Supplementary Information

Site	Years Since Tracer Application	Foliage	Wood	Bark	Fine Roots	Coarse Roots	Ground Plants	Organic Soil	Mineral Soil	Total Plant*	Total Soil	Def CLM Plant	Adj CLM Plant	Def CLM Soil	Adj CLM Soil
Arnot ^{a,b}	1	1.9	0.6	1.0	2.5	4.9	NA	13.7	45.3	10.9	59.0	50	65	26	33
Aniot	6	1.6	1.5	1.2	1.8	2.1	NA	5.9	56.5	8.2	62.4	16	24	63	73
	1	1.2	0.6	0.5	4.6	NA	NA	81.9	11.1	6.8	92.9	47	63	25	32
Harvard BDT ^{c,d,e}	8	3.8	2.1	1.7	4.2	NA	NA	73.9	15.7	11.8	89.6	14	23	56	71
	17	available upon request to site PI										14	20	48	72
U IDDT	1	5.9	2.9	1.6	13.7	NA	NA	44.6	27.4	24.0	72.0	31	29	26	31
Harvard BDT Fertilized ^{c,d,e}	8	3.1	3.1	2.2	3.1	NA	NA	55.4	16.0	11.5	71.4	21	20	34	35
	17				ava	ilable upon 1	equest to site	e PI				14	15	33	34
	1	1.0	0.1	0.2	2.3	NA	NA	60.0	8.8	3.6	68.7	38	49	51	49
Harvard NET ^{c,d,e}	8	2.9	1.3	0.6	3.4	NA	NA	56.2	31.9	8.1	88.1	24	24	58	72
	17		available upon request to site PI										16	60	78
	1	9.6	0.4	0.9	8.7	NA	NA	33.9	15.2	19.7	49.1	29	36	26	40
Harvard NET Fertilized ^{c,d,e}	8	6.1	1.1	0.9	5.1	NA	NA	34.9	24.3	13.2	59.2	20	26	31	43
	17		available upon request to site PI									16	20	32	45
	1	2.3	3.0	with wood	6.6	0.4	19.0	25.6	19.6	12.3	45.2	39	44	52	50
$Alptal^{f,g,h}$	3	0.9	1.0	with wood	3.3	1.8	20.5	22.5	7.3	6.9	29.8	30	34	58	59
	9	3.7	2.6	2.3	3.1	1.1	3.8	42.6	13.3	12.8	55.9	29	19	9	70
					with organic										
Alptal Fertilized ^{f.g,h}	2	4.6	3.0	0.8	soil	NA	5.0	55.0	21.0	8.4	76.0	36	45	54	51
rennized.en	7	6.9	3.9	0.8	2.6	1.4	1.5	29.3	15.4	15.6	44.7	30	37	55	55
	14	5.0	4.4	2.0	2.7	1.2	0.9	39.6	18.9	15.3	58.5	24	31	53	59
Klosterhedei	1	9.9	3.3	0.4	6.9	7.0	20.1	41.5	10.4	27.4	51.8	32	47	52	50

Table S1: Published ¹⁵N recovery measurements and model simulation recoveries for each site and experiment, including for both default (def CLM) and adjusted (adj CLM) configurations of CLM5.

	17	12.0	4.6	1.2	3.4	2.3	0.2	61.6	3.8	23.5	65.4	11	19	45	70
Klosterhede	1	16.8	6.3	0.7	11.2	10.7	3.2	23.9	22.5	45.8	46.4	38	63	52	34
Fertilized ⁱ	17	12.7	3.8	1.1	2.7	4.4	0.0	36.7	11.5	24.7	48.2	24	25	47	46
Bear Brook Fertilized ^j	3	2.4	9.1	NA	NA	NA	NA	NA	NA	11.4	23.3	40	35	27	37
Gårdsjön Fertilized ^k	2	NA	NA	NA	NA	NA	NA	NA	NA	28.0	82.0	39	47	43	37
Aber Low Fertilization ¹	3	NA	NA	NA	NA	NA	NA	17.0	15.0	32.0	32.0	49	56	29	33
Aber High Fertilization ¹	3	NA	NA	NA	NA	NA	NA	11.0	15.0	20.0	26.0	32	35	21	25

Fertilization¹ 3 NA NA NA A *plant recovery from field recoveries excludes ground vegetation.

NA: not available

^aGoodale (2017)

^bpersonal communication with C. Goodale

^cNadelhoffer et al. (1999b)

^dNadelhoffer et al. (2004)

^epersonal communication with K. Nadelhoffer

^fKrause et al. (2012)

^gpersonal communication with P. Schleppi

^hProvidoli et al. (2005) and paper with data from fertilized 1997

ⁱGundersen (1998)

^jNadelhoffer et al. (1999a)

^kNadelhoffer et al. (1999c)

¹Tietema et al. (1998)

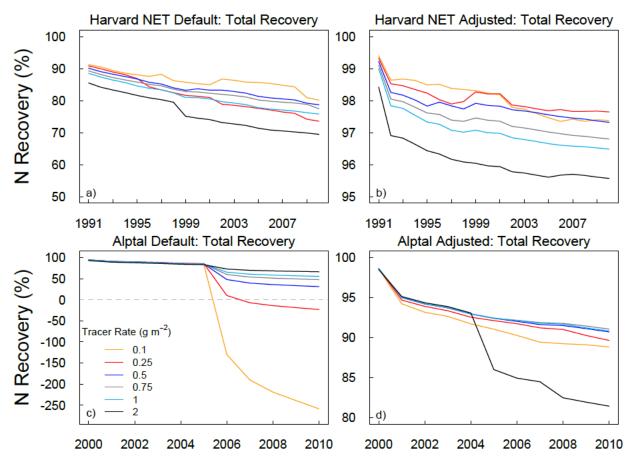


Figure S1: Results from a sensitivity study done at Harvard (a, b) needleleaf temperate tree (NET) plant functional type (PFT) and Alptal (c, d) on the amount of tracer that should be applied during the growing season (April-September) for the default and adjusted configurations of CLM5.

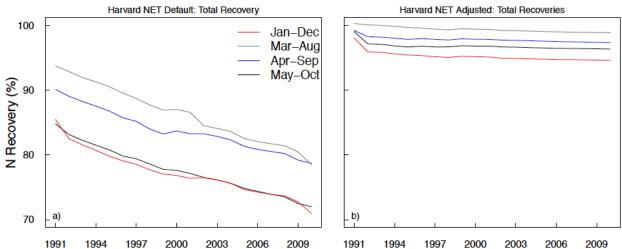


Figure S2: Results from the sensitivity study at Harvard needleleaf evergreen tree (NET) plant functional type (PFT) on the timing of applying 0.5 g N m⁻² into the a) default and b) adjusted configurations of CLM5.

Table S2: Residence time of N in plant, soil, and total ecosystem N pools in the default and adjusted configurations of CLM5. Values shown are averaged across the last 20 years of the 1850 spinup simulation and for the last 20 years of the historical simulation. Residence time is calculated a) for plants as the plant stock divided by losses from litterfall, b) for soils as the soil stock divided by losses from plant uptake, denitrification, leaching, and runoff, and c) for the ecosystem as the ecosystem stock divided by losses from denitrification, leaching, and runoff.

	1	850	Last 20 Years				
	Default	Adjusted	Default	Adjusted			
	(years)	(years)	(years)	(years)			
Plants							
Harvard BDT	29	30	17.6	18.0			
Harvard NET	72	72	53.6	56.8			
Arnot	29	30	23.7	24.5			
Aber	72	71	42.6	42.0			
Alptal	73	71	64.1	58.5			
Bear Brook	29	30	19.4	20.5			
Klosterhede	72	73	58.0	55.1			
Gårdsjön	73	73	58.9	59.0			
Soil							
Harvard BDT	93	114	70	95			
Harvard NET	115	137	100	132			
Arnot	143	170	122	158			
Aber	131	161	95	101			
Alptal	184	217	146	152			
Bear Brook	117	136	93	114			
Klosterhede	111	130	92	98			
Gårdsjön	137	151	111	128			
Ecosystem							
Harvard BDT	501	7142	578	6914			
Harvard NET	679	5238	1597	16236			
Arnot	857	10606	1065	12319			
Aber	658	3557	441	1430			
Alptal	2023	47976	1067	3127			
Bear Brook	836	7019	888	6727			
Klosterhede	596	6902	542	2775			
Gårdsjön	1084	7787	873	2903			

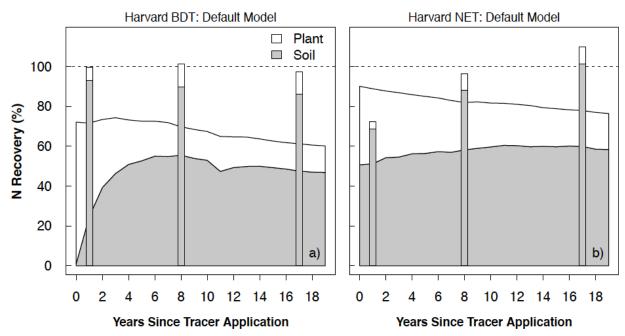


Figure S3: Modeled recovery of N additions in plant and soil pools in default configurations of CLM5 for ambient N deposition conditions at Harvard Forest a) broadleaf deciduous tree and b) needleleaf evergreen tree plant functional types (PFT). Thin, stacked bars represent observations. Recovery is calculated as the difference in stock size between a baseline simulation and a simulation with a "tracer" added as 0.5 g m⁻² between April-September in the first year a ¹⁵N tracer was applied in the field (see Methods).

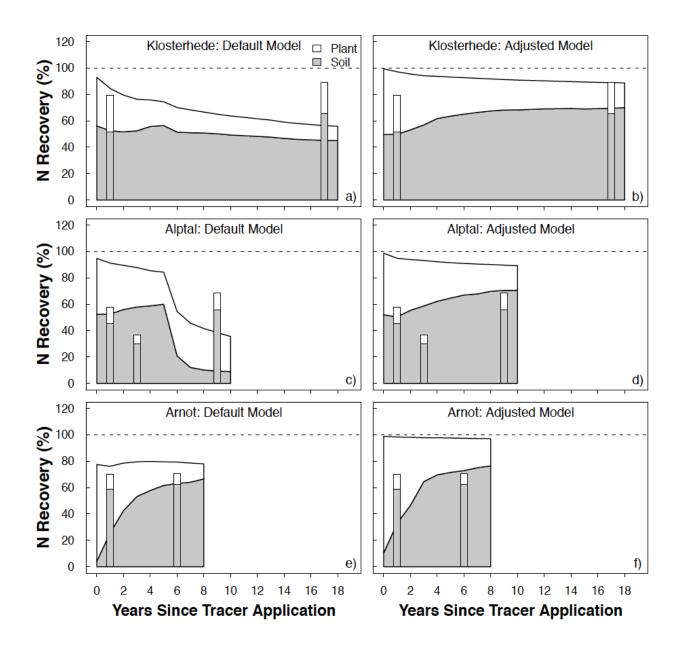


Figure S4: Modeled recovery of N additions in plant and soil pools in default and adjusted configurations of CLM5 for ambient N deposition conditions. Thin, stacked bars represent observations. Recovery is calculated as the difference in stock size between a baseline simulation and a simulation with a "tracer" added as 0.5 g m⁻² between April-September in the first year a ¹⁵N tracer was applied in the field (see Methods).

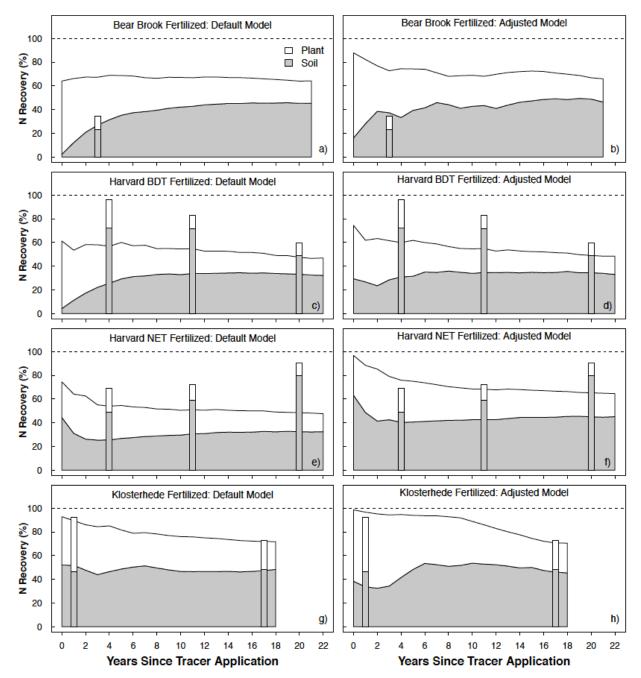


Figure S5: Modeled recovery of N additions in plant and soil pools of sites in default and adjusted configurations of CLM5 compared to field measurements (thin, stacked bars) for sites under multi-year N fertilization. For each scenario, recovery is calculated as the difference in stock size between a baseline simulation and a simulation with N fertilizer added into the soil mineral N pool between April-September (see Methods).

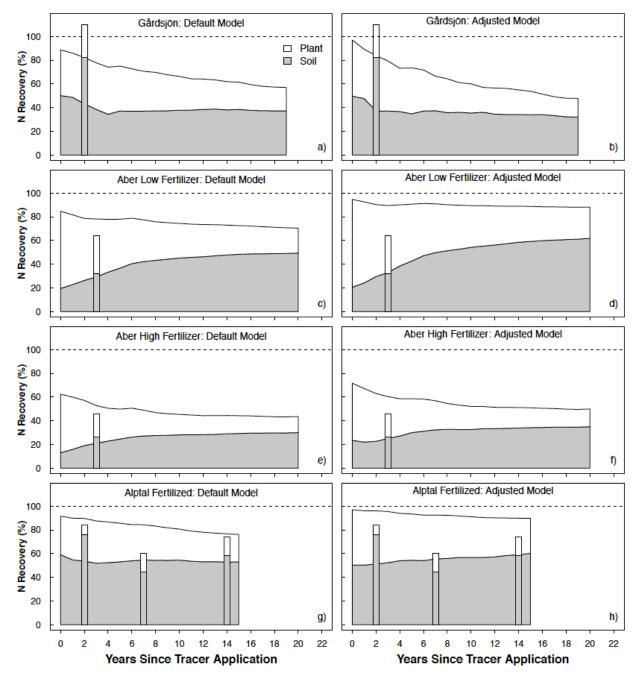


Figure S6: Modeled recovery of N additions in plant and soil pools of sites in default and adjusted configurations of CLM5 compared to field measurements (thin, stacked bars) for sites under multi-year N fertilization. For each scenario, recovery is calculated as the difference in stock size between a control simulation and a simulation with N fertilizer added into the soil mineral N pool between April-September (see Methods).

Site	Foliage	Wood	Bark	Fine Roots	Coarse Roots	Organic Soil	Mineral Soil	Citations
								Nadelhoffer et al., 2004;
Harvard BDT	25	338	126	50	NA	24	20	Nadelhoffer et al. 1999
								Nadelhoffer et al., 2004;
Harvard NET	42	337	253	41	NA	25	19	Nadelhoffer et al. 1999
Arnot	35	638	154	47	109	39	9	Goodale 2017
Alptala	42	500	167	56	91	19	17	Provioldi et al. 2005
								Emmett 1998 (FEM),
								Gundersen and Rasmussen
								1995, Tietema et al. 1998
								(FEM), personal
								communication with P.
Klosterhedeb	63	333	200	52	70	33	29	Gundersen
Harvard BDT								Nadelhoffer et al., 2004;
Fertilized	23	321	120	48	NA	21	23	Nadelhoffer et al. 1999
Harvard NET								Nadelhoffer et al., 2004;
Fertilized	35	409	253	24	NA	23	26	Nadelhoffer et al. 1999
Bear Brook								
Fertilized	37	413	NA	NA	NA	23	19	Nadelhoffer et al. 1999
Gårdsjön	NA	NA	NA	NA	NA	32	31	Emmett 1998, FEM
Aber ^b	28	NA	NA	NA	NA	22	18	Emmett 1998, FEM
Mean ± 1 SD	37 ± 12	411 ± 110	182 ± 55	45 ± 10	90 ± 20	26 ± 6	21 ± 6	

Table S3: C:N ratios of sub-pools for plants and soils as reported in literature.

NA: not available from literature

^aC:N ratios of all plant subpools at Alptal were estimated by assuming 50% of biomass is carbon, and then dividing by the N concentration reported in the literature. ^bC:N ratios for foliage at Aber were estimated by assuming 50% of biomass is carbon, and then dividing by the N concentration reported in the

literature.