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Abstract. Numerous publications propose the deployment of negative emission technologies, which intend to actively remove 
CO2 from the atmosphere with the goal to reach the 1.5° target as discussed by the IPCC. The increasing amount of scientific 
studies on the individual potential of different envisaged technologies and methods indicates, that no single method has enough 
capacities to mitigate the issue by itself. It is thus expected that technology portfolios are deployed. As some of them utilize 
the same environmental compartment, co-deployment effects are expected. Those effects are particularly important to evaluate 10 

with respect to additional CO2 uptake. Considering soils as one of the main affected compartments, we see a plethora of 
processes which can positively benefit from each other, canceling out negative side effects or increasing overall CO2 
sequestration potentials. To derive more reliable estimates of negative emission potentials and to evaluate common effects on 
global carbon pools, it is now necessary to intensively study interrelated effects of negative emission technology deployment 

CO2 sequestration potentials while minimizing side effects. 15 

Introduction 

As global mean temperatures are projected to increase further, strategies to mitigate climate change in time by decreasing CO2 
emissions seem to slowly take effect (Jackson et al., 2015). Some CO2 emission pathways include negative carbon emission 
strategies (Fuss et al., 2014;Fuss et al., 2016;Rogelj et al., 2018), that essentially capture CO2 from the atmosphere in different 

ways, storing them on a long term as CO2 molecules, or as organic and inorganic compounds (Caldeira et al., 2013). All 20 
discussed options and technologies have yet to reach the large-scale deployment stage (Minx et al., 2018;Nemet et al., 2018). 
Most technologies are immature, lacking deep research on the global potential, technical feasibility, economics of deployment, 
and especially an assessment of the expected side effects (National Research Council, 2015;Fuss et al., 2018). 
The proposed negative emission technologies (NET) encompass highly technical engineering solutions as well as methods that 

rely on natural processes, like growth of biomass (e.g. bioenergy with carbon capture and storage, and afforestation), soil 25 
carbon increase, biochar, and chemical weathering (e.g. enhanced weathering and ocean liming). As these methods are aimed 
to be integrated in global biogeochemical cycles and will redistribute carbon within reservoirs (Keller et al., 2018), their 
interaction is inevitable if NETs are deployed at the largest scale. As such, it must be assessed how the co-deployment of NETs 
will affect the individual and overall efficiency, since until now, publications focus solely on single NETs, disregarding any 

effects on concurrent deployment of additional technologies. 30 
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Findings from NET specific literature suggest that an assessment of effects of combined rollout of NETs is advisable and 
future research should include CO2 sequestration enhancing side effects that could increase the overall potential of NETs. 

However, the principal interaction between proposed methods needs to be studied in detail beforehand, to understand effects 
on the carbon pools (Fig. 1). 

 
Fig. 1: Overview of effects from combining land based negative emission technologies (Bioenergy production coupled with carbon 
capture and storage (BECCS), Afforestation (AFF), Enhanced Weathering (EW), and Biochar). Technology symbols courtesy of 
W. Lamb (MCC Berlin). 

Taking the example of Enhanced Weathering, the application of finely ground rock on agricultural land, it is unavoidable that 5 

the intended CO2 sequestration effect by weathering is naturally accompanied by the release of elements with consequences 
for the environment (Kantola et al., 2017) and consequently the involved carbon pools. The release of elements that are 
important plant nutrients (e.g., potassium, phosphorus, magnesium, and others) can be beneficial for additional CO2 
sequestration via organic carbon formation. In addition, the soil hydrology can be improved, and cation exchange capacity 

increased under optimal grain size distribution and mineral selection. In contrast, effects of potentially harmful trace element 10 
release (by choosing less suitable material) might be needed to be alleviated. However, an integrated framework to achieve 
optimization of interrelated effects has yet to be developed, specifically for a global scale management of carbon pools. 
To tackle the issue of climate change by negative carbon emission strategies on a global and comprehensive scale, it seems 
advisable to consider all proposed terrestrial biomass based NETs, like e.g., BECSS, afforestation, and biochar to explore 

synergistic effects (Fig. 1). A scenario can be envisioned, where rock powder and biochar are applied to agricultural land, 15 
which is used for bioenergy plant production (for further use in BECSS technology). Rock material would release geogenic 
nutrients and biochar could enhance the release of nutrients (Atkinson et al., 2010), and the overall crop productivity (Jeffery 
et al., 2011). In combination with envisioned and deployed afforestation efforts, which often take place in tropical areas with 
depleted soils (Nilsson and Schopfhauser, 1995;Grainger, 1988;Zomer et al., 2008), it could be an added, if not essential, 

benefit: The low capacity of these soils to retain highly soluble industrial fertilisers suggests the use of other forms of slow 20 
release fertiliser, like rock dust as a complement (Leonardos et al., 1987;Manning, 2015), or new emerging rock based 
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fertilizers (Ciceri and Allanore, 2019), which can, as a side effect, increase the retention of industrial fertilizers, that may still 
be needed in addition. The ultimate need for an intense management and design of a suitable soil to supply suitable conditions 

for tree growth can be deduced from a published extreme scenario, which envision large scale afforestation of deserts (Ornstein 
et al., 2009). 
It seems advisable to combine proposed NET methods to achieve an optimal carbon pool management for negative emissions 5 
and ensure food security over centuries at the global scale. To achieve this, interdisciplinary efforts are necessary (Fig. 1) and 
some of the key issues are reviewed here to point out the research direction. 

Nutrient pool 

Increasing atmospheric CO2 and an increasing world population will lead to challenges in the nutritional supply of large parts 
of Earth’s population (Smith and Myers, 2018;Myers et al., 2014). In combination with partly declining resources (Manning, 10 
2015 and Suppl. S1), alternative nutrient supplies, i.e. from rock products, are of high interest (Ciceri and Allanore, 2019). 
This idea has been discussed earlier (Van Straaten, 2006;van Straaten, 2002) and was recently revived in the context of 

Enhanced Weathering side effects (Beerling et al., 2018). However, this issue extends further, if biomass based NETs are 
considered for large scale deployment.  
Many options of carbon dioxide removal rely on the production of biomass (i.e. biochar, afforestation, carbon capture and 15 
storage from bio energy (BECCS), bio fuels). These CDR-methods demand, if driven to an optimum, more geogenic nutrients 
as typically available to plants in the soil-rock-systems in the long-term, specifically in humid, tropical areas, where soils are 

deeply weathered and show naturally low nutrient contents (Hamdan and Bumham, 1996) that could not supply an additional 
intense biomass growth. A study of commercially exploited forests in the U.S. points out that intensive harvest scenarios can 
withdraw more nutrients from the soils than can naturally be resupplied (de Oliveira Garcia et al., 2018), which would also 20 
apply to extensive afforestation scenarios. 

Due to the desired global carbon sequestration goals, growth rates will likely be driven to the maximum, which implies an 
increased demand of nutrients. Models already show that N and P limit the carbon sequestration potential (Goll et al., 
2012;Kracher, 2017). Nutrient release by Enhanced Weathering can therefore play a relevant role in supporting the high 
demand. Particular rock types contain, on average, higher K, P (Fig. 2), or micronutrients like Zn or Se. To ensure a balanced 25 
supply of the needed elements, it is therefore necessary to consider not one specific rock type (like before dunite (e.g. Schuiling 

and Krijgsman, 2006;Hangx and Spiers, 2009) or basalt (Strefler et al., 2018)) but a mixture of locally available material. 
Optimising the nutrient composition may come at the price of inorganic carbon sequestration potential reduction as some rock 
type with high nutrient content have low sequestration potentials (Fig. 2).  
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Fig. 2: The averaged K and P 
contents of selected volcanic 
rocks in combination with 
their potential to capture 
CO2. All shown rocks are 
selected for a net positive 
sequestration effect based on 
the optimistic emissions 
scenario from Moosdorf et al. 
(2014). The discussed dunite 
contains so little P and K that 
it cannot be shown in the 
figure (< 0.01 wt% each). 
Statistical data for shown 
rocks are from the GEOROC 
database (Sarbas, 2008), 
details in Supplement S2. 
Documentation on CO2 
capture potential calculation 
in Supplement S3. 

 

 

Fig. 3: Weathering release 
rates (circles; bars as 
variability indicator) of P and 
K from selected rocks 
(assuming their full 
dissolution under a natural 
subtropical weathering 
scenario) and extraction of 
those nutrients by harvesting 
Miscanthus energy grass 
(blue/red areas indicate 
range between min. and max. 
nutrient content of different 
Miscanthus species). Details 
on rock dissolution and 
nutrient release rates in 
Suppl. S4 and on plant 
nutrient removal and 
additional to Miscanthus 
data on major crops in Suppl. 
S5.  

 
Considering extreme scenarios of biomass plantations (e.g. in Boysen et al., 2016), the intense extraction of nutrients needs to 
be accounted for (globally more than 8 Mt P and K per year; c.f. nutrient removal from cropland Suppl. S4).  
The introduction of additional nutrients to the soil system will not necessarily lead to an additional CO2 uptake and increased 5 
CO2 sequestration potentials of biomass based NETs, if enough nutrients are supplied by fertilisation. However, forest areas 
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may benefit from slow release long term available nutrients as they may be less easy to be re-supplied on a regular basis by 
agrotechnical machinery. Also, industrial fertiliser may be unaffordable in low income regions, thus rock products could 

replace parts of the fertiliser.  

Nutrient retention 

There are further potential effects that contribute to the overall amelioration effect of rock powder. It has been shown that the 5 
cation content of basaltic material increases the cation exchange capacity, leading to an increased retention of nutrients (Anda 
et al., 2013, 2015). This is especially important for regions where nutrients from industrial fertiliser material are quickly washed 

out, e.g. in the deeply weathered soils (e.g. oxisols) in tropical regions (Leonardos et al., 1987;Ciceri et al., 2017). In such 
settings, it will be favourable to establish improved soil conditions with optimised nutrient retention. 
Another application case is the fertilisation of forests, specifically on areas which are re-forested after agricultural use. With 10 
increasing atmospheric CO2 concentrations, an increase in biomass productivity on non-agricultural areas is expected through 
the CO2 fertilisation effect (e.g. Ciais et al., 1995;Körner et al., 2007;Norby and Zak, 2011), especially with regard to 

afforestation efforts and general tree growth. This effect is yet to be clearly shown (Leuzinger et al., 2011), and likely to be 
limited by soil fertility (Oren et al., 2001;Bader et al., 2013). It can already be observed that nutrients provided by rock 
weathering, like P, K, Mg, and Ca, can be limiting tree growth under elevated atmospheric CO2 (Jonard et al., 2015). Woodland 15 
soils might be amended with selected minerals or rocks to supply sufficient nutrients to keep up growth under elevated 
atmospheric pCO2 conditions and organically bind carbon, a scenario that should be explored further for its potential to enlarge 

affected carbon pools. At some point, depending on the environmental setting, biomass growth will be limited by nutrient 
supply and as such, model outputs for CO2 sequestration potentials of afforestation are likely to be overestimated, if geogenic 
nutrient cycles are not included in the assessment.  20 
The CO2 sequestration effect of afforestation is even larger if soil organic carbon changes are taken into consideration: 

Depending on the underlying lithology, the organic carbon pools can be influenced (Li et al., 2017), a process that may be 
optimised by the spreading of selected rock products.  
Overall, specific element deficits need to be mapped, an issue that is increasingly addressed with a focus on human nutrition 
(Zhang et al., 2017;Hengl et al., 2017;White and Zasoski, 1999). It is necessary to be able to predict, which application amounts 25 
of elements causes a certain response in the biomass pool above and below ground. Such data are still scarce and inconclusive 

(Manning, 2010) but are needed if Enhanced Weathering should be used as a method to help manage carbon pools. 
Increased nutrient retention may increase the overall CO2 sequestration potential of biomass based NETs through the long term 
availability of nutrients. However, the order of magnitude of the effect remains to be shown. 
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Soil hydrology 

Spreading large amounts of rock products with too small grain sizes on land potentially leads to a decrease in soil hydraulic 
conductivity, which may lead to decreased weathering speeds due to local pore water oversaturation or enhanced surface 

runoff. However, there are some indications that biochar can be used to control hydraulic conductivity (Masiello et al., 
2015;Barnes et al., 2014), which could enable the use of smaller grain sizes for Enhanced Weathering, enhancing its potential, 5 
which strongly depends on the grainsize (Strefler et al., 2018).  
Biochar could also be used to improve the water holding capacities of soils (Omondi et al., 2016;Liu et al., 2017), and also 

increase the plant available water in some cases (Masiello et al., 2015). This may render dryer regions or areas with 
unfavourable soil physical properties (Basso et al., 2013) usable for bio energy plants and/or afforestation. There are also 
indications that improvement of soil hydrology by biochar may increase yield potentials (Akhtar et al., 2014;Xu et al., 2015;Al-10 
Wabel et al., 2018) 
It is important to point out that all potential changes of soil physical properties due to biochar application strongly depend on 

its type, more specifically the feedstock and production temperature (Gul et al., 2015). The combination of rock product and 
biochar application however was not addressed yet, at all. 

Soil pH 15 

Soil acidification on heavily used cropland is a problem (Helyar and Porter, 1989), which may lead to a decrease in crop yields. 
The main reason is the higher mobility of most exchangeable metals at low pH, which decreases logarithmically with increasing 

pH (Kabata-Pendias, 2010;Robinson et al., 1996;Tack et al., 1996;Harter, 1983), establishing very low levels of exchangeable 
harmful metals at pH of 6 and higher, with the exception of Arsenic, depending on the oxidation state (Dixit and Hering, 2003). 
The release of cations from rock flour leads to a soil pH increase. Studies have demonstrated the effectiveness of basalt powder 20 
application in raising the soil pH up to 8 and higher (e.g. Gillman et al., 2001;Nunes et al., 2014). The effect is similar to 
agricultural liming, which is a common practice to counteract soil acidification on cropland (West and McBride, 2005). Despite 

the fast dissolution rate of carbonate minerals, they are in general until today not considered for Enhanced Weathering 
scenarios, because of possible carbonate precipitation and subsequent CO2 release in the ocean (Hartmann et al., 2013) or due 
to the potential release of CO2 by excess fertiliser application (Semhi et al., 2000;Perrin et al., 2008). The potential of 25 
carbonates in Enhanced Weathering strategies remains to be studied, while silicate application is in the focus of recent research 

(Taylor et al., 2015). It could be a potential economic benefit to replace agricultural lime by silicate rock flour, bearing in mind 
that silicate dissolution rates are in general several orders of magnitude lower, with strong variability between different 
minerals (Lasaga, 1995;Brantley et al., 2008). Thus, the efficacy is decreased due to the slower release rate of cations, but 
other properties like nutrient retention or soil hydrology might be improved (cf. previous chapter). It remains to be investigated 30 
how (fast) the cessation of pH stabilising silicate rock powder application will affect the soils to provide management 

suggestions. If relatively immobile potentially harmful metals accumulate at elevated pH values over the application period, 
an excessive and harmful release of toxic substances might occur in case of a future drop of pH due to changes in pH controlling 
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minerals, land use or general environmental conditions. Once the deployment of material rich in trace elements of concern is 
started, it is obligatory to maintain a stabilised pH environment, strengthening the need for material with low trace element 

concentrations, where considered to be of concern (requirements may differ depending on ecosystem type). 
Assuming that pH stabilisation and beneficial changes in soil hydrology (cf. previous section) are achievable by biochar and 
Enhanced Weathering a significant additional CO2 uptake can be expected, based on the effect that soils are made usable for 5 
biomass based NETs, that couldn’t support sustainable biomass growth before. 

Soil biota 

Chemical weathering of rocks can be significantly mediated by macro- and microbiota (Schwartzman and Volk, 1989;Uroz et 
al., 2009;Hoffland et al., 2004;Blouin et al., 2013), although the order of magnitude is a matter of debate (Drever, 1994). This 
is specifically the case for mycorrhizal fungi and microbes, which create physico-chemical conditions that (Taylor et al., 2015) 10 
accelerate the dissolution of minerals. Microbial populations in soils respond to the addition of biochar (Warnock et al., 2007) 
by providing a refuge for bacteria and fungi (Pietikainen et al., 2000;Saito, 1990), increasing nutrient availability, creating 

favourable pH conditions and other processes (Lehmann et al., 2011).  
Earthworms have been observed to thrive in biochar amended soils (Topoliantz and Ponge, 2005). Increased abundance of 
earthworms will likely increase bioturbation effects (Carcaillet, 2001;Major et al., 2010), leading to a better distribution of 15 
biochar and rock flour in deeper layers of the amended soils, increasing reactive surfaces of mineral grains. Bioturbation might 
also be a key process to achieve high CO2 sequestration rates by weathering, through the downward transport of added rock 

products into deeper soil layers (Taylor et al., 2015). 

Trace metals 

Soils are an important sink in the environmental cycling of trace metals (Kabata-Pendias, 1993). Besides naturally occurring 20 
concentrations, depending on the base rock, the major source of trace metals to soils is agricultural practice, leading to an 
enrichment due to the application of manure, sewage sludge, fertilisers, and pesticides, which all contain metals to a certain 

extent (Gonnelli and Renella, 2013). Field studies using sewage sludge as fertiliser have shown a marked uptake by the crops 
and increased mobilisation of trace metals in the runoff water (Alloway, 2013). Adding to the anthropogenic input, the 
introduction of additional rock products with increased levels of trace metals could lead to a critical exceedance of 25 
environmental thresholds if improper rock material is used. This is however relating to the solubility of minerals within the 

used rock type and the redox and pH conditions. A soil incubation Enhanced Weathering experiment with olivine application 
showed only a few occurrences of elevated Cr levels but no Ni increase in the aquatic solution compared to a blank treatment, 
leading to the conclusion that the soil solid phase will be successively enriched in those elements (Renforth et al., 2015). 
The availability of heavy metals to biota remains an issue of ongoing discussion (Nagajyoti et al., 2010). The main elements 30 
of concern in source rocks with the highest sequestration potential (ultramafic rocks) are Ni and Cr. Especially the early 
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discussed dunite application for Enhanced Weathering must trigger the discussion about its high Cr and Ni contents (Tab. 1) 
and is therefore ruled out for large scale application on cropland. 

Tab. 1 Statistical data for Ni and Cr in dunites from the GEOROC 
database (Sarbas, 2008).  

Element  mean median stdev min / max 10 / 90%ile n 

 [ppm]   

Ni 2980 2130 5695 320 / 50669 932 / 3337 204 

Cr  3554 2609 6803 49 / 80354 1394 / 5039 140 

If an application with rocks of high trace metal concentrations of concern is considered, it is necessary to stabilise the soil pH 

even after cessation of such actions in order to maintain the fixation of toxic elements, because of the strong pH control on 
metal mobility. A study of long-term sewage sludge application has shown that the pH had to be stabilised by liming in order 5 
to prevent phyto-toxicity of Cu and Zn (McBride et al., 2004). Additionally, the metal availability to plants has been shown to 
be influenced by the soil texture, with marked differences for different elements (Qian et al., 1996). This underlines the 
necessity to control or specifically design the grain size distribution of the soil to control water content, pH and oxygen content. 

To further ameliorate the issue, biochar, which has been shown to immobilise heavy metals in soils, depending on feedstock 
and production conditions (Ahmad et al., 2014;Beesley et al., 2011) could be jointly applied with rock powder. This would 10 
mean that potential limitations of fertiliser or rock spreading due to thresholds put in place for environmental protection could 
be overcome by a sensible management of biochar utilisation. Applying biochar products does not remove elements of concern, 

but the problem of heavy metal accumulation could be dampened bioremediation through heavy metal accumulating plants 
(Rajkumar et al., 2012). This in turn could be a potential new source of raw material for industrial use (Schuiling, 2013), 
though it is likely not applicable on a global scale, since this would compete against food and energy plant production, which 15 
is already an issue (Tilman et al., 2009). 

The remediation of trace metal effects does not directly affect CO2 sequestration rates but could overall increase potential 

deployment areas for Enhanced Weathering. 

Synthesis 

Looking forward it is likely that a portfolio of options will be established to optimize the sequestration effect and minimize 20 
negative impacts. The combination of previously separately studied NETs to increase the sequestered carbon pool should 
consider the management of biogeochemical cycles and optimize the combined application of Enhanced Weathering and 

biochar in context of biomass based methods like BECCS and afforestation to maximize carbon capture as well as food 
production. It is therefore essential to address combined effects of NET co-deployment in future research projects. 
As all presented interactions take place in the soil, future research should put a focus on creating an optimized soil product for 25 
an optimal long-term sustainable carbon management. We propose that research around biomass based NET interactions 
becomes the science of artificial soil products, which are most likely created on depleted and degraded soils especially in the 
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sub(tropics). It may consist of the locally available “base soil” mixed with charcoal products to enhance hydraulic properties 
and nutrient retention, as well as rock powder, which raises the soil pH, provides nutrients and sequesters CO2 at the same 

time. This engineered and managed soil could increase carbon pools and crop production, while contributing to tackle the issue 
of climate change. It remains to be studied where suitable material is available at the regional scale. The parameterisation of 
element release rates permitting a sustainable management are still subject to large uncertainties and the effects of massive 5 
rock product spreading will change the soil structure to an extent that remains to be explored.  
The introduction of non-authigenic material into the environment, even if of bio- or geogenic origin, will increase the entropy 

of the system, making it difficult and expensive (energy and economic-wise) to quickly revert back into the undisturbed state, 
once large-scale deployment started. Thus, the deployment of NETs at the global scale in an order of magnitude that would 
measurably impact atmospheric CO2 levels must be seriously weighed. However, the high probability of NET adoption in the 10 
near future makes it imperative to create efficient cooperation networks across all involved disciplines in order to conceive the 
necessary knowledge on actual CO2 sequestration potentials and century scale global carbon pool changes. 
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