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Abstract. The interactions between climate, vegetation and fire can strongly influence the future trajectories of vegetation

in Earth system models. We evaluate the relationships between tropical climate, vegetation and fire in the global vegetation

model JSBACH, using a simple fire scheme and the complex fire model SPITFIRE with the aim to identify potential for model

improvement. We use two remote sensing products (based on MODIS and Landsat) in different resolutions to assess the ro-

bustness of the obtained observed relationships. We evaluate the model using a multivariate comparison that allows to focus5

on the interactions between climate, vegetation and fire and test the influence of land use change on the modelled patterns.

Climate-vegetation-fire relationships are known to differ between continents we therefore perform the analysis for each conti-

nent separately.

The observed relationships are similar in the two satellite datasets, but maximum tree cover is reached at higher precipitation

values for coarser resolution. The model captures the broad spatial patterns with regional differences, which are partly due to10

the climate forcing derived from an Earth system model. SPITFIRE strongly improves the spatial pattern of burned area and

the distribution of burned area along increasing precipitation compared to the simple fire scheme. Surprisingly the correlation

between precipitation and tree cover is higher in the observations than in the largely climate driven vegetation model, with

both fire models. The multivariate comparison identifies an excessive tree cover in low precipitation areas and a too strong

relationship between high fire occurrence and low tree cover for the complex fire model. We therefore suggest that drought15

effects on tree cover and the impact of burned area on tree cover or the adaptation of trees to fire can be improved.

The observed variation of the relationship between precipitation and maximum tree cover is higher than the modelled variation.

Land use contributes to the intercontinental differences in fire regimes with SPITFIRE and strongly overprints the modelled

multimodality of tree cover with SPITFIRE.

The multivariate model-data comparison used here has several advantages: it improves the attribution of model-data mis-20

matches to model processes, it reduces the impact of biases in the meteorological forcing on the evaluation and it allows to

evaluate not only a specific target variable but also the interactions.
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1 Introduction

Capturing the interactions of vegetation cover and composition with the climatic drivers and related disturbances in Earth sys-

tem models is crucial to provide reliable changes of vegetation for a changing climate. Climate is the main driver of global

vegetation patterns, but also vegetation has crucial impacts on the Earth system, due to its influence on the surface albedo and5

the water cycle (Bonan, 2008; Brovkin et al., 2009). The importance of vegetation type has been assessed in various studies:

when compared to grasslands, forests in tropical areas cool the climate due to higher evapotranspiration while in boreal regions,

forests warm the climate due to a reduction of the albedo (Bathiany et al., 2010). The relevance of vegetation also shows when

contrasting vegetated and non-vegetated surfaces: in the Sahel region this difference is of major importance for the climatic

conditions (Brovkin et al., 1998).10

Interactions between vegetation, fire and climate are particularly important to understand the spatial patterns in tropical vegeta-

tion, which is characterized by strong gradients from deserts to tropical rainforests. Remotely sensed tropical tree cover shows

a bimodality between forest (T>60%) and savanna (T<60%) states for grid cells with similar climate. Intermediate tree cover

fractions (e.g. 60%) are virtually absent (Hirota et al., 2011; Staver et al., 2011b). The occurrence of this “gap” in tree cover was

suggested to be caused by a feedback between fire and vegetation. Although the reliability of remotely sensed tree cover sets to15

diagose this “gap” was recently questioned (Gerard et al., 2017), the bimodality in the distribution is also confirmed by canopy

height (Xu et al., 2016) or biomass (Yin et al., 2014). The occurrence of both forest and savanna states under similar climate

conditions due to a feedback between fire and vegetation is supported by conceptual (Staver et al., 2011a) and process-based

models (Higgins and Scheiter, 2012; Moncrieff et al., 2014; Lasslop et al., 2016).

While data analysis can provide insights on driving factors for certain variables, process-based models summarize the process20

understanding and allow us to perform experiments that are impossible in reality. Dynamic global vegetation models (DGVMs)

were developed to understand ecosystem dynamics, the carbon cycle and biosphere-atmosphere interactions (Sitch et al., 2003).

Many of them are part of Earth system models (ESMs), to represent the dynamics of the land surface within the climate system.

It is therefore important that DGVMs include appropriate representations of vegetation to obtain reliable simulations of the

Earth system (e.g. Baudena et al., 2015).25

The development of remotely sensed global burned area products facilitated the implementation and evaluation of complex

fire models within DGVMs (Hantson et al., 2016). Over the recent years these models were applied to address the impact

of fire on the carbon cycle (Li et al., 2014; Yue et al., 2016), the land surface temperature (Li et al., 2017) or the sensitiv-

ity of the fire model to driving factors (Kloster et al., 2010; Lasslop and Kloster, 2015). Evaluation of fire models mostly

focused on evaluating the burned area and carbon emissions, but also the importance of benchmarking effects on vegetation30

has been noted (Hantson et al., 2016) and applied in model development studies (Kelley and Harrison, 2014; Lasslop et al.,

2014). The evaluation, however, is based on comparing variables one by one and not the relationships between them. (Baudena

et al., 2015) go beyond the geographic comparison by analyzing the relationship between tree cover and the main climatic
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driver (precipitation). Also the relationship between precipitation and climate was evaluated in previous studies (Prentice et al.,

2011). However, to our knowledge, climate, vegetation and fire have not been combined in a multivariate model-observation

comparison.

Here, we aim 1) to assess the robustness of observed climate-vegetation-fire relationships across the tropical continents based

on two remotely sensed tree cover datasets; 2) to test a multivariate model evaluation to identify opportunities for model im-5

provements in JSBACH, the vegetation model used within the MPI Earth system model, and 3) to test the contribution of land

use change on the obtained relationships.

2 Model and Data

To investigate the climate-fire-vegetation relationships in the tropical regions we represent climate by the mean annual precip-

itation (P), vegetation by the tree (TC), grass (GC) and non-vegetated cover and fire as the burned fraction (BF).10

We define the tropical region as between -30° and 30° latitude. As continental limits we chose -20° to 60° longitude and -30°

to 30° latitude for Africa, -130° to -30° longitude and -30° to 30° latitude for South America, 60° to 160° longitude and -10°

to 30° latitude for Asia and 100° to 160° longitude and -30° to -10° latitude for Australia.

2.1 Model and simulation description

We use the JSBACH land surface model (Reick et al., 2013), which is the land component of the MPI Earth system model15

(MPI-ESM) (Giorgetta et al., 2013). JSBACH simulates the terrestrial carbon and water cycle in a process based way. We

use two fire algorithms, a simple empirical model (Brovkin et al., 2009; Reick et al., 2013) and the process-based fire model

SPITFIRE (Lasslop et al., 2014; Thonicke et al., 2010). Results referring to simulations with the complex SPITFIRE model

are referred to as JSBACH-SPITFIRE, simulations with the simple JSBACH standard fire scheme are indicated as JSBACH-

standard. These two approaches span the range of complexity of currently used global scale fire models (Hantson et al., 2016).20

The JSBACH-standard fire computes burned area based on a minimum burned fraction which increases as a function of the

litter carbon pools and relative humidity averaged over the last three weeks. It was tuned to yield reasonable global emission

estimates (around 2PG) and to improve the tree cover, which is clearly too high without fire. SPITFIRE computes burned area

based on human and lightning ignitions, fire spread rate and a fire duration. SPITFIRE distinguishes between different fuel

particle sizes and uses a combination of minimum and maximum temperature, precipitation and soil moisture to determine25

the fuel moisture. Both fire models interact with the vegetation model as follows: JSBACH provides fuel amounts, vegetation

composition and soil moisture as inputs to the fire model. The fire model in turn reduces the carbon pools of JSBACH according

to the simulated carbon combustion of vegetation fires and reduces the cover fractions of burned vegetation. In the JSBACH-

standard fire scheme the burned area directly translates into a reduction of the cover fractions of the plant functional types

(PFTs) (100% of the cover fractions on burned area are removed). Whereas in SPITFIRE the mortality of woody vegetation30

depends on the fire intensity, fire residence time, the vegetation height and bark thickness. The model’s plant functional types

for the tropics include C3 and C4 grass, tropical evergreen and deciduous trees, and rain green shrubs. Shrubs and trees
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compete according to their net primary productivity. Grasses and shrubs have an advantage compared to trees in regions with

disturbances due to their lower establishment time scale (Reick et al., 2013, grasses: 1 year, shrubs: 12 years, tropical trees: 30

years). PFTs do not establish if the 5 years running mean net primary productivity (NPP) turns negative. Land use is included

following the protocol of Hurtt et al. (2011). The implementation is described in detail in (Reick et al., 2013). Croplands are

excluded from fire occurrence while pastures are treated as natural grasslands with a higher fuel bulk density within JSBACH-5

SPITFIRE (Rabin et al., 2017). The JSBACH-standard fire excludes fire occurrence on both anthropogenic land cover types.

JSBACH-SPITFIRE shows a reasonable agreement with remotely sensed data products for present day burned area and carbon

emissions for simulations with prescribed land cover (Lasslop et al., 2014). The present setup with dynamic biogeography has

been evaluated along the human dimensions population density and cropland fraction. The model tends to overestimate burned

fraction for high cropland fractions and underestimates burned fraction for very low and high population densities (Lasslop10

and Kloster, 2017).

2.1.1 Simulation setup

JSBACH was forced with meteorological data extracted from a coupled simulation with the MPI-ESM version 1.1 for the his-

torical period 1850-2005. The SPITFIRE model additionally uses a population density dataset (Klein Goldewijk et al., 2001)

with decadal resolution and a monthly lightning climatology (LIS/OTD product of the LIS/OTD Science Team, http://ghrc.msfc.nasa.gov)15

as input for the computation of ignitions. The model’s spatial resolution is 1.875° x 1.875°. The time step for plant productivity

and hydrology is 30 minutes, while the disturbance routine is called once per day. During the 1000 year spinup period the first

28 years of forcing (1850-1877) were recycled and CO2 concentration fixed at the value of 1850 (284.725 ppm). At the end

of the 1000 years PFT distribution was largely in equilibrium with only minor shifts between woody PFTs in few grid cells.

The subsequent transient historical simulation (Hist) from 1850-2005 accounts for the changes in atmospheric CO2, climate,20

population density and land use. A complementary simulation accounting only for the rise in atmospheric CO2, transient cli-

mate and population density but using the land use of 1850 for the whole period (cLU) is used to isolate the effect of land use

change on the climate - vegetation - fire relationships. When comparing the model output to observations, the averaging period

for the model simulations was 1996-2005, as the forcing was only available until 2005.

2.2 Datasets for model evaluation25

We averaged the remote sensing datasets over the years that were covered by all datasets (2001-2010). Model output is only

available until the year 2005. Using only the overlapping period (2001-2005) would decrease the robustness of the mean

fire regime and climate characterization. We therefore use different averaging periods for model (1996-2005) and observations

(2001-2010). The presentation of the relationship between precipitation, tree cover and burned fraction based on remote sensing

data is based on 0.25° resolution and for the comparison with the model the datasets were aggregated to the model resolution30

(1.875°x1.875°).
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2.2.1 Vegetation and land cover

We use two tree cover datasets based on satellite data, one based on the MODIS (moderate-resolution imaging spectroradiome-

ter) sensor (Townsend et al., 2011), the other on the Landsat satellite (Hansen et al., 2013). Additionally we use the non-tree

vegetation cover and non-vegetation cover of the MOD44B product version 051 (downloaded 6/February 2017, using the R

modis package (Mattiuzzi and Detsch, 2018)). The datasets rely on different sensors, however, the algorithms to derive vegeta-5

tion cover are very similar and the datasets are therefore not completely independent. Nevertheless using the two datasets can

give a first insight on the robustness of the investigated patterns.

The maximum tree cover in the MODIS dataset is 80%. This however corresponds to 100% crown cover (Hansen et al., 2003).

The modelled cover fractions represent rather the crown cover with a 100% maximum, we therefore linearly rescaled the tree

cover data to improve the consistency between model and observations. The second dataset based on Landsat data builds on10

a high spatial resolution of 30m (Hansen et al., 2013). The dataset provides annual forest gain and loss over the period from

2000-2012. Alkama and Cescatti (2016) reconstructed the annual tree cover and aggregated the dataset to 0.05° . Here, we used

the mean over their reconstructed annual tree cover values from 2001-2010.

The MODIS collection 5 land cover dataset (Friedl et al., 2010) was used to test the influence of shrub lands (open and closed

shrub lands), as the tree cover data have a higher uncertainty for shrublands. The filtering was applied on 0.05° spatial reso-15

lution. This dataset is distributed by the Land Processes Distributed Active Archive Center (LP DAAC), located at the U.S.

Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center (lpdaac.usgs.gov), distributed in netCDF

format by the Integrated Climate Data Center (ICDC, http://icdc.cen.uni-hamburg.de) University of Hamburg, Hamburg, Ger-

many in 0.05° spatial resolution and annual time step.

2.2.2 Fire20

The global fire emissions database (GFED, http://www.globalfiredata.org/) provides globally gridded monthly burned area

based on the MODIS sensor. We used the version 4 of the dataset (Giglio et al., 2013).

2.2.3 Precipitation

The “TRMM and Other Data Precipitation Data Set” (TMPA) is based on the Version 7 TRMM Multi-satellite Precipitation

Analysis algorithm (Huffman et al., 2007, 2010). The product has near global coverage from 50° north to 50° south. The pre-25

cipitation estimate (including rain, drizzle, snow, graupel and hail) is based on a combination of multiple data sources including

precipitation gauges. The dataset is available online (http://disc.sci.gsfc.nasa.gov/gesNews/trmm_v7_multisat_precip).

2.3 Quantile regression

We use quantile regressions to characterize the relationship between precipitation and maximum tree cover. The quantile

regressions were computed with the R package quantreg (Koenker, 2018). We use the local quantile regression to characterize30

the shape of the increase in maxmimum tree cover for increasing precipitation. Moreover we quantify the deviation from a
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linear increase by also including the linear qunantile regression. Both regressions were computed for the 0.9 quantile. For the

local quantile regression the bandwidth parameter was set to 300 and the number of points where the function was estimated

was set to 10.

3 Results

We first give an overview over the geographical distribution of the used observation and model output datasets. The compar-5

ison of geographical patterns is an important assessment of model performance, it is however difficult to assess whether the

interactions between precipitation, fire and tree cover are well captured. Moreover as the JSBACH model is usually used as

a land surface model for the MPI-ESM and therefore also here forced with MPI-ESM output, biases in model forcing can

cause geographical biases of vegetation and fire variables even with a perfect fire and vegetation model. To reduce the in-

fluence of biases in forcing data on the model-data comparison and allow to more closely evaluate the interactions between10

model components we propose a multivariate evaluation of climate-fire-vegetation relationships. We assess the robustness of

observed relationships for two tree cover datasets and two spatial resolutions and compare them to the model simulations. The

last paragraph of this section adresses the influence of land use change on the simulated relationships.

3.1 Spatial distribution of vegetation cover, area burnt and precipitation in the tropics

The two observational satellite based tree cover datasets are consistent and show only small differences in their spatial pattern15

(Figure 1a). The overall clear pattern in tree cover is a transition from very high tree cover in moist rain forest regions to

low tree cover in the drier savannas to the absence of trees in the desert regions. Both models reproduce this overall observed

pattern, although with marked local differences. Both model versions overestimate tree cover in northern Australia to a simi-

lar extent. In the North-Eastern Amazon region the simulations underestimate tree cover compared to the observations. This

underestimation is much smaller for JSBACH-SPITFIRE. The simulations overestimate tree cover in Southern Hemisphere20

Africa, this overestimation is again smaller for JSBACH-SPITFIRE. The simulated grass cover has higher maximum values,

but generally is often lower than observed by satellite (Figure 1 d). The non-vegetated fraction is captured well by the models

(Figure 1 e).

Generally JSBACH-standard strongly underestimates the total area burnt and the spatial variability (Figure 1 b). JSBACH-

SPITFIRE improves the capability to represent fire regimes with high fire occurrences. The tropical average burned area25

per year is for JSBACH-standard 65 Mha, for JSBACH-SPITFIRE 242 Mha and for the satellite dataset 315 Mha. In South

America spatial patterns in JSBACH-standard are inconsistent with the observations (most burning in the Northeast). JSBACH-

SPITFIRE overestimates fire occurrence in South America but the spatial patterns are more similar to observations. In Africa

we find reasonable agreement between JSBACH-SPITFIRE and the observations. JSBACH-standard shows a strong underes-

timation of the burned fraction (max. 10% of the grid cell area year−1, while the observations show up to 100%). In Australia30

JSBACH-SPITFIRE and JSBACH-standard show similar patterns and both strongly underestimate the burned fraction.

Precipitation of the MPI-ESM forcing shows a dry bias in the East and central Amazon region, a dry bias in Asia, and moister
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Figure 1. Spatial distribution of modelled and observed datasets used in this study. (a): Spatial distribution of tree cover fraction over the

global tropics for the JSBACH-SPITFIRE and JSBACH-standard model simulation and the satellite data products from Landsat and MODIS.

(b): Burned fraction [year−1] as modeled by JSBACH-SPITFIRE and JSBACH-standard and the GFED v4 satellite product. (c): Precipitation

in mm year−1 of the MPI-ESM and the TMPA dataset. (d): Grass cover fraction, and (e): non-vegetated fraction of the grid cell for the models

and the MODIS satellite product. All datasets were remapped to the 1.875° model resolution.

conditions in the western part of southern hemisphere Africa (Figure 1 c). The dry bias in South America and Asia is known

from previous ECHAM model versions (Hagemann et al., 2013; Stevens et al., 2013). The dry bias in precipiation in the Ama-

zon may for instance explain the high bias in burned fraction in that region.

3.2 Climate-fire-vegetation relationships: comparison of observation datasets5

Maximum tree cover shows an increase along the precipitation gradient across all continents, with trees being absent until a

certain threshold (300-500 mm year−1), increasing maximum tree cover and saturation of maximum tree cover for high pre-

cipitation (between 1500 and 2000 mm year−1). The two remotely sensed tree cover datasets are consistent in their variation

along the precipitation gradient (Figure 2). Fire occurrence is much higher for the African and Australian continent compared

to South America and Asia. Burned fraction increases with increasing precipitation until around 1000mm mean annual precip-10

itation, due to the increasing availability of fuels. For tree cover fractions higher than 0.8, fire is virtually absent. Beyond this
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Figure 2. Tree cover (TC) versus precipitation [mm year−1] with color coded burned fraction (BF) for different continents for the two

satellite datasets. Burned area is averaged over data points with the same precipitation (40 mm steps) and tree cover (in steps of 0.01) to

avoid over-plotting based on a spatial resolution of 0.25°. For Asia some higher precipitation values were cut off.

distinction there is no visually clear increase in burned fraction for decreasing tree cover at a given precipitation value. The

Spearman rank correlation between burned fraction and tree cover for grid cells with mean annual precipitation higher than

1000mm and tree cover lower than 0.8 is, however, significant for both datasets in the 0.25° resolution, in the model resolution

only the correlation with the MODIS dataset is significant. This correlation is much stronger for the MODIS tree cover compare

to the LANDSAT tree cover (Table 1). For Australia and Africa fire occurrence is very low below a mean annual precipitation5

of 300 mm year−1, for South America and Asia already below 500 mm year−1.

The Spearman rank correlation between precipitation and tree cover is very similar for both tree cover datasets (Table 1). The

statistical precipitation thresholds for low (but higher than 0) and high tree cover differ by less than 100 mm. The aggregation

to the model resolution shows the strongest effect on the precipitation threshold for high tree cover and shifts this value to

higher precipitation. The association between precipitation and burned area is less sensitive to the aggregation: 80% of the10

global burned area occurs in regions with precipitation between 609 and 1518 mm on 0.25° resolution and between 635 and

1495 mm in 1.875° resolution.

3.3 Climate-fire-vegetation relationships: Evaluation of model results

In the tropics the observed burned area is strongly constrained by precipitation, around 80% of the burned area is observed15

in regions with mean annual precipitation between 600 and 1500 mm year−1 (Table 1). This precipitation range is slightly

larger for the model simulations (Table 1). JSBACH-SPITFIRE reproduces the increase in burned area for low precipitation,

but slightly overestimates the contribution of grid cells with precipitation higher than ca. 1300 mm year−1 to the total burned
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Table 1. Spearman rank correlation (R) between precipitation (P) and tree cover (TC), and rank correlation between burned fraction (BF)

and TC for data points with mean annual precipitation higher than 1000mm and tree cover less than 0.8. The required precipitation [mm

year−1] for 0.05 < TC < 0.15 and 0.85 < TC < 0.95, estimated as 0.05 quantile of precipitation for grid cells with the specific TC only, and

precipitation value [mm year−1] where 10% and 90% of the burned area (BA) originates from areas with lower precipitation. For the remote

sensing datasets TMPA was used as precipitation, for the simulations (Hist, cLU, and JSBACH-standard) the MPI-ESM precipitation was

used. Model results are all in 1.875° resolution.

Data R(P,TC) R(BF,TC) 0.05 quantile of P 0.05 quantile of P 10% of BA 90% of BA

for 0.05 < TC < 0.15 for 0.85 < TC < 0.95 has lower P has lower P

Landsat 0.25° 0.90 -0.05 568 1417

Landsat 1.875° 0.91 -0.08 569 1596

MODIS 0.25° 0.91 -0.26 425 1514

MODIS 1.875° 0.93 -0.4 462 1644

GFED v4 0.25° 607 1517

GFED v4 1.875° 635 1489

JSBACH-SPITFIRE Hist 0.79 -0.5 31 1268 652 1663

JSBACH-SPITFIRE cLU 0.78 -0.64 13 1000 700 1654

JSBACH-standard 0.87 0.17 34 1597 266 1519

area (Figure 3). JSBACH-standard overestimates the contribution of areas with low precipitation, but agrees well on the con-

tribution of areas with high precipitation (>1300 mm year−1) when compared to the satellite observations. Fire occurrence is

limited in regions with low precipitation due to low fuel availability (Krawchuk and Moritz, 2011). This low fire occurrence

is well reproduced by JSBACH-SPITFIRE and for most continents also by JSBACH-standard with the exception of Australia

where the burned fraction of JSBACH-standard shows almost no variability (Figure 4).5

Surprisingly the observations show a higher Spearman correlation between tree cover and precipitation than the models (Table

1). The lower correlation of the modelled relationship most likely originates from the lower precipitation regions (< 500 mm

year−1), where the maximum tree cover is very low in the observations and both models strongly overestimate the maximum

tree cover (Figure 4).

Models and observations generally agree on the absence of fire for very high tree cover (>0.8) and on the decrease of burned10

fraction for mean annual precipitation decreasing below 1000mm. However for regions with tree cover < 0.8 and mean annual

precipitation > 1000mm we find strong differences. JSBACH-SPITFIRE shows a strong negative Spearman rank correlation
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Figure 3. Cumulative burned area normalized with the total burned area for increasing precipitation. For the GFEDv4 burned area the TMPA

dataset was used, for the model simulations the MPI-ESM precipitation was used.

between burned fraction and tree cover, the observations show a weaker negative correlation, and JSBACH-standard shows

a positive correlation (Table 1). This can also be seen in Figure 4 where for the JSBACH-SPITFIRE simulation the highest

burned fractions (> 50% of grid cells year−1) are found in Africa for the lowest tree covers (0.1) and for precipitation between

1000-2000 mm year−1. JSBACH-standard in many grid cells shows low fire occurrence for low tree cover, especially for

South America (Figure 4), these grid cells have a high fraction of crops or pasture, which both are excluded from burning in5

JSBACH-standard (in SPITFIRE only crops are excluded). The observations (also Figure 4) show highest values of the burned

fraction for tree cover values up to 0.3 for MODIS and up to 0.5 for LANDSAT.

Burned fraction is much lower in Asia and South America compared to Australia and Africa in the observations. Both models

show an underestimation of the fire occurrence in Australia. SPITFIRE reproduces the fire regime with high annual burned

fraction in Africa. In JSBACH-standard the difference in burned fraction between the continents is smaller than in JSBACH-10

SPITFIRE (Figure 4).
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Figure 4. Modelled and observed tree cover (TC) versus precipitation (P), color coded burned area fraction (BF). Satellite datasets were

aggregated to model grid resolution (1.875°).

Models and observations show differences between continents in the relationship between precipitation and maximum tree

cover (Figure 5). For Africa, South America and Asia the relationship between maximum tree cover and precipiation shows a

saturation for high precipitation. For Australia maximum tree cover increases linearly with increasing precipitation for models

and observations, but the precipitation range also does not reach values where a clear saturation is reached for the other con-

tinents. For JSBACH-standard the curves are very similar for the different continents. JSBACH-SPITFIRE shows a stronger5

variation, this must be due to the differences in fire as the model is otherwise the same. The observations show an even stronger

variation between continent, with clearly lower tree cover valuse for Australia followed by Asia. For Africa local quantile

regression clearly differs from the linear quantile regression for the satellite data, indicating a sigmoid shape, while the other

continents show a rather linear increase until the saturation (Figure 5). JSBACH-SPITFIRE reproduces the higher tree cover

for South America compared to Africa (albeit the difference is stronger) for mean annual precipitation lower than 1000 mm,10

11



Figure 5. Modelled and observed relatioship between precipitation and maximum tree cover based on a linear quantile regression (dashed

line) and a local quantile regression (solid line). Different colors indicate the different continents.

but also JSBACH-standard shows a small difference.

The grass cover has a much higher variability in the model compared to the MODIS data (Figure 6). The modelled non-

vegetated fraction decreases faster with increasing precipitation compared to the observations (Figure 6). The dominance of

trees (computed as TC/total vegetation cover) is strongly overestimated in the model for low precipitation (<500 mm year−1,

Figure 6). While the relationship between precipitation and non-vegetated fraction is similar between the continents, the re-5

lationship for grass cover differs (Figure 6). For Australia observations and modelled grass cover increases with increasing

precipitation. In Africa, South America and Asia grass cover first increases and then decreases with increasing precipitation.

3.4 Climate-fire-vegetation relationships: Influences of land use change

The simulation with preindustrial land use represents a state with low influence of land use change. The comparison to the10

historical simulation allows to assess the influence of land use change since 1850. The impact of fire on tree cover, as quantified

by the Spearman rank correlation, between burned fraction and tree cover is higher for the simulation with preindustrial land

use (Table 1). Land use change did not affect the rank correlation between precipitation and tree cover. The precipitation

range for 80% of the burned area is only slightly narrower for the simulation including land use change (Table 1). Tree cover,

however, is even higher for low precipiation and reaches canopy closure for lower precipitation (Table 1 and Figure 7 compared15

to Figure 4). The simulation with land use of 1850 shows a strong gap between the savanna systems (TC < 40%) and closed

forests (TC > 70%) for Africa and less strong for South America (Figure 7). For Australia and Asia the simulation does not

show this pattern. In the historical simulation land use overprints this gap of the natural vegetation dynamics. The difference

in fire occurrence between Africa and South America is smaller for the simulation with preindustrial land use compared to the

historical simulation (Figure 7 compared to Figure 4).20

12



Figure 6. Modelled and observed grass cover (GC) and non-vegetated fraction over precipitation (P), with color coded burned area fraction

(BF) for the grass cover and dominance of trees as (TC/total vegetation cover) for the non-vegetated fraction.

4 Discussion

The multivariate model-data comparison identified differences and agreements between modelled and observed interactions

between fire, vegetation and climate. It goes beyond spatial comparisons by providing better guidance on which processes in

the model need improvement. Here we discuss which model improvements can help to address the differences, what causes

agreements in intercontinental differences and whether limitations of the observations might influence our findings.5
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Figure 7. Same as Figure 4 for JSBACH-SPITFIRE but with preindustrial land use.

4.1 Opportunities for model improvements

JSBACH overestimates tree cover for low precipitation on all tropical continents. In these dry regions no or only very low

burned fractions are observed, and SPITFIRE shows a good response to precipitation while JSBACH-standard already over-

estimates the burned area (Figure 3). The improved burned area pattern of SPITFIRE did not lead to an improvement in tree

cover for these dry regions. It is therefore unlikely that further improvements in burned fraction will improve this model-data5

mismatch for tree cover in dry regions, satellite data however indicate that the intensity of fires increases in these regions and

might help to explain the disappearance of trees (Hantson et al., 2017). The mechanisms however are not sufficiently under-

stood to be included in a model. The productivity of vegetation in the JSBACH model depends on the availability of water and

is therefore sensitive to drought. The establishment time scale of trees, however, is a constant (30 years for tropical PFTs) and

only if a 5 year average of NPP turns negative, drought effects on the dynamic vegetation take effect. Other models require10

a minimum of 100 mm year−1 precipitation for sapling establishment (Sitch et al., 2003). The excessive tree cover could be

partly improved by improving the non-vegetated fraction which decreases too fast with increasing precipitation. The excessive

dominance of trees (Figure 5) however indicates that also the tree-grass competition is not well represented in the model.

Tree-grass competition for water could for example be improved in the model by introducing a sapling stage of trees, which

are competitively inferior to grasses (D’Onofrio et al., 2015). Including this mechanism could improve the balance between15

tree and grass cover, but it could also reduce the establishment rate of trees and therefore, the tree cover in the dry regions

with excessive tree cover. Including a PFT-specific rooting depth of vegetation would be an important extension of the model

to improve the competition for water between grasses, saplings and adult trees.

The absence of fire for closed canopies is captured well by JSBACH-SPITFIRE, the modelled strong relationship between

higher burned fraction and lower tree cover for open canopies (Figure 4, with the exception of Australia, Table 1), how-20

ever, is not found in the observations (Figure 2,4,Table 1). Many general processes determining the savanna-forest boundary

are included in the JSBACH-SPITFIRE model: Increased tree cover leads to a suppression of fire by excluding grasses, higher

flammability of grasses leads to increases in fire occurrence with increasing grass biomass (Hoffmann et al., 2012). In JSBACH-

SPITFIRE bark thickness is PFT specific and depends on the biomass. Tropical trees are represented by two PFTs one of them

has a lower sensitivity to fire due to a higher bark thickness and a higher stem leading to a lower probability of crown scorch.25
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This is also observed in field studies where savanna species show a higher ratio of bark thickness to stem diameter (Hoffmann

et al., 2003). Inclusion or improvement of several ecological processes might improve the modelled relationship. Bark thick-

ness is a key property of trees for the fire-related mortality. In JSBACH-SPITFIRE bark thickness is PFT specific and depends

on the biomass. The adaptation of trees to frequent fires by increased bark thickness, and therefore higher resistance of trees

to fire (Pellegrini et al., 2017) would increase the tree cover in regions with high burned fraction. This could be implemented5

in the model with more specific PFTs or by modifying the bark thickness according to the fire regime. Kelley and Harrison

(2014) included bark thickness as an adaptive trait in the LPX model, which increased and improved the tree cover for Aus-

tralia. Resprouting is another important mechanism that changes the balance between mortality and recovery and also leads to

an increase in tree cover in fire affected areas in a modelling study (Kelley and Harrison, 2014). A second option to decrease

the strong associating between high burned area and tree cover could be a negative feedback between fire occurrence and tree10

mortality: frequent fire occurrence leads to low fuel loads and low fuel loads allow only low intensity fires with associated

lower mortality of trees. In consequence a high burning frequency could lead to lower tree mortality and therefore higher tree

cover. This feedback between fire, fuel load, fire intensity and tree mortality is included in the SPITFIRE model, but might be

too weak and therefore result in the stronger correlation between burned fraction and tree cover (Table 1).

A more detailed representation of vegetation structure including a sapling state of trees that is more sensitive to fire (e.g. Hig-15

gins et al., 2000) and a long-lived adult tree state could also increase the survival of trees. The “fire trap” describes a mechanism

where in regions with frequent fires topkill of saplings maintains them in a nonreproductive state (Hoffmann et al., 2009). It

explains the importance of the fire free intervals to allow accumulation of sufficient bark to gain sufficient fire resistence. The

JSBACH model does not represent the age structure of vegetation, therefore fire always affects the average tree while in reality

only trees that did not accumulate sufficient bark are affected (Hoffmann et al., 2012). Moreover, fire does not influence the20

tree establishment in JSBACH, it can only lead to mortality.

For Australia underestimation of burned area for both fire models is strong (Figure 4). In a previous evaluation where the model

was forced with observed climate and vegetation cover was prescribed (in contrast to the dynamic vegetation cover and cli-

mate modelled by the MPI-ESM) JSBACH-SPITFIRE showed better results for Australia (Hantson et al., 2015). An improved

response of vegetation cover dynamics to precipitation will therefore likely improve the patterns of burned area.25

The rank correlation between precipitation and tree cover is higher for the observations compared to the model outputs (Ta-

ble 1). One reason might be the lower maximum tree cover for low precipitation in the observations which limits the range

of tree cover values in these regions. In JSBACH-standard the correlation between tree cover and precipitation is stronger

than in JSBACH-SPITFIRE. In the JSBACH-standard model, fire is only driven by meteorological variables and vegetation

properties (which also largely follow climatic gradients). JSBACH-SPITFIRE, however, also uses population density and light-30

ning datasets as input, which are potentially inconsistent with the meteorological forcing derived from the MPI-ESM output.

This decoupling between climate and ignitions might cause the lower correlation for JSBACH-SPITFIRE compared to the

JSBACH-standard simulation. For instance in the Northeast Amazon region precipitation of the MPI-ESM is too low, leading

to a decrease in tree cover in regions with closed canopy with the JSBACH-standard fire model. The very low ignitions in

JSBACH-SPITFIRE in that region contribute to a low fire occurrence compared to JSBACH-standard and in consequence to35
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higher tree cover (Figure 1). Lightning can be computed within climate models (Krause et al., 2014) and using these lightning

datasets based on the model not on observations would ensure consistency between meteorological forcing and the ignitions

used in the fire model (Felsberg et al., 2018).

How exactly these plausible modifications would change the patterns of tree cover, fire and their relation to climate likely

strongly depends on the exact parameterization and needs to be tested with stepwise model development and factorial simula-5

tions.

Many climate models have problems to represent extremes, length of dry periods and tend to generate a permanent drizzle

(DeAngelis et al., 2013; Gutowski et al., 2003). With our approach we only include mean annual precipitation, other aspects

of the modelled climate are neglected but might contribute to model-data mismatches in the relationship between precipitation

and other variables. Mean annual precipitation is however a strong driver of vegetation patterns especially in the tropics and10

including more climate parameters would require an entirely different approach and possibly limit visualization and interpreta-

tion of the results. Including more climatic parameters could especially help to interpret more of the variability for mean annual

precipitation amounts that allow tree establishment but do not lead to complete canopy closure. The reasonable relationship of

mean annual precipitation and burned area however indicates either, that additional climate biases are not important as fire is

quite sensitive to the length of dry seasons, or that the fire model cancels out additional climate biases.15

4.2 Difference between continents

We find differences in the climate-vegetation-fire relationships between continents in the satellite products as well as in the

model simulations with JSBACH-SPITFIRE and the JSBACH standard model. Differences in the climate-vegetation-fire re-

lationships have been described based on site level datasets (Lehmann et al., 2014). They find that the response of tree basal

area to growth conditions (climate and nutrients) and disturbances differs between continents. The study suggests that the one20

climate–one vegetation paradigm which is an under-pinning of many global vegetation models cannot lead to vegetation pat-

terns that differ between continents under the same climatic conditions as the patterns depend on past environmental conditions

and evolution. Evolution is not accounted for in common vegetation models. In simulations with changing climatic forcing,

however, the vegetation is a function of previous environmental conditions and adapts to changes in climate with constant

PFT specific time scales. Additionally the human dimension is more and more included in DGVMs, primarily by including25

anthropogenic land cover change. Moreover, in recent global fire models population density is a commonly used driver for

human ignitions and suppression of fires (Hantson et al., 2016).

Our model simulations show that also global vegetation models models can have differences in climate-vegetation-fire rela-

tionships between continents. We seperated the effect of land use change by comparing the historical simulation to a simulation

with preindustrial land use. We find that land cover change is influencing the differences in the modelled fire regime between30

Africa and South America. Land cover change influences simulated fire occurrence as cropland areas are excluded from burn-

ing and pastures have a higher fuel bulk density in the JSBACH-SPITFIRE model. A reduction in burned area due to increases

in croplands is well supported by statistical analysis of satellite data for Africa (Andela and van der Werf, 2014) and globally

(Bistinas et al., 2014; Andela et al., 2017). The mechanism behind the reduction in burned area due to croplands is however

16



likely a fragmentation of the landscape, which is not explicitly accounted for in the model. Fragmentation of the landscape by

for instance roads, can act as a fire break and therefore reduce the potential fire size. The exact relationships between humans,

land use and vegetation fires are still unknown and therefore not well represented in models.

Vegetation in the MPI Earth system model including SPITFIRE is not only a function of climate but also depends on the history

of previous vegetation due to the feedback between fire and vegetation (Lasslop et al., 2016). We did not isolate the effect of5

the multi-stability in this study but initialized the model with the standard vegetation initialization of the MPI-ESM for the

year 1850. The SPITFIRE model also takes into account differences in the fire regime through spatially varying ignitions. In

addition to the effect of land use on the differences between continents these spatial differences in ignitions might be important

and might explain the smaller differences for the purely climate and land use driven JSBACH-standard model.

The comparison of the increase in maximum tree cover with increasing precipiation shows that although the model shows10

some variability between continents, it misses a large part of the observed variation. Finding the correct balance of the many

influencing factors, e.g. climate, fire, land use, evolutionary differences, will remain a challenge for the future.

4.3 Limitations in the comparability between observations and modeled variables

We use two remotely sensed tree cover products, which show coherent patterns. Although these products are derived from

imagery with different spectral, temporal and spatial characteristics (MODIS and Landsat), they cannot be considered totally15

independent because both are derived using a similar classification and regression tree method as well as reference data. The

observational tree cover datasets are limited to trees taller than 5 m and do not include shrubs. For the model however we

included shrubs and all trees. Previously differences in the threshold where maximum tree cover is reached were attributed to

different precipitation datasets and ex- or inclusion of shrub cover (Devine et al., 2017). Filtering modelled and observed tree

cover based on the presence of shrubs in the MODIS land cover product leads to only small differences in the relationship20

between tree cover and precipitation (Figure A1). Excluding grid cells where biomass indicates that the vegetation height is

smaller than 5 m according to the allometric relationship used in SPITFIRE-JSBACH (Lasslop et al., 2014) did not lead to

substantially different relationships (Figure A2). Our conclusions are therefore not affected by the limitation of the datasets to

observe only trees taller than 5 m.

Compared to the satellite datasets, an African site level dataset shows lower thresholds of precipitation for the absence of trees25

(ca. 100 mm year−1) and for reaching the highest tree cover values (>650 mm year−1) (Sankaran et al., 2005). The remote

sensing datasets show for Africa an absence of tree cover for precipitation less than ca. 300 mm and canopy closure for 1500

mm year−1 in the model resolution (Figure 4). However, the general absence of trees for very low precipitation and increase

until a certain threshold is similar to the remote sensing datasets.

The maximum value of a variable can decrease due to spatial averaging. We tested this effect by not using the mean when30

aggregating the satellite tree cover to the resolution of the precipitation dataset but instead using the maximum value of the

underlying 0.05° grid cells of tree cover. Canopy closure can then be reached for all continents for mean precipitation values

around 500-1000 mm year−1 (Figure A3), which is more consistent with a published site level dataset (Sankaran et al., 2005).

This is consistent with the figures in (Hirota et al., 2011) where the MODIS tree cover is shown in 1km resolution. The scale
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at which maximum tree covers are observed and the spatial scale of the model application therefore needs to be considered.

Moreover, as the thresholds found for the model are closer to the ones found for site-level and high resolution satellite datasets

the model performance could improve if the spatial resolution of the model is increased.

Tree cover seems to be a clearly defined variable, but already varies between the two satellite datasets, the MODIS tree

cover dataset defines a maximum tree cover of 80%, while the LANDSAT tree cover dataset allows a cover of 100%. In5

the observations not fully closed canopies due to low foliar biomass might be tracked as a reduced tree cover. In the model,

however, tree cover and biomass are two rather independent variables, meaning that tree cover can be high in spite of a low

biomass. Biomass datasets might therefore give additional valuable insights and pan-tropical datasets are available (Saatchi

et al., 2011; Baccini et al., 2012; Avitabile et al., 2016).

The latest release of the GFED burned area and emissions datasets includes an extension for small fires (Randerson et al., 2012).10

However these small fires are often related to cropland fires or deforestation fires. Neither of these fire types are modelled

explicitely in our model approaches and therefore could cause an unwanted mismatch. Cropland fires are not expected to

strongly influence the vegetation cover, while deforestation is prescribed as described in the model and simulation paragraphs

and therefore the influence on vegetation cover is considered. Burned area datasets are generally uncertain mainly due to the

limited spatial and temporal resolution (Padilla et al., 2015), the difference in global burned area between the dataset including15

small fires and the one not including small fires is 25%. The spatial patterns are less affected, but missed burned areas due to

high cloud cover certainly introduces also spatial biases. How important such errors are for a comparison as present here is

unknown.

5 Conclusions

This study combines two satellite datasets with model simulations using a simple and a complex fire algorithm to investigate20

relationships between fire, vegetation and climate. Our analysis shows that the two satellite datasets are consistent in terms

of the relationship between tree cover, precipitation and fire occurrence, but the spatial scale needs to be considered as some

statistical characteristics change with the resolution.

Our analysis showed the strength of the multivariate comparison to detect model inconsistencies and guide model development.

It goes beyond the insights gained by standard spatial comparisons. For JSBACH, independent of the fire model used, we find25

an overestimation of tree cover for low precipitation where typically fire occurrence is low due to limited fuel availability. The

response of burned area to precipitation was captured well for SPITFIRE, but the simple fire scheme showed an overestimation

of burned area for dry regions. This indicates that not an improvement of the fire model but improved modelling of drought

effects on the vegetation dynamics will improve the response of vegetation to climate in dry regions. Dry regions often show a

strong coupling between land and atmosphere (Koster et al., 2006), such an improvement has therefore also a high potential to30

improve the performance of the coupled Earth system model.

While fire occurrence and vegetation patterns are well observed by remote sensing, the impact of fire on vegetation is much less

constrained by satellite observations limiting the possibilities of evaluating that part of fire models. The multivariate compari-
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son revealed a too strong impact of fire on tree cover for gridcells with very high fire occurrence, which leads to too low tree

cover. To boost the tree cover in exactly these regions with high fire occurrence possible model modifications are an adaptation

of trees to fire, by increasing bark thickness in reponse to high fire frequencies, or a stronger negative feedback between fire

occurrence and fuel load. This stronger feedback should then reduce fire intensity and consequently fire mortality.

The complex fire model SPITFIRE improves the difference in fire regimes between the continents, especially Africa and5

South America, compared to the simple fire model. The intercontinental variation in the relationship between precipitation and

maximum tree cover is much smaller for the models compared to the observations. Known variations in vegetation are not suf-

ficiently understood to be represented in models. However, our finding that models do show differences in the fire-vegetation-

climate relationships between continents shows that further exploration why models show differences can be helpful to better

understand causes for intercontinental differences.10

Overall the multivariate model evaluation highlights the potential for more targeted model improvements with respect to the

interactions between climate, vegetation and fire, which are crucial for our understanding of future vegetation projections.
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Figure A1. Same as figure 4 but tree cover filtered for the presence of shrub lands (using the MODIS open and closed shrub land classifica-

tion). This indicates a low sensitivity of the fire-vegetation-climate relationships to shrub lands.
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