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Abstract:  15 
 
Despite the important role of planktonic foraminifera in regulating the ocean carbonate production 

and their unrivalled value in reconstructing paleoenvironments, our knowledge on their ecology is 

limited. A variety of observational techniques such as plankton tows, sediment traps and experiments, 

have contributed to our understanding of foraminifera ecology. But, fundamental questions around 20 

costs and benefits of calcification, and the effect of nutrients, temperature and ecosystem structure 

on these organisms remain unanswered. To tackle these questions, we take a novel mechanistic 

approach to study planktonic foraminifera ecology based on  trait theory. We develop a 0-D trait-

based model to account for the biomass of prolocular (20 μm) and adult (160 μm) stages of non-

spinose foraminifera species and investigate their potential interactions with phytoplankton and other 25 

zooplankton under different temperature and nutrient regimes. Building on the costs and benefits of 

calcification, we model two ecosystem structures to explore the effect of resource competition and 

temperature on planktonic foraminifera biomass. By constraining the model results with ocean 

biomass estimations of planktonic foraminifera, we estimate that the energetic cost of calcification 

could be about 25-50% and 20-35% for prolocular and adult stages respectively. Our result suggest 30 

that the shell provides protection among predation (e.g pathogens protection) and that the invariably 

low standing biomass of planktonic foraminifera plays a key role in their survival from predation, along 

with their shell protection. Temperature appears to be an important factor in regulating foraminifera 

biomass in the early developmental stage, whereas resource competition is a key in controlling adults’ 

biomass and feeding strategy. 35 
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1. Introduction 

Planktonic foraminifera as a group comprise fifty holoplanktonic heterotrophic protozoans 

(Kucera, 2007). They are the most widely-used zooplankton group to reconstruct past marine 

environments, with proxies devised that are based on their abundance, assemblage composition, 40 

and/or physio-geochemical characteristic of their shell (e.g Schmidt et al., 2003; Schiebel and 

Hemleben, 2005). They are also the most important calcifying zooplankton group, supplying between 

23-55% of the total marine planktonic carbonate production (Schiebel, 2002), and hence are a key 

contributor to the composition of marine sediments (Schiebel and Hemleben, 2005).  

In contrast to their high abundances in sediments, they tend to grow at very low abundance in the 45 

ocean and never dominate the zooplankton community, representing less than 5% of total 

microprotozooplankton abundance (Beers and Stewart, 1971). Based on plankton tow observations, 

abundances range from 1 ind. m-3 in blue waters, 20-50 ind. m-3 in oligo- and mesotrophic waters 

(Schiebel and Hemleben, 2005) to >1000 ind. m-3 in polar regions (Volkmann, 2000). Their global 

biomass in the water column has been estimated to be between 0.002 and 0.0009 PgC and their 50 

contribution to global plankton biomass to be ~ 0.04% (Buitenhuis et al., 2014). 

Despite their importance in palaeo- and modern biochemical oceanography, our knowledge of 

planktonic foraminifera's physiology, development and ecology is limited to observations of a few 

species. Planktonic foraminifera are difficult to grown in culture and it has been impossible to culture 

a next generation (Schiebel and Hemleben, 2017). Consequently, information regarding the 55 

intraspecies and interspecies competition as well as a mechanistic understanding of their ecology through 

their whole life cycle is missing. The development and application of numerical ecological models can 

help fill in this knowledge gap, of which a particularly promising approach which we focus on here, 

involves consideration of physiological traits and their associated trade-offs. 

Trait-based approaches can be useful for improving our knowledge of planktonic foraminifera 60 

ecology as they canaddress fundamental questions around the cost of growth across developmental 

stages, their position in the global food webs and calcification. Trait-based approaches provide a 

mechanistic understanding of individuals, populations or ecosystems as they describe these systems 

from first principles by highlighting key traits (e.g. feeding, competition, predation, reproduction) and 

associated trade-offs (e.g Litchman and Klausmeier, 2008; Litchman et al., 2013; Kiørboe, 2008; Barton 65 

et al., 2016; Hébert et al., 2016). For example, body size is considered as a master trait for plankton, 

impacting many physiological and ecological aspects such as metabolic rates (e.g. growth), diet, 

abundance, biomass and reproduction (e.g Litchman et al., 2013). 

A number of traits and trade-offs have been identified for planktonic foraminifera, summarised in 

Figure 1. The shell size of planktonic foraminifera can be regarded as a ‘master’ trait and can be used 70 

as an indicator for growth optimal environmental conditions. Planktonic foraminifera development is 

divided into five stages, defined based on shell size and wall structure: prolocular, juvenile, neanic, 

adult and terminal (gametogenesis) (Brummer et al., 1986, 1987). Their shell diameter ranges from 

about 10 μm for the prolocular life stage to more than 1250 μm for the adult under optimal conditions 

(Schmidt et al., 2004a). Planktonic foraminifera are considered to reach the adult stage and 75 

subsequently be sexually mature when their shell size reaches 100 μm (Brummer et al., 1986). Shell 

size increases from low to high latitudes (Schmidt et al 2003, 2004b) and is related to reproductive 

success (gametogenesis), as bigger individuals release more gametes (e.g. Caron and Bé, 1984; 

Hemleben et al., 1987). Temperature and food availability are suggested to be the main environmental 

factors which regulate their size (e.g. Anderson et al., 1979; Spero et al., 1991; Caron et al., 1983; 80 
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Schmidt et al., 2004a), but a mechanistic understanding of the response of shell size to temperature 

and food is missing. 

Calcification is another important trait of planktonic foraminifera, relative to shell size, but the 

costs and benefits of their shell and the nature of the associated trade-off are not well understood. 

Paleo records indicate size, thickness, and morphology changes of planktonic foraminifera shell 85 

responds to changing climates (Keller and Pardo, 2004). Given the impact of climate change on the 

ocean and its ecosystems, determining the cost and benefit of producing a shell is fundamental to 

quantifying the influence of climate change on planktonic foraminifera ecology, distribution, and 

carbonate production in the past, present and future.  

The feeding strategies of planktonic foraminifera are also an important trait as they are crucial for 90 

survival and influence plankton community ecology. Planktonic foraminifera are inactive organisms and 

passive feeders. They do not detect their prey but encounter them while drifting, using a rhizopodial 

network which extends from their body (e.g Anderson and Bé, 1976). As planktonic foraminifera are 

typically collected for culturing at sizes >60 µm and subsequently grown as individuals, information 

regarding the feeding behaviour of the early (prolocular and juvenile) life stages, the cost and benefits 95 

of being inactive passive feeder, and  interactions with other plankton are missing. It has been 

suggested that at the prolocular stage all species are herbivorous (Schiebel and Hemleben, 2017) and 

subsequently widen their food sources. Field and lab observations suggest that spinose species use 

their spines, which start growing during the juvenile stage, to capture and control active zooplankton 

prey, that are often larger than them (e.g., Anderson, 1983; Spindler et al., 1984). Species of this group 100 

tend to be either omnivorous or carnivorous (Schiebel and Hemleben, 2017). Most spinose species 

develop a symbiotic relationship with photosynthesizing algae (Schiebel and Hemleben, 2017) and are 

dominant in oligotrophic areas. It has been speculated that the higher abundance is due to their 

carnivorous feeding as these areas are characterized by relative low phytoplankton concentration and 

relative high abundance of copepods (Schiebel et al., 2004; Moriarty and OʾBrien 2013). Non-spinose 105 

species are considered to be omnivorous/herbivorous (Anderson et al., 1979; Hemleben and Auras, 

1984), with the ability to catch and feed on small zooplankton or dead organic matter. These species 

have low abundance in oligotrophic areas and their maximum in high-productivity regions (Schiebel 

and Hemleben, 2017).  

Trait-based models can supplement the physiological and ecological understanding of 110 

foraminifera gained in the field and cultures (Fig. 1) and be used as a complimentary method to go 

through culture limitations and improve our understanding of planktonic foraminifera’s ecology. Trait-

based models have been successfully applied to phytoplankton (e.g Follows et al., 2007; Litchman and 

Klausmeier, 2008; Monteiro et al., 2016) with little development and application on zooplankton (e.g. 

(Banas, 2011; Maps et al., 2011; Ward et al., 2012; 2014; Banas et al., 2016). However, until now, a 115 

few species models have been developed to study the ecology of modern planktonic foraminifera 

species: Žarić et al. (2006) (from now on Žarić06), PLAFOM (Fraile et al., 2008; Fraile et al., 2009) and 

FORAMCLIM (Lombard et al., 2011; Roy et al., 2015). Žarić06 develop an empirical model which relates 

the global fluxes of eighteen species of planktonic foraminifera to environmental conditions based on 

observations of eighteen species. PLAFOM model field observations to predict the influence of 120 

temperature (Fraile et al., 2008) and food availability (Frail et al., 2009) on the global biogeography of 

five species. FORAMCLIM represents eight species of planktonic foraminifera and studies the influence 

of temperature, food availability, light and climate change on growth rates and global distribution. 

These models provide important insights regarding the interaction between planktonic foraminifera 

and their habitat. Their main limitation is that are based on either empirical data (Žarić et al., 2006; 125 
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Fraile 2008; 2009) or growth data from laboratory (Lombard et al., 2011; Roy et al., 2015) and their 

application is thus species-specific and limited to specific environmental ranges (Roy et al., 2015).   

Here, we describe the first trait-based generic model of planktonic foraminifera using body size, 

calcification and feeding behaviour as key traits to investigate the mechanisms behind planktonic 

foraminifera ecology. We focus on modelling non-symbiotic non-spinose species as a starting point 130 

because these species are predominantly  herbivorous throughout their whole life, and do not develop 

spines and algal symbionts, all of which increase complexity and are not sufficiently constrained by 

basic physiological data. Our trait-based planktonic foraminifera model was derived from the size-

structured plankton models of Ward et al. (2012; 2014) which use cell and body size as the eco-

physiological trait to study the phyto-zooplankton food web. With this model, we investigate the 135 

energetic costs and benefits of calcification, their feeding behaviour and resource competition with 

other zooplankters, as well as the environmental controls on two different developmental stages. 

Model results assess and quantify the biotic and abiotic factors influencing their physiology and 

ecology, and the interactions of planktonic foraminifera, with phytoplankton and other zooplankton, 

as well as their environment.  140 

 

 

2. Methods 
2.1. Model environment 

Our model represents a chemostat experiment in a zero-dimensional (0D) setting. It accounts for 145 

one source of nutrients (here defined as 𝑁𝑂3
−) and fifty-one generic phytoplankton and zooplankton 

size classes from pico- to mesoplankton (Schiebel 1978).   

The nutrient availability (𝑁𝑂3
−) depends on the input nutrient concentration (No) interpreted as 

either a nutrient-rich vertical source of nutrient (typical of high-productivity regions) or a less-rich 

horizontally advective nutrient source (typical of oligotrophic gyres), dilution rate 𝜅 and 150 

phytoplankton uptake (Eq. (1)).  

 
𝑑𝑁

𝑑𝑡
=  𝜅 ∗ (𝑁𝑜 − 𝑁) −  ∑ [𝐵𝑁,𝑗

] 𝑃𝑔𝑟𝑜𝑤𝑡ℎ,𝑗
𝐽
𝑗𝑝𝑟𝑒𝑦=1

        (1) 

 

We investigated a range of No values (0-5 mmol N m-3) to account for a range of different nutrient 155 

regimes, from oligotrophic to eutrophic (Ward et al., 2014). We assumed that the terms of plankton 

mortality (plankton loss due to viral/bacterial infection or natural death) and zooplankton sloppy 

feeding (prey which is lost from the predator during feeding (Latwon, 1970)) are exported out of the 

chemostat. There is no nutrient recycling in the model.  

Plankton populations are modelled in terms of nitrogen biomass [𝐵𝑁,𝑗
] with the rate of change of 160 

biomass described by:   

 
𝑑𝐵

𝑑𝑡
= [𝐵𝑁,𝑗

] 𝑃𝑔𝑟𝑜𝑤𝑡ℎ,𝑗 + [𝐵𝑁,𝑗
] ∑ 𝜆𝑖𝑏,𝑗 

𝐽
𝑗𝑝𝑟𝑒𝑦=1

 𝐺𝑁 𝑗𝑝𝑟𝑒𝑦
−  ∑ [𝐵𝑁,𝑗𝑝𝑟𝑒𝑑

]
𝐽
𝑗𝑝𝑟𝑒𝑑=1

 𝐺𝑁 𝑗𝑝𝑟𝑒𝑑,𝑗 
−  [𝐵𝑁,𝑗

] 𝑚𝑗  (2) 

 

where 𝑃𝑔𝑟𝑜𝑤𝑡ℎ,𝑗 represents the phytoplankton growth,  ∑ 𝜆𝑖𝑏,𝑗 
𝐽
𝑗𝑝𝑟𝑒𝑦=1

 𝐺𝑁 𝑗𝑝𝑟𝑒𝑦
  the zooplankton 165 

growth,  ∑ [𝐵𝑁,𝑗𝑝𝑟𝑒𝑑
]

𝐽
𝑗𝑝𝑟𝑒𝑑=1

 𝐺𝑁 𝑗𝑝𝑟𝑒𝑑,𝑗 
 the plankton losses due to zooplankton grazing and 𝑚𝑗 plankton 

background mortality. The model parameters and symbols are defined in Tables 1 and 2 and a more 

detailed description of the model and plankton growth is available in Appendix A. 
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2.2. Complexity of the ecosystem structure 170 

 

We modelled two simplified ecosystems: a simple food chain and a more complex food web (Fig. 

2). In the simple food chain model, zooplankton are herbivorous size-specialist predators feeding on 

one prey size group. In order to examine the grazing pressure of a specialist predator on planktonic 

foraminifera, we made an exception by defining one zooplankton group to be omnivorous, capable of 175 

consuming only planktonic foraminifera and one phytoplankton group with the same size as 

planktonic foraminifera. Resource competition occurs mostly at the phytoplankton level. In 

zooplankton, the only competition is between individual planktonic foraminifera and with 

zooplankton of the same size group (Fig. 2a). This simple representation of the marine ecosystem 

allows us to better understand the model behaviour and the top-down and bottom-up controls on 180 

foraminifera while testing the grazing pressure of a specialist predator on planktonic foraminifera.  

In the food web model, resource competition occurs at both phytoplankton and zooplankton 

levels. Zooplankton predators are size-generalist omnivorous predators able to consume more than 

one prey (Fig. 2b). This more complex version helps us to better understand how the herbivorous non-

spinose planktonic foraminifera can compete with other omnivorous zooplankters and handle multi 185 

predation pressure. The food web model has a more realistic representation of the plankton 

community but the dynamic interactions within the groups are more challenging to disentangle (Banas 

2011; Ward et al., 2014). With the two versions of the model we are able to examine how the resource 

competition within plankton community as well as predation, influences different life stages of 

planktonic foraminifera.  190 

The switch from the food chain to food web version is implemented through predators’ grazing 

kernel, which dictates the relative palatability of potential prey (fig. 3, Eq. (3)). In this 

parameterization, the prey palatability (𝜑𝑗𝑝𝑟𝑒𝑑,𝑗 𝑝𝑟𝑒𝑦) expresses the likelihood of a predator to eat a 

prey (eq. 3) and it depends on the optimum predator:prey length ratio (𝜃𝑜𝑝𝑡), the log size ratio of 

each predator with each prey (𝜃𝑗𝑝𝑟𝑒𝑑,𝑗𝑝𝑟𝑒𝑦), and the standard deviation (𝜎) which shows the width of 195 

size prey preference and defines how specialist or generalist the predator can be (Fig. 3).  

 

𝜑𝑗𝑝𝑟𝑒𝑑,𝑗 𝑝𝑟𝑒𝑦 = exp [− (𝑙𝑛(
𝜃𝑗𝑝𝑟𝑒𝑑,𝑗𝑝𝑟𝑒𝑦

𝜃𝑜𝑝𝑡
))

2

(2𝜎𝑗𝑝𝑟𝑒𝑑
2 )

−1
]       (3) 

 

We assumed a 10:1 predator:prey length ratio as the optimum size for zooplankton to feed upon, 200 

as is often observed for zooplankton (Kiørboe, 2008). Prey with a size ratio equal to this optimum 

therefore have  the highest prey palatability of this particular predator.  For the food chain model, 

predators can only consume one prey group that was exactly ten times smaller than themselves (𝜎 =

0.0001). In the food web model, we allow zooplankton to be more generalist predators and feed on 

prey of size around this optimum ratio but with a smaller palatability to acknowledge that zooplankton 205 

can feed on prey of a wider size range (Kiørboe, 2008) (𝜎 = 0.5). When considering generalist 

planktonic foraminifera (foob web model), we tested a range of different grazing kernels (𝜎 = 0.5 −

1.0). This is because the model results showed that being more generalist than other zooplankton 

groups is a condition for planktonic foraminifera to survive.  

 210 
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2.3. Adding planktonic foraminifera in the model 

 

Planktonic foraminifera biomass  215 

We compared our modelled biomass to observations from Schiebel and Movellan (2012) and 

Buitenhuis et al. (2014), converting from, PgC m-3 to mmolN m-3, using the carbon molecular weight 

(12 gC/mol) and an assumed Redfield C:N stoichiometry of 6.625. We assumed that there is no 

correlation between the species and the size fractions of Schiebel and Movellan’s (2012) samples and 

we estimated that the relative biomass of the non-spinose planktonic foraminifera 150- 200 μm size 220 

fraction to micro- and mesozooplankton biomass ranges from 0.02% (5x103 mmolNm-3) to 0.03% 

(1x104 mmolNm-3). Due to the lack of data, we presumed that the prolocular biomass is similar to the 

adult biomass. We extended the biomass range to be from 0.01% to 0.09% in order to include a global 

biomass representation for early stages and small adults based on Schiebel and Movellan (2012) 

suggestion that biomass of early stages can be up to three times higher than adults with size <125 μm. 225 

Model simulations for which planktonic foraminifera relative biomass is within the observed range of 

0.07% to 0.09% are referred here as ‘low biomass’. 

 

Calcification  

With the model we tested basic hypotheses to investigate the trade-offs of shell size and 230 

calcification and the effect of resource competition on planktonic foraminifera biomass for two life 

stages, prolocular (20 μm) and the adult (160 μm). Each life stage was modelled independently. As the 

costs and benefits of foraminifera’s calcification are not experimentally known, we added a calcifying 

zooplankton type in the model with an associated trade-off for calcification, following the Monteiro 

et al. (2016) representation of a calcifying phytoplankton type (coccolithophore). To model non-235 

spinose planktonic foraminifera, we use the same parameterization and equations as for zooplankton, 

hypothesizing that the main cost for shell development is energy loss, and the main benefit of 

calcification is protection (Monteiro et al., 2016). Preliminary experiments showed that the 

background mortality (𝑚) had to be decreased to keep planktonic foraminifera at low biomass, 

suggesting that the shell may act as a protection against other factors than predation (e.g. pathogens, 240 

parasites). 

Studies have shown that zooplankton metabolic rate and biomass varies with temperature (Ikeda, 

1985), but the reasons behind the correlation between habitat and mortality rate are still very 

complicated to quantify (Aksnes and Ohman, 1996). To estimate the cost and benefit of calcification 

we ran a sensitivity analysis by decreasing planktonic foraminifera maximum growth (𝐺𝑚𝑎𝑥)  and 245 

background mortality (𝑚)  from 0% to 95% (in 5% steps), representing calcification’s energy loss and 

benefit. As there are no data to compare our calcification results with, we selected the model 

simulations with a variation of 0% to 30% of the reduction in maximum growth and background 

mortality for all tested environments as most likely (herein denotedas ‘plausible’ simulations).  

In the end, to quantify the benefit of predation protection, we chose a number of ‘plausible’ 250 

simulations to examine different predation pressures on planktonic foraminifera by decreasing the 

grazing term (𝐺𝑁𝑗𝑝𝑟𝑒𝑑,𝑗𝑝𝑟𝑒𝑦
 , 𝑒𝑞(𝑆3))  by 100% (no grazing pressure on planktonic foraminifera), 75%, 

50%, 25% and 0% (no protection from grazing pressure) of its initial value.  

 

 255 
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2.4. Model set up and numerical simulations 

 

We explored the potential ecological controls on planktonic foraminifera ecology by means of a 

series of ensembles of model experiments (Table 3). Each individual ensemble was designed to explore 260 

a wide range of potential parameter value combinations of growth, predation and background 

mortality rates and hence different trade-off assumptions and growth conditions. The ensembles were 

repeated for different potential assumed ecological structures and life stages (prolocular and adult) 

of planktonic foraminifera. We then apply a series of 'plausibility' filters on the model results to derive 

a series of sub-sets of experiments that we analyze in detail and discuss the implications of. 265 

We ran experiments for nine different environmental combinations; with three input nutrient 

concentrations (No= 1, 2.5 and 5 mmol N m-3) to represent oligo-, meso- and eutrophic environments 

respectively and three water temperatures (10oC, 20oC, 30oC). Every experiment was run for 10,000 

days (~27 years) until steady state (biomass ± 0.01 mmolNm-3). For the food web version, the majority 

of the experiments reach an oscillatory steady state close to an equilibrium which is still present after 270 

running the model for more than 270 years (results not shown). This oscillatory behaviour is a common 

feature in ecosystem models (e.g. Baird et al., 2010) especially of planktonic communities (e.g. 

Petrovskii and Malchow 2001a; Petrovskii et al., 2001; Banas et al., 2011). The initial concentration of 

all plankton groups was set to 0.0001 mmol N m-3. 

We present the absolute and relative biomass of planktonic foraminifera from all tested scenarios 275 

of calcification costs and benefits in supplementary materials (SM) based on the last 1000 days of the 

simulations.  From 921 (500 for the food chain and 421 for the food web) tested simulations 9.5% (88 

simulations) were within the ‘low biomass’ criteria.  From the ‘low biomass’ simulations, 75% (64 

simulations) cover the conditions of the ‘plausible’ criterion. Due to the low number of ‘plausible’ 

simulations (<4) per environment (SM, figures 4-7), we were not able to perform statistical analysis 280 

and instead we provided ranges of values for costs and benefits of calcification in non-spinose 

planktonic foraminifera for each life stage. We ran 100 simulations for both stages and model versions 

to examine different predation on planktonic foraminifera. 

 

3. Results  285 

3.1. General plankton distribution at different environments 

 

Both versions of the model showed an increasing diversity and biomass from oligo- to eutrophic 

environments and from cold to warmer environments (Fig. B1) capturing the main patterns of marine 

plankton dynamics (e.g Irigoien et al., 2004; Müren et al., 2005; O’Connor et al., 2009). In the food 290 

chain version, biomass of phytoplankton and zooplankton increased continuously with the number of 

coexisting size groups (Fig. B2a). In contrast, the food web version had a patchy distribution of biomass 

with fewer coexisting groups, equivalent to “winners” of resource competition, and an overall lower 

biomass than the food chain model (Fig. B2b) similar to previous studies (e.g. Armstrong et al., 1994; 

Banas et al., 2011).   295 

Pico-, nanophytoplankton and nano- microzooplankton dominated the plankton biomass at 10oC 

in both versions (Fig. B1b) as they outcompete the larger cell sizes through resource competition. As 

the concentration of the incoming nutrients (𝑁𝑜) was increased from oligo- to eutrophic the growth 

rate and coexistence of phytoplankton groups also increased, leading to a higher grazing pressure of 

zooplankton, biomass and zooplankton co-existence. In the food chain model, microphytoplankton 300 

survived in the eutrophic environment at low temperatures (10oC) and all the nutrient environments 
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at 20°C and 30°C model. In the food web, microphytoplankton were present in meso- and eutrophic 

environments at 20°C and 30°C. Mesozooplankton were sustained in meso- and eutrophic 

environments at 20°C for the food chain model, in eutrophic environments at 20°C for the food web 

model, and in the all environments at 30°C at both versions of the model (Fig. B1b). Since our model 305 

captured the general trends of plankton community through different environments, we used it 

interrogate the importance of individual traits and trade-offs.  

 

3.2. Planktonic foraminifera ecology 

3.2.1. Cost of calcification 310 

  

We estimated the potential energetic cost of calcification in non-spinose planktonic foraminifera. 

In the food chain model, of the 500 simulations, 10.6% (54 simulations) were within the ‘low biomass’ 

criterion and 8% (39 simulations) ‘plausible’. The ‘plausible’ simulations resulted in a decrease of 

foraminifera growth rate by 10 to 30% for the prolocular stage and 10 to 20% for the adult stage (Figs. 315 

4, 5). For the adult stage, we found no ‘plausible’ simulations for the environment of mesotrophic at 

20oC due to high decrease of the background mortality (>60%) compare with their low decrease (10%) 

of growth rate.  

Of the 421 food web simulations, 8% (34 simulations) were ‘low biomass’ and 6% (25 simulations) 

‘plausible’. The biomass of the prolocular stage increased with temperature and nutrients. The model 320 

could not produce any ‘low biomass’ simulation of early life stages of foraminifera at 30oC as values 

were significantly too high (1-7.3% of the total zooplankton biomass, Fig. 6). In all environments at 

10oC and for oligotrophic environments at 20oC the ‘plausible’ simulations showed a 10-35% decrease 

of growth rate. To maintain the prolocular biomass within the defined low biomass range in meso- 

and eutrophic environments at 20oC, the calcification cost was equal to a 50% reduction of the growth 325 

rate (Fig. 6). The model did not generate results for adults in oligotrophic waters at 10oC as only small 

zooplankton groups (<63 μm) could survive for that ecosystem and no ‘plausible’ simulations for the 

eutrophic ecosystem at 20°C and 30°C, as planktonic foraminifera relative biomass was higher than 

the defined range (Fig. 7). For all the other ecosystems the ‘plausible’ simulations resulted in a cost of 

calcification for the adult stage ranged from 10-45% (Fig. 7).  330 

 

 

3.2.2. Potential benefits of calcification in planktonic foraminifera 

Both versions of the model showed that in order to maintain planktonic foraminifera within the 

defined biomass range, the background mortality rate of both prolocular and adult stages had to be 335 

reduced by 10-40% (Figs. 4- 7). Our results suggest that planktonic foraminifera use their shell not only 

for predation protection but for other reasons e.g against pathogens like bacteria or viruses.  

Regarding the use of the shell as protection from predation, both model versions showed different 

results. This is due to different feeding behaviour of zooplankton (specialist vs generalist) as in both 

models, predation depends on the feeding behaviour of the predator, prey size and biomass.  340 

In the food chain model, the foraminifera biomass could be maintained inside the observed range 

when grazing pressure was reduced by 25% for the prolocular and 50% for the adult stage compared 

to full predation (Fig. B3). Therefore, both low biomass and possession of hard parts are important 

mechanisms against specialist predators. 

Shell protection against predation had no effect on the relative low biomass of foraminifera in the 345 

food web model as their biomass remained the same with or without predation at both life stages 
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(Fig. B3). The food web version suggests that for a generalist predator low biomass is a more efficient 

protective mechanism than the shell. We found that with a combination of higher than observed 

biomass of planktonic foraminifera and a predation pressure lower than 50%, planktonic foraminifera 

became a dominant group with up to 22% of the total zooplankton biomass suggesting that the shell 350 

has a protective function (results not shown).  

 

3.2.3. Temperature and feeding control amongst different life stages of planktonic foraminifera 

 

We focus on the results of the food web as it considers resource competition between planktonic 355 

foraminifera and the rest of zooplankton and simulates the plankton food web better than the food 

chain. Our model suggested that being herbivorous is a successful strategy for the prolocular stage as 

their optimum size prey group (≈2-3μm, as determined by the 10:1 predator:prey size ratio) was 

present in high abundance in all environments (Fig. 8). Resource competition is therefore not a 

determinant factor for the prolocular stage. The model results suggest that temperature had a 360 

stronger control on this stage, resulting in higher biomass (1-7%) at 30oC (Supplementary Material).  

Adult foraminifera in the model achieved realistic relative biomass only when they became more 

generalist feeders by increasing their prey palatability by 20% (σ= 0.6) for meso- and eutrophic 

conditions and by 80% (σ= 0.8) to 100% (σ =1.0) in oligotrophic environments (relatively to σ= 0.5 for 

other zooplankton) (Fig. 9). Without this change, adult herbivorous foraminifera in the model were 365 

out-competed by omnivorous predators. To understand if feeding behaviour or the lower growth rate 

and mortality associated with calcification led them to become more generalists, we switched the 

feeding behaviour in the model from herbivorous to omnivorous. The results showed that omnivorous 

planktonic foraminifera did not need to be more generalist than the other zooplankters (results not 

shown). Resource limitation had therefore an important role in controlling for the non-spinose 370 

planktonic foraminifera adult stages. 

 

4. Discussion 

We developed the first size-based 0D model of two life stages (one prolocular, 20 μm and one 

adult, 160 μm) of planktonic non-spinose foraminifera, to investigate the cost and benefits of 375 

calcification and feeding behaviours under different environmental conditions (temperature and 

nutrient). It is important to note that the present model, like other size structured models, cannot 

capture the complexity of the plankton community (Banas, 2011) but represents general patterns and 

encapsulates basic physiological relationships. The model shows that diversity increases from oligo- 

to eutrophic environments, and from cold to warmer environments. The model therefore captures 380 

the increase in complexity in planktic ecosystems toward the topics and eutrophic systems (Irigoien 

et al., 2004).  

In the ocean, phytoplankton biomass and productivity are controlled by nutrient availability, light, 

temperature and grazing pressure (Irigoien et al., 2004). In oligotrophic areas, nutrient limitation leads 

to the dominance of small size phytoplankton cells as there is not enough energy to sustain larger cells 385 

(Menden – Duer and Kiørboe, 2016). As nutrient availability increases, phytoplankton size diversifies. 

Zooplankton shows similar pattern; oligotrophic environments are dominated by small heterotrophs, 

while the size of the species increases in eutrophic environments (Razouls et al., 2018). Our model 

captured this general pattern, but it struggled to sustain a high biomass of the largest size groups of 

microphytoplankton and metazooplankton especially in non-eutrophic environments. We suggest 390 

that the oversimplification of physiological and behavioural traits especially for zooplankton leads to 
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this limitation, as species are represented as spheres with fixed half-saturation (𝐾𝑁) and assimilation 

efficiency (𝜆) (more details in supplementary methods). Changing the shape of the body from a sphere 

towards an eclipse for representing metazoans, combined with variable half-saturation, may 

circumvent this problem. Other aspects which are not represented such as feeding motility, an 395 

important trait for organisms’ survival (e.g feeding, predation protection) with strong influence on 

metabolic rates (e.g Ikeda, 1985) could also improve model results.   

In the present study we tried to quantify the cost and benefit associated with calcification in 

planktonic foraminifera. Our model suggests a cost of calcification in non-spinose planktonic 

foraminifera of 10-50% for the early life stages and adults. This cost is similar to estimates for 400 

coccolithophores (~30%; Monteiro et al., 2016) and for shell production of marine benthic molluscs 

(22-50%; Palmer, 1992). While biocalcification evolved in the Precambrian and across many clades, 

metabolic costs may be comparable as pathways and constraints are similar for a range of organisms 

(Knoll 2003).  

Our model results suggest that planktonic foraminifera calcify for a combination of reasons (e.g. 405 

protection from pathogen, parasites and grazers), as suggested by other studies on calcifying 

phytoplankton (Hamm et al., 2003; Hamm and Smetacek 2007; Monteiro et al., 2016). In the light of 

limited physiological data, we interpret the function of the foraminifera shell to be pathogen and 

predation protection at both developmental stages. Observations show that bacteria can attack the 

cytoplasm of unhealthy or dead planktonic foraminifera (Schiebel and Hemleben, 2017). More field 410 

and laboratory studies are needed in order to compare our findings and gain a deeper knowledge on 

the interaction between planktonic foraminifera and pathogens.   

The question about selective predators in planktic foraminifers is still not well understood. While 

benthic foraminifers are selectively preyed upon by scaphopods (Murray, 1991), evidence for 

predation on foraminifera is limited for the planktonic ones. For the neanic and juvenile stages of 415 

planktonic foraminifera it is difficult to detect their remains in faecal pallets due to their small size, 

thin walls and low biomass and as so there are no published data available (Schiebel and Hemleben, 

2017). Adults shell and spines have been detected mostly in faecal pallets of metazooplankton groups 

(like salps, copepods, pteropods, and euphausiids) and nekton shrimps (Be et al., 1977; Bradbury et 

al., 1970; Berger, 1971b). Our results highlight that low biomass is a main mechanism for protection 420 

against predation in foraminifers.  

The food web model results showed that reducing grazing pressure could be a potential benefit 

of calcification for planktonic foraminifera if they were to become more abundant. The earliest 

planktonic foraminifera are thin shelled and very small (Gradstein et al., 2017), while modern species 

have more complex morphologies with larger and thicker shells (Schmidt et al., 2004). While the 425 

planktonic ecosystem became more complex over the last 150 Ma, we speculate that their low 

abundance and thick shells may have prevented the evolution of a specific predator in contrast to 

other dominant phytoplankton groups with shell like diatoms (Hamm et al., 2003; Hamm and 

Smetacek 2007). Based on the results of our model and our current knowledge on foraminiferal 

physiology, we propose that the combination of low abundance and a carbonate shell protect 430 

planktonic foraminifera against predation. As planktonic foraminifera are non-mobile, it difficult for 

predators to sense them (Kiørboe, 2008; Van Someren Gréve et al., 2017). Their thick shell can then 

act as an armour when a grazer reaches them to counter-balance their non-motility. Planktonic 

foraminifera are thus high-energy-demand prey: they are hard to find and digest, corroborating earlier 

suggestions that foraminifera do not have specific predators (Hemleben et al., 1989). We suggest that 435 
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planktonic foraminifera non-mobility is an important behavioural trait to be further tested in order to 

improve our understanding of -grazing protection. 

Temperature and food appear to be the main controlling factors of planktonic foraminifera 

ecology and distribution in the ocean (e.g. Ortiz et al.,1995; Bé and Tolderlund 1971) corroborated by 

modelling studies (Žarić et al., 2006; Frail et al., 2008, 2009; Lombard et al., 2009; Roy et al., 2015). 440 

Studies have shown that sea surface temperature (SST) is one of the most important environmental 

factors of planktonic foraminifera’s diversity (Rutherford et al., 1999) and size (Schmidt et al., 

2006;2004a). Field observations (e.g. Bé and Tolderlund 1971), geochemical analysis (Elderfield and 

Ganssen, 2000) and culture experiments (Caron et al., 1987a, b) show that adult species have a specific 

optimum temperature range which control their size development and abundance (Schmidt et al., 445 

2004a; Žarić et al., 2005; Lombard et al., 2009). In the present study, we use our trait-based model to 

study planktonic foraminifera as a group of species to investigate the general patterns of the influence 

of temperature and resource on planktonic foraminifera biomass on both juvenile and adult stages. 

 We find that temperature is the main limiting factor for the prolocular life stage, since there is no 

food limitation. Our model provides insights on the importance of resource availability and 450 

competition during development, resulting in a switch to generalist herbivorous and omnivorous at 

adult stages. Food availability impacts planktonic foraminifera ecology (e.g. Ortiz et al., 1995; Schmidt 

et al., 2004a) and culture experiments highlight that the amount and type of food (phytoplankton and 

or zooplankton) have a strong influence on growth rate (e.g. Spindler et al., 1984; Anderson et al., 

1979), shell size (Bé et al.,1981) and gametogenesis (Caron et al., 1981; Caron and Bé, 1984; Hemleben 455 

et al., 1987). The model results support the hypothesis that during early stages planktonic foraminifera 

have a herbivorous diet. It also indicates that food availability is a key controlling factor of the biomass 

of non-spinose adult stages and defines their type of feeding strategy for different nutrient 

concentration environments. 

We propose that non-spinose adult planktonic foraminifera are a very successful herbivorous 460 

predator, capable to prey on different phytoplankton size groups or that they can be omnivorous and 

use other food sources like bacteria, detritus and zooplankton. Observations suggest an opportunistic 

feeding behaviour for non-spinose species. Diatoms are usually considered to be their primary prey 

(e.g. Spindler et al., 1984; Hemleben et al., 1985) though some can also consume dinoflagellates (e.g. 

Anderson et al., 1979), and cryophytes which are either slowly digested or used as symbionts 465 

(Hemleben et., 1989). Animal tissues have been found in several non-spinose species (Anderson et al., 

1979; Hemleben and Spindler, 1983a). Globorotalia menardii, the most abundant and biggest non- 

spinose species, is suggested to actively control microzooplankton (ciliates) prey (e.g Hemleben et al., 

1977). Culture experiments suggest cannibalism between non-spinose but never between spinose 

species (Hemleben et al, 1989). These observations support our results that non-spinose adult species 470 

can feed on different types and size of phytoplankton or switch to omnivory and use other resources 

when phytoplankton concentrations are rare.  

Our model provides important information on how resource competition among planktonic 

foraminifera and other zooplankters influences the feeding behavior of different life stages and their 

distribution. Moreover, the inability of our model to sustain non-spinose foraminifera in warm 475 

oligotroph regions agrees with observations as planktonic foraminifera are dominated by symbiont 

bearing species in these regions (Bé and Tolderlund, 1971). Our model results can provide new 

perspectives regarding the development of symbiosis as an additional energy source in planktonic 

foraminifera and hence adding symbiosis in the model can be a next important step for improving our 

understanding of planktonic foraminifera ecology.  480 
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5. Conclusions 

This study takes a first step towards including planktonic foraminifera ecology as part of the 

plankton community in a trait-based framework and estimates the energetic cost of calcification and 

the associated benefits. We find that the energetic cost of calcification for both prolocular and adult 

stages varies between 10-30% in the food chain model and 10-50% in the food web model. Considering 485 

the function of the shell, we consider that both low biomass and the carbonate shell are key elements 

for protection of planktonic foraminifera from predation. A reduction in mortality by 15-40% suggest 

that the shell may be more important for pathogens and parasites than against grazing pressure.  

Similar to coccolithophores (Monteiro et al., 2016), the costs and benefits of calcification in 

planktonic foraminifera vary with the environments. In the model, temperature is the dominant factor 490 

for the prolocular stage, whereas both temperature and resources are important for the adult. 

Consequently, the adults are more impacted by resource competition driven by less available food in 

the optimal size of their prey and resulting in the need to feed on a wider range of prey size. This 

finding is particularly relevant in oligotrophic environments where food is scarce. We therefore 

suggest that the adults are generalist herbivorous or omnivorous or use other resources in 495 

oligotrophic environments such as symbiosis.  

To develop the model further, data on energy allocated to growth, calcification and mobility is 

needed to better understand the physiology and ecology of this important paleoclimate proxy carrier 

and producer of marine carbonates. Other traits and trade-offs such as feeding mechanism 

(rhizopodial network, spines), mobility, symbiosis with algae need to be tested in the future and 500 

supported by culture experiments. 
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Table 1. Model parameters (Ward et al., 2014 and references with in).  

*: value for the simple food chain, a: zooplankton and prolocular stage of planktonic foraminifera, b: adult stage 

of planktonic foraminifera for meso- and eutrophic ecosystems, c,d:  adult stage of planktonic foraminifera for 

oligotrophic ecosystem of 20oC and 30oC  respectively. 

 740 

  

Parameter Symbol Value or formula Units 

Deep N concentration 𝑁0 Variable (0-5) 𝑚𝑚𝑜𝑙 𝑁 𝑚−3 
Chemostat mixing rate 𝜅 0.01 𝑑𝑎𝑦−1 

Light limitation 𝜑 0.1 - 

Optimal predator: prey 

length ratio  
𝜃𝑜𝑝𝑡 10.0 - 

Standard deviation of 

𝑙𝑜𝑔10(𝜃) 
𝜎𝑔𝑟𝑎𝑧 0.001*, 0.5a, 0.6b, 0.8c, 1d - 

Total prey half- saturation 𝐾𝑁
𝑝𝑟𝑒𝑦

 0.1501 𝑚𝑚𝑜𝑙 𝑁 𝑚−3 

Assimilation efficiency 𝜆 0.7 - 

Prey refuge parameter 𝛬 -1 𝑚𝑚𝑜𝑙 𝑁 𝑚3 
Phytoplankton mortality 𝑚𝑃 0.02 𝑑𝑎𝑦−1 
Zooplankton mortality 

(food web) 
𝑚𝑧 0.02 𝑑𝑎𝑦−1 

Zooplankton mortality 

(food chain) 
𝑚𝑧 0.05𝑉−0.16 𝑑𝑎𝑦−1 

Maximum growth rate at 

20oC  
𝜇𝑚𝑎𝑥 

𝑃𝐶
𝑚𝑎𝑥 𝑉𝑁

𝑚𝑎𝑥 𝛥𝑄

𝑉𝑁
𝑚𝑎𝑥 𝑄𝑁

𝑚𝑎𝑥 +  𝑃𝑐
𝑚𝑎𝑥𝑄𝑁

𝑚𝑖𝑛 𝛥𝑄
 𝑑𝑎𝑦−1 

Half- saturation for growth 𝐾𝑁  
𝑃𝐶

𝑚𝑎𝑥  𝐾𝑁𝑂3
 𝑄𝑁

𝑚𝑖𝑛 𝛥𝑄

𝑉𝑁𝑂3

𝑚𝑎𝑥 𝑄𝑁
𝑚𝑎𝑥 + 𝑃𝐶

𝑚𝑎𝑥 𝛥𝑄
 𝑚𝑚𝑜𝑙 𝑁 𝑚−3 
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Table 2. Size- dependent parameters (adapted from Ward et al., 2012, see references within). Coefficients a 

and b are used in the power-law function that assigns parameters as a function of plankton cell volume 𝑝 =

𝑎𝑉𝑏. 

 745 

 

 

Parameter Symbol a b Units 

Maximum 

photosynthetic rate 

𝑃𝐶,𝑝𝑟𝑜𝑐ℎ𝑙𝑜𝑟𝑜𝑐𝑜𝑐𝑐𝑢𝑠
𝑚𝑎𝑥  1.0 -0.15 𝑑𝑎𝑦−1 

 𝑃𝐶,𝑠𝑦𝑛𝑒𝑐ℎ𝑜𝑐𝑜𝑐𝑐𝑢𝑠
𝑚𝑎𝑥  1.4 -0.15 𝑑𝑎𝑦−1 

 𝑃𝐶,𝑜𝑡ℎ𝑒𝑟
𝑚𝑎𝑥  2.1 -0.15 𝑑𝑎𝑦−1 

 𝑃𝐶,𝑑𝑖𝑎𝑡𝑜𝑚𝑠
𝑚𝑎𝑥  3.8 -0.15 𝑑𝑎𝑦−1 

Maximum nitrogen 

uptake rate 

𝑉𝑁𝑂3

𝑚𝑎𝑥 0.51 -.027 𝑑𝑎𝑦−1 

Half -saturation for 

uptake 

𝐾𝑁𝑂3
 0.17 0.27 𝑚𝑚𝑜𝑙 𝑁 𝑚−3 

Phytoplankton 

minimum N quota 
𝑄𝑁

𝑚𝑖𝑚 0.07 -0.17 𝑚𝑚𝑜𝑙 𝑁 (𝑚𝑚𝑜𝑙 𝐶)−1 

Phytoplankton 

minimum N quota 

𝑄𝑁
𝑚𝑎𝑥 0.25 -0.13 𝑚𝑚𝑜𝑙 𝑁 (𝑚𝑚𝑜𝑙 𝐶)−1 

Maximum prey capture 

rate 

𝐺𝑚𝑎𝑥 21.9 -0.16 𝑑𝑎𝑦−1 
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Table 3: Summary of studied traits and environmental conditions for the non-spinose planktonic 

foraminifera.  750 

Plankton interactions 

Model version Structure Plankton size groups 

food chain 
One prey per predator 
Zooplankton: passive, herbivorous 
Planktonic foraminifera: passive, herbivorous 

25 phytoplankton 
 

25 zooplankton 

food web 
Multi prey per predator 
Zooplankton: passive, omnivorous 
Planktonic foraminifera: passive, herbivorous 

1 planktonic foraminifera 

Environmental Conditions 

Model version 
Temperature 

(oC) 
10 20 30 

 

food chain & 

food web 

Nutrient region 

O M E 

O M E 

O M E 

Study traits 

Model version Shell size Calcification 

  Trait Trade-off 

food chain& 

food web 

Prolocular  

(20 μm) 

Energy loss 

 

Protection from predation & 

pathogens/parasites (mortality term) 

food chain& 

food web 

Adult  

(160 μm) 

Energy loss 

 

Protection from predation & 

pathogens/parasites (mortality term) 

Main outcomes 

Model version Shell size Calcification temperature & resource 

control  

(results based on the food 

web) 
  

Energy loss (%) Protection 

 predation 
% morality 

reduce 

food chain Prolocular  

(20 μm) 

10-30 
Shell & low 

biomass * 10-40 Temperature  

food web 10-50 low biomass **  

food chain Adult  

(160 μm) 

10-20 
Shell & low 

biomass * 10-40 Resource 

food web 10-45 low biomass **  

 

*The model showed that both shell and low biomass are important for protection from predation. 
**The results showed that low biomass is more important for protection from predation. 
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Figure 1. Schematic presentation of planktonic foraminifera traits and tradeoffs. The examined traits of the 

present study are shown in red 

 760 
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Figure 2.: Schematic description of the two model versions of the size-trait-based model of planktonic 

foraminifera: (a) food chain; and (b) food web (adopted with permission from Ward et al., 2012).  765 
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Figure 3. Illustration of prey palatability trend with phytoplankton prey groups for one example of herbivorous 

predator (160 μm size). Size specialist predator (present in the food chain version) is characterised by σ = 0.0001. 770 
Size generalist predator (present in the food web version) is characterised by σ ≥ 0.5.  
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Figure 4. Results from the food chain model for the calcification cost (reduction of growth) and benefit 775 
(reduction of mortality rate) for the prolocular life stage of planktonic foraminifera. Legend shows ‘total’ for 

total tested simulations, ‘low biomass’ for simulations for which their biomass is within the defined range, and 

‘plausible’ for the simulations we consider to be as most likely. More details for ‘low biomass’ and ‘plausible’ 

simulations in the Methods, section 2.3: adding planktonic foraminifera into the model.  

 780 
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Figure 5. Results from the food chain model for the calcification cost (reduction of growth) and benefit 

(reduction of mortality rate) for the adult life stage of planktonic foraminifera. Legend shows ‘total’ for total 

tested simulations, ‘low biomass’ for simulations for which their biomass is within the defined range, and 785 
‘plausible’ for the simulations we consider to be as most likely. More details for ‘low biomass’ and ‘plausible’ 

simulations in the Methods, section 2.3: adding planktonic foraminifera into the model.  
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 790 
 

Figure 6. Results from the food web model for the calcification cost (reduction of growth) and benefit (reduction 

of mortality rate) for the prolocular life stage of planktonic foraminifera. Legend shows ‘total’ for total tested 

simulations, ‘low biomass’ for simulations for which their biomass is within the defined range, and ‘plausible’ for 

the simulations we consider to be as most likely. More details for ‘low biomass’ and ‘plausible’ simulations in 795 
the Methods, section 2.3: adding planktonic foraminifera into the model.  
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Figure 7. Results from the food web model for the calcification cost (reduction of growth) and benefit (reduction 800 
of mortality rate) for the adult life stage of planktonic foraminifera. Legend shows ‘total’ for total tested 

simulations, ‘low biomass’ for simulations for which their biomass is within the defined range, and ‘plausible’ for 

the simulations we consider to be as most likely. More details for ‘low biomass’ and ‘plausible’ simulations in 

the Methods, section 2.3: adding planktonic foraminifera into the model.  
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Figure 8. Model results of resource competition for the prolocular stage (20 μm) of planktonic foraminifera in 

the food web version. Left axis (red columns): biomass (mmolN m-3) of phytoplankton size groups. Right axis 

(colored shadow): prey palatability of planktonic foraminifera using a σ = 0.5.  810 
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Figure 9. Model results of resource competition for the prolocular stage (20 μm) of planktonic foraminifera in 

the food web version. Left axis (red columns): biomass (mmolN m-3) of phytoplankton size groups. Right axis 815 
(colored shadow): prey palatability of planktonic foraminifera. For oligotrophic enviroments, σ = 0.8 and 1 for 

20oC and 30oCrespectively.  For all meso- and eutrophic ecosystems σ = 0.6. Νο zooplankton larger than 100 μm 

and adult stage of planktonic foraminifera survived in the oligotrophic ecosystem at 10oC for the model set up.  
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Appendix A 

 

Model description 

 

Plankton size groups  825 

 

We selected plankton cell sizess in the model so that the volume of each plankton doubles from 

one class to another (similar to Ward et al., 2014). We set up the model to have six pico- (0.6-2.0 μm), 

ten nano- (2.6- 20 μm) and nine micro- groups (25-160 μm) for the phytoplankton; and six nano- (6- 

20 μm), ten micro- (26- 200 μm) and nine (250- 1600 μm) meso- groups for the zooplankton. The 830 

diagnostic equation for plankton biomass (phytoplankton and zooplankton) is given in 𝑒𝑞(1) and 

shows the generic dependence of biomass with nutrient uptake, zooplankton grazing and mortality. 

The symbols are explained in Tables 1 and 2.  

 

Environmental variables 835 

 

The model accounts for two environmental variables influencing plankton growth: light and 

temperature. Light limitation is represented as a fixed parameter set to 0.1 (equivalent to 90% of light 

limitation; Ward et al., 2014). The influence of temperature on plankton metabolic rates (𝛾𝑇 ) is 

represented by an Arrhenius-like equation (Eq. A1) with  (𝑇𝑟𝑒𝑓) the reference temperature at which 840 

𝛾𝑇 = 1 is 293.15 K (20oC).  

 

𝛾𝑇 = 𝑒𝑅(𝑇−𝑇𝑟𝑒𝑓)            (A1) 

 

We tested three ambient water temperatures (𝑇) : 10, 20 and 30oC characteristic of subpolar, 845 

subtropical and tropical regions respectively. Phytoplankton maximum growth rate (𝜇𝑚𝑎𝑥) has been 

normalised to 20oC (Table 1); and the temperature limitation is represented by 𝛾𝑇 . Temperature has 

a proportionate impact on both phytoplankton and zooplankton growth (eqs S2, S3).  

 

Phytoplankton 850 

 

Phytoplankton growth (𝑃𝑔𝑟𝑜𝑤𝑡ℎ,𝑗) is size-dependent and described via Monod equation assuming 

there is a balance between the nutrient uptake and growth of phytoplankton (Monod, 1950) (Eq. A2).  

 

𝑃𝑔𝑟𝑜𝑤𝑡ℎ,𝑗 =
𝜇𝑚𝑎𝑥∗𝑁

𝑁+𝐾𝑁
∗ 𝜑 ∗ 𝛾𝛵            (A2) 855 

 

Phytoplankton half- saturation (𝐾𝑁) and maximum specific growth rate (𝜇𝑚𝑎𝑥) are also cell-size 

dependent (Table 1). The maximum uptake rate (𝜇𝑚𝑎𝑥) is a function of the maximum photosynthetic 

rate (𝑃𝑚𝑎𝑥), the cell volume (𝑉𝑁
𝑚𝑎𝑥) and the phytoplankton quota (Tables 1 and 2) (Ward et al., 2014). 

The maximum photosynthetic rate (𝑃𝑚𝑎𝑥) and the phytoplankton quota (Tables 1 and 2) (Ward et al., 860 

2014). The maximum photosynthetic rate (𝑃𝑚𝑎𝑥) for each size class of phytoplankton is represented 

by observations (Irwin et al., 2006) of Prochlorococcus for the two first pico- groups (0.6 and 0.8 μm) 

and of Synechococcus for the rest four pico- groups, other eukaryotes for nano- and diatoms for 

microphytoplankton (Table 2).  
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 865 

Zooplankton  

 

We used the zooplankton grazing term as has been described in Ward et al., 2012 with two 

different feeding behaviours of zooplankton. Zooplankton grazing (𝐺𝑁𝑗𝑝𝑟𝑒𝑑,𝑗𝑝𝑟𝑒𝑦
)  is represented using 

the Holling type II function (Eq. A3). We choose Holling type II as it describes a decelerating increase 870 

of predator ingestion rate to prey concentration consistent with what is observed for most 

zooplankton (Kiørboe et al., 2018). Although most of zooplankton have different feeding behaviours 

in different life stages, Holling type II better illustrates predator-prey relationships of many ambush 

zooplankton groups in the lab over a long-term period (Kiørboe et al., 2018). 

 875 

𝐺𝑁𝑗𝑝𝑟𝑒𝑑,𝑗𝑝𝑟𝑒𝑦
= 𝐺𝑚𝑎𝑥 ∗ 𝛾𝑇 ∗

𝜑𝑗𝑝𝑟𝑒𝑑,𝑗𝑝𝑟𝑒𝑦∗𝐵𝑁

𝐹𝑁,𝑗𝑝𝑟𝑒𝑑
+𝐾𝑁

𝑝𝑟𝑒𝑦 ∗ Prey refuge𝑁,𝑗𝑝𝑟𝑒𝑦
∗ 𝛷𝑃∨𝑍      (A3) 

 

Zooplankton growth:  

Zooplankton grazing depends on maximum grazing rate and prey palatability 𝜑𝑗𝑝𝑟𝑒𝑑,𝑗 𝑝𝑟𝑒𝑦 (Eq.3). 

The maximum grazing rate (𝐺𝑚𝑎𝑥)  is size dependent (Table 2). The prey palatability (𝜑𝑗𝑝𝑟𝑒𝑑,𝑗 𝑝𝑟𝑒𝑦)  880 

express the likelihood of a predator to eat the prey. It depends on the log size ratio of each predator 

with each prey (𝜃𝑗𝑝𝑟𝑒𝑑,𝑗𝑝𝑟𝑒𝑦) with the optimum predator:prey length ratio (𝜃𝑜𝑝𝑡). 

The total prey biomass available to each predator (𝐹𝑁,𝑗𝑝𝑟𝑒𝑑
) is calculated as a sum of prey biomass 

weighted by their prey palatability (Eq. A4). 

 885 

𝐹𝑁,𝑗𝑝𝑟𝑒𝑑
= ∑ 𝜑𝑗𝑝𝑟𝑒𝑑,𝑗𝑝𝑟𝑒𝑦

[𝐵𝑁𝑗𝑝𝑟𝑒𝑦
] 𝐽

𝑗𝑝𝑟𝑒𝑦=1         (A4)  

 

 We set the zooplankton half-saturation constant (𝐾𝑁
𝑝𝑟𝑒𝑦

)  to 0.1051 mmol N m-3. This value is a 

conversion of Ward et al. (2012) value (1 mmol C m-3) from carbon to nitrogen based on Redfield ratio. 

While observations show evidence of a variable half-saturation constant for zooplankton (e.g. Hansel 890 

et al., 1997), there is not enough information to tease apart its value for the different species, so we 

assumed a constant K among our zooplankton groups.  

We also included a prey-refuge term in the model using the Mayzaud and Poulet’s function (1978) 

(Eq. A5). The prey-refuge term describes how the grazing rate of the predator changes with prey 

density and never satiates (Gentleman and Neuheimer, 2008). At high prey density the grazing rate is 895 

similar to Holling type I where it becomes linearly related to the prey availability (𝛷𝑃 𝑜𝑟 𝑍 ) (eq (S7)). 

When the prey density is low, the decay constant parameter (𝛬) decreases the grazing pressure such 

as the grazing rate is similar to Holling type III without any saturation (Gentleman and Neuheimer, 

2008). Planktonic foraminifera are the only group with no prey refuge term to account the cost of their 

inability to escape predation (Kiorboe et al., 2008).  900 

 

Prey refuge𝑁 𝑗𝑝𝑟𝑒𝑦 = (1 − 𝑒
−𝛬𝐹𝑁,𝑗𝑝𝑟𝑒𝑑 ∗ 𝛷𝑃𝑜𝑟𝑍)       (A5) 

 

We allowed zooplankton in our model to switch feeding behaviour from filter herbivorous to 

ambush carnivorous (𝛷𝑃 𝑜𝑟 𝑍 )as a function of the prey’s biomass and size ((Gentleman et al., 2003; 905 

Ward et al., 2012) (Eq. A6, A7). 
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𝛷𝑃 =
∑ 𝜑𝑗𝑝𝑟𝑒𝑑,𝑗𝑝ℎ𝑦𝑡𝑜[𝐵𝑁𝑗𝑝ℎ𝑦𝑡𝑜

]
2𝐽

𝑗𝑝ℎ𝑦𝑡𝑜=1

∑ 𝜑𝑗𝑝𝑟𝑒𝑑,𝑗𝑝𝑟𝑒𝑦[𝐵𝑁𝑗𝑝𝑟𝑒𝑦
]

2𝐽
𝑗𝑝𝑟𝑒𝑦=1

           (A6) 

 910 

𝛷𝑍 =
∑ 𝜑𝑗𝑝𝑟𝑒𝑑,𝑗𝑧𝑜𝑜[𝐵𝑁𝑗𝑧𝑜𝑜

]
2𝐽

𝑗𝑧𝑜𝑜=1

∑ 𝜑𝑗𝑝𝑟𝑒𝑑,𝑗𝑝𝑟𝑒𝑦[𝐵𝑁𝑗𝑝𝑟𝑒𝑦
]

2𝐽
𝑗𝑝𝑟𝑒𝑦=1

           (A7) 

 

Finally, we assumed a size-dependent mortality term for zooplankton in the food chain model 

because there is no zooplankton predation on zooplankton (Table 1) (Ward et al., 2014). As in the food 

web model there is predation of zooplankton, we assumed a linear mortality term equal to 915 

phytoplankton (Table 1) (Ward et al., 2012). 
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Appendix B 
 

In the Appendix B, we present model results of the plankton biomass (Figure B1), the 945 

coexistence of plankton size groups in different nutrient environments (Figure B2) and the examples 

of planktonic foraminifera’s shell protection against different predation pressures in the food chain 

and food web (Figure B3). 
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 950 
Figure B1. Plankton total biomass and group diversity for all environments (O: Oligotrophic, M: Mesotrophic and 

E: eutrophic environments). (a): Right axis: biomass of phyto- (green line), zoo (red line) and total plankton (black 

line) (mmolNm-3). Left axis: zooplankton:phytoplankton biomass ratio (purple line). (b): relative (%) biomass of 

phytoplankton and zooplankton size groups. 

 955 
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Figure B2. Relative biomass (%) of each phyto- and zooplankton group in (a) food chain and (b) food web for 960 
oligo-, meso- and eutrophic environments at 20oC.  
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Figure B3: Results from the (a) food chain and (b) food web for different predation on planktonic foraminifera. 

With the coloured frame are the different grazing pressures on planktonic foraminifera for which their relative 965 
biomass is within the defined range (0.007% to 0.09%). 
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