Author’s response

Again, we thank all reviewers for their careful reviews. We acknowledge the issues
brought up and, in the following, we reply to all of them point-by-point.

Reviewers comment
Our reply

Anonymous Referee #1

The work of Amann and Hartmann reviews the use of carbon negative technologies,
particularly Enhanced Weathering (EW). The main view point expressed by the authors
is the necessity for a “co-deployment” of several technologies, because no single
approach will be able to reach the 1.5C target set by the IPCC. The manuscript is timely,
and | support the overall goal.

However, the manuscript is largely qualitative rather than quantitative, and seems to
focus on soil and EW, whereas the title, and partially the abstract, implied a much
broader review. In my opinion this work can be published in BG, but some amendments
are necessary.

This point is well taken. The synergies mainly apply to soil-based NETs, maybe we can reflect
this in the title. However, “soil-based NET” is not a term established as such in the community.
About the qualitativeness: This is a good point. There is some data out there on the processes
mentioned, however the framework of research is very often so far off the focus of our
manuscript, that it would introduce a level of detail that is misguiding for the purpose of this
manuscript. We explicitly chose the format of a “perspectives piece” to identify the main
important processes that need to be considered in future research on NETs and their combined
effects. This should provide a guideline for projects to come. Yet, we try to be at least a little
more specific in the discussion of the processes.

Specific comments

- Figure 1 is not sufficiently clear. | would place the benefactor on top of the
beneficiaries. Also | was not sure how to read the figure. For example, in the first block
EW enhances the nutrient pool and maintain afforestation? | was not sure about the
meaning of benefactor and beneficiary here;

We changed the entire figure on different levels. Benefactor/beneficiary were replaced by
something more straightforward. The “connecting verbs” were amended with arrow boxes to
indicate the reading direction. The CO. sequestration effect symbology was changed to avoid
misunderstanding it as CO; release.

-P.2, line 11. 1 would appreciate if the authors would insert also a comment on the social
and environmental effect of mining;

A short remark was added, to address the potential after-use of mines. The social effect was
not address due to the fact that it touches a whole different topic.

- P.3, line 13 introduces the content of enhanced weathering but not all readers are
familiar with what this is;

A brief explanation was added.



- P.3, line 26 mention for the first time dunite and basalt. Can the author specify why
they choose these specific examples? References are reported but the reader is left
wondering what’s special about these rocks;

We extended the text to explain the background and we added some broader categories of
rock geochemistry (see comment below) to be more general in our arguments.

- Figures 2-3 are interesting, but | am wondering about the overall availability of these
resources. As an example, | am not sure about the relevance of komatiite. | understand
this is an explicative diagram, but the context here is that of global-deployable
technologies. | feel the text should explain better the abundance and distribution of
some key resources, or at least provide relevant references/tabula data;

We removed the very specific selection of rocks, which was chosen as available in the
database. We generalized the data now, by distinguishing classes via SiO> content of volcanic
and plutonic ultrabasic/basic/intermediate/acid rocks. This classification enables us to give a
broader and more general overview of what to look for in a rock. Additionally, we added the
rock types dunite and basalt as commonly discussed types for reference. A map with the global
distribution of the distinguished classes is now provided in the supplement (S5). As an
example, basic volcanic rocks (this class contains basaltic rocks) covers about 3.5% of the
land surface, according to the latest global lithologic map (Hartmann & Moosdorf 2012).

- P.5., line 20 would benefit of a reference. Current models do not consider nutrient
availability?;

A reference was added, showing the importance of P cycling, which is commonly not included.

- The paragraph on soil hydrology does not specify the size of the grains that would
decrease soil conductivity. | understand this would depend on the soil but can at least
a range be specified? It would be important to specify size ranges for these rock flours;

While it isn’t possible to be extremely specific, we added a sentence on how clayey, silty, and
sandy grainsizes are expected to change hydrology.

- The paragraph on soil biota is extremely qualitative. At least one could point out which
minerals are more susceptible to bioweathering, or which structural elements are more
needed by soil bacteria.

We added a sentence on how weatherability of certain minerals depends on the type of
bioinoculant.

It would also be important to point out the interaction between type of crops and
bacteria. In fact | was surprised not to see a paragraph dedicated on how different crops
may work synergistically with different type of rocks.

As this is a manuscript with a somewhat broad perspective, we deliberately did not go into
details of synergies between crops and bacteria as the focus on NETs would be lost. However,
we included the relationship between bacteria and weathering and crops and weathering.

The entire manuscript seem to focus on afforestation, but it would be interesting to
point out how agriculture may also benefit from EW;

We do not fully understand this part of the comment. The manuscript approaches the synergies
specifically with a focus on products released from weathering, while afforestation is merely
addressed as a benefiting NET. How agriculture benefits from EW is specifically addressed in



the sections on nutrient release and retention. If we missed the connection to soil biota here,
we kindly ask to be more specific.

- A general comment on nitrogen would benefit the manuscript (e.g., Nitrogen in rock:
Occurrences and biogeochemical implications 2002 JoAnn and M. Holloway).

Rock N does play a minor role in agricultural systems. A remark on weathering derived N was
added.



Technical comments

- Figure 1 caption can be improved. Land-based should be spelled with a dash and
capital letters should be double-checked;

Checked and corrected.
- | may have missed it but | do not think EW was ever defined;
We took care of this added defined EW once in the beginning.

- | would switch the phrasing of the title to: “Synergies from co-deployment of negative
emission technologies: Ideas and perspectives”;

We agree and like it better that way, however, the journals rules seem to demand it the other
way round: https://www.biogeosciences.net/about/manuscript_types.html: “Manuscripts of
this type should be short (a few pages only). The manuscript title must start with "ldeas and

perspectives:".“ We would be happy to change it, if allowed by the editor/journal.

- Latinism such as e.g. and i.e. should be italicized;
Agreed & changed.

-  would change the heading of the last paragraph from “synthesis” to “summary” or
“conclusion”;

Agreed & renamed to conclusion.



Anonymous Referee #2

The authors present an overview of how different negative emission technologies might
interact and thereby trigger additional carbon uptake. The work is timely and important
as such synergies have not been addressed so far in great detail.

However, the authors focus on the beneficial effects of enhanced weathering and
biochar on afforestation and BECCS while the title suggests a somewhat broader
overview.

In this respect, you and your co-reviewer raise the same concern. We acknowledge this and
will adapt the text, and maybe even the title to be more specific about the NETs discussed.
Please look into our reply to reviewer #1 for an extended answer.

Additionally, some statements would benefit from describing synergies in a more
quantitative way.

Also, here the concern is also raised by reviewer #1. We explicitly chose the format of a
“perspectives piece” to identify the main important processes that need to be considered in
future research on NETs and their combined effects. This should provide a guideline for
projects to come. Yet, we try to be at least a little more specific in the discussion of the
processes.’

Specific comments

- Title: As reviewer #1 | would also move “ideas and perspectives” to the end of the title.
Maybe “Synergies from co-deployment of land-based negative emission technologies:
Ideas and perspectives” to clarify this paper is about soil/land-based strategies.

Agreed, but difficult as described above in the answer to Reviewer #1.

- P2, line 1: “of” is repeated three times. Suggestion: “assessing the effects of
combined. . .”.

Agreed and changed.

- P2, line8: “e.g.” implies that there are more nutrients so you can remove “and others”.
Agreed and removed.

- | agree with reviewer #1 that it’s not clear at all how to read Figure 1. Intuitively |
would expect benefactors on top of beneficiaries and additional CO2 sequestration. |
was also confused by the two verbs connecting benefactors and beneficiaries. Lastly,
the additional CO2 sequestration is unclear. | assume the downward arrows mean that
e.g. EW increases CO2 sequestration via BECCS or AFF (flux from the atmosphere to
the land) but one could also interpret it as a decline.

As you both had similar issues with this figure, we modified it to have it more logically structured
and less room for interpretation (also see answer to reviewer 1).

- P3, line 3: envisions.

v

- P3, line 21: But only if these new forests are harvested.



Added a clause to be more specific.

- P3, line 25: Higher than other rock types?

Yes, this part was amended to complete the comparison.
- P3, line 29: types

v

- Figure 2: | think it would be interesting to show the CO2 capture potential of dunite in
this figure as it seems to be a highly relevant rock. After all you show Komatiite which
also has very low K and P contents.

As mentioned in the caption, dunite contains so little K and P that it wouldn’t be easy to
visualize. We added it now along with basalt and all the rock classes differentiated by SiO2
content. For reasons of visibility, the axes had to be spread apart.

- Figure 3: So the extraction range was derived from min/max nutrient contents but
what yields were assumed for Miscanthus (range is 40-4400 t/km2 according to Table
S$5.-1)?

The minima of nutrient content and yield were multiplied to get the total minimum nutrient
removal. Accordingly, the maximum was calculated. An explanation was added to the caption.
Also a description was added next to the areas, to directly indicate their meaning.

In addition, Figure 3 seems to not be referred to in the text.

Good point. It is now.

- P4, line 3: I think this isolated sentence would fit better in the second paragraph of this
section.

Yes. We moved it there.
- P5, line 14: nutrients limit tree growth?

Acknowledged. We reformulated the sentences to be precise. Geogenic nutrient supply can
be the limiting component in an elevated CO; system.

- P6, line 17: Confusing, split this sentence into two sentences.
Agreed and rewritten.

- P6, line 24: Reference missing in the reference list.

Fixed.

- P7, line3: “where considered to be of concern” sounds awkward, | think it can be
removed.

Agreed & removed.

- P7, line 10: Reference seems to be at the wrong position.



Agreed & corrected.

- Table 1: The reader is left wondering what values are typical. Can you also provide
numbers for some other rock types for comparison?

We generalized the data now, by distinguishing classes via SiO» content of volcanic and
plutonic ultrabasic/basic/intermediate/acid rocks. This classification enables us to give a
broader and more general overview of what to look for in a rock. Additionally, we add the rock
types dunite and basalt as commonly discussed types for reference. Due to the increased
amount of data, we converted the table into a xy-plot, using median and 10/90 percentile data.
The numerical data is provided in the supplement (S7).

In the following, we provide a detailed overview over all changes that have been done
compared to the original document. It is document comparison generated by Microsoft Word.
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Ideas and perspectives: Synergies from co-deployment of negative
emission technologies

Thorben Amann' and Jens Hartmann!
'Institute for Geology, Center for Earth System Research and Sustainability, Universitit Hamburg, Germany

Correspondence to: Thorben Amann (science@thorbenamann.de)

Abstract. Numerous publications propose the deployment of negative emission technologies, which in-
tend to actively remove COz from the atmosphere with the goal to reach the 1.5° target as discussed by
the IPCC. The increasing amount of scientific studies on the individual potential of different envisaged
technologies and methods indicates, that no single method has enough capacities to mitigate the issue by
itself. It is thus expected that technology portfolios are deployed. As some of them utilize the same envi-
ronmental compartment, co-deployment effects are expected. Those effects are particularly important to
evaluate with respect to additional CO2 uptake. Considering soils as one of the main affected compart-
ments, we see a plethora of processes which can positively benefit from each other, out nega-
tive side effects or increasing overall CO: sequestration potentials. To derive more reliable estimates of
negative emission potentials and to evaluate common effects on global carbon pools, it is now necessary
to intensively study interrelated effects of negative emission technology deployment while minimizing
side effects.

Introduction

As global mean temperatures are projected to increase further, strategies to mitigate climate change in
time by decreasing CO2 emissions seem to slowly take effect (Jackson et al., 2015). Some CO; emission
pathways include negative carbon emission strategies (Fuss et al., 2014; Fuss et al., 2016; Rogel;j et al.,
2018), that essentially capture CO» from the atmosphere in different ways, storing them long term
as CO; molecules, or as organic and inorganic compounds (Caldeira et al., 2013). All discussed options
and technologies have yet to reach the large-scale deployment stage (Minx et al., 2018; Nemet et al.,
2018). Most technologies are immature, lacking deep research on the global potential, technical feasibil-
ity, economics of deployment, and especially an assessment of the expected side effects (National
Research Council, 2015; Fuss et al., 2018).

The proposed negative emission technologies (NET) encompass highly technical engineering solutions
as well as methods that rely on natural processes, like growth of biomass (e.g,., bioenergy with carbon
capture and storage, and afforestation), soil carbon increase, biochar, and chemical weathering
(e.g and ocean liming). As these methods are aimed to be integrated in
global biogeochemical and will redistribute carbon reservoirs (Keller et al., 2018), their
interaction is inevitable if NETs are deployed at the largest scale. As such, it must be assessed how the
co-deployment of NETs will affect the individual and overall efficiency, since until now, publications
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focus on single NETs, disregarding any effects on concurrent deployment of additional tech-
nologies.

Findings from NET specific literature suggest that effects of combined rollout, is ad-
visable and future research should include CO: sequestration enhancing side effects that could increase
the overall potential of NETs. However, the principal interaction between proposed methods needs to be
studied in detail beforehand, to understand effects on the carbon pools (Fig. 1).
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Fig. 1: Overview of effects from combining land;based negative emission technologies ( production coupled with carbon
capture and storage (BECCS), (AFF), Enhanced Weathering (EW), and

Technology symbols courtesy of W. Lamb (MCC Berlin).

is unavoidable that the intended CO; sequestration effect by weathering is naturally accompanied by
the release of elements with consequences for the environment (Kantola et al., 2017) and consequently
the involved carbon pools. The release of elements that are important plant nutrients (e.g., potassium,
phosphorus, magnesium) can be beneficial for additional CO2 sequestration via organic carbon formation.
In addition, the soil hydrology can be improved, and cation exchange capacity increased under optimal
grain size distribution and mineral selection. In contrast, effects of potentially harmful trace element re-
lease (by choosing less suitable material) might be needed to be alleviated. However, an integrated frame-

work to achieve optimization of interrelated effects has yet to be developed,
specifically for a global scale management of carbon pools.
To tackle the issue of climate change negative carbon emission strategies on a global and compre-

hensive scale, it seems advisable to consider all proposed terrestrial biomass-based NETs, like e.g.,
BECSS, afforestation, and biochar to explore synergistic effects (Fig. 1). A scenario can be envisioned,
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where rock powder and biochar are applied to agricultural land, which is used for bioenergy plant pro-
duction (for further use in BECSS technology). Rock material would release geogenic nutrients and bio-
char could enhance the release of nutrients (Atkinson et al., 2010), and the overall crop productivity
(Jeffery et al., 2011),
In combination with envisioned and deployed afforestation efforts, which often take place in tropical
areas with depleted soils (Nilsson and Schopfhauser, 1995; Grainger, 1988; Zomer et al., 2008),
could be an added, if not essential, benefit, The low capacity of these soils
to retain highly soluble industrial fertilisers suggests the use of other forms of slow release fertiliser, like
rock dust as a complement (Leonardos et al., 1987; Manning, 2015), or new emerging rock-based ferti-
lizers (Ciceri and Allanore, 2019), which can, as a side effect, increase the retention of industrial fertiliz-
ers, that may still be needed in addition. The ultimate need for an intense management and design of a
suitable soil to supply suitable conditions for tree growth can be deduced from a published extreme sce-
nario, which large scale afforestation of deserts (Ornstein et al., 2009).
It seems advisable to combine proposed NET methods to achieve an optimal carbon pool management
for negative emissions and ensure food security over centuries at the global scale. To achieve this, inter-
disciplinary efforts are necessary (Fig. 1) and some of the key issues are reviewed here to point out the
research

Nutrient pool

Increasing atmospheric CO> and an increasing world population will lead to challenges in
the nutritional supply for large parts of Earth’s population (Smith and Myers, 2018; Myers et al., 2014).
In combination with partly declining resources

from rock products, are of high interest (Ciceri and Allanore,
2019). This idea has been discussed earlier (Van Straaten, 2006; van Straaten, 2002) and was recently
revived in the context of (Beerling et al., 2018 ). However, this issue extends
further, if biomass-based NETs are considered for large scale deployment.

Many options of carbon dioxide removal rely on the production of biomass (i.e,. biochar, afforestation,
carbon capture and storage from bio energy (BECCS), bio fuels). These CDR-methods demand, if driven
to an optimum, more geogenic nutrients as typically available to plants the soil-rock-systems in the
long-term, specifically in humid, tropical areas, where soils are deeply weathered and show naturally low
nutrient contents (Hamdan and Bumham, 1996) that could not supply an additional intense biomass
growth. A study on commercially exploited forests in the U.S. points out that intensive harvest,can with-
draw more nutrients from the soils than can naturally be resupplied (de Oliveira Garcia et al., 2018)
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The intensive withdrawal of nutrients should be included in a framework for biogeochemical cycle man-
agement under NET deployment. The withdrawal of each K and P from cropland amounts globally to

more than 8 Mt a™' (Suppl. Mat. Fig. S2-2). For many ecosystems the natural resupply and potentially .-

Chat verschoben (Einfiigung) [1]

limiting effects under absence of deliberate fertilisation practices, is unknown or merely based on meta-
analyses or model studies.

Due to desired global carbon sequestration goal: [ s for ) ] S
be driven to the maximum, which implies an increased demand of nutrients. Models show that N and P
limit the global carbon sequestration potential for forests (Goll et al., 2012; Kracher, 2017). Nutrient
release by EW can therefore play a relevant role in supporting the high demand. Particular rock classes

as in models for afforestation). growth rates will likely

contain, on average, higher K, P (Fig. 3).or micronutrients like Zn or Se, than others. To ensure a balanced

supply of the needed elements, it is therefore necessary to consider not one specific rock type during EW *

application.

Considering a subtropical weathering scenario in combination with Miscanthus growth for BECCS, acid
igneous rocks show a high potential to (partly) resupply extracted potassium, while (ultra-)basic rocks
can (partly) resupply phosphorus (Fig. 3). Many earlier studies on EW focussed on dunite to maximize
inorganic CO» sequestration, with the side effect of adding high levels of Ni and Cr to the system (e.g.
Schuiling and Krijgsman, 2006; Hangx and Spiers, 2009), Later. basalt was added to the discussion

(Beerling et al., 2018 Strefler et al., 2018; Hartmann et al., 2013). It is characterised by an elevated
geogenic nutrient supply compared to ultrabasic rocks like dunite (Fig. 3) but still features a sufficiently
high inorganic CO» sequestration potential (Fig. 2, and Strefler et al., 2018). Future application scenarios
will likely use a mixture of locally available material to optimize both organic and inorganic carbon stor-
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If additional soil properties, like cation exchange capacity, water content/hydrology, and pH, are opti-
mised, this reduction of inorganic carbon sequestration may be compensated by elevated biomass uptake
and organic carbon storage.
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The introduction of additional nutrients to the soil system will not necessarily lead to an additional CO>

uptake and increased CO: sequestration potentials of biomass-based NETs, if enough nutrients are sup-

plied by traditional fertilisation. However, forest areas may benefit from slow release long term available
nutrients as they may be less easy to be re-supplied on a regular basis by agrotechnical machinery. Also,
industrial fertiliser may be unaffordable in low income regions, thus rock products could replace parts of
the fertiliser, (Ciceri and Allanore, 2019). A wider adoption of rock product utilisation may also lead to

the development of new and optimised application techniques.

Nutrient retention

Nutrients released from industrial fertilizers or from natural rock products can be taken up by the plant,
washed away, or retained by the properties of the soil. The latter is called retention capacity and is im-
portant to store nutrients in a plant available form. It has been shown that the weathering of basaltic
material increases the cation exchange capacity, leading to an increased retention of nutrients (Anda et
al., 2013, 2015). This is especially important for areas in which nutrients from industrial fertiliser material
are quickly washed out, e.g,. from the deeply weathered soils (e.g,. oxisols) in tropical regions (Leonardos

etal., 1987; Ciceri et al., 2017). In such settings, it will be favourable to establish improved soil conditions
with optimised nutrient retention.
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Another application case is the fertilisation of forests, specifically on areas which are re-forested after
agricultural use. With increasing atmospheric CO; concentrations, an increase in biomass productivity on
non-agricultural areas is expected through the CO, fertilisation effect (e.g. Ciais et al., 1995; Korner et
al., 2007; Norby and Zak, 2011), especially with regard to afforestation efforts and general tree growth.
This effect has yet to be clearly shown (Leuzinger et al., 2011), and is likely limited by soil fertility (Oren
et al., 2001; Bader et al., 2013). It can already be observed that by rock weathering,

P, K, Mg, and Ca, can be limiting tree growth under elevated atmospheric CO2
(Jonard et al., 2015). Woodland soils might be amended with selected minerals or rocks to supply suffi-
cient nutrients to keep up growth under elevated atmospheric pCO> conditions and organically bind car-
bon, a scenario that should be explored further for its potential to enlarge affected carbon pools. At some
point, depending on the environmental setting, biomass growth will be limited by nutrient supply and as
such, model outputs for CO2 sequestration potentials of afforestation are likely to be overestimated, if
geogenic nutrient cycles are not included in the assessment,

The COs sequestration effect of afforestation is even larger if soil organic carbon changes are taken into
consideration: Depending on the underlying lithology, the organic carbon pools can be (Liet
al., 2017), a process that may be optimised by the spreading of selected rock products.
Overall, specific element deficits need to be mapped,

human nutrition (Zhang et al., 2017; Hengl et al., 2017; White and
Zasoski, 1999). It is necessary to be able to predict, which application amounts of elements causes a
certain response in the biomass pool above and below ground. Such data are still scarce and inconclusive
(Manning, 2010) but are needed if should be used as a method to help manage carbon
pools.

Increased nutrient retention may increase the overall CO» sequestration potential of biomass based NETs
through the long-term availability of nutrients. However, the order of magnitude of the effect remains to
be shown.

Soil hydrology
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trol hydraulic conductivity (Masiello et al., 2015;Barnes et al., 2014),
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grainsize (Strefler et al., 2018).
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be used to improve
the water holding capacities of soils (Omondi et al., 2016; Liu et al., 2017), and also increase the plant
available water in some cases (Masiello et al., 2015). This may render dryer regions or areas with unfa-
vourable soil physical properties (Basso et al., 2013) usable for bio energy plants and/or afforestation.
There are also indications that improvement of soil hydrology by biochar may increase yield potentials
(Akhtar et al., 2014; Xu et al., 2015; Al-Wabel et al., 2018)
It is important to point out that all potential changes of soil physical properties due to biochar application
strongly depend on its type, more specifically the feedstock and production temperature (Gul et al., 2015).
The combination of rock product and biochar application however was not addressed s
at all

Soil pH

Soil acidification on heavily used cropland is a problem (Helyar and Porter, 1989), which
may lead to a decrease in crop yields. The main reason is the higher mobility of most exchangeable metals
at low pH, which decreases logarithmically with increasing pH (Kabata-Pendias, 2010; Robinson et al.,
1996; Tack et al., 1996; Harter, 1983) very low levels of
exchangeable harmful metals, with the exception of , depending on the oxidation state (Dixit and
Hering, 2003). The release of cations from rock flour leads to a soil pH increase. Studies have
demonstrated the effectiveness of basalt powder application in raising the soil pH up to 8 and higher (e.g.
Gillman et al., 2001; Nunes et al., 2014). The effect is similar to agricultural liming, which is a common
practice to counteract soil acidification on cropland (West and McBride, 2005).

or
due to the potential release of CO2 by excess fertiliser application (Sembhi et al., 2000; Perrin et al., 2008).
The potential of carbonates in strategies remains to be studied, while silicate application is in the
focus of recent research (Taylor et al., 2015). It could be a potential economic benefit to replace agricul-
tural lime by silicate rock flour, bearing in mind that silicate dissolution rates are in general several orders
of magnitude lower, with strong variability between different minerals (Lasaga, 1995; Brantley et al.,
2008). Thus, the efficacy is decreased due to the slower release rate of cations, but other properties like
nutrient retention or soil hydrology might be improved (cf. previous chapter). It remains to be investigated
how (fast) the of pH stabilising silicate rock powder application will affect the soils, If rela-
tively immobile potentially harmful metals accumulate at elevated pH values over the application period,
an excessive and harmful release of toxic substances might occur in case of a future drop of pH due to
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changes in pH controlling minerals, land use or general environmental conditions. Once the deployment
of material rich in trace elements of concern is started, it is obligatory to maintain a stabilised pH envi-
ronment, strengthening the need for material with low trace element concentrations, (requirements
may differ depending on ecosystem type).

Assuming that pH stabilisation and beneficial changes in soil hydrology (cf. previous section) are achiev-
able by biochar and a significant additional CO; uptake can be expected, based on the effect that soils
are made usable for biomass-based NETs, that couldn’t support sustainable biomass growth before.

Soil biota

Chemical weathering of rocks can be significantly mediated by macro- and microbiota (Schwartzman and
Volk, 1989; Uroz et al., 2009; Hoffland et al., 2004; Blouin et al., 2013), although the order of magnitude
is a matter of debate (Drever, 1994). This is specifically the case for mycorrhizal fungi and microbes,
which create physico-chemical conditions that (Taylor et al., 2015)

Microbial populations in soils re-
spond to the addition of biochar (Warnock et al., 2007) by providing a refuge for bacteria and fungi
(Pietikainen et al., 2000; Saito, 1990), increasing nutrient availability, creating favourable pH conditions
and other processes .

Earthworms have been observed to thrive in biochar amended soils (Topoliantz and Ponge, 2005). In-
creased abundance of earthworms will likely increase bioturbation effects (Carcaillet, 2001; Major et al.,
2010), leading to a better distribution of biochar and rock flour in deeper layers of the amended soils,
increasing reactive surfaces of mineral grains. Bioturbation might also be a key process to achieve high
CO; sequestration rates by weathering,

the downward transport of added rock products into
deeper soil layers (Taylor et al., 2015).

Trace metals

Soils are an important sink in the environmental cycling of trace metals (Kabata-Pendias, 1993). Besides
naturally occurring concentrations, depending on the , the major source of trace met-
als to soils is agricultural practice, leading to an enrichment due to the application of manure, sewage
sludge, fertilisers, and pesticides, which all contain metals to a certain extent (Gonnelli and Renella,
2013). Field studies using sewage sludge as fertiliser have shown a marked uptake by the crops and in-
creased mobilisation of trace metals in the runoff water (Alloway, 2013). Adding to the anthropogenic
input, the introduction of additional rock products with levels of trace metals could lead
to a critical exceedance of environmental thresholds if improper rock material is used
This is, however, relating to the solubility of minerals within the used rock type and the
redox and pH conditions. soil incubation experiment olivine
showed only a few occurrences of
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elevated Cr levels but no Ni increase in the aquatic solution compared to a blank treatment, leading to the
conclusion that the soil solid phase will be successively enriched in those elements (Renforth et al., 2015).
The availability of heavy metals to biota remains an issue of ongoing discussion (Nagajyoti et al., 2010).
The main elements of concern in source rocks with the highest sequestration potential (ultramafic rocks)
are Ni and Cr. Especially the early discussed dunite application for must trigger the discussion about
its high Cr and Ni contents and is therefore ruled out for large scale application on cropland.
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If an application with rocks of high trace metal concentrations of concern is considered, it is necessary to
stabilise the soil pH even after cessation of such actions in order to maintain the fixation of toxic elements,
because of the strong pH control on metal mobility. A study of long-term sewage sludge application has
shown that the pH had to be stabilised by liming in order to prevent phyto-toxicity of Cu and Zn (McBride
et al., 2004). Additionally, the metal availability to plants has been shown to be influenced by the soil
texture, with marked differences for different elements (Qian et al., 1996). This underlines the necessity
to control or specifically design the grain size distribution of the soil to control water content, pH and
oxygen content. To further ameliorate the issue, biochar, which has been shown to immobilise heavy
metals in soils, depending on feedstock and production conditions (Ahmad et al., 2014; Beesley et al.,
2011) could be jointly applied with rock powder. This would mean that potential limitations of fertiliser
or rock spreading due to thresholds put in place for environmental protection could be overcome by a
sensible management of biochar utilisation. Applying biochar products does not remove elements of

10,
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concern, but the problem of heavy metal accumulation could be dampened bioremediation through heavy
metal accumulating plants (Rajkumar et al., 2012). This in turn could be a potential new source of raw
material for industrial use (Schuiling, 2013), though it is likely not applicable on a global scale, since this
would compete against food and energy plant production, which is already an issue (Tilman et al., 2009).
The of trace metal effects does not directly affect CO2 sequestration rates but could overall
increase potential deployment areas for

Looking forward it is likely that a portfolio of options will be established to optimize the sequestration
effect and minimize negative impacts. The combination of previously separately studied NETs to increase
the sequestered carbon pool should consider the management of biogeochemical cycles and optimize the
combined application of Enhanced Weathering and biochar in context of biomass:based methods like
BECCS and afforestation to maximize carbon capture as well as food production. It is therefore essential
to address combined effects of NET co-deployment in future research projects.
As all presented interactions take place in the soil, future research should put a focus on creating an
optimized soil product for an optimal long-term sustainable carbon management. We propose that re-
search around biomass;based NET interactions becomes the science of artificial soil products, which are
most likely created on depleted and degraded soils especially in the sub(tropics). It may consist of the
locally available “base soil” mixed with charcoal products to enhance hydraulic properties and nutrient
retention, as well as rock powder, which raises the soil pH, provides nutrients and sequesters CO; at the
same time. This engineered and managed soil could increase carbon pools and crop production, while
contributing to tackle the issue of climate change. It remains to be studied where suitable material is
available at the regional scale, The parameterisation of element release rates permitting
a sustainable management are still subject to large uncertainties and the effects of massive rock product
spreading will change the soil structure to an extent that remains to be explored.
The introduction of non-authigenic material into the environment, even if of bio- or geogenic origin, will
increase the entropy of the system, making it difficult and expensive (energy and economic-wise) to
quickly revert back into the “undisturbed” state, once large-scale deployment started. Thus, the
deployment of NETs at the global scale in an order of magnitude that would measurably impact
atmospheric COz levels must be seriously weighed. However, the high probability of NET adoption in the
near future makes it imperative to create efficient cooperation networks across all involved disciplines in
order to conceive the necessary knowledge on actual CO2 sequestration potentials and century scale global
carbon pool changes.
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