

1 **Response to reviewer comments on manuscript bg-2018-488: “From substrate**
2 **to soil in a pristine environment – pedochemical, micromorphological and**
3 **microbiological properties from soils on James Ross Island, Antarctica”**

4

5 We would like to thank the referees for their helpful and constructive comments, which
6 greatly helped to improve our manuscript. We have prepared a response where we
7 account for all points raised by the referees, as described below. We show the referees’
8 comments in grey text, while our responses are formatted as standard text. Line
9 indications refer to the changes in the revised manuscript.

10

11 **Anonymous Referee #1**

12 First, we would like to thank you for taking the time to review our manuscript. We
13 were glad about the positive and constructive feedback on our work.

14

15 1. The authors should dedicate more discussion to the energy sources of the
16 community

17 While the paper is generally very detailed, in my opinion more focus needs to be spent
18 on the potential energy sources for the community. The cell counts observed are high
19 for soils with such low organic carbon content.

20 Could inorganic energy sources such as atmospheric hydrogen, atmospheric CO, and
21 ammonia potentially be sustaining this community? The authors mention that
22 Actinobacteria were present, but other H₂-scavenging phyla (Acidobacteria,
23 Chloroflexi) and CO-scavenging phyla (Proteobacteria, Chloroflexi) are known.

24 Due to the lack of organic carbon as well as the low amount of potential phototrophic
25 organisms in the soils, we suspect inorganic energy sources to be crucial to sustain
26 the microbial ecosystem. This is supported by our data (Tab. S6) and observations of
27 a variety of microorganisms (e.g. Acidiferrobacteraceae, potential ammonia-oxidizing
28 Thaumarchaeota), which potentially use such energy sources (e.g. L655ff, L666 –
29 669).

30

31 To underline this, we changed the text accordingly:

32 “Organisms with the ability to use oxygenic photosynthesis to fixate CO₂, such as
33 cyanobacteria, were nearly absent in the investigated soils. Low abundances of

34 Cyanobacteria are a common observation for Antarctic soil habitats (Ji et al., 2016).
35 Due to the lack of phototrophic organisms and organic carbon, inorganic compounds
36 and metabolic pathways utilizing those may have a more pronounced role in sustaining
37 the microbial ecosystem at this initial stage of the soils." (L. 685-690)

38 In addition, we added a more detailed discussion regarding the usage of atmospheric
39 compounds as energy sources:

40 "Further, a part of the community could use atmospheric compounds as energy source.
41 Atmospheric H₂, CO, and CO₂ are scavenged and used as an energy source by
42 microorganisms, especially organisms associated with the phyla Actinobacteria,
43 Chloroflexi, Acidobacteria, Planctomycetes, Verrucomicrobia, and Proteobacteria
44 (Greening et al., 2015; Ji et al., 2017). Operational taxonomic units related to the
45 phylum Actinobacteria and the associated orders Acidimicrobiales and
46 Solirubrobacterales were highly abundant in the investigated soils." (L. 705-711)

47

48 It is also mentioned that potential ammonia-oxidising Thaumarchaeota are present in
49 the community. Based on the physicochemical analysis, how much ammonia is
50 available to sustain them?

51 Potential ammonia-oxidising Thaumarchaeota have been present throughout the
52 investigated profiles, and even have shown relative high abundances of up to 12.9%.
53 However, ammonia, nitrite and nitrate could not be quantified by ion chromatography
54 in any sample indicating negligible amounts, as written in L386f. It is well known that
55 energy sources are scarce in ice-free areas of Antarctica (Souza et al., 2014; Cary et
56 al., 2010), and might be metabolized quite quickly when they become available (e. g.
57 from degradation of microbial necromass), which would explain the very low amounts
58 as revealed by ion chromatography.

59

60 With this in mind, we modified the part discussing the presence of AOA in the
61 discussion as follows:

62 "However, ion chromatography showed that amounts of ammonia as well as nitrite and
63 nitrate were negligible in both soils. Ammonia originating from necromass and products
64 in the course of nitrification could be metabolized directly by the present community,
65 so no accumulation of the different intermediates containing nitrogen takes place." (L.
66 699-702)

67

68 It is also not clear, based on the results or figures, how abundant Cyanobacteria and
69 algae were in the community. Can the authors dedicate a few sentences in the results
70 to clarifying this? It is stated that phototrophs were 'nearly absent', but it would be more
71 informative to state their relatively abundance (even if tiny). It is stated that chloroplast
72 reads were removed, so presumably some chloroplasts were detected.

73 We agree with the reviewer, that both numbers are informative for the reader and
74 therefore added detailed information on the filtered reads which reveals the number of
75 OTUs associated with both Cyanobacteria and chloroplasts. We also included a table
76 with this information in the supplementary data (Tab. S4). However, we assume that
77 active phototrophic organisms only occur in the uppermost layers of the investigated
78 soils and reads in the deeper layers originate from translocated and phototrophically
79 inactive organisms.

80

81 The text was changed as follows:

82 "In total, 19,732,536 reads were obtained after merging the forward and reverse reads,
83 demultiplexing, filtering, and deletion of chimeric and singleton sequences.
84 Additionally, reads of chloroplast-associated OTUs (36,573), mitochondria-associated
85 OTUs (1,117) as well as rare OTUs (OTUs with a relative abundance of <0.1% in every
86 sample; 4,287,382) were filtered, resulting in 15,407,464 reads (Table S4)." (L. 468-
87 472)

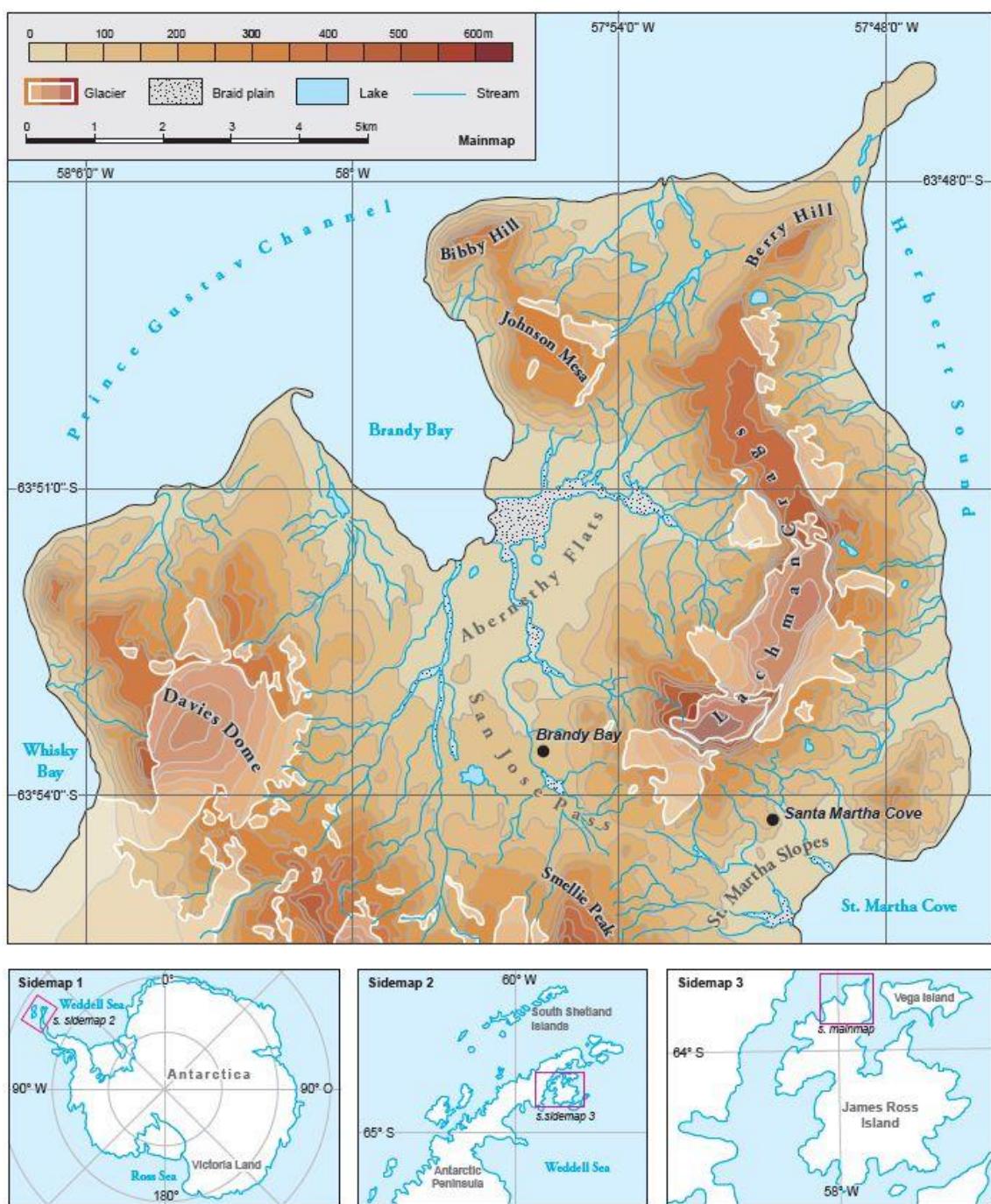
88

89 In addition, we included observations on potential photosynthetic organisms in the
90 results:

91 "Regarding potential phototrophic organisms in the investigated soils, the amount of
92 chloroplast-related reads was relatively low (<0.2%) in each sample, except for SMC
93 >50 cm (0.03% - 1.30%) and BB 0 – 5 cm (0.87% - 1.01%). Cyanobacteria-related
94 OTUs were rare and only showed low relative abundances in SMC 5 – 10cm (0.06%),
95 SMC 10 – 20cm (0.62%), SMC >50cm (0.04%)." (L. 485-489)

96

97


98

99

100

101

102 2. The authors should modify and consolidate the figures and possibly tables
103 The figures are not always as informative as the text. It is not entirely clear, based on
104 the figure or legend, what the satellite image of Figure 1 and how this relates to the
105 inlet. Could this figure be modified?
106 Thank you very much for this remark. As the satellite image seems not to be able to
107 reflect the characteristics of the working area, we have decided to replace the satellite
108 image with a map of the area.
109
110 We changed figure 1 as follows:

111

112 For Figure 2 to 5, could these photographs be amalgamated into a single multi-panel
113 figure given they show similar things?

114 Many thanks. Combining the images into one multi-panel figure makes the chapter
115 more compact and helps the reader to get the important information about the study
116 sites.

117

118 We changed figure 2 as follows:

a

b

c

d

119

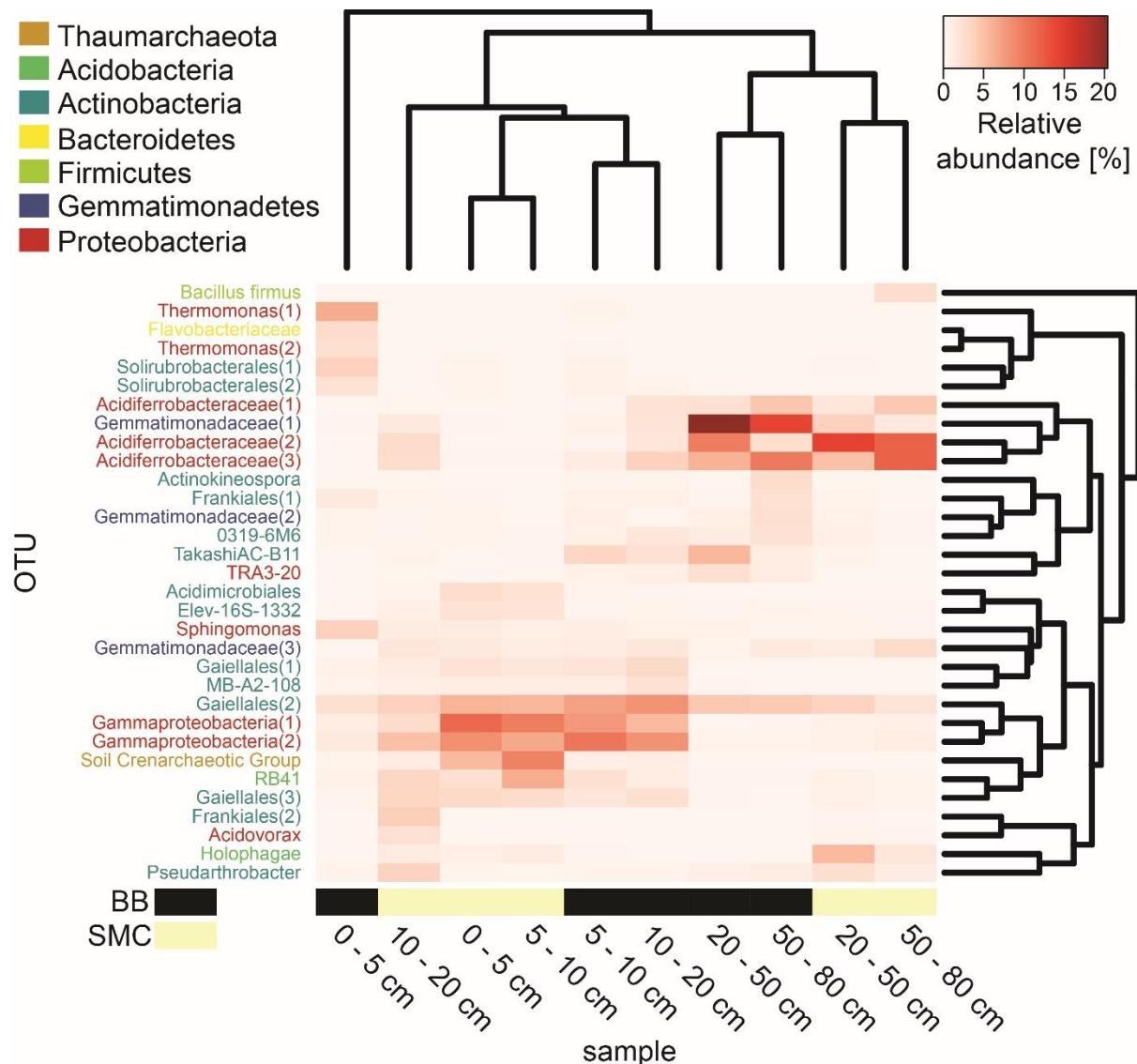
120

121

122

123

124


125

126 For Figure 8, while the heatmap is a useful summary, the odd colouring makes it hard
127 to see trends. Could the authors modify this to increase the contrast and make more
128 abundant OTUs darker than lighter. OTUs with 0% relative abundance should be white
129 rather than navy blue.

130 The heatmap was modified as suggested. Lighter colors represent lower relative
131 abundances, whereas darker colors represent higher relative abundances. We hope
132 that this change improves the overall clarity of the presented data.

133

134 We changed the heatmap as follows:

135

136

137

138

139

140

141 In addition, some of the tables may be more suited for supplementary material.
142 Thank you very much for the valuable assessment. Since the results in Tables 1, 2,
143 and 4 are discussed directly in the paper, we consider these tables as basic information
144 for our discussion. Table 3, on the other hand, is the basis for the results presented in
145 Table 2. For this reason, we agree with the proposal and move table 3 to the
146 supplementary material. Here it becomes the new Table S1.

147

148 L91-93: I disagree with this assessment. Most studied topsoils in Antarctic ice-free
149 regions harbour diverse microbial communities with 16S rRNA gene counts exceeding
150 107.

151 We agree that topsoils in Antarctic ice-free regions harbor diverse microbial
152 communities, which are adapted to the present conditions, as we mentioned in e.g. L
153 92f or L115-121. Our statement in L90ff was targeted at groups such as higher plants,
154 and vertebrates.

155

156 To emphasize this, we rephrased the paragraph as follows:

157 “Due to environmental stressors such as very low temperatures, low water availability,
158 frequent freeze-thaw cycles and limited organic nutrient contents, soils from
159 continental Antarctica show limiting conditions for higher organisms (Cary et al., 2010).
160 However, diverse microbial communities thrive in a variety of Antarctic habitats, such
161 as permafrost soils (Cowan et al., 2014).” (L. 95-99)

162

163 L82: Please change ‘proofing’ to ‘proving’

164 We changed it as follows:

165 “Therefore, soil scientific investigations became a relevant topic in Antarctic research,
166 proving that there are actually soils in Antarctica (Jensen, 1916) and identifying soil
167 forming processes (Ugolini, 1964).” (L. 87-89)

168

169 L99: Clarify what is meant by ‘ornithogenic’ soil given it is a specialised term

170 Ornithogenic soils are well known in Antarctica. The World Reference Base for Soil
171 Resources (WRB, 2014) defines ornithogenic material (from Greek ornithos, bird, and
172 genesis, origin) as material with strong influence of bird excrement which often has a
173 high content of gravel transported by birds.

174 The surface of these soils consists often of an indurated guano crust and scattered
175 pebbles are common, since the penguins use them for their nests. The guano acts as
176 additional source of nutrients particularly N and P.

177

178 We added the following information:

179 "Local conditions determine nutrient availability in Antarctic soils (Prietzl et al., 2019).
180 Ca, Mg, K and P contents are generally high in igneous and volcanic rocks, whereas
181 P and N contents are highest in ornithogenic soils. Ornithogenic soils are well known
182 in Antarctica. The World Reference Base for Soil Resources (WRB, 2014) defines
183 ornithogenic material (from Greek ornithos, bird, and genesis, origin) as material, which
184 is characterized by penguin deposits mainly consisting of guano and often containing
185 a high content of gravel transported by birds (cf. Ugolini, 1972)". (L. 103-109).

186

187 L139-143: As this sentence is quite complicated, I recommend breaking it up into two:
188 "These soils are not influenced by vascular plants, sulfides, and penguin rookeries.
189 Our study aims to identify major soil and microbiological properties by combining
190 pedochemical and micromorphological methods with microbial community studies
191 based on high throughput sequence analyses."

192 Thanks for providing this helpful comment. We changed this part as follows:

193 "This setting enables an investigation of interdependencies particularly between
194 prokaryotic life and soil properties, since the selected soils are not influenced by
195 vascular plants, sulfides, and penguin rookeries.

196 With this, the main goal of our study is to identify major soil and microbiological
197 properties in an extreme environment by combining pedochemical and
198 micromorphological methods with microbial community studies based on high
199 throughput sequence analyses. Thus, we will gain a better general understanding of
200 (i) the main soil forming processes and (ii) the drivers of soil microbial community
201 structure in the eastern APR. This addresses also the question, if the variance of
202 pedogenic and microbiological properties are larger between depth increments within
203 one profile (e.g. with different distances to the permafrost table) or between different
204 soil profiles, i.e. due to different local environmental conditions." (L. 157-167)

205

206

207

208 L500: Consider modifying 'laboratory' to 'study site'.
209 We agree with that comment. The paragraph reads now as follows:
210 "James Ross Island offers an exceptional opportunity to improve our understanding of
211 the interrelations between soil formation and microbiological properties in the absence
212 of plants." (L. 524-526)

213

214 L659: Please change 'fixate' to 'fix'
215 We are glad to comply with this remark. We changed this sentence as follows:
216 "Microorganisms can be seen as the primary pioneers of nutrient-poor environments
217 such as Antarctic soils, and were shown to have the genetic potential to fix C and N
218 (Cowan et al., 2011; Niederberger et al., 2015), thus increasing C and N contents of
219 these oligotrophic soils." (L. 693-696)

220

221

222 **Additional Literature:**

223
224 **Greening, C., Constant, P., Hards, K., Morales, S. E., Oakeshott, J. G., Russell, R.**
225 **J., Taylor, M. C., Berney, M., Conrad, R., and Cook, G. M.:** Atmospheric
226 Hydrogen Scavenging: From Enzymes to Ecosystems, *Appl. Environ.*
227 *Microbiol.*, 81, 1190-1199, 2015.

228 **Ji, M., van Dorst, J., Bissett, A., Brown, M. V., Palmer, A. S., Snape, I., Siciliano,**
229 **S. D., and Ferrari, B. C.:** Microbial Diversity at Mitchell Peninsula, Eastern
230 Antarctica: A Potential Biodiversity "Hotspot", *Polar Biology*, 39, 237-249, 2016.

231 **Prietzl, J., Prater, I., Colocco Hurtarte, L. C., Hrbáček, F., Klysubun, W., and**
232 **Mueller, C. W.:** Site Conditions and Vegetation Determine Phosphorus and
233 Sulfur Speciation in Soils of Antarctica, *Geochimica et Cosmochimica Acta*, 246,
234 339-362, <https://doi.org/10.1016/j.gca.2018.12.001>, 2019.

235 **Ugolini, F. C.:** Ornithogenic Soils of Antarctica, in: *Antarctic Terrestrial Biology*, edited
236 by: Llano, G. A., 1972.

237