, G. R.: Recent trends in African fires driven by cropland expansion and El Niño to La Niña transition, Nat.

Clim. Chang., 4, 791–795, https://doi.org/10.1038/nclimate2313, http://www.nature.com/doifinder/10.1038/nclimate2313, 2014.5

Andela, N., Morton, D. C., Giglio, L., Chen, Y., van der Werf, G. R., Kasibhatla, P. S., DeFries, R. S., Collatz, G. J., Hantson, S., Kloster, S.,

Bachelet, D., Forrest, M., Lasslop, G., Li, F., Mangeon, S., Melton, J. R., Yue, C., and Randerson, J. T.: A human-driven decline in global

burned area, Science (80-. )., 356, 1356–1362, http://science.sciencemag.org/content/356/6345/1356.abstract, 2017.

Avitabile, V., Herold, M., Heuvelink, G. B. M., Lewis, S. L., Phillips, O. L., Asner, G. P., Armston, J., Ashton, P. S., Banin, L., Bayol, N.,

Berry, N. J., Boeckx, P., de Jong, B. H. J., DeVries, B., Girardin, C. A. J., Kearsley, E., Lindsell, J. A., Lopez-Gonzalez, G., Lucas, R.,10

Malhi, Y., Morel, A., Mitchard, E. T. A., Nagy, L., Qie, L., Quinones, M. J., Ryan, C. M., Ferry, S. J. W., Sunderland, T., Laurin, G. V.,

Gatti, R. C., Valentini, R., Verbeeck, H., Wijaya, A., and Willcock, S.: An integrated pan-tropical biomass map using multiple reference

datasets, Glob. Chang. Biol., 22, 1406–1420, https://doi.org/10.1111/gcb.13139, http://doi.wiley.com/10.1111/gcb.13139, 2016.

Baccini, A., Goetz, S. J., Walker, W. S., Laporte, N. T., Sun, M., Sulla-Menashe, D., Hackler, J., Beck, P. S. A., Dubayah, R., Friedl, M. A.,

Samanta, S., and Houghton, R. A.: Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps,15

Nat. Clim. Chang., 2, 182–185, https://doi.org/10.1038/nclimate1354, http://www.nature.com/articles/nclimate1354, 2012.

23

https://doi.org/10.1126/science.aac8083
http://www.sciencemag.org/cgi/doi/10.1126/science.aac8083
https://doi.org/10.1038/nclimate2313
http://www.nature.com/doifinder/10.1038/nclimate2313
http://science.sciencemag.org/content/356/6345/1356.abstract
https://doi.org/10.1111/gcb.13139
http://doi.wiley.com/10.1111/gcb.13139
https://doi.org/10.1038/nclimate1354
http://www.nature.com/articles/nclimate1354


Bathiany, S., Claussen, M., Brovkin, V., Raddatz, T., and Gayler, V.: Combined biogeophysical and biogeochemical effects of large-scale

forest cover changes in the MPI earth system model, Biogeosciences, 7, 1383–1399, https://doi.org/10.5194/bg-7-1383-2010, http://www.

biogeosciences.net/7/1383/2010/, 2010.

Baudena, M., Dekker, S. C., van Bodegom, P. M., Cuesta, B., Higgins, S. I., Lehsten, V., Reick, C. H., Rietkerk, M., Scheiter, S., Yin, Z.,

Zavala, M. A., and Brovkin, V.: Forests, savannas, and grasslands: bridging the knowledge gap between ecology and Dynamic Global5

Vegetation Models, Biogeosciences, 12, 1833–1848, https://doi.org/10.5194/bg-12-1833-2015, http://www.biogeosciences.net/12/1833/

2015/, 2015.

Bistinas, I., Harrison, S. P., Prentice, I. C., and Pereira, J. M. C.: Causal relationships versus emergent patterns in the global controls of fire

frequency, Biogeosciences, 11, 5087–5101, https://doi.org/10.5194/bg-11-5087-2014, 2014.

Bonan, G. B.: Forests and climate change: forcings, feedbacks, and the climate benefits of forests., Science (80-. )., 320, 1444–9,10

https://doi.org/10.1126/science.1155121, http://www.ncbi.nlm.nih.gov/pubmed/18556546, 2008.

Brando, P. M., Balch, J. K., Nepstad, D. C., Morton, D. C., Putz, F. E., Coe, M. T., Silverio, D., Macedo, M. N., Davidson, E. A., Nobrega,

C. C., Alencar, A., and Soares-Filho, B. S.: Abrupt increases in Amazonian tree mortality due to drought-fire interactions, Proc. Natl.

Acad. Sci., 111, 6347–6352, https://doi.org/10.1073/pnas.1305499111, http://www.pnas.org/cgi/doi/10.1073/pnas.1305499111, 2014.

Brovkin, V., Claussen, M., Petoukhov, V., and Ganopolski, A.: On the stability of the atmosphere-vegetation system in the Sahara/Sahel15

region, J. Geophys. Res., 103, 31 613, https://doi.org/10.1029/1998JD200006, http://doi.wiley.com/10.1029/1998JD200006, 1998.

Brovkin, V., Raddatz, T., Reick, C. H., Claussen, M., and Gayler, V.: Global biogeophysical interactions between forest and climate, Geophys.

Res. Lett., 36, 1–6, https://doi.org/10.1029/2009GL037543, http://www.agu.org/pubs/crossref/2009/2009GL037543.shtml, 2009.

DeAngelis, A. M., Broccoli, A. J., and Decker, S. G.: A Comparison of CMIP3 Simulations of Precipitation over North America with Obser-

vations: Daily Statistics and Circulation Features Accompanying Extreme Events, J. Clim., 26, 3209–3230, https://doi.org/10.1175/JCLI-20

D-12-00374.1, http://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-12-00374.1, 2013.

Devine, A. P., McDonald, R. A., Quaife, T., and Maclean, I. M. D.: Determinants of woody encroachment and cover in African savannas,

Oecologia, 183, 939–951, https://doi.org/10.1007/s00442-017-3807-6, http://link.springer.com/10.1007/s00442-017-3807-6, 2017.

D’Onofrio, D., Baudena, M., D’Andrea, F., Rietkerk, M., and Provenzale, A.: Tree-grass competition for soil water in arid and semiarid

savannas: The role of rainfall intermittency, Water Resour. Res., 51, 169–181, https://doi.org/10.1002/2014WR015515, http://doi.wiley.25

com/10.1002/2014WR015515, 2015.

Faivre, N., Jin, Y., Goulden, M. L., and Randerson, J. T.: Controls on the spatial pattern of wildfire ignitions in Southern California, Int. J.

Wildl. Fire, 23, 799, https://doi.org/10.1071/WF13136, http://www.publish.csiro.au/?paper=WF13136, 2014.

Felsberg, A., Kloster, S., Wilkenskjeld, S., Krause, A., and Lasslop, G.: Lightning Forcing in Global Fire Models: The Importance of Tem-

poral Resolution, J. Geophys. Res. Biogeosciences, https://doi.org/10.1002/2017JG004080, http://doi.wiley.com/10.1002/2017JG004080,30

2018.

Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A., and Huang, X.: MODIS Collection

5 global land cover: Algorithm refinements and characterization of new datasets, Remote Sens. Environ., 114, 168–182,

https://doi.org/10.1016/j.rse.2009.08.016, http://linkinghub.elsevier.com/retrieve/pii/S0034425709002673, 2010.

Gerard, F., Hooftman, D., van Langevelde, F., Veenendaal, E., White, S. M., and Lloyd, J.: MODIS VCF should not be used to detect35

discontinuities in tree cover due to binning bias. A comment on Hanan et al. (2014) and Staver and Hansen (2015), Glob. Ecol. Biogeogr.,

26, 854–859, https://doi.org/10.1111/geb.12592, http://dx.doi.org/10.1111/geb.12592, 2017.

24

https://doi.org/10.5194/bg-7-1383-2010
http://www.biogeosciences.net/7/1383/2010/
http://www.biogeosciences.net/7/1383/2010/
http://www.biogeosciences.net/7/1383/2010/
https://doi.org/10.5194/bg-12-1833-2015
http://www.biogeosciences.net/12/1833/2015/
http://www.biogeosciences.net/12/1833/2015/
http://www.biogeosciences.net/12/1833/2015/
https://doi.org/10.5194/bg-11-5087-2014
https://doi.org/10.1126/science.1155121
http://www.ncbi.nlm.nih.gov/pubmed/18556546
https://doi.org/10.1073/pnas.1305499111
http://www.pnas.org/cgi/doi/10.1073/pnas.1305499111
https://doi.org/10.1029/1998JD200006
http://doi.wiley.com/10.1029/1998JD200006
https://doi.org/10.1029/2009GL037543
http://www.agu.org/pubs/crossref/2009/2009GL037543.shtml
https://doi.org/10.1175/JCLI-D-12-00374.1
https://doi.org/10.1175/JCLI-D-12-00374.1
https://doi.org/10.1175/JCLI-D-12-00374.1
http://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-12-00374.1
https://doi.org/10.1007/s00442-017-3807-6
http://link.springer.com/10.1007/s00442-017-3807-6
https://doi.org/10.1002/2014WR015515
http://doi.wiley.com/10.1002/2014WR015515
http://doi.wiley.com/10.1002/2014WR015515
http://doi.wiley.com/10.1002/2014WR015515
https://doi.org/10.1071/WF13136
http://www.publish.csiro.au/?paper=WF13136
https://doi.org/10.1002/2017JG004080
http://doi.wiley.com/10.1002/2017JG004080
https://doi.org/10.1016/j.rse.2009.08.016
http://linkinghub.elsevier.com/retrieve/pii/S0034425709002673
https://doi.org/10.1111/geb.12592
http://dx.doi.org/10.1111/geb.12592


Giglio, L., Randerson, J. T., and van der Werf, G. R.: Analysis of daily, monthly, and annual burned area using the fourth-generation global

fire emissions database (GFED4), J. Geophys. Res. Biogeosciences, 118, 317–328, https://doi.org/10.1002/jgrg.20042, http://doi.wiley.

com/10.1002/jgrg.20042, 2013.

Giorgetta, M. A., Jungclaus, J., Reick, C. H., Legutke, S., Bader, J., Böttinger, M., Brovkin, V., Crueger, T., Esch, M., Fieg, K., Glushak,

K., Gayler, V., Haak, H., Hollweg, H.-D., Ilyina, T., Kinne, S., Kornblueh, L., Matei, D., Mauritsen, T., Mikolajewicz, U., Mueller, W.,5

Notz, D., Pithan, F., Raddatz, T., Rast, S., Redler, R., Roeckner, E., Schmidt, H., Schnur, R., Segschneider, J., Six, K. D., Stockhause,

M., Timmreck, C., Wegner, J., Widmann, H., Wieners, K.-H., Claussen, M., Marotzke, J., and Stevens, B.: Climate and carbon cycle

changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5, J. Adv. Model. Earth Syst.,

5, 572–597, https://doi.org/10.1002/jame.20038, http://doi.wiley.com/10.1002/jame.20038, 2013.

Gutowski, W. J., Decker, S. G., Donavon, R. A., Pan, Z., Arritt, R. W., and Takle, E. S.: Temporal–Spatial Scales of Observed and Simulated10

Precipitation in Central U.S. Climate, J. Clim., 16, 3841–3847, https://doi.org/10.1175/1520-0442(2003)016<3841:TSOOAS>2.0.CO;2,

http://journals.ametsoc.org/doi/abs/10.1175/1520-0442{%}282003{%}29016{%}3C3841{%}3ATSOOAS{%}3E2.0.CO{%}3B2, 2003.

Hagemann, S. and Stacke, T.: Impact of the soil hydrology scheme on simulated soil moisture memory, Clim. Dyn., 44, 1731–1750,

https://doi.org/10.1007/s00382-014-2221-6, http://link.springer.com/10.1007/s00382-014-2221-6, 2015.

Hagemann, S., Loew, A., and Andersson, A.: Combined evaluation of MPI-ESM land surface water and energy fluxes, J. Adv. Model. Earth15

Syst., pp. n/a–n/a, https://doi.org/10.1029/2012MS000173, http://doi.wiley.com/10.1029/2012MS000173, 2013.

Hansen, M. C., DeFries, R. S., Townshend, J. R. G., Carroll, M., Dimiceli, C., and Sohlberg, R. a.: Global Percent Tree

Cover at a Spatial Resolution of 500 Meters: First Results of the MODIS Vegetation Continuous Fields Algorithm, Earth In-

teract., 7, 1–15, https://doi.org/10.1175/1087-3562(2003)007<0001:GPTCAA>2.0.CO;2, http://journals.ametsoc.org/doi/abs/10.1175/

1087-3562(2003)007{%}3C0001:GPTCAA{%}3E2.0.CO;2, 2003.20

Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. a., Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J., Loveland,

T. R., Kommareddy, A., Egorov, A., Chini, L., Justice, C. O., and Townshend, J. R. G.: High-resolution global maps of 21st-century forest

cover change., Science, 342, 850–3, https://doi.org/10.1126/science.1244693, http://www.ncbi.nlm.nih.gov/pubmed/24233722, 2013.

Hantson, S., Lasslop, G., Kloster, S., and Chuvieco, E.: Anthropogenic effects on global mean fire size, Int. J. Wildl. Fire, 24, 589–596,

https://doi.org/10.1071/WF14208, http://www.publish.csiro.au/?paper=WF14208, 2015.25

Hantson, S., Arneth, A., Harrison, S. P., Kelley, D. I., Prentice, I. C., Rabin, S. S., Archibald, S., Mouillot, F., Arnold, S. R., Artaxo, P.,

Bachelet, D., Ciais, P., Forrest, M., Friedlingstein, P., Hickler, T., Kaplan, J. O., Kloster, S., Knorr, W., Lasslop, G., Li, F., Mangeon, S.,

Melton, J. R., Meyn, A., Sitch, S., Spessa, A., van der Werf, G. R., Voulgarakis, A., and Yue, C.: The status and challenge of global fire

modelling, Biogeosciences Discuss., pp. 1–30, https://doi.org/10.5194/bg-2016-17, http://www.biogeosciences-discuss.net/bg-2016-17/,

2016.30

Hantson, S., Scheffer, M., Pueyo, S., Xu, C., Lasslop, G., van Nes, E. H., Holmgren, M., and Mendelsohn, J.: Rare, Intense, Big fires

dominate the global tropics under drier conditions, Sci. Rep., 7, 14 374, https://doi.org/10.1038/s41598-017-14654-9, http://www.nature.

com/articles/s41598-017-14654-9, 2017.

Higgins, S. I. and Scheiter, S.: Atmospheric CO2 forces abrupt vegetation shifts locally, but not globally, Nature, 488, 209–212,

https://doi.org/10.1038/nature11238, http://www.nature.com/doifinder/10.1038/nature11238, 2012.35

Higgins, S. I., Bond, W. J., and Trollope, W. S. W.: Fire, resprouting and variability: a recipe for grass–tree coexistence in savanna, J. Ecol.,

88, 213–229, https://doi.org/10.1046/j.1365-2745.2000.00435.x, http://dx.doi.org/10.1046/j.1365-2745.2000.00435.x, 2000.

25

https://doi.org/10.1002/jgrg.20042
http://doi.wiley.com/10.1002/jgrg.20042
http://doi.wiley.com/10.1002/jgrg.20042
http://doi.wiley.com/10.1002/jgrg.20042
https://doi.org/10.1002/jame.20038
http://doi.wiley.com/10.1002/jame.20038
https://doi.org/10.1175/1520-0442(2003)016%3C3841:TSOOAS%3E2.0.CO;2
http://journals.ametsoc.org/doi/abs/10.1175/1520-0442{%}282003{%}29016{%}3C3841{%}3ATSOOAS{%}3E2.0.CO{%}3B2
https://doi.org/10.1007/s00382-014-2221-6
http://link.springer.com/10.1007/s00382-014-2221-6
https://doi.org/10.1029/2012MS000173
http://doi.wiley.com/10.1029/2012MS000173
https://doi.org/10.1175/1087-3562(2003)007%3C0001:GPTCAA%3E2.0.CO;2
http://journals.ametsoc.org/doi/abs/10.1175/1087-3562(2003)007{%}3C0001:GPTCAA{%}3E2.0.CO;2
http://journals.ametsoc.org/doi/abs/10.1175/1087-3562(2003)007{%}3C0001:GPTCAA{%}3E2.0.CO;2
http://journals.ametsoc.org/doi/abs/10.1175/1087-3562(2003)007{%}3C0001:GPTCAA{%}3E2.0.CO;2
https://doi.org/10.1126/science.1244693
http://www.ncbi.nlm.nih.gov/pubmed/24233722
https://doi.org/10.1071/WF14208
http://www.publish.csiro.au/?paper=WF14208
https://doi.org/10.5194/bg-2016-17
http://www.biogeosciences-discuss.net/bg-2016-17/
https://doi.org/10.1038/s41598-017-14654-9
http://www.nature.com/articles/s41598-017-14654-9
http://www.nature.com/articles/s41598-017-14654-9
http://www.nature.com/articles/s41598-017-14654-9
https://doi.org/10.1038/nature11238
http://www.nature.com/doifinder/10.1038/nature11238
https://doi.org/10.1046/j.1365-2745.2000.00435.x
http://dx.doi.org/10.1046/j.1365-2745.2000.00435.x


Hirota, M., Holmgren, M., Van Nes, E. H., and Scheffer, M.: Global Resilience of Tropical Forest and Savanna to Critical Transitions, Science

(80-. )., 334, 232–235, https://doi.org/10.1126/science.1210657, http://www.sciencemag.org/cgi/doi/10.1126/science.1210657, 2011.

Hoffmann, W. a., Orthen, B., and Vargas Do Nascimento, P. K.: Comparative fire ecology of tropical savanna and forest trees, Funct. Ecol.,

17, 720–726, https://doi.org/10.1111/j.1365-2435.2003.00796.x, 2003.

Hoffmann, W. A., Adasme, R., Haridasan, M., T. de Carvalho, M., Geiger, E. L., Pereira, M. A. B., Gotsch, S. G., and Franco, A. C.: Tree5

topkill, not mortality, governs the dynamics of savanna–forest boundaries under frequent fire in central Brazil, Ecology, 90, 1326–1337,

https://doi.org/10.1890/08-0741.1, http://doi.wiley.com/10.1890/08-0741.1, 2009.

Hoffmann, W. a., Geiger, E. L., Gotsch, S. G., Rossatto, D. R., Silva, L. C. R., Lau, O. L., Haridasan, M., and Franco, A. C.: Ecological

thresholds at the savanna-forest boundary: how plant traits, resources and fire govern the distribution of tropical biomes., Ecol. Lett., 15,

759–68, https://doi.org/10.1111/j.1461-0248.2012.01789.x, http://www.ncbi.nlm.nih.gov/pubmed/22554474, 2012.10

Huffman, G., Adler, R., Bolvin, D., and Nelkin, E.: The TRMM Multi-satellite Precipitation Analysis (TMPA), in: Satell. Rainfall Appl.

Surf. Hydrol., edited by Hossain, F. and Gebremichael, M., chap. 1, pp. 3–22, Springer Verlag, 2010.

Huffman, G. J., Bolvin, D. T., Nelkin, E. J., Wolff, D. B., Adler, R. F., Gu, G., Hong, Y., Bowman, K. P., and Stocker, E. F.: The TRMM

Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales, J. Hy-

drometeorol., 8, 38–55, https://doi.org/10.1175/JHM560.1, http://journals.ametsoc.org/doi/abs/10.1175/JHM560.1, 2007.15

Hurtt, G. C., Chini, L. P., Frolking, S., Betts, R. A., Feddema, J., Fischer, G., Fisk, J. P., Hibbard, K., Houghton, R. A., Janetos, A., Jones,

C. D., Kindermann, G., Kinoshita, T., Klein Goldewijk, K., Riahi, K., Shevliakova, E., Smith, S., Stehfest, E., Thomson, A., Thornton, P.,

Vuuren, D. P., and Wang, Y. P.: Harmonization of land-use scenarios for the period 1500-–2100: 600 years of global gridded annual land-

use transitions, wood harvest, and resulting secondary lands, Clim. Change, 109, 117–161, https://doi.org/10.1007/s10584-011-0153-2,

http://link.springer.com/10.1007/s10584-011-0153-2, 2011.20

Kelley, D. I. and Harrison, S. P.: Enhanced Australian carbon sink despite increased wildfire during the 21st century, Environ.

Res. Lett., 9, 104 015, https://doi.org/10.1088/1748-9326/9/10/104015, http://stacks.iop.org/1748-9326/9/i=10/a=104015?key=crossref.

d09b4fd55bf91ab5f53656426beba387, 2014.

Kelley, D. I., Prentice, I. C., Harrison, S. P., Wang, H., Simard, M., Fisher, J. B., and Willis, K. O.: A comprehensive benchmark-

ing system for evaluating global vegetation models, Biogeosciences, 10, 3313–3340, https://doi.org/10.5194/bg-10-3313-2013, http:25

//www.biogeosciences.net/10/3313/2013/, 2013.

Kelley, D. I., Harrison, S. P., and Prentice, I. C.: Improved simulation of fire–vegetation interactions in the Land surface Processes and

eXchanges dynamic global vegetation model (LPX-Mv1), Geosci. Model Dev., 7, 2411–2433, https://doi.org/10.5194/gmd-7-2411-2014,

http://www.geosci-model-dev.net/7/2411/2014/, 2014.

Klein Goldewijk, K.: Estimating global land use change over the past 300 years, Global Biogeochem. Cycles, 15,30

417–43, http://apps.isiknowledge.com/full{_}record.do?product=UA{&}search{_}mode=GeneralSearch{&}qid=3{&}SID=

U2iG6akdAIElMenmoPf{&}page=1{&}doc=2{&}colname=WOS, 2001.

Kloster, S., Mahowald, N. M., Randerson, J. T., Thornton, P. E., Hoffman, F. M., Levis, S., Lawrence, P. J., Feddema, J. J., Oleson, K. W.,

and Lawrence, D. M.: Fire dynamics during the 20th century simulated by the Community Land Model, Biogeosciences, 7, 1877–1902,

http://www.biogeosciences.net/7/1877/2010/, 2010.35

Koenker, R.: quantreg: Quantile Regression, https://cran.r-project.org/package=quantreg, 2018.

Koster, R. D., Sud, Y. C., Guo, Z., Dirmeyer, P. A., Bonan, G., Oleson, K. W., Chan, E., Verseghy, D., Cox, P., Davies, H., Kowalczyk, E.,

Gordon, C. T., Kanae, S., Lawrence, D., Liu, P., Mocko, D., Lu, C.-H., Mitchell, K., Malyshev, S., McAvaney, B., Oki, T., Yamada, T.,

26

https://doi.org/10.1126/science.1210657
http://www.sciencemag.org/cgi/doi/10.1126/science.1210657
https://doi.org/10.1111/j.1365-2435.2003.00796.x
https://doi.org/10.1890/08-0741.1
http://doi.wiley.com/10.1890/08-0741.1
https://doi.org/10.1111/j.1461-0248.2012.01789.x
http://www.ncbi.nlm.nih.gov/pubmed/22554474
https://doi.org/10.1175/JHM560.1
http://journals.ametsoc.org/doi/abs/10.1175/JHM560.1
https://doi.org/10.1007/s10584-011-0153-2
http://link.springer.com/10.1007/s10584-011-0153-2
https://doi.org/10.1088/1748-9326/9/10/104015
http://stacks.iop.org/1748-9326/9/i=10/a=104015?key=crossref.d09b4fd55bf91ab5f53656426beba387
http://stacks.iop.org/1748-9326/9/i=10/a=104015?key=crossref.d09b4fd55bf91ab5f53656426beba387
http://stacks.iop.org/1748-9326/9/i=10/a=104015?key=crossref.d09b4fd55bf91ab5f53656426beba387
https://doi.org/10.5194/bg-10-3313-2013
http://www.biogeosciences.net/10/3313/2013/
http://www.biogeosciences.net/10/3313/2013/
http://www.biogeosciences.net/10/3313/2013/
https://doi.org/10.5194/gmd-7-2411-2014
http://www.geosci-model-dev.net/7/2411/2014/
http://apps.isiknowledge.com/full{_}record.do?product=UA{&}search{_}mode=GeneralSearch{&}qid=3{&}SID=U2iG6akdAIElMenmoPf{&}page=1{&}doc=2{&}colname=WOS
http://apps.isiknowledge.com/full{_}record.do?product=UA{&}search{_}mode=GeneralSearch{&}qid=3{&}SID=U2iG6akdAIElMenmoPf{&}page=1{&}doc=2{&}colname=WOS
http://apps.isiknowledge.com/full{_}record.do?product=UA{&}search{_}mode=GeneralSearch{&}qid=3{&}SID=U2iG6akdAIElMenmoPf{&}page=1{&}doc=2{&}colname=WOS
http://www.biogeosciences.net/7/1877/2010/
https://cran.r-project.org/package=quantreg


Pitman, A., Taylor, C. M., Vasic, R., and Xue, Y.: GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview, J.

Hydrometeorol., 7, 590–610, https://doi.org/10.1175/JHM510.1, http://journals.ametsoc.org/doi/abs/10.1175/JHM510.1, 2006.

Krause, A., Kloster, S., Wilkenskjeld, S., and Paeth, H.: The sensitivity of global wildfires to simulated past, present, and future light-

ning frequency, J. Geophys. Res. Biogeosciences, 119, 312–322, https://doi.org/10.1002/2013JG002502, http://doi.wiley.com/10.1002/

2013JG002502, 2014.5

Krawchuk, M. a. and Moritz, M. a.: Constraints on global fire activity vary across a resource gradient., Ecology, 92, 121–32, http://www.

ncbi.nlm.nih.gov/pubmed/21560682, 2011.

Lasslop, G. and Kloster, S.: Impact of fuel variability on wildfire emission estimates, Atmos. Environ., 121, 93–102,

https://doi.org/10.1016/j.atmosenv.2015.05.040, http://linkinghub.elsevier.com/retrieve/pii/S1352231015301126, 2015.

Lasslop, G. and Kloster, S.: Human impact on wildfires varies between regions and with vegetation productivity, Environ. Res. Lett.,10

https://doi.org/10.1088/1748-9326/aa8c82, http://iopscience.iop.org/article/10.1088/1748-9326/aa8c82http://iopscience.iop.org/10.1088/

1748-9326/aa8c82, 2017.

Lasslop, G., Thonicke, K., and Kloster, S.: SPITFIRE within the MPI Earth system model: Model development and evaluation, J. Adv.

Model. Earth Syst., 6, 740–755, https://doi.org/10.1002/2013MS000284, http://doi.wiley.com/10.1002/2013MS000284, 2014.

Lasslop, G., Brovkin, V., Reick, C. H., Bathiany, S., and Kloster, S.: Multiple stable states of tree cover in a global land surface model due15

to a fire-vegetation feedback, Geophys. Res. Lett., 43, 6324–6331, https://doi.org/10.1002/2016GL069365, http://doi.wiley.com/10.1002/

2016GL069365, 2016.

Lehmann, C. E. R., Anderson, T. M., Sankaran, M., Higgins, S. I., Archibald, S., Hoffmann, W. A., Hanan, N. P., Williams, R. J., Fensham,

R. J., Felfili, J., Hutley, L. B., Ratnam, J., San Jose, J., Montes, R., Franklin, D., Russell-Smith, J., Ryan, C. M., Durigan, G., Hiernaux,

P., Haidar, R., Bowman, D. M. J. S., and Bond, W. J.: Savanna Vegetation-Fire-Climate Relationships Differ Among Continents, Science20

(80-. )., 343, 548–552, https://doi.org/10.1126/science.1247355, http://www.sciencemag.org/cgi/doi/10.1126/science.1247355, 2014.

Li, F., Bond-Lamberty, B., and Levis, S.: Quantifying the role of fire in the Earth system – Part 2: Impact on the net carbon balance

of global terrestrial ecosystems for the 20th century, Biogeosciences, 11, 1345–1360, https://doi.org/10.5194/bg-11-1345-2014, http:

//www.biogeosciences.net/11/1345/2014/, 2014.

Li, F., Lawrence, D. M., and Bond-Lamberty, B.: Impact of fire on global land surface air temperature and energy budget for the 20th century25

due to changes within ecosystems, Environ. Res. Lett., 12, 44 014, http://stacks.iop.org/1748-9326/12/i=4/a=044014, 2017.

Mattiuzzi, M. and Detsch, F.: MODIS: Acquisition and Processing of MODIS Products, https://cran.r-project.org/package=MODIS, 2018.

Moncrieff, G. R., Scheiter, S., Bond, W. J., and Higgins, S. I.: Increasing atmospheric CO 2 overrides the historical legacy of multiple stable

biome states in Africa, New Phytol., 201, 908–915, https://doi.org/10.1111/nph.12551, http://doi.wiley.com/10.1111/nph.12551, 2014.

Morton, D. C., Le Page, Y., DeFries, R., Collatz, G. J., and Hurtt, G. C.: Understorey fire frequency and the fate of burned forests in30

southern Amazonia, Philos. Trans. R. Soc. B Biol. Sci., 368, 20120 163–20120 163, https://doi.org/10.1098/rstb.2012.0163, http://rstb.

royalsocietypublishing.org/cgi/doi/10.1098/rstb.2012.0163, 2013.

Narayanaraj, G. and Wimberly, M. C.: Influences of forest roads on the spatial patterns of human- and lightning-caused wild-

fire ignitions, Appl. Geogr., 32, 878–888, https://doi.org/10.1016/j.apgeog.2011.09.004, http://linkinghub.elsevier.com/retrieve/pii/

S0143622811001731, 2012.35

Padilla, M., Stehman, S. V., Ramo, R., Corti, D., Hantson, S., Oliva, P., Alonso-Canas, I., Bradley, A. V., Tansey, K., Mota, B., Pereira, J. M.,

and Chuvieco, E.: Comparing the accuracies of remote sensing global burned area products using stratified random sampling and estima-

27

https://doi.org/10.1175/JHM510.1
http://journals.ametsoc.org/doi/abs/10.1175/JHM510.1
https://doi.org/10.1002/2013JG002502
http://doi.wiley.com/10.1002/2013JG002502
http://doi.wiley.com/10.1002/2013JG002502
http://doi.wiley.com/10.1002/2013JG002502
http://www.ncbi.nlm.nih.gov/pubmed/21560682
http://www.ncbi.nlm.nih.gov/pubmed/21560682
http://www.ncbi.nlm.nih.gov/pubmed/21560682
https://doi.org/10.1016/j.atmosenv.2015.05.040
http://linkinghub.elsevier.com/retrieve/pii/S1352231015301126
https://doi.org/10.1088/1748-9326/aa8c82
http://iopscience.iop.org/article/10.1088/1748-9326/aa8c82 http://iopscience.iop.org/10.1088/1748-9326/aa8c82
http://iopscience.iop.org/article/10.1088/1748-9326/aa8c82 http://iopscience.iop.org/10.1088/1748-9326/aa8c82
http://iopscience.iop.org/article/10.1088/1748-9326/aa8c82 http://iopscience.iop.org/10.1088/1748-9326/aa8c82
https://doi.org/10.1002/2013MS000284
http://doi.wiley.com/10.1002/2013MS000284
https://doi.org/10.1002/2016GL069365
http://doi.wiley.com/10.1002/2016GL069365
http://doi.wiley.com/10.1002/2016GL069365
http://doi.wiley.com/10.1002/2016GL069365
https://doi.org/10.1126/science.1247355
http://www.sciencemag.org/cgi/doi/10.1126/science.1247355
https://doi.org/10.5194/bg-11-1345-2014
http://www.biogeosciences.net/11/1345/2014/
http://www.biogeosciences.net/11/1345/2014/
http://www.biogeosciences.net/11/1345/2014/
http://stacks.iop.org/1748-9326/12/i=4/a=044014
https://cran.r-project.org/package=MODIS
https://doi.org/10.1111/nph.12551
http://doi.wiley.com/10.1111/nph.12551
https://doi.org/10.1098/rstb.2012.0163
http://rstb.royalsocietypublishing.org/cgi/doi/10.1098/rstb.2012.0163
http://rstb.royalsocietypublishing.org/cgi/doi/10.1098/rstb.2012.0163
http://rstb.royalsocietypublishing.org/cgi/doi/10.1098/rstb.2012.0163
https://doi.org/10.1016/j.apgeog.2011.09.004
http://linkinghub.elsevier.com/retrieve/pii/S0143622811001731
http://linkinghub.elsevier.com/retrieve/pii/S0143622811001731
http://linkinghub.elsevier.com/retrieve/pii/S0143622811001731


tion, Remote Sens. Environ., https://doi.org/10.1016/j.rse.2015.01.005, http://linkinghub.elsevier.com/retrieve/pii/S0034425715000140,

2015.

Pellegrini, A. F. A., Anderegg, W. R. L., Paine, C. E. T., Hoffmann, W. A., Kartzinel, T., , S. S., Sheil, D., Franco, A. C., and Pacala,

S. W.: Convergence of bark investment according to fire and climate structures ecosystem vulnerability to future change, Ecol. Lett., 20,

307–316, https://doi.org/10.1111/ele.12725, http://doi.wiley.com/10.1111/ele.12725, 2017.5

Prentice, I. C., Kelley, D. I., Foster, P. N., Friedlingstein, P., Harrison, S. P., and Bartlein, P. J.: Modeling fire and the terrestrial carbon balance,

Global Biogeochem. Cycles, 25, 1–13, https://doi.org/10.1029/2010GB003906, http://www.agu.org/pubs/crossref/2011/2010GB003906.

shtml, 2011.

Rabin, S. S., Melton, J. R., Lasslop, G., Bachelet, D., Forrest, M., Hantson, S., Kaplan, J. O., Li, F., Mangeon, S., Ward, D. S., Yue, C.,

Arora, V. K., Hickler, T., Kloster, S., Knorr, W., Nieradzik, L., Spessa, A., Folberth, G. A., Sheehan, T., Voulgarakis, A., Kelley, D. I.,10

Prentice, I. C., Sitch, S., Harrison, S., and Arneth, A.: The Fire Modeling Intercomparison Project (FireMIP), phase 1: experimental and

analytical protocols with detailed model descriptions, Geosci. Model Dev., 10, 1175–1197, https://doi.org/10.5194/gmd-10-1175-2017,

https://www.geosci-model-dev.net/10/1175/2017/, 2017.

Randerson, J. T., Chen, Y., van der Werf, G. R., Rogers, B. M., and Morton, D. C.: Global burned area and biomass burning emissions

from small fires, J. Geophys. Res. Biogeosciences, 117, G04 012, https://doi.org/10.1029/2012JG002128, http://doi.wiley.com/10.1029/15

2012JG002128, 2012.

Reick, C. H., Raddatz, T., Brovkin, V., and Gayler, V.: Representation of natural and anthropogenic land cover change in MPI-ESM, J. Adv.

Model. Earth Syst., 5, 459–482, https://doi.org/10.1002/jame.20022, http://doi.wiley.com/10.1002/jame.20022, 2013.

Saatchi, S. S., Harris, N. L., Brown, S., Lefsky, M., Mitchard, E. T. A., Salas, W., Zutta, B. R., Buermann, W., Lewis, S. L., Hagen, S.,

Petrova, S., White, L., Silman, M., and Morel, A.: Benchmark map of forest carbon stocks in tropical regions across three continents., Proc.20

Natl. Acad. Sci. U. S. A., 108, 9899–904, https://doi.org/10.1073/pnas.1019576108, http://www.pubmedcentral.nih.gov/articlerender.fcgi?

artid=3116381{&}tool=pmcentrez{&}rendertype=abstract, 2011.

Sankaran, M., Hanan, N. P., Scholes, R. J., Ratnam, J., Augustine, D. J., Cade, B. S., Gignoux, J., Higgins, S. I., Le Roux, X., Ludwig,

F., Ardo, J., Banyikwa, F., Bronn, A., Bucini, G., Caylor, K. K., Coughenour, M. B., Diouf, A., Ekaya, W., Feral, C. J., February, E. C.,

Frost, P. G. H., Hiernaux, P., Hrabar, H., Metzger, K. L., Prins, H. H. T., Ringrose, S., Sea, W., Tews, J., Worden, J., and Zambatis, N.:25

Determinants of woody cover in African savannas., Nature, 438, 846–849, https://doi.org/10.1038/nature04070, 2005.

Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W., Kaplan, J. O., Levis, S., Lucht, W., Sykes, M. T., Thonicke, K., and

Venevsky, S.: Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation

model, Glob. Chang. Biol., 9, 161–185, https://doi.org/10.1046/j.1365-2486.2003.00569.x, http://doi.wiley.com/10.1046/j.1365-2486.

2003.00569.x, 2003.30

Staver, A. C., Archibald, S., and Levin, S.: Tree cover in sub-Saharan Africa: Rainfall and fire constrain forest and savanna as alternative

stable states, Ecology, 92, 1063–1072, https://doi.org/10.1890/10-1684.1, http://www.esajournals.org/doi/10.1890/10-1684.1, 2011a.

Staver, A. C., Archibald, S., and Levin, S. A.: The Global Extent and Determinants of Savanna and Forest as Alternative Biome States,

Science (80-. )., 334, 230–232, https://doi.org/10.1126/science.1210465, http://www.sciencemag.org/cgi/doi/10.1126/science.1210465,

2011b.35

Stevens, B., Giorgetta, M., Esch, M., Mauritsen, T., Crueger, T., Rast, S., Salzmann, M., Schmidt, H., Bader, J., Block, K., Brokopf, R., Fast,

I., Kinne, S., Kornblueh, L., Lohmann, U., Pincus, R., Reichler, T., and Roeckner, E.: Atmospheric component of the MPI-M Earth System

28

https://doi.org/10.1016/j.rse.2015.01.005
http://linkinghub.elsevier.com/retrieve/pii/S0034425715000140
https://doi.org/10.1111/ele.12725
http://doi.wiley.com/10.1111/ele.12725
https://doi.org/10.1029/2010GB003906
http://www.agu.org/pubs/crossref/2011/2010GB003906.shtml
http://www.agu.org/pubs/crossref/2011/2010GB003906.shtml
http://www.agu.org/pubs/crossref/2011/2010GB003906.shtml
https://doi.org/10.5194/gmd-10-1175-2017
https://www.geosci-model-dev.net/10/1175/2017/
https://doi.org/10.1029/2012JG002128
http://doi.wiley.com/10.1029/2012JG002128
http://doi.wiley.com/10.1029/2012JG002128
http://doi.wiley.com/10.1029/2012JG002128
https://doi.org/10.1002/jame.20022
http://doi.wiley.com/10.1002/jame.20022
https://doi.org/10.1073/pnas.1019576108
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3116381{&}tool=pmcentrez{&}rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3116381{&}tool=pmcentrez{&}rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3116381{&}tool=pmcentrez{&}rendertype=abstract
https://doi.org/10.1038/nature04070
https://doi.org/10.1046/j.1365-2486.2003.00569.x
http://doi.wiley.com/10.1046/j.1365-2486.2003.00569.x
http://doi.wiley.com/10.1046/j.1365-2486.2003.00569.x
http://doi.wiley.com/10.1046/j.1365-2486.2003.00569.x
https://doi.org/10.1890/10-1684.1
http://www.esajournals.org/doi/10.1890/10-1684.1
https://doi.org/10.1126/science.1210465
http://www.sciencemag.org/cgi/doi/10.1126/science.1210465


Model: ECHAM6, J. Adv. Model. Earth Syst., 5, 146–172, https://doi.org/10.1002/jame.20015, http://doi.wiley.com/10.1002/jame.20015,

2013.

Thonicke, K., Spessa, A., Prentice, I. C., Harrison, S. P., Dong, L., and Carmona-Moreno, C.: The influence of vegetation, fire spread

and fire behaviour on biomass burning and trace gas emissions: results from a process-based model, Biogeosciences, 7, 1991–2011,

https://doi.org/10.5194/bg-7-1991-2010, http://www.biogeosciences.net/7/1991/2010/, 2010.5

Townsend, J., Carroll, M., DiMiceli, C., Sohlberg, R., Hansen, M., and DeFries, R.: Vegetation Continuous Fields MOD44B, 2001-2010

Percent Tree Cover, Collection 5, Version 051, 2011.

Wei, Y., Liu, S., Huntzinger, D. N., Michalak, A. M., Viovy, N., Post, W. M., Schwalm, C. R., Schaefer, K., Jacobson, A. R., Lu, C., Tian,

H., Ricciuto, D. M., Cook, R. B., Mao, J., and Shi, X.: The North American Carbon Program Multi-scale Synthesis and Terrestrial Model

Intercomparison Project – Part 2: Environmental driver data, Geosci. Model Dev., 7, 2875–2893, https://doi.org/10.5194/gmd-7-2875-10

2014, http://www.geosci-model-dev.net/7/2875/2014/, 2014.

Xu, C., Hantson, S., Holmgren, M., van Nes, E. H., Staal, A., and Scheffer, M.: Remotely sensed canopy height reveals three pantropical

ecosystem states, Ecology, 97, 2518–2521, https://doi.org/10.1002/ecy.1470, http://doi.wiley.com/10.1002/ecy.1470, 2016.

Yin, Z., Dekker, S. C., van den Hurk, B. J. J. M., and Dijkstra, H. A.: Bimodality of woody cover and biomass across the precipitation

gradient in West Africa, Earth Syst. Dyn., 5, 257–270, https://doi.org/10.5194/esd-5-257-2014, http://www.earth-syst-dynam.net/5/257/15

2014/, 2014.

Yue, C., Ciais, P., Zhu, D., Wang, T., Peng, S. S., and Piao, S. L.: How have past fire disturbances contributed to the current carbon balance

of boreal ecosystems?, Biogeosciences, 13, 675–690, https://doi.org/10.5194/bg-13-675-2016, https://www.biogeosciences.net/13/675/

2016/, 2016.

29

https://doi.org/10.1002/jame.20015
http://doi.wiley.com/10.1002/jame.20015
https://doi.org/10.5194/bg-7-1991-2010
http://www.biogeosciences.net/7/1991/2010/
https://doi.org/10.5194/gmd-7-2875-2014
https://doi.org/10.5194/gmd-7-2875-2014
https://doi.org/10.5194/gmd-7-2875-2014
http://www.geosci-model-dev.net/7/2875/2014/
https://doi.org/10.1002/ecy.1470
http://doi.wiley.com/10.1002/ecy.1470
https://doi.org/10.5194/esd-5-257-2014
http://www.earth-syst-dynam.net/5/257/2014/
http://www.earth-syst-dynam.net/5/257/2014/
http://www.earth-syst-dynam.net/5/257/2014/
https://doi.org/10.5194/bg-13-675-2016
https://www.biogeosciences.net/13/675/2016/
https://www.biogeosciences.net/13/675/2016/
https://www.biogeosciences.net/13/675/2016/

