
We thank Reviewer #1 for their constructive comments. We have listed their comments in bold below 
and our responses in normal formatting. 

Reviewer #1 

Firstly, the model only infers the atmospheric CO2 response based on the published relationship 
between the oceanic inventory change in preformed PO4 and the atmospheric CO2 change. The 
near-linear relationship between the two is only valid if we assume no solubility and air-sea CO2 
disequilibrium effects. I acknowledge that the effects might be implicitly included in the empirical 
relationship extracted from a few previous global studies. However, I am not sure if the same 
relationship can be applied to the regional perturbation study. For example, any perturbations in 
the Southern Ocean (e.g., the ACC band where air-sea CO2 disequilibrium is large due to the short 
surface residence time of upwelled waters) might not lead to the atmospheric CO2 response 
proportional to the preformed PO4 response. This point can be especially worrisome because the 
most sensitive regions turn out to be the ACC band in the study. 

Thank you for highlighting this. We have replaced the published preformed PO4 / CO2 relationship with 
one calculated explicitly for this model using an online carbon cycle.  

We have tested the impact of CO2 disequilibrium on the sensitivity results by running an ensemble of 
experiments where the Martin curve in each region is perturbed individually whilst all others are kept 
at the control value. The runs have a carbon cycle and so atmospheric CO2 is predicted as a response 
to the changing biogeochemistry. The preformed PO4 and CO2 from each regional perturbation are 
plotted over the values from global perturbation experiments (Figure 1). There are minor deviations 
from the global preformed PO4 / CO2 relationship suggesting that disequilibrium effects may be 
present, but these are relatively minor. The range of CO2 values predicted by the individual 
perturbation experiments closely matches the sensitivity patterns from the Latin Hypercube ensemble 
(Figure 2) further suggesting disequilibrium effects have a minor impact on the results.  

We have added these results to the supplementary material that are referenced from a brief 
discussion of disequilibrium effects in the methods section of the manuscript. We highlight in the 
discussion that disequilibrium effects may be considered in future analyses. 



Figure 1. Comparison of CO2 versus preformed [PO4] relationships when the Martin curve is varied as 
a globally uniform value (black line) from -0.4 to -1.6, and when regions are perturbed individually 

within the same range (grey). Panels (a) and (b) shows results for the constant-export ensemble with 
the region of interest expanded in (b).  Panels (c) and (d) shows results for the nutrient-restoring 

ensemble with the region of interest expanded in (d).   



 

Figure 2. Comparison of CO2 sensitivity estimates from two methods. Black bars are the Latin 
hypercube and regression-based sensitivity estimates derived with the statistical relationship 

between preformed PO4 and CO2. Grey bars are the difference between CO2 when each region is 
perturbed individually from b=0.2 and b=1.6 and atmospheric CO2 is calculated explicitly in the 

model. 

 

 

Secondly, the sensitivity is estimated using the multiparameter linear regression method applied to 
the two sets of 200-member ensemble experiments where 15 regional exponents are perturbed 
simultaneously. Although the method seems sound, I wonder why the sensitivity should be 
quantified in this way? Are there any merits? Would the sensitivity be the same or different if the 
authors perturbed the exponent in a region at a time, requiring a total of 15 perturbation 
experiments for one model scheme? The individual perturbation experiments seem a simpler and 
cleaner way to quantify the atmospheric CO2 response to the perturbation and its relations with 
the export production in each domain. 

The reviewer is correct that an alternative approach could be to perturb the remineralisation depth in 
each region individually (although this would entail at least 4 experiments per region to reasonably 
characterise the response across the parameter range). The advantage of the Latin hypercube 



sampling approach is that the resulting sensitivity combines the direct influence of changing 
remineralisation in one region of interest plus the joint influence of remineralisation changes in other 
regions, e.g., Pianosi et al., (2016). Given the uncertainty in the observed spatial distribution of 
remineralisation and the driving mechanisms, we feel it is important to account for the full range of 
simultaneous changes in remineralisation depths and keep this as the main result.  

As per the previous response, we have run the individual perturbation experiments with an explicit 
carbon cycle. The Martin curve in each region is perturbed to -0.4, -0.7, -1.3 and -1.6 whilst other 
regions are maintained at the control value of -1.0. Figure 2 shows ΔCO2 from the -0.4 and -1.6 
experiments for each region. The sensitivity patterns match the results from the Latin hypercube 
ensemble closely. There are differences in magnitude between the two estimates likely due to the fact 
that there are minor interactions between regions. However, the patterns between regions are 
preserved. We have added these results in the supplementary as this will provide important context 
for the key results and strengthen the analysis and interpretation. 

Thirdly, the major novel finding is that the highest sensitivity in atmospheric CO2 is to the change in 
remineralization depth in Subantarctic regions due to high export production and the high 
connectivity to deep water formation regions. I see the reasoning behind it: The export production 
should be high because the export will determine how much regenerated PO4 can be affected by 
the perturbation. The connectivity to deep water formation regions is important because the deep 
water formation is the main pathway of preformed PO4 to the ocean’s interior and the inventory of 
preformed PO4. However, I am not fully convinced by the authors’ finding. Both “nutrient restoring” 
model and “constant export” model show that the sensitivity of atmospheric CO2 to the 
remineralization depth change is also high in the “NTemp-PAC” domain (Fig. 3). Yet, the subtropical 
North Pacific is not a region with high export production nor close to any deep water formation 
regions. How can it be explained?  

Thank you for highlighting this. It is notable that the NTemp-PAC region in general, for this model, 
does fall along the general trend between export production and sensitivity. In comparison the STemp-
PAC region has a much lower sensitivity for a similar export production. This could be related to the 
age of water masses in the Pacific whereby deeper remineralisation in the STemp-PAC region 
sequesters organic matter in much younger waters, that will return to the surface ocean faster, thus 
reducing the sensitivity. We have already noted the range of sensitivity for similar export production 
in the manuscript, so we have added additional text to discuss this. Overall, because the spatial 
variability is not overly significant relative to the global uniform variability and because export 
production is a strong predictor of sensitivity, we have not explored this further. 

Similarly, why are the deep water formation regions (i.e., the model NADW and AABW formation 
regions) not the sensitive regions? 

We have added the contribution of preformed PO4 derived from each region for the control run in 
Table 1 to help highlight the sensitivity of the deep water formation regions. Kwon et al., (2009) 
demonstrated that largest changes in preformed PO4 when changing b globally were associated with 
deep water formation regions. The updated version of Figure 5 (Figure 4 here), shows that this is in 
response to changes in b from globally distributed regions (compare colours across the column for SO 
and NN-Atl regions).  

It may be related to the third point. But I don’t understand Figure 5. The sensitivity is normalized to 
what? What do the authors mean by “mean preformed PO4 in a region”? Is it the surface PO4 



averaged over each region or the total preformed PO4 subducted from each region divided by the 
volume of water subducted from the same region? 

The “mean preformed PO4 in a region” is calculated in a similar way to the global preformed PO4 
concentration: the annual mean surface [PO4] at the end of a simulation is set as a boundary condition 
and the transport matrix used to calculate the interior distribution of preformed PO4. In this case, the 
annual mean surface [PO4] is set in the region of interest only and the remaining surface has 
concentrations of zero. The global mean concentration is then calculated from the interior 
distribution.  

Because the absolute magnitude of regional mean preformed PO4 varies by an order of magnitude 
across all regions, it is necessary to normalise the concentrations to allow comparison of regression 
coefficients using the following relationship: 

𝑃𝑝𝑟𝑒
𝑟𝑒𝑔𝑖𝑜𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =

𝑃𝑝𝑟𝑒
𝑟𝑒𝑔𝑖𝑜𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − min(𝑃𝑝𝑟𝑒

𝑟𝑒𝑔𝑖𝑜𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

max (𝑃𝑝𝑟𝑒
𝑟𝑒𝑔𝑖𝑜𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) − min(𝑃𝑝𝑟𝑒

𝑟𝑒𝑔𝑖𝑜𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )
 

In response to this point and to comments from other reviewers, we have revised the format of the 
figure (see Figure 4 here). We have also updated the text with the description above and the equation 
to clarify the method of obtaining preformed PO4 and normalisation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 4. Sensitivity of steady-state normalised mean preformed [PO4] exported from each region. 
The preformed [PO4] from each region is expressed as a function of b using linear regression. 

Preformed [PO4] is normalised to the range of values in the ensemble to account for large 
differences in preformed [PO4] between regions. The regression coefficients are arranged such that 
each row shows the impact of changing b in that region on preformed [PO4] across other regions. 

Results from the constant-export and nutrient-restoring schemes are shown in the top and bottom 
panels respectively. 

 



We thank Reviewer #2 for their constructive comments. We have listed their comments in bold below 
and our responses in normal formatting.  

Reviewer #2 

My main concern is that the results are likely tied to the circulation model applied. As shown by 
Duteil et al. (2013; Biogeosciences, 10, 7723–7738, doi:10.5194/bg-10-7723-2013) the transport 
matrices from the MITgcm seem to suffer from far too large outcrop areas of dense waters in the 
Southern Ocean (their Fig. 2), indicating that the model circulation does not represent the real ocean 
in that region very well. Also, because of the very coarse resolution, this model might not represent 
the physical dynamics in the eastern equatorial Pacific very well. However, in the present study 
these two regions - the subantarctic regions and equatorial upwelling - have a large influence on 
CO2 (Fig. 3 and 5). Thus, whereas this study provides important and interesting information for 
other global model studies that apply similar circulations (as noted in Discussion and Conclusions), 
I think that a few sentences on this are necessary to caution readers not familiar with the 
advantages and disadvantages of global circulation models. (To illustrate or investigate this point 
further, one could, e.g., look at the density distribution or mixed layer depths of the model.) 

We have added a plot of density outcrops from the annual mean model output and World Ocean Atlas 
13 climatological observations (see Figure 1), a comparison of the volume of water ventilated from 
each region in the model with the data-constrained estimates from Khatiwala et al., (2012) (Table 1), 
and a plot of ideal mean age (Figure 2) to the Supplementary Material to demonstrate this caveat.  

As the reviewer highlights, the modelled Subantarctic regions are a larger source of water for the 
ocean interior than observed (Figure 1, Table 1). Additionally, the equatorial regions contribute a 
much smaller volumetric fraction than observed (Table 1). An alternative approach could be to use 
the data-constrained ECCO circulation but this comes with a much higher computational cost due to 
higher resolution and higher number of non-zeros in the sparse matrices, limiting the feasibility of the 
sensitivity analysis. The MITgcm circulation, as noted by the reviewer, has been widely applied. 
Therefore, we have kept the MITgcm circulation and have added a substantial discussion in the 
manuscript referring to the new supplementary figures that discusses the circulation as a caveat to 
the findings: 

“Our results are dependent on the use of transport matrices derived from one global circulation 
model. Whilst this model has been widely applied to study biogeochemistry previously, it is subject to 
a number of caveats. The ocean model predicts significantly larger outcrops of dense water in the 
Southern Ocean compared to observations (see Figure S4; Duteil et al., 2013) leading to deep-water 
formation occurring at latitudes around 50S (Figure S5). The volumetric fraction of water in the ocean 
interior derived from the Subantarctic is also higher (26%) compared with data-constrained estimates 
(18%: Khatiwala et al., 2012). As such, the sensitivity estimates for the Subantarctic may be over-
estimated. This is also consistent with the higher sensitivity compared to the basin-scale analysis of 
Kwon et al., (2009) who found that the Southern Ocean (>40S contributed 22% of the global CO2 
sensitivity, compared with 36% in this study (>38S, Table 1). However, our results have key similarities, 
including absolute and relative magnitudes of regional preformed PO4 export, to other studies using 
alternative steady-state circulation states (DeVries et al, 2012; Pasquier and Holzer 2016). As such, our 
results should be broadly reproducible with other models.” 



 

 

 

 

 

 

 

 

 

 

 

Figure 1: Regions where density is greater than 1027.5 kg m-3 calculated using the Gibbs SeaWater 
toolbox (McDougall & Barker 2011) with annual-mean temperature and salinity from (a) World 

Ocean Atlas 18 and (b) MITgcm output. 

Figure 2. Meridional cross section of ideal age in the Pacific (224°W).  

 

Table 1. Global ocean volumetric fraction (%) for different source regions from a data-constrained 
estimate (Khatiwala et al., 2012) and from this study. 

Region Khatiwala2012 (%) This Study (%) 
Antarctic 39 28.7 
Subantarctic 18 26.1 
North Atlantic 26 35 
Tropical 4.5 0.86 
Subtropics 8.1 4.5 
NPacific 4 4.5 

 

 



There seems to be a strong sensitivity of CO2 to changes in b in the constant-export scheme (Fig 3), 
and also a clear relationship to export (Fig 4a). In contrast, normalized (by what?) preformed 
phosphate seems to be more sensitive in the nutrient restoring scenario (Fig 5 vs Fig S3), and no 
relationship seems to exist between CO2 sensitivity and export (Fig 4b). I think these contrasting 
patterns for both model types deserve a bit more discussion. Perhaps some section plots of, e.g., 
density across the Pacific and Atlantic (see above) could aid the disussion about the effects of 
circulation vs. export type ("biogeochemistry"). If the circulation model is anywhere near the real 
world, some insight regarding the "connectivity" of different regions might perhaps be gained from 
the data-constrained analysis of water fractions presented by Khatiwala et al. (2012; Earth and 
Planetary Science Letters, 325–326, 116–125) 

In response to this and other reviewer comments, we have replotted Figure 5 in a format which is 
hopefully more accessible, and that allows for the inclusion of panels for both the fixed and restoring 
export ensembles (see Figure 3 here). The new plot highlights that the sensitivity estimates are broadly 
similar across both the nutrient-restoring and constant-export schemes but that preformed PO4 

appears more sensitive to local changes in b (boxes on the diagonal) in the nutrient-restoring scheme. 
We have added text in the Results to note this difference. We have also included the following 
equation in the manuscript text to describe the normalisation: 

𝑃𝑝𝑟𝑒
𝑟𝑒𝑔𝑖𝑜𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =

𝑃𝑝𝑟𝑒
𝑟𝑒𝑔𝑖𝑜𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − min(𝑃𝑝𝑟𝑒

𝑟𝑒𝑔𝑖𝑜𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

max (𝑃𝑝𝑟𝑒
𝑟𝑒𝑔𝑖𝑜𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) − min(𝑃𝑝𝑟𝑒

𝑟𝑒𝑔𝑖𝑜𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )
 

We have addressed the comments on circulation in the response to the previous comment. 

In terms of the relationship between sensitivity and export production, the distribution of regions 
within the nutrient-restoring panel is very similar to the constant-export panel despite a much weaker 
relationship. We have added text to the Results to demonstrate the weaker relationship between 
export production and sensitivity for the nutrient-restoring scheme: 
 



“Similarly, we find a general positive correlation between sensitivity and regional export production 
(r=0.79, p<0.01 for constant export, r=0.47, p=0.07 for restoring uptake), as measured by the mean 
annual average export production across the 200 ensemble runs (Fig 4). The correlation is much 
weaker with nutrient restoring uptake compared to the constant-export production.” 

Figure 3. Sensitivity of steady-state normalised mean preformed [PO4] exported from each region. 
The preformed [PO4] from each region is expressed as a function of b using linear regression.  

Preformed [PO4] is normalised to the range of values from each region within the ensemble to 
account for large differences in preformed [PO4] between regions. The regression coefficients are 

arranged such that each row shows the impact of changing b in that region on preformed [PO4] 
across other regions. Results from the constant-export and nutrient-restoring schemes are shown in 

the top and bottom panels respectively. 

 

p 3, line 15: "MITgcm" sounds like technical slang to me - is there a better word for it? 

The text has been changed to: “MIT general ocean circulation model (MITgcm)” 

 

Section 2.3: At first, I had difficulties understanding the experimental design; I would suggest to 
indicate more clearly that the "reference" experiments were carried out over a discrete set of 



globally uniform "b" values (how many?), and to distinguish this more clearly from the LHS 
experiments for the regional variation 

We have updated the text with headings to separate the description of the control run, global and 
regional sensitivity runs. We have also clarified the number of globally uniform b values tested.  

Eqn. 2 and Table 1: The connection between beta_0 and beta_k of Eqn 2 and Table 1 is not clear to 
me: are beta in the table beta_k of equation 2? Is beta_0 constant? 

We have added the subscripts to the betas in Table 1 and have added a reference to eqn. 2 in the 
Table caption. 

p 5, line 11: "we fit linear regression models" - I suggest to refer here again to Eqn 2. 

Done. 

p 5, line 28-29: "However, the relative sensitivity ranked across regions remains similar, as shown 
by expressing b_k as a percentage (Table 1)." - relative to what? 

This has been reworded to “…as shown by expressing each βk as a percentage of ∑ 𝛽𝑘𝑘  (Table 1).” 

Table 1: Please explain clearly what is shown in this Table: are beta the beta_k of Eqn 2? What does 
beta(%) mean - normalised by area? Are the two rightmost columns for the constant export 
experiments? 

We have added the subscripts to the betas in Table 1 and have added a reference to eqn. 2 in the 
Table caption. We have also added annotation and text to the caption to explicitly state that the 
beta(%) is relative to the sum of the regression coefficients. 

p 6 line 4 "positive" 

Fixed. 

p 6 second paragraph: is there a difference between "export production" and "export productivity"? 

Fixed. Export production is now used throughout. 

p 6, line 20 "is normalised" - by what? 

The text has been updated to explicitly describe the normalising (see also equation above) 

p 7 line 3: "sensitivity" 

Fixed. 

p 11, line 5: "$\kappa$" 

Fixed. 

p 11, line 20: "function" 

Fixed. 

p 19, caption: "relects"? 

Fixed to “reflects”. 

 



We thank Reviewer #3 for their constructive comments. We have listed their comments in bold below 
and our responses in normal formatting.  

Reviewer #3 

While I understand why the two model scenarios (restoring or fixed export) are presented as end-
members, the fixed export run nevertheless takes its export from a restoring run. It is true that 
output from the run giving the closest fit to observations is used as baseline but it should still be 
acknowledged that the ‘end-members’ are far from independent models. 

We have amended the text as follows: “These two schemes represent two end-member scenarios, 
strictly within the context of this model, where organic matter production either depends entirely on 
macronutrient concentrations…” 

The description of tracking preformed phosphate needs more detail. The decomposition described 
in Appendix B gets phosphate away from surface only – it still needs to be tracked in the interior. 
How is this done? 

We have changed equation B1 in Appendix B to make the operation clearer: 

𝑷𝑶𝟒
𝒑𝒓𝒆 = (𝑨𝒊𝑰𝑨𝒆𝑰 − 𝑰)−1((𝑨𝒊𝑰𝑩𝒆 + 𝑩𝒊)𝑷𝑶𝟒) 

The authors should show the scatter plot of predicted vs observed values for the relationship 
described in page 5 lines 12-13 as it is fundamental to the manuscript. It should show predicted and 
observed changes in PO4 as this is the predicted field. 

We have added this figure to the manuscript, (see Figure 1 here). 

 

Figure 1. Residuals for the linear regressions that estimate sensitivity of CO2 to spatially varying 
Martin curves for (a) constant-export and (b) restoring-uptake schemes. 



Fig 6 and section 3.2 – there is a sound argument for geometric mean so just show geometric mean 
and give the argument in the methods. It is not necessary to show arithmetic mean results in Fig 6a 

We have moved this figure panel to the discussion of calculating the geometric mean in the 
supplementary material.  

As a more informative second panel for Fig 6 show the same as current 6b but with regression taken 
out to show variability due to regional variability more clearly. The authors should also acknowledge 
in the text that the random sampling leads to undersampling of highest and lowest global b values. 

Thank you for this suggestion. Because the global mean of responses track the globally-uniform 
responses closely and we could not find any evidence that the variability was associated with changes 
in b in any specific region, this additional plot did not provide much additional information so we have 
kept the original panel.  

We have added the following text: “Note that b in each region is varied within the full parameter range 
but that because Latin hypercube sampling varies all parameters across their parameter range 
simultaneously the global mean does not reach the highest and lowest global b values.” 

How independent in structure are the 3 models used for the PO4 vs pCO2 relation? 

In response to other reviewer comments we have replaced the statistical relationship between 
preformed PO4 and CO2 with one calculated specifically for this model using a carbon cycle. 

Fig A1 should be in the main body of the paper 

We have moved the equivalent plot to the Methods section of the manuscript. 

Consistency needed in terminology: in Subantarctic (text) and subpolar (fig) 

We have changed any use of ‘subpolar’ to ‘Subantarctic’ throughout. 

Remineralisation depth is defined (page 2, lines 8-9) assuming exponential profile (decrease by 63%) 
but models use Martin curve 

The reviewer is correct that the definition assumes exponential decay whereas the Martin curve is a 
power-law. This was used previously by Kwon et al., (2009) who used Martin curves but also expressed 
them as e-folding depths. Our purpose was to introduce the term ‘remineralisation depth’ as this 
allows for more clear and concise discussion of changes in Martin curves as the terms ‘shallower’ or 
‘deeper’ can be used rather than changes in the dimensionless exponent b.  

We have changed the text to better reflect this comment: 

“In this paper we use the term ‘remineralisation depth’, defined as a depth at which a defined % of 
POC has been remineralised. Previously, this has been defined as an e-folding depth: the depth at 
which ~63% of POC has been remineralised (Kwon et al., 2009) (although note the Martin curve is not 
exponential).” 

Does the misfit function used to carry out the comparison to WOA (page 4, lines 22-23) take volume 
into account? 

Yes. We have amended the text to state that it is volume-weighted. 

Explain the maximin Matlab option for hypercube sampling in Matlab (page 4, line 31)  

We have added the following text to clarify: 



“…with ‘maximin’ sampling (an additional constraint that helps reduce clustering of samples, by 
maximising the minimum distance between points, in order to give a well-spread distribution of points 
across the parameter space).” 

page 4 line 25: not sure that “reference” is appropriate 

We have updated the experiment description with headings to separate the description of the control 
run, global and regional sensitivity runs. “Reference” has been removed from the text. 

Fig 3 caption needs rewording. All values are positive. 

The caption has been reworded to: “The sensitivity value reflects the increase in CO2 (preformed PO4) 
for an increase in b (shallower remineralisation).” 

The authors’ definition of the Subantarctic boundary makes it a little difficult to compare results to 
Kwon’s paper where the Southern Ocean was defined as south of 40S. Given that the Kwon paper 
provides such strong motivation for this manuscript this deserves comment. 

We had added an additional row to Table 1 in the manuscript describing metrics for the Southern 
Ocean as defined as >38°S for comparison with Kwon et al., (2009). We have also noted this 
comparison in the Discussion. 

Page 6, lines 4-6: It should be explicitly acknowledged that there is a rather weak relationship 
between export and sensitivity for the restoring runs (Fig 4b) 

We have added correlation coefficients to help demonstrate the weaker relationship between export 
and sensitivity. The following text has been added: 

“Similarly, we find a general positive correlation between sensitivity and regional export production 
(r=0.79, p<0.01 for constant export, r=0.47, p=0.07 for restoring uptake), as measured by the mean 
annual average export production across the 200 ensemble runs (Fig 4). The correlation is much 
weaker with nutrient restoring uptake compared to the constant-export production.” 
 
Use notation that distinguishes regional and global means of PO4_pre 

We have updated the text with notation to distinguish between regional and global means of 
preformed PO4. 

Both constant export and nutrient restoring should be shown in Fig 5. 

In response to other comments from reviewers, we have updated the format of this figure and have 
added panels for both constant export and nutrient restoring. 

Page 7, Line 3: “sensitivity” 

Fixed. 

Page 8, lines 28-30: “As such, the global mean change in potential future and past changes in 
remineralisation depth may be larger than the uncertainty associated with spatial variability.” B 
changes discussed less than current observed range” The changes being discussed here are 
substantially smaller than the current range of observed values. Even if, as this paper argues, the 
global ocean may not be overly sensitive to spatial variation in b, it is worth noting that the current 
uncertainty in a global value of b still has very large uncertainty partly because of the confounding 
effect of under-sampled spatial variability 



We have added the following text: “However, we note that the modern global mean b is subject to 
uncertainty associated with under-sampled spatial variability.” 

Page 10, line 21: Which sea ice field is used? 

The following text has been added: 

“…scaled the fraction of seaice present (Fice, as monthly average fields from the original circulation 
model).” 

Page 11, line 5: 1-v not 1-kappa 

Fixed. 

Appendix A: state that the bottom of the second grid box in the vertical is at 120m (presumably)? 

Done. 

 

 

 



We thank Reviewer #4 for their constructive comments. We have listed their comments in bold below 
and our responses in normal formatting.  

Reviewer #4 

First, I am concerned that biases in the circulation model might skew the results and have not been 
properly acknowledged. Can the authors state whether they are using a new version of the MITgcm 
2.8degree circulation model, or the same one that has been used since the early OCMIP era? 
Previous studies (Dutay et al. 2002; Doney et al. 2004) have identified some significant shortcomings 
of this circulation model that might impact the relative importance of different regions in the 
current study. Not least, the model does not produce deep water along the Antarctic coastline as it 
should, and instead produces deep water at around 50S. This would shift deep water formation 
from the Antarctic to the Subantarctic regions defined in the current study, and give the 
Subantarctic region unrealistic leverage over interior nutrient distributions. It could be the case that 
the circulation has been reformulated since those studies and this bias corrected. If that’s the case 
it is important for the authors to demonstrate this, to reassure readers like myself who have 
reservations about that model. The simplest way to show this would be to calculate ideal age in 
their model, and plot a meridional cross section through the Pacific. They should be able to show a 
tongue of young water subducting right along the Antarctic coastline and spreading northwards 
along the seafloor (not a tongue of young water penetrating the deep ocean at 50S). If they are 
indeed using the old, biased circulation model, this should be acknowledged in the text where the 
significance of the Subantarctic region is discussed. Either way, a figure like the one I suggested 
should be included as a supplementary figure either to demonstrate that the circulation model is 
robust, or to make readers aware of potential biases introduced by the Southern Ocean wartermass 
structure. 

Thank you for highlighting this important caveat. We have plotted the meridional cross section (Figure 
1) and the model does subduct water around 50°S. In response to this, and to comments from other 
reviewers, we have included this figure, a comparison of where the densest surface waters are versus 
observations, and a water-mass analysis in the supplementary material. We have also updated the 
Discussion in the manuscript to make clear that this is an important caveat. We have kept the 
circulation model for a number of reasons: 1) the Subantarctic regions do not dominate the sensitivity 
at a global level, 2) the circulation model is likely to over-estimate the sensitivity of CO2 to 
remineralisation in the Subantarctic regions, 3) it is widely used for modelling biogeochemistry. 

Figure 1. Meridional cross section of ideal age in the Pacific (224°W). 



 

Second, I am confused as to why a paper focused on sensitivity of atmospheric CO2 does not use a 
model that resolves the carbon cycle. Instead, they model only the phosphorous cycle and relate it 
to carbon cycle changes using a relationship derived from prior modeling studies. The authors state 
that this is to avoid the computational expense of simulating the carbon cycle. But that would only 
require the addition of two tracers – DIC and Alk, and a single value for a well-mixed atmospheric 
CO2 concentration. This should therefore only double the computation time, and given that 
transport matrix method is being used (where efficient Crank-Nicolson time-stepping methods can 
be applied), this does not seem preclusive. And even then, they needn’t include the carbon cycle in 
all 200 of their simulations, only enough to redefine the statistical PO4 vs. CO2 relationship from 
their own model. This would at least keep their study self-consistent, rather than relying on previous 
results from different models. If the authors are not able to do this in the current study (which would 
be preferable), they should again acknowledge more clearly the caveats of their chosen method. In 
Fig. A1, it is obvious that different models yield different relationships between these properties. 
Fitting just the Marinov et al. results would lead to a much shallower relationship, but those results 
are not strongly weighted because they contribute fewer data points than others. It would seem 
more reasonable to fit the relationship for each previous study separately, and propagate that 
uncertainty into their CO2 estimates 

In response to this comment, and to comments from other reviewers, we have added the carbon cycle 
to the model. We have redefined the preformed PO4 and CO2 relationship and have used this to 
calculate the change in CO2 for the Latin hypercube ensemble. 

Figure 3. I think a bar plot would be better suited to show this data. This is a key result of the paper, 
and a quantitative comparison between regions and production methods would be simpler in a bar 
format. 



Thank you for this suggestion. We have added additional panels to the figure showing the sensitivity 
estimates in a bar format (Figure 2). 

 

Figure 2. Regional sensitivity (ΔCO2 / Δb) of atmospheric CO2 (ppm) to changes in Martin curves for 
the constant-export scheme (panels a & b) and restoring-uptake scheme (panels c & d). Atmospheric 

CO2 is inferred from modelled preformed PO4 using empirical relationships. 

Figure 5. This figure is a little overcomplicated, as evidenced by the fact that a fair amount of the 
text (not just the caption) is devoted to explaining what it means. How about showing these results 
as a color matrix instead? Region in which b is varied down the rows, region in which we are looking 
at the preformed PO4 along the columns (or vice versa), color shows the regression coefficient. I 
know this is contrary to my previous comment about bars being more precise, but I think precision 
is less important here than the need to reduce complexity. The color matrix would allow the reader 
to pick out “bright” rows or columns as indicative of important regions. 



Thank you for this useful suggestion. We have reformatted the figure as a matrix (Figure 3). This does 
highlight spatial patterns more clearly and allows both constant-export and nutrient-restoring results 
to be shown.  

 

Figure 4. Sensitivity of steady-state normalised mean preformed [PO4] exported from each region. 
The preformed [PO4] from each region is expressed as a function of b using linear regression.  

Preformed [PO4] is normalised to the range of values in the ensemble to account for large 
differences in preformed [PO4] between regions. The regression coefficients are arranged such that 
each row shows the impact of changing b in that region on preformed [PO4] across other regions. 

Results from the constant-export and nutrient-restoring schemes are shown in the top and bottom 
panels respectively.  

 

Section 3.2 and Figure 6. I’m not sure why the results in Figure 6a are shown? The authors 
acknowledge that simply averaging the b values is not the correct way to quantify the global-mean 
remineralization profile, and then attempt to correct for it in panel b. But why show an obviously 
incorrect result in the first place? It seems like the correct way to define a “global mean b-value” 
would be to construct a global-mean (area-weighted) organic matter flux profile, and then fit the 
Martin relationship to that. 



We have moved panel a to the discussion of averaging in the supplementary material. We have kept 
the averaging approach as this has been used previously, e.g., Henson et al., (2012), and so provides 
useful context. 
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Abstract.

The concentration of CO2 in the atmosphere is sensitive to changes in the depth at which sinking particulate organic mat-

ter is remineralised: often described as a change in the exponent “b” of the Martin curve. Sediment trap observations from

deep and intermediate depths suggest there is a spatially heterogeneous pattern of b, particularly varying with latitude, but

disagree over the exact spatial patterns. Here we use a biogeochemical model of the phosphorus cycle coupled with a steady-5

state representation of ocean circulation to explore the sensitivity of preformed phosphate and atmospheric CO2 to spatial

variability in remineralisation depths. A Latin hypercube sampling method is used to simultaneously vary the Martin curve

indepedently within 15 different regions, as a basis for a regression-based analysis used to derive a quantitative measure of sen-

sitivity. Approximately 30% of the sensitivity of atmospheric CO2 to changes in remineralisation depths is driven by changes

in the Subantarctic region (36�S to 60�S), simliar in magnitude to the Pacific basin despite the much smaller area and lower10

productivity
:::::
export

:::::::::
production. Overall, the absolute magnitude of sensitivity is controlled by export production but the relative

spatial patterns in sensitivity are predominantly constrained by ocean circulation pathways. The high sensitivity in the Sub-

antarctic regions is driven by a combination of high export production and the high connectivity of these regions to regions

important for the export of preformed nutrients such as the Southern Ocean and North Atlantic. Overall, regionally varying

remineralisation depths contribute to variability in CO2 of between ± 5 - 15 ppm relative to a global mean change in rem-15

ineralisation depth. Future changes in the environmental and ecological drivers of remineralisation, such as temperature and

ocean acidification, are expected to be most significant in the high latitudes where CO2 sensitivity to remineralisation is also

highest. The importance of ocean circulation pathways to the high sensitivity in Subantarctic regions also has significance for

past climates given the importance of circulation changes in the Southern Ocean.

1 Introduction20

Sinking particles of organic matter transfer 5-10 Pg C per year from the upper ocean to the ocean interior (Henson et al.,

2011), as part of a process known as the biological pump. As these particles sink, they are remineralised through bacterial

and zooplankton-related activity, releasing the carbon and nutrients back into solution at depth. Vertical fluxes of particulate

1



organic carbon (POC) in the water column have historically been described by the Martin Curve, a power-law function that

describes the rapid decrease in flux (F
z

) from a maximum value at depth z0, nominally the base of the mixed layer, to a small

asymptotic value in deep waters (equation 1: Martin et al., 1987) (Fig. 1):

F
z

= F
z0

✓
z

z0

◆�b

(1)

The dimensionless exponent in the power-law (‘b’) describes whether organic matter is remineralised predominantly at5

shallower
::::::
depths (larger values of b, e.g., b=1.6) or deeper depths

::
in

:::
the

:::::
water

:::::::
column (smaller values of b, e.g., b=0.4) (Fig.

1). The exponent itself parameterises the rate at which POC sinks through the water column (units of m day�1) and the rate

at which it is remineralised (units of day�1) (Kriest and Oschlies, 2008; Lam et al., 2011). In this paper we use the term

‘remineralisation depth’, defined as
:
a
:::::
depth

::
at
::::::

which
::
a

::::::
defined

::
%

:::
of

::::
POC

::::
has

::::
been

::::::::::::
remineralised.

:::::::::
Previously,

::::
this

:::
has

:::::
been

::::::
defined

::
as

::
an

::
e

::::::
-folding

:::::
depth:

:
the depth at which ⇠63% of POC has been remineralised (Kwon et al., 2009) , to refer to changes10

in POC remineralisation as it is relatable to alternative mathematical functions also used (e.g., Cael and Bisson, 2018)
::::::::
(although

:::
note

:::
the

::::::
Martin

:::::
curve

::
is

:::
not

:::::::::::
exponential).

Ocean biogeochemical models predict that the concentration of CO2 in the atmosphere is sensitive to changes in a globally

uniform remineralisation depth. Kwon et al. (2009) showed that a deepening of the remineralisation depth globally of 24 m

(from b =1.0 to 0.9), redistributed dissolved inorganic carbon (DIC) from the intermediate waters to the deep ocean leading to15

a reduction in atmospheric CO2 of between 10 and 27 ppm. The drawdown was also associated with a decrease in the global

mean concentration of preformed nutrients in the ocean interior (nutrients that are not utilised by biology in the surface ocean

and enter the ocean interior via circulation: Ito and Follows, 2005). Kwon et al. (2009) found that
::
an

:
increase in respired

carbon in the deep ocean was balanced by a reduction in preformed nutrients exported in the North Atlantic. Deepening of the

POC remineralisation depth could also drive dissolution of calcium carbonate (CaCO3) in ocean sediments ultimately drawing20

down more CO2 over millennial timescales (Roth et al., 2014). The potential impact of remineralisation depth changes on

atmospheric CO2 is therefore a highly relevant component of the marine carbon cycle for both past and current changes in

climate (Riebesell et al., 2009; Hülse et al., 2017; Meyer et al., 2016).

Analyses of global sediment trap observations suggest there is a spatially heterogeneous pattern of remineralisation depths in

the modern ocean that varies particularly with latitude. A synthesis of observations from deep sediment traps (>1500–2000 m:25

Henson et al., 2012) suggests that POC fluxes in high latitudes attenuate faster with depth (shallower remineralisation depth:

b=1.6) than in low latitudes, where a greater proportion of POC is transported to depth (deeper remineralisation depth: b=0.4),

(Fig. 1). However, POC fluxes measured using neutrally buoyant sediment traps at shallower depths (<1000 m) suggest the

inverse of this latitudinal pattern (Marsay et al., 2015) (see also, Weber et al., 2016). A recent compilation of sediment trap

data and profiles of particle size distributions observed in the water column highlight additional intra-basin variability in30

b (e.g., shallower remineralisation in the East Equatorial Pacific than in the West) and inter-basin variability (e.g., deeper

remineralisation in the Atlantic and Indian basins compared to the Pacific) (Guidi et al., 2015). The uncertainty in the spatial

variability of remineralisation depths presents a challenge for determining which mechanisms may be responsible for changes

2



in remineralisation depths and how these might drive future or past changes in remineralisation (e.g., Boyd, 2015). Additionally,

this also presents a challenge for biogeochemical models that are beginning to resolve the mechanisms that are potentially

responsible for these spatial patterns such as particle size dependent sinking rates (DeVries et al., 2014), temperature dependent

remineralisation (John et al., 2014), and oxygen dependence (Laufkötter et al., 2017).5

A key question in light of the observed spatial variability in remineralisation depths and the associated uncertainty in spatial

patterns is: what is the sensitivity of atmospheric CO2 concentrations to spatial variability in remineralisation depths? Kwon

et al. (2009) further quantified the sensitivity of atmospheric CO2 to basin scale changes in remineralisation depths by perturb-

ing them in each basin individually, finding that the Pacific, Southern Ocean (defined as >40�S), Atlantic and Indian Oceans

contributed 38%, 22%, 21% and 19% of the total CO2 drawdown respectively (Kwon et al., 2009). The variability in CO210

sensitivity between basins matched the variability in the magnitude of export production integrated over the basins and basin

area, suggesting that no one region was more significant when varying the globally uniform remineralisation depth (Kwon

et al., 2009). However, this basin-scale analysis does not resolve the sensitivity of atmospheric CO2 occuring at the resolution

suggested by observations, i.e., a latitudinal and within-basin scale, or at the resolution of ecological and biogeochemical vari-

ability (Longhurst, 1998; Fay and McKinley, 2014). Additionally the analysis does not allow for the identification of potential15

interactions and feedbacks between regions when remineralisation depths are changing simultaneously.

Here we aim to address these issues by performing a global sensitivity analysis of regionally varying remineralisation depths.

To this end, we use the 2.8� resolution MITgcm
:
a
:
transport matrix (a steady-state computationally efficient representation of

ocean transport)
::::::
derived

::::
from

:::
the

:::::
MIT

:::::
global

:::::::::
circulation

::::::
model

:::::::::
(MITgcm)

:
with a model of phosphorus

:::
and

::::::
carbon

:
cycling

where the ocean is divided into 15 regions in which remineralisation depths can change independently. Remineralisation depths20

are perturbed simultaneously using Latin hypercube sampling and sensitivity quantified using regression analysis,and related

to changes in atmospheric CO2 via preformed nutrients.

2 Methods

2.1 Model Description

We provide a brief description of the model here and a more detailed description in Appendix A. The approach to quantifying25

sensitivity used here relies on the ability to run an ensemble of model experiments. To make this approach feasible we use the

‘transport matrix method’ (Khatiwala et al., 2005; Khatiwala, 2007), a steady-state computationally efficient representation of

ocean transport
:::
and

::::::
climate

:
derived from a dynamic ocean

:::::
global

:::::::::
circulation

:
model. We use monthly mean transport matrices

derived from the 2.8� global configuration of the MIT ocean model
:::::
global

:::::::::
circulation

::::::
model

:::::::::
(MITgcm) with 15 vertical levels

(Khatiwala et al., 2005; Khatiwala, 2007). These specific matrices have been previously applied to model biogeochemistry30

(Kriest et al., 2012; Kriest and Oschlies, 2015).

The biogeochemical model used here is a model of the marine phosphorus
:::
and

::::::
carbon

:
cycle that resolves phosphate

(PO4)and
:
),
:
dissolved organic phosphorus (DOP), similar to other models used to quantify the sensitivity of the biological pump

(DeVries et al., 2012, 2014; Pasquier and Holzer, 2016)
:::::::
dissolved

::::::::
inorganic

::::::
carbon

::::::
(DIC),

:::
total

::::::::
alkalinity

::::
and

::::::::::
atmospheric

::::
CO2.
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Following Kwon et al. (2009), we calculate the production of organic matter using either a nutrient-restoring scheme,
:::::
where

[PO4] is restored to monthly observations of [PO4] (Garcia et al., 2014) with a timescale of 30 days (eqn. A3), and one
::
or with

constant export production where export production is fixed to that of the control run unless
:
a
::::::::
previous

:::
run

:::::
unless

:::::
local nutri-

ents fall below zero. These two schemes represent two end-member scenarios
:
,
::::::
strictly

:::::
within

:::
the

:::::::
context

::
of

:::
this

::::::
model,

:
where5

organic matter production either depends entirely on macronutrient concentrations and can increase with higher nutrient fluxes

(restoring) or is limited by other factors such as light or micronutrients (constant export). The remineralisation of particulate

organic phosphorus (POP)
:::::
matter is parameterised using the Martin curve (eqn 1). We use

::
To

::::::
further

:::::::
facilitate

::
a

::::
large

:::::::
number

::
of

::::::::::
experiments

:::
for

:::
the

::::::::
sensitivity

::::::::
analysis,

::
we

::::
use

::
the

::::::
model

::
to

:::::
define

::
a
::::::::
statistical

::::::::::
relationship

:::::::
between preformed PO4 (POpre

4 )

to relate changes in the modelled phosphorus cycle to changes in
::::
Ppre)

:::
and

:
atmospheric CO2 using a statistical relationship10

derived from published experiments (Appendix
::
and

::::
run

:::
the

::::::
model

::::
with

::
a
::::::::::
phosphorus

:::::
cycle

::::
only

::::
(see

:::::::
Section A0.2). This

provides a way of relating changes in our model of phosphorous to changes in atmospheric CO2 without simulating a relatively

computationally expensive carbon cycle.

2.2 Experiment Design

2.2.1 Defining Regions15

We define a set of oceanic regions to approximately encapsulate the large-scale variability in biogeochemistry and patterns

of remineralisation depths observed in sediment trap studies. We define regions by lines of latitude and basins, similar to the

approach used by air-sea flux inversion studies, e.g., (Gloor et al., 2001; Mikaloff Fletcher et al., 2006). 15 regions are defined

based on a partitioning by Gloor et al. (2001) with some minor changes (Fig. 2a). The assigned regions broadly correspond

with major features in observed surface [PO4] such as higher concentrations in upwelling regions and lower concentrations in20

the nutrient-depleted gyres (Fig. 2b). This suggests the regions should be a reasonable analogue for an alternative approaches

that capture
:::::::
approach

::::
that

:::::::
captures

:
key spatial variability in ecology and biogeochemistry by defining regions using vertical

mixing, mixed layer depths, sea ice and sea surface temperature (Longhurst, 1998; Sarmiento et al., 2004; Henson et al., 2010;

Fay and McKinley, 2014). The regions are also comparable to the ocean biomes defined used in previous biological pump

studies (e.g., Weber et al., 2016; Pasquier and Holzer, 2016).25

2.3 Sensitivity Analysis
:::::::::::
Experiments

We first perform a set of reference experiments where the Martin curve exponents are varied between 0.4 and 1.6
::::::::::
experiments

::
to

::::::
explore

:::
the

:::::::::
sensitivity

::
of

::::::::::
atmospheric

:::::
CO2 ::

to
:::::::
regional

:::::::::
variability

::
in

:
b
::::
with

:::
the

::::
aim

::
to

::::::::::::
quantitatively

::::
rank

:::
the

::::::::
sensitivity

:::
of

::::::::::
atmospheric

::::
CO2::

to
::::::::::::::
remineralisation

::::
depth

:::::::
changes

::
in
:::::
each

:::::
region

::::::::::::::::::::::
(e.g., Pianosi et al., 2016):

1.
::::::
Control

::::
Run

:
:
::
A

:::::::::::
pre-industrial

::::::
control

::::
run

::
is

::
set

:::
up

::::
with

::::::
export

:::::::::
production

:::::::::
diagnosed

:::
by

:::::::
restoring

:::
to

:::::::
observed

:::::::
surface30

[
:::
PO4],

::
a

::::::
globally

:::::::
uniform

::::::
Martin

::::::::
exponent

::
of

:::
1.0

:::
and

::::::::
initialised

::::
with

:::::::
globally

:::::::
uniform

:::::
tracer

::::::::::::
concentrations.

:::::::::::
Atmospheric

::::
CO2 ::

is
:::::::
restored

::
to

:::
278

:::::
ppm.

::
A

:::::::
globally

:::::::
uniform

::::::
Martin

::::::::
exponent

:::::
gives

:::
the

::::::
lowest

::::::::::::::
volume-weighted

::::
root

:::::
mean

::::::
square

:::::
misfit

::::::::
compared

::
to
::::::

annual
:::::

mean
::::::

World
::::::
Ocean

:::::
Atlas

::::
2013

:
[
:::
PO4]

::::::::::
observations

:::::::::::::::::
(Garcia et al., 2014),

::
as

::::::
found

::
in

:::::
other
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::::::
studies

::::
using

:::
the

:::::
same

::::::::
MITgcm

:::::::
transport

::::::::
matrices

::::::::::::::::
(Kriest et al., 2012).

::::
The

::::::
control

:::
run

::
is
:::::::
spun-up

:::::
from

:::::::
uniform

:::::
initial

::::::::
conditions

:::
for

:::::
5000

:::::
years.

2.
::::::
Global

::::::::
Sensitivity

:
:
::::
The

::::::
Martin

:::::
curve

::
is

:::::
varied

:
globally, i.e., all regions are assigned the same Martin curve exponent.5

The range is
:::::::
exponent,

::::::::
between

:::
0.4

:::
and

:::
1.6

::
in
:::
0.1

::::::::::
increments,

:
based on the range of spatial variability observed in the

modern ocean (Henson et al., 2012; Marsay et al., 2015; Guidi et al., 2015). Each experiment is run for 10
:
3,000 years

from initial uniform conditions
:::::::::
continuing

::::
from

:::
the

:::::::
control

:::
run

:
using the nutrient-restoring scheme to predict export

production (eqn. A3) . We define the control run as the experiment with the lowest root mean square misfit compared

to annual mean World Ocean Atlas 2013 PO4observations (Garcia et al., 2014). We find the lowest misfit when b=1.010

globally, as found in other studies using the same MITgcm transport matrices (Kriest et al., 2012). A second set of

reference experiments are then run with a constant-export scheme using the export production from the control run.

We perform a global sensitivity analysis with the aim to quantitatively rank the sensitivity of
:::
and

:::::
freely

::::::::
evolving atmo-

spheric CO2to remineralisation depth changes in each region (e.g., Pianosi et al., 2016). .
:

3.
:::::::
Regional

:::::::::
Sensitivity:

:
Latin hypercube sampling, a stratified-random procedure that provides an efficient way of sampling15

high dimensional parameter space (McKay et al., 1979), is used to vary the Martin curves in every region simulta-

neouslyfor the global sensitivity analysis.
:
..
:
Values of b are sampled from a uniform distribution ranging from 0.4 to

1.6 using the ‘lhsdesign’ function in MATLAB with ‘maximin’ sampling
:::
(an

::::::::
additional

:::::::::
constraint

::::
that

:::::
helps

::::::
reduce

::::::::
clustering

::
of

::::::::
samples,

::
by

::::::::::
maximising

:::
the

::::::::
minimum

::::::::
distance

:::::::
between

::::::
points,

::
in

:::::
order

::
to

::::
give

:
a
::::::::::
well-spread

::::::::::
distribution

::
of

:::::
points

::::::
across

::
the

:::::::::
parameter

::::::
space). The range of b used centres around b=1.0 as used for the control run. We generate20

a Latin hypercube ensemble with 200 experiments, balancing the need for higher sampling resolution of the parameter

space and total computational time. We run two sets of the Latin hypercube experiments: one with nutrient-restoring

export production and the other with constant export production where export production is taken from the control run

. All experiments are run
::::
Each

::::::::::
experiment

::
is

:::
run

:
for 3000 years following

::::::::
continued

:
on from the control run which

is sufficient for the mean deep ocean
::::
with

::
a

:::::::::
phosphorus

:::::
cycle

:::::
only.

::::::::
Changes

::
in

::::::::::
atmospheric

:::::
CO2:::

are
:::::::
inferred

:::::
from25

::::::
changes

::
in
:::::::::
preformed

:
PO4to equilibrate to a global change in the Martin Curve (Kwon et al., 2009). Annual mean fields

of PO4are .
:

::::
Both

:::
the

:::::
global

::::
and

:::::::
regional

::::::::
sensitivity

::::::::::
experiments

:::
are

::::::::
repeated

::::
with

::::::::::::
constant-export

::::::::::
production

:::
that

::
is diagnosed from the

::::::
control

:::
run.

:::
All

::::::
output

::
is

::::::::
diagnosed

:::::
from

:::
the last full simulation year.

2.4
::::::::
Sensitivity

::::::::
Analysis

We use multiple linear regression analysis to derive the sensitivity of atmospheric CO2 to changes in b in each region (k) where

the fitted coefficients (�
k

) give a quantitative measure of the sensitivity (e.g., Pianosi et al., 2016):

CO2 = �0 +

X

k

�
k

b
k

(2)
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3 Results5

3.1 Sensitivity of CO2 to regional variability in remineralization depths

To quantify the sensitivity of CO2 to regional changes in b we fit linear regression models
:::
(eqn

:::
2) to the results of the Latin

hypercube ensembles. The resulting regression models explain a large proportion of the variability between CO2 and b (R2 =

0.88 and 0.90 for the constant-export and restoring-uptake ensembles respectively). Residuals of the regression models showed

no significant bias versus the regression output (not shown
::::
Fig.

::
S2) suggesting that a linear model was appropriate. Although10

the relationship between CO2 and a globally-uniform remineralisation depth is non-linear (e.g., Fig. 6), the relationship is near

linear around the observed global mean in the centre of the range of b tested (see also, Kwon et al., 2009). Overall, the absence

of a strongly non-linear relationship suggests the use of a linear regression model is appropriate (Pianosi et al., 2016).

When b is varied as a globally uniform parameter from 0.4 to 1.6, atmospheric CO2 varies from 219 to 303
:::
197

::
to

::::
347 ppm

(range of 84
:::
150 ppm) for the constant-export scheme and from 263 to 284

:::
257

::
to

::::
288

:
ppm (range of 21

::
31 ppm) for the15

nutrient-restoring scheme, consistent with previous model experiments (Kwon et al., 2009). Figure 3 shows how the sensitivity

of CO2 to changes in b varies as a function of region. CO2 is most sensitive to changes in b occuring in the Subantarctic regions,

with CO2 being most sensitive to changes in the Indian sector of the Subantarctic (Fig. 3, Table 1). The Southern Ocean and

sub-tropical gyres, with the exception of the gyre in the North Pacific, are consistently the regions where b has the smallest

impact on CO2. Other regions, including the equatorial Indian ocean, Equatorial Pacific and North Pacific have an intermediate20

sensitivity. As a region, the Subantarctic is responsible for ⇠30% of the CO2 sensitivity, comparable to the Pacific basin-scale

sensitivity (Table 1).

As with the globally uniform changes in b, the magnitudes of regional sensitivities are smaller when run with nutrient-

restoring uptake as opposed to a constant-export scheme because export production is able to convert any changes
:::::::
increase in

surface nutrient
:::
and

::::::
carbon

:
fluxes back into organic matter, limiting any change in preformed nutrients

::::
CO2 :::::

fluxes. However,25

the relative sensitivity ranked across regions remains similar, as shown by expressing b
k ::
�
k

as a percentage
::
of

::::::

P
k

�
k:

(Table

1). Therefore, the regional patterns in Figure 3 are not sensitive to assumptions about the response of nutrient uptake to the

redistribution of nutrients. This suggests
:::::
whilst

:
the absolute magnitude of CO2 sensitivity to changes in b is related to global

export production that is is
:
it
::
is not driven by local changes in export production specific to any region(s).

Kwon et al. (2009) demonstrated that the sensitivity of CO2 to basin-scale changes in b correlated with the magnitude of30

export production in each basin. Similarly, we find a general postitive relationship
::::::
positive

:::::::::
correlation

:
between sensitivity and

regional export production ,
:::::::
(r=0.79,

::::::
p<0.01

:::
for

:::::::
constant

::::::
export,

::::::
r=0.47,

::::::
p=0.07

:::
for

::::::::
restoring

:::::::
uptake), as measured by the mean

annual average export production across the 200 ensemble runs (Fig 4).
:::
The

:::::::::
correlation

::
is
:::::
much

::::::
weaker

::::
with

:::::::::::::::
nutrient-restoring

:::::
uptake

:::::::::
compared

::
to

:::
the

:::::::::::::
constant-export

:::::::::
production.

:
Intuitively, regions with lower export production, i.e., that contribute less

to the inventory of regenerated PO4, have a smaller impact on the balance between preformed and regenerated nutrients and35

therefore on atmospheric CO2. Whilst CO2 is generally more sensitive to remineralisation depths in regions with higher export

production, sensitivity varies across regions with similar export productivity
:::::::::
production. For example, the sensitivity for the

temperate North Pacific (NTemp-PAC; Fig. 4a) (�CO2/�b = 15.0
::::
13.72, export production = 1.4±0.11 Tmol P year�1) is
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approximately double that of the sub-polar region of the Southern Pacific (STemp-PAC; Fig. 4a) (�CO2/�b = 6.3
::::
5.72, export

production = 1.4±0.17 Tmol P year�1). There are no apparent relationships between the variability of export productivity5

:::::::::
production across the ensemble in each region, as shown by the horizontal errorbars, and sensitivity (Fig. 4). This further

supports the finding that the response of export production to changes in nutrient distributions are not an important factor in

the sensitivity of CO2 to regional changes in b.

The variability in sensitivity not explained by the magnitude of POC export is likely a function of how changing reminer-

alisation depths interact with ocean circulationto redistribute nutrients. To quantify this effect we calculate POpre
4 :::

the
:::::
mean10

::::::::
preformed

::::
PO4:in the ocean interior derived from each region individually (

:::::::
[Pregion

pre ]
::
)(see Appendix A0.2) and repeat the

sensitivity regression analysis:

[Pregion

pre ] = �0
r

+

X

k

�
k

region

::::
b
k

(3)

The new regression analysis (eqn. 3) now predicts the contribution of changing b in all regions to the change in POpre
4 in

:::::::
[Pregion

pre ]
:::::::
derived

::::
from

::
a
:
single region rather than globally (Fig. 5). POpre

4 is normalised prior to the regression to make the15

coefficients comparable between regions which otherwise vary
:::
The

:::::::::
regression

:::::::
analysis

::
is

:::::::
repeated

:::
for

::::
each

:::::
region

:::
but

:::
the

:::::
mean

:::::::::::
concentration

::
of

:::::::::
preformed

::::
PO4:::::::

derived
::::
from

::::
each

::::::
region

:::::
varies

:
by up to three

:::
four

:
orders of magnitude . As such,

:::::::
between

:::::::
different

:::::::
regions.

::
In

:::::
order

:::
to

:::::::
compare

:::::::::
regression

::::::::::
coefficients

:::::
from

::::::::
different

::::::
regions

:::
we

::::
first

:::::::::
normalise

:::
the

:::::::::::::
concentrations

:::::::::
(

ˆ

[Pregion

pre ])
::
to

:::
the

:::::
range

::
of

::::::::
variability

::::::
across

:::
the

:::
200

:::::::::::
experiments:

:

ˆ

[Pregion

pre ] =
[Pregion

pre ]�min([Pregion

pre ])

max([Pregion

pre ])�min([Pregion

pre ])
:::::::::::::::::::::::::::::::::::::

(4)20

Figure 5 shows the relative sensitivity of POpre
4 ::::::::

[Pregion

pre ] to changes in b. R2 ranges from 0.82 to 0.97 suggesting overall the

linear regression models are appropriate. The regression coefficients specific to a single region are collected from across the

15 regression results in each panel
::::::
column of Figure 5to show the relative sensitivity of POpre

4 exported across all regions in

response to changes in
:
.
::
By

:::::::::
definition,

::::
each

:::
row

::
of

::::::
Figure

:
5
::::::
shows

:::
the

::::
effect

::
of
::::::::
changing

:
b local to the region corresponding with

panel. For example, the Southern Ocean panel shows how a change in b in the Southern Ocean affects POpre
4 in

::::::::::::
corresponding25

:::::
region

:::
on

::::::::
[Pregion

pre ]
::::
from

:
all other regions. The sensitivity locally is coloured in black and positive sensitivities indicate an

increase in POpre
4 as b increases in value, i.e., shallower remineralisation. Figure 5 displays the results for the constant-export

experiments whereas the equivalent results for the restoring-uptake experiments are shown in Figure S3.

The sensitivity analysis for each region on an individual basis shows that changes in b in the Subantarctic regions have

large impacts on POpre
4 ::::::::

[Pregion

pre ] across regions globally (Fig. 5). In particular, these regions have a particular effect on the

POpre
4 :::::::

[Pregion

pre ]
:

export in the Southern Ocean and in the Atlantic as a basin, comparable in magnitude to the local changes

in POpre
4 (compare size of black bars to other bars: Fig. 5).

::::::::
[Pregion

pre ]. Changes in b in the equatorial upwelling regions of the

Pacific and Indian Oceans also have a large global effect but with a more pronounced local effect. These features are more

7



pronounced with nutrient-restoring uptake (Fig. S3
::
5b). The Southern Ocean and North Atlantic regions are those with the5

highest POpre
4 export and variability

:::::::
[Pregion

pre ]
::::::
export across the ensemble

::::::
(Table

::
1), consistent with previous findings about the

global importance of these regions for preformed PO4 (DeVries et al., 2012; Pasquier and Holzer, 2016). This suggests the

larger sensitiviy
::::::::
sensitivity

:
of CO2 to changes in b in the Subantarctic regions is due to the way in which the ocean circulation

connects these regions to the Southern Ocean and North Atlantic. In contrast, changing b in the Southern Ocean and North

Atlantic has a relatively minimal effect on POpre
4 :::::::

[Pregion

pre ]
:
(and by inference CO2) both locally and globally.10

3.2 Regional versus Global Sensitivity

Lastly, we explore whether the spatial patterns in sensitivity (Fig. 3) are significant on a global scale. Global average values of

b are calculated for each of the 200 Latin hypercube samples using an area-weighted mean and compared against experiments

where b is pertubed uniformly across regions (Fig. 6). We find that the relationship between CO2 and global mean b matches

closely to that with the globally uniform b but with an offset of ⇠20 ppm and ⇠10 ppm for the constant and restoring export15

schemes respecitively (Fig. 6a). We suggest this offset is likely caused by a non-linear relationship between b and the
:::
The

amount of organic matter reaching the deep ocean (as measured by the e-folding depth: depth at which ⇠63% of exported POC

has been remineralised)
:
is

:
a
:::::::::

non-linear
::::::::
function

::
of

::
b, following from the fact that the Martin curve represents the scenario of

a fixed remineralisation rate and an increasing sinking rate (Kriest and Oschlies, 2008; Cael and Bisson, 2018) (see Supple-

mentary Material). A change in b from 1.4 to 1.3 results in a decrease in e-folding depth of 14 m whereas a change in b from20

0.4 to 0.3 results in a change of 1902 m. Therefore, larger values of b, i.e., shallower remineralisation, have disproportionally

more weight when averaging
:::::::::
calculating

:
a
::::::
global

:::::::::
arithmetic

:::::
mean

::
of

:
spatially variable b values. To demonstrate

::::::
account

:::
for

this, we find the equivalent e-folding depths for each Latin hypercube sample, which form a skewed distribution due to higher

occurrence of shallower remineralisation, calculate the area-weighted geometric mean e-folding depth for each sample, and re-

arrange again for b (see Supplementary Material for details). The distributions in Figure 6b now fall along the line of globally25

uniform experiments.

The relationship between CO2 and the globally averaged b values from the sensitivity experiments closely matches the

relationship between CO2 and globally uniform b for the both constant-export and restoring uptake schemes (Fig. 6a).
:
).
:::::
Note

:::
that

:
b
::
in
:::::
each

:::::
region

::
is

::::::
varied

:::::
within

:::
the

:::
full

:::::::::
parameter

:::::
range

:::
but

:::
that

:::::::
because

:::::
Latin

:::::::::
hypercube

::::::::
sampling

:::::
varies

::
all

::::::::::
parameters

:::::
across

::::
their

:::::::::
parameter

::::
range

:::::::::::::
simultaneously

:::
the

:::::
global

:::::
mean

::::
does

:::
not

:::::
reach

:::
the

::::::
highest

:::
and

::::::
lowest

:::::
global

::
b

::::::
values. The average30

regionally varying b values vary within ⇠±15 ppm of the globally uniform experiments with constant-export and ⇠±5 ppm

for the nutrient-restoring experiments, comparable to the change in CO2 for a globally uniform change in b of ⇠0.2.

4 Discussion

Sediment trap observations reveal significant spatial variability in remineralisation depths. Here we have quantified the sensi-

tivity of atmospheric CO2 to regional changes in remineralisation depths and show that CO2 is most sensitive to changes in the

Subantarctic regions. Much of the observed spatial variability varies across latitudes (Henson et al., 2012; Guidi et al., 2015;
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Marsay et al., 2015; Weber et al., 2016). Additionally, the mechanisms potentially driving these patterns are also likely to vary5

on a latitudinal basis, with changes in related environmental properties in response to anthropogenic CO2 emissions affecting

the high latitudes in particular: temperature changes (Kirtman et al., 2013) affecting temperature-dependent remineralisation

rates; a reduction in carbonate saturation state with ocean acidification (Orr et al., 2005) affecting ballasting and changes in

plankton community composition; and cell size (Lefort et al., 2015) affecting aggregation dynamics and particle sinking veloc-

ities. Additionally, this is a consideration for changes in remineralisation depths occurring in past climates (Meyer et al., 2016).10

This suggests that the spatial patterns in CO2 sensitivity could be significant when considering the impact of remineralisation

depth changes.

Changes in the air-sea balance of carbon are commonly related to changes in preformed nutrients. Because of the inefficient

utilisation of upwelled nutrients in the Southern Ocean this region has been identified as key to setting the efficiency of the

biological pump (Ito and Follows, 2005; DeVries et al., 2012). Our results show that this is also key for the the sensitivity15

of CO2 to regional variability in remineralisation depths because of upwelling in the Subantarctic regions (Fig. 5). This re-

lationship has implications when invoking changes in the efficiency of the biological pump in past climates such as the Last

Glacial Maximum (LGM). Processes that increase the utilisation of nutrients in the Southern Ocean, such as iron fertilisation,

and processes that reduce the delivery of nutrients to the Southern Ocean, such as increased stratification, have been implicated

in the drawdown of atmospheric CO2 during the LGM (Sigman et al., 2010). Any changes in strafication will also impact the20

sensitivity of CO2 to any additional changes in remineralisation depths, such as from changes in ballasting minerals and/or

temperature dependent remineralisation (Chikamoto et al., 2012). In comparison, processes such as iron fertilisation will not

impact on this sensitivity. Because the spatial patterns of CO2 sensitivity to regional changes in remineralisation are predom-

inantly constrained by ocean circulation pathways, this also suggests that the sensitivity may change with a reorganisation of

ocean circulation as suggested for the LGM (Sigman et al., 2010).25

The Martin curve is a commonly used parameterisation of the remineralisation of particulate organic matter with depth in

marine biogeochemical models, and is commonly applied with a globally uniform exponent (b) (Hülse et al., 2017). However,

the Martin curve used in this way has potential limitations: it is an empirical and static parameterisation that does not represent

the mechanisms affecting remineralisation and sinking rates; and it does not capture spatial variability in remineralisation

observed in sediment trap data (Henson et al., 2012; Marsay et al., 2015; Guidi et al., 2015). In our sensitivity analysis, we30

have shown that CO2 has a similar sensitivity to the global mean change in b as compared to a globally uniform change in b

with an uncertainty of ±5 - 15 ppm, equivalent to a change in b of ⇠0.2 (Fig. 6). Kwon et al. (2009) suggest a decrease of

0.3 from the modern remineralisation depth is sufficient to explain the increase in deep ocean nutrient concentrations during

the Last Glacial Maximum. For the 21st century, (Laufkötter et al., 2017) predict a decrease of POC export at 500 m by 2100

under RCP8.5 in response to temperature and oxygen-dependent remineralisation, equivalent to a decrease in b of ⇠0.25. As35

such, the global mean change in potential future and past changes in remineralisation depth may be larger than the uncertainty

associated with spatial variability. This has potentially useful implications for modelling the remineralisation of particulate

organic matter fluxes. Models resolving the various processes that affect remineralisation rates and sinking velocities have

recently been developed (Jokulsdottir and Archer, 2016; Cram et al., 2018) however, the requirements to model processes such
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as particle aggregation can be computationally expensive, limiting their application to 1-D models (Jokulsdottir and Archer,5

2016; Cram et al., 2018) or to offline models (DeVries et al., 2014). A globally uniform change in b informed by these models

could then
::
be used to calculate the impact on atmospheric CO2 if the change in b is greater than 0.2.

::::::::
However,

::
we

::::
note

::::
that

:::
the

::::::
modern

::::::
global

::::
mean

::
b
::
is

::::::
subject

::
to

:::::::::
uncertainty

:::::::::
associated

::::
with

::::::::::::
under-sampled

::::::
spatial

:::::::::
variability.

:

Our results are dependent on the use of transport matrices derived from one ocean
:::::
global circulation model. The model

is commonly
::::::
Whilst

:::
this

::::::
model

:::
has

:::::
been

::::::
widely

:
applied to study biogeochemistry which means that our results should be10

consistent with a number of existing studies (e.g., Kriest et al., 2012). In addition
:::::::::
previously,

::
it

::
is

::::::
subject

:::
to

:
a
:::::::

number
:::

of

::::::
caveats.

::::
The

:::::
ocean

:::::
model

:::::::
predicts

::::::::::
significantly

::::::
larger

:::::::
outcrops

::
of

:::::
dense

:::::
water

::
in

:::
the

:::::::
Southern

::::::
Ocean

::::::::
compared

::
to

:::::::::::
observations

:::::::::::::::::::::::::::::::::
(see Figure S4 Duteil et al., 2013) leading

::
to
::::::::::
deep-water

::::::::
formation

::::::::
occurring

::
at

:::::::
latitudes

::::::
around

::::
50�S

:::::::
(Figure

:::
S5).

::::
The

:::::::::
volumetric

::::::
fraction

:::
of

:::::
water

::
in

:::
the

::::::
ocean

::::::
interior

:::::::
derived

::::
from

::::
the

::::::::::
Subantarctic

::
is
::::

also
::::::

higher
::::::
(26%)

:::::::::
compared

::::
with

::::::::::::::
data-constrained

:::::::
estimates

:::::::::::::::::::::::::
(18%: Khatiwala et al., 2012).

:::
As

:::::
such,

:::
the

:::::::::
sensitivity

::::::::
estimates

:::
for

:::
the

:::::::::::
Subantarctic

::::
may

:::
be

::::::::::::
over-estimated.

:::::
This15

:
is
::::

also
:::::::::
consistent

::::
with

:::
the

::::::
higher

:::::::::
sensitivity

::::::::
compared

:::
to

:::
the

:::::::::
basin-scale

::::::::
analysis

::
of

::::::::::::::::::::
Kwon et al. (2009) who

:::::
found

::::
that

:::
the

:::::::
Southern

::::::
Ocean

:::::::
(>40�S

:::::::::
contributed

:::::
22%

::
of

:::
the

::::::
global

::::
CO2:::::::::

sensitivity,
:::::::::
compared

::::
with

::::
36%

::
in

::::
this

:::::
study

:::::::
(>38�S,

:::::
Table

:::
1).

:::::::
However, our results have key similarites, including absolute and relative magnitudes of regional preformed PO4 export, to

other studies using alternative steady-state circulations
:::::::::
circulation

:::::
states (DeVries et al., 2012; Pasquier and Holzer, 2016).

As such, our results should be broadly reproducible with other models. A disadvantage to using a steady-state circulation is20

that we cannot quantify impact of the CO2-climate feedback on ocean circulation and atmospheric CO2. Studies exploring

the simultaneous effects of warming temperatures on circulation and biology in response to anthropogenic CO2 emissions

show that changes in circulation could be as important as biological changes (Cao and Zhang, 2017), (but see, Yamamoto

et al., 2018). Quantifying the regional sensitivity with a dynamic ocean is therefore an important focus for future research.

Lastly, our modelling approach uses an empirical relationship between preformed nutrients and CO2 that enfolds the effects of25

processes such as air-sea gas exchange and the export of CaCO3.
::::
work.

:
Ratios of CaCO3 to POC vary latitudinally, and could

:::
also

:
therefore modify our sensitivity results. Segschneider and Bendtsen (2013) found important feedbacks involving interac-

tions between calcifiers and silicifiers in an marine ecosystem model when exploring temperature dependent remineralisation

rates in the 21st Century. Future model experiments including a representation of plankton ecosystems would therefore help

explore the impact of CaCO3 export on regional sensitivity patterns.30

5 Conclusions

We have presented a sensitivity analysis that quantifies the sensitivity of atmospheric CO2 to regional variability in partic-

ulate organic carbon remineralisation depths. CO2 is most sensitive to changes in remineralisation depths occurring in the

Subantarctic regions, particularly the Indian Sector. As a whole, the Subantarctic regions have a sensitivity similar to that of

the Pacific basin despite the smaller area and levels of productivity
:::::::::
production. Sensitivity patterns are in part a function of

the magnitude of export production in each region and the physical circulation pathways specific to each region. Whilst the5

overall magnitude of CO2 sensitivity to regional changes is dependent on the magnitude and response of export production to
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changes in nutrients, the relative spatial patterns in sensitivity are predominantly constrained by ocean circulation pathways.

We also find that the regional variability adds ±5 - 15 ppm uncertainty to global mean changes in remineralisation depths. The

regional patterns in sensitivity could be significant if a number of processes that potentially drive changes in remineralisation

depths, including temperature-dependent remineralisation rates and plankton community structure, vary predominantly in the10

high latitudes. However, this uncertainty is similar to the change in CO2 for a globally uniform change in b of ⇠0.2 meaning

that larger changes in b could be reliably approximated by a globally uniform b as commonly used in biogeochemical models.

Code and data availability. The transport matrices are publicly available at: http://kelvin.earth.ox.ac.uk/spk/Research/TMM/TransportMatrixConfigs.

The model code is freely available at: http://github.com/JamieDWilson/FML

Appendix A: Model Description15

The Latin hypercube sampling approach used relies on the ability to run an ensemble of model experiments. To make this

approach feasible we use the ‘transport matrix method’ (Khatiwala et al., 2005; Khatiwala, 2007). The model is written in

Fortran 90 and achieves ⇠1500 years hour�1 on a single core.

A1 Steady-state Ocean Circulation Model

The matrix used here is the 2.8� global configuration of the MIT model with 15 vertical levels driven by seasonally cycling20

fluxes of momentum, heat, and freshwater, publicly available from http://kelvin.earth.ox.ac.uk/spk/Research/TMM/TransportMatrixConfigs.

Seasonally varying ocean circulation is calculated at each timestep by linearly interpolating between monthly mean matrices.

An advantage of using transport matrices is that the timestep can be made longer to reduce computational expense (Khatiwala,

2007). Here we extend the circulation timestep to 3.8 days.

A2 Biogeochemical Model25

The biogeochemical model represents the cycle of phosphorus
:::
and

::::::
carbon in the ocean with two

::::
four dissolved tracers, PO4and

:
, dissolved organic phosphorus (DOP).. ,

::::::::
dissolved

::::::::
inorganic

::::::
carbon

::::::
(DIC)

:::
and

::::
total

::::::::
alkalinity.

:
The biogeochemical model has

the same timestep as the ocean circulation model (3.8 days).

A2.1
::::::::::
Phosphorus

:::::
Cycle

PO4 and DOP are governed by the following equations:5

dPO4

dt
= APO4 � Jup + JPOP + JDOP (A1)
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dDOP
dt

= ADOP+ v · Jup � JDOP (A2)

where A denotes the transport matrix calculation of ocean transport and J denotes biogeochemical source/sink terms.

The uptake of PO4 during production of organic matter occurs in the euphotic zone, here defined as the base of the upper two

grid-boxes (120 m). Following Kwon et al. (2009) we calculate the production of organic matter using either a nutrient-restoring10

scheme or a constant-export scheme. The nutrient-restoring scheme restores surface concentrations of PO4 to observed [PO4]

with a restoring timescale (⌧ = 30 days Najjar et al., 2007) and is scaled by the fraction of seaice present (F
seaice

,
:::
as

:::::::
monthly

::::::
average

:::::
fields

::::
from

:::
the

:::::::
original

::::::
global

:::::::::
circulation

:::::
model):

Jup =
1

⌧
max

⇣�
PO4 � PO4,obs

�
,0
⌘
(1�F

seaice

) (A3)

Organic matter production in the constant-export scheme is fixed to that of the experiment defined as the control run unless15

surface [PO4] is depleted below zero in which case Jup is set to zero at that timestep. The control run is defined as having the

run with the lowest root mean square misfit compared to annual mean World Ocean Atlas [PO4] observations.

A fixed fraction (v=0.66) of the organic matter production integrated across the upper two grid-boxes is routed directly to

dissolved organic phosphorus (DOP) and remineralised back to PO4 in a first-order reaction with decay rate  throughout the

water column:20

JDOP = DOP (A4)

The remaining fraction of organic matter production ((1� kappa
:::::
1� v=0.34) is integrated across the upper two grid-boxes

and exported as particulate organic phosphorus (POP) at the base of the euphotic zone
:
of

:::
the

::::::
second

::::::::
grid-box

::
in

:::
the

:::::::
vertical

(120 m). The remineralisation of POP is parameterised with the Martin Curve (Equation 1). POP that has reached the sediment

is remineralised fully in the lowermost grid-box of the water column, maintaining a closed system with respect to [PO4]. As25

such, there is no sediment component in this model.

Appendix B: Preformed PO4 and atmospheric CO2

A0.1
:::::::
Carbon

:::::
Cycle

:::
The

::::::
uptake

::
of

::::::::
nutrients

:::
and

:::::::::::::
remineralisation

::
of
:::::::::
particulate

::::
and

::::::::
dissolved

::::::
organic

::::::::::
phosphorus

:::
are

::::::
related

::
to

::::::::
dissolved

::::::::
inorganic

:::::
carbon

::::
and

::::::::
alkalinity

:::
via

:::::::
Redfield

::::::
ratios

::
of

:::::::
1:16:116

::::::::
(P:N:C).

:::::::::
Carbonate

::::::::
chemistry

::::::::::
parameters

:::
are

::::::::
computed

:::::
from

::::::::
dissolved

::::::::
inorganic

::::::
carbon

:::
and

::::::::
alkalinity

::::::
using

:::
the

::::::
method

:::::::::
described

::
by

::::::::::::::::::
Follows et al. (2006).

::::
The

:::::::
method

:::::::
provides

::
a
:::::::::
simplified

:::
but

:::::::
accurate

:::::::
solution

::::
with

::::::::::::
computational

::::::::
efficiency.

::::
The

::::::
air-sea

:::
gas

::::::::
exchange

::
of

::::
CO2::

is
:::::::::
calculated

::
as

:::
per

::::::::::::::
Orr et al. (2017).5
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A0.2
:::::::::
Preformed

::::
PO4::::

and
:::::::::::
atmospheric

:::::
CO2

Changes in atmospheric CO2 due to changes in the biological pump can be directly related to the inventory or average con-

centration of preformed PO4 (POpre
4 :::

Ppre) if total nutrient concentrations are conserved (Ito and Follows, 2005; Marinov et al.,

2008). This provides a way of relating changes in our model of the phosphorous cycle to changes in atmospheric CO2 without

simulating a relatively computationally expensive carbon cycle. The distribution of annual mean [POpre
4 :::

Ppre] for each run is10

calculated by splitting the transport matrices into “interior” matrices (AI) and “exterior” matrices (B) for both the explicit and

implicit matrices (subscripts e and i respectively) (see Khatiwala, 2007). The annual mean surface [PO4] from the end of a

simulation is set as a boundary condition and solving for the interior distribution of POpre
4 :::

Ppre:

Ppre =
:::::

(AI
iA

I
e � I)POpre

4 =

�1
::

((AI
iBe +Bi)PO4) (A1)

The global mean concentration of of POpre
4 ([POpre

4 ]

:::
Ppre :::::

([Ppre]) is related to CO2 using a empirical quadratic function (eqn.

A2) . The functon
:::::
fitted

::
to

:
a
:::::
series

::
of

::::::::::
experiments

:::::
where

:::
the

::::::
Martin

:::::
curve

::
is

:::::
varied

:::::::
globally

::::
(see

::::::
below).

::::
The

:::::::
function is derived

from a compilation of published POpre
4 sensitivity experiments performed from three different models (Ito and Follows, 2005; Marinov et al., 2008; Kwon et al., 2009) using

a non-linear least squares regression (Fig. A1). Although the inventories of POpre
4 are model dependent (Duteil et al., 2012), the

changes in [POpre
4 ] and CO2 relative to those of the control run show consistent trends across the different models. The resulting5

regression fit (details in Figure caption) is used to estimate changes in CO2:

CO2 = (�1�POpre 2
4 [Ppre]

2
+�2�POpre

4 [Ppre] +�3)+COctrl
2 (A2)
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Figure 1. The normalised water column distribution of particulate fluxes defined using the Martin curve. As a comparison, Martin curves are

shown with the exponent found by Martin et al. (1987) (b=0.858) and minimum and maximum exponent values used in this study based on

sediment trap data compilations (b=0.4, b=1.6 Henson et al., 2012; Marsay et al., 2015; Guidi et al., 2015). All curves have export depth (z0,

eqn. 1) of 120 m.
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Figure 2. a) Location and names of the 15 regions defined on the model grid based on Gloor et al. (2001). Boundaries are at 58�S, 36�S,

13�S, 13�N, and 36�N. The equatorial Pacific is split at 98.75�E following Mikaloff Fletcher et al. (2006). Each region can be assigned a

value of b that is independent of other regions. b) Location of regions superimposed on the annual mean surface [PO4] from World Ocean

Atlas 13 (Garcia et al., 2014) regridded to the model grid.
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Figure 3. Regional sensitivity (�CO2/�b) of atmospheric CO2 (ppm) to changes in Martin curve exponents (b: unitless)
:::::
curves

:
for (a) the

constant-export scheme and (
:::::
panels

:
a
::
& b) the

::
and

:
restoring-uptake scheme

:::::
(panels

:
c
::
&

::
d).A positive

:::
The

::::::::
sensitivity value relects an

:::::
reflects

::
the

:
increase in CO2 (preformed PO4) with increasing

::
for

::
an

::::::
increase

::
in
:
b (shallower remineralisation). Atmospheric CO2 is inferred from

modelled preformed PO4 using the empirical relationship
:::::::::
relationships

:
in Figure A1.
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Figure 5. Normalised sensitivity
::::::::
Sensitivity

:
of steady-state

::::::::
normalised mean preformed [PO4] in all regions to

:::::::
exported

::::
from

::::
each

:::::
region

::::::::
([Pregion

pre ]).
:::::::
[Pregion

pre ]
::::
from

::::
each

:::::
region

::
is

:::::::
expressed

::
as a local change in

::::::
function

::
of b calculated with the constant-export scheme

::::
using

:::::
linear

:::::::
regression. Sensitivity

:::::::
[Pregion

pre ]
:
is calculated using equation 3 and preformed PO4is normalised before so that sensitivity can be compared

on
::
to the same scale

::::
range

::
of

:::::
values

::::::
within

::::
each

:::::
region

::
in

:::
the

:::::::
ensemble

::
to

::::::
account

:::
for

::::
large

:::::::::
differences

::
in

::::::::
preformed

:::::::
[Pregion

pre ]
:::::::
between

:::::
regions. The regression coefficients specific to a single region are collected from across the 15 regression results in

::::::
arranged

::::
such

:::
that each

panel to show
:::
row

:::::
shows the relative sensitivity

::::
impact

:
of POpre

4 exported across all regions (grey) in response to changes in
:::::::
changing b local

to the
:
in

:::
that

:
region (black) corresponding with panel

::
on

:::::::
[Pregion

pre ]
:::::
across

::::
other

::::::
regions. Panels are arranged by basins and by latitude. The

equivalent plot
::::
upper

:::
and

:::::
lower

:::::
panels

::::
show

:::
the

:::::
results

:
for the

:::::::::::
constant-export

:::
and

:
restoring-uptake scheme is found in the supplementary

material
::::::
schemes

:::::::::
respectively.
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Figure 6. Comparison of CO2 sensitivity when b is varied as globally uniform parameter (solid lines) and when b is varied regionally

in the Latin hypercube samples and calculated as an (a) area-weighted global mean and (b) area-weighted geometric mean of e-folding

depths converted back to b to correct for non-linearities in the Martin Curve. Runs using the constant-export scheme are shown in black and

restoring-uptake runs are shown in grey.
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Figure A1. Relationship between relative changes in preformed PO4 and atmospheric CO2 from previously published
:
in
:::
the

::::::::::::
biogeochemical

model experiments (see legend for details). Relative changes are calculated by subtracting
::::
using

:::::::::::::
nutrient-restoring

:::
and

:::::::::::
constant-export

:::::
when

the respective values from the control run (for Marinov et al., 2008 this
:::::
Martin

:::::
curve is defined as the LL - regular gas exchange run).

All models feature gas exchange
:::::
varied

::::::
globally

:::::::
between

:::
0.4

:
and no export production of CaCO3 ::

1.6. A quadratic function (�CO2 =

�1�PO4,pre
2 +�2�PO4,pre +�3)

::
is fitted to the combined data with non-linear least squares is shown with 95 % confidence intervals.

The R2 for the regression model is 0.97. The coefficients for the fit
::
two

:::
fits

:
are �1=54.12

::::
66.59, �2=170.15

::::
-22.48

:
and �3=1.37

:::::
187.09

:::
for

:::::::::::
constant-export

:::
and

::::::::
�1=42.80,

:::::::
�2=-6.69

:::
and

::::::::
�3=207.95
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Table 1. Key metrics
::
and

::::::::
sensitivity

:::::::
estimates

:
for each region

:::
and

:::::
basins.

:::::::::::
Representative

::::::
metrics

:
including area

:::
(%

::
of

:::::
global

::::
area), region-

integrated mean annual POC
:::
POP

:
export

::
(%

::
of

:::::
global

::::
POP

:::::::
export),

:::
and

::::
mean

::::::::
preformed

:
[
:::
PO4]

::
(%

::
of

:::::
global

:::::
mean)

:::
are

:::::
taken from the

control run, .
:

CO2 sensitivity
::::::
estimates

:
for both the restoring-uptake and constant-export ensembles

::::
given

::
as

:::::::::
�CO2/�b)

:::
(�

k::::
from

:::
eqn.

::
2)

:::
and

::
as

:
a
::
%

::::::::::
(�

k

/
P

k

�
k

)

area Control Constant Export Restoring Uptake

::::
Area (%) POC

:::
POP

:
Export (%) a � (�CO2/�b

::::::
PO4,pre ::

(%) � (
::
�
k::::::::::

(�CO2/�b)
: ::::::::

�
k

/
P

k

�
k:

(%) � (�CO2/�b
::
�
k:::::::::

(�CO2/�b) �
::::::::
�
k

/
P

k

�
k

(%)

SO 6.70 2.81 6.40
::::
40.20 3.89

::::
5.73 1.83

:::
3.83 4.59

::::
1.17

:::
4.58

SubPol-PAC 7.67 8.35 17.11
::::
5.23

::::
15.54

:
10.40 4.20

::::
2.70 10.55

STemp-PAC 10.37 7.86 6.25
:::
0.29

:
3.80

::::
5.72 1.01

:::
3.83

:::
0.65 2.54

Weq-PAC 7.21 7.46 9.42
:::
0.11

:
5.72

::::
8.45 2.48

:::
5.66 6.23

::::
1.59

:::
6.22

Eeq-PAC 8.20 11.53 17.45
::::
0.24 10.60

::::
15.91

:
2.96

::::
10.64

: :::
1.90 7.43

Ntemp-PAC 9.69 7.66 15.04
::::
0.26 9.14

::::
13.72 3.56

:::
9.18

:::
2.29 8.94

NN-PAC 4.94 3.50 6.99
:::
4.21

:
4.25

::::
6.32 1.73

:::
4.23 4.34

::::
1.11

:::
4.33

SubPol-ATL 4.84 5.52 15.23
::::
12.22

:
9.25

::::
13.84 3.75

:::
9.26

:::
2.41 9.41

Stemp-ATL 4.46 3.53 5.79
:::
0.14

:
3.52

::::
5.21 1.79

:::
3.49

:::
1.15 4.49

Eq-ATL 5.45 6.06 10.58
::::
0.10 6.43

::::
9.58 3.28

:::
6.41

:::
2.10 8.22

NTemp-ATL 5.13 3.09 3.44
:::
0.04

:
2.09

::::
3.29 1.18

:::
2.20 2.96

::::
0.76

:::
2.97

NN-ATL 4.84 7.04 9.16
::::
23.54

:::
8.32 5.57 2.91

::::
1.87 7.29

SubPol-IND 6.86 9.18 20.26
::::
13.04

:
12.31

::::
18.29

:
4.68

::::
12.24

: :::
3.00 11.73

STemp-IND 6.31 5.63 7.47
:::
0.20

:
4.54

::::
6.80 1.69

:::
4.55

:::
1.08 4.23

Eq-IND 7.32 10.85 13.98
::::
0.20 8.49

::::
12.72 2.81

:::
8.51

:::
1.81 7.06

::::::
>38�Sa

::::
26.08

: ::::
25.85

::::
70.68

::::
53.40

: ::::
35.73

:::
9.29

::::
36.27

:

Subantarcticb 19.38 23.04 n/a
::::
30.48

:
31.96

::::
47.67

:
n/a

::::
31.90

:::
8.11 31.69

Pacific 40.41 37.96 n/a
:::

5.11 33.52
::::
50.11

:
n/a

::::
33.54 29.47

:::
7.54

::::
29.46

:

Atlantic 19.88 19.72 n/a
::::
23.81

:
17.60

::::
26.40

:
n/a

::::
17.67

:::
5.88 22.97

Indian 13.63 16.48 n/a
:::

0.40 13.03
::::
19.52

:
n/a

::::
13.06 11.29

:::
2.89

::::
11.30

:

aFor comparison with Southern Ocean estimate defined as >40�S in Kwon et al. (2009) bSubPol-PAC, SubPol-ATL and SubPol-IND
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