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Supplementary Material

1 Global Averaging of Martin’s b parameter

Here we describe the calculation of a global mean from samples of spatially variable b. Figure 6 in the manuscript shows
that when COs is plotted against the global mean b of the Latin hypercube samples, there is a constant offset versus runs
where b is varied uniformly. We suggest that this offset is a function of a non-linear relationship between b and the amount of

organic carbon reaching the ocean interior. This is demonstrated by expressing b as an e-folding depth (the depth at which the
1

proportion of organic matter that has remineralisation = < ~ 0.63). This is achieved by rearranging the Martin curve equation:
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where zg is the depth of the euphotic zone (here zp=120 m), F’, is the flux of POC at depth z and F is the flux of POC
out of the euphotic zone (2(). e-folding depths get increasingly deeper with decreasing values of b (Figure 1). For example,
a change in b from 1.4 to 1.3 results in a decrease in e-folding depth of 14 m whereas a change in b from 0.4 to 0.3 results
in a 1902 m. This follows from the fact that the Martin curve represents the scenario of a fixed remineralisation rate and an
increasing sinking rate (Kriest and Oschlies, 2008). Therefore, when averaging spatially variable b values, larger values will
have disproportionally more weight in comparison to their impact on ocean biogeochemistry.

To account for this non-linear effect on biogeochemistry, we alternatively calculate the global mean of each Latin hypercube
ensemble experiment when converted to e-folding depths. Because of the non-linear relationship between b and e-folding
depths, an arithmetic mean is unsuitable (e.g., Figure 3). We alternatively calculate an area-weighted geometric-weighted
mean and convert this back to a value of b:

An alternative approach to calculating a global mean is to calculate a set of weights based on e-folding depths. However, the
calculation of these weights is not straightforward. Alternatively, a Latin hypercube ensemble could be samplefrom a uniform
distribution of e-folding depths rather than b and parameterising remineralisation with an exponential function. However,
power-law based parametersations are commonly usedn in biogeochemical models (e.g., Hiilse et al., 2017) as well as in
interpreting observations (Honjo et al., 2008). We note that a number of different mathematical functions, each with different
mechanistic interpretations and including a power-law and exponential function, are not statistically distinguishable from each
other based on existing observations (Cael and Bisson, 2018).
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Figure 1. The e-folding depths (depth at which 0.63% of organic matter has been remineralised) corresponding to various Martin curve
exponents. e-folding depths are calculated using eqn. 2.
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Figure 2. Histogram of e-folding depths for all water columns in the model, calculated from b values from one Latin hypercube sample using
equation 2.
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Figure 3. Normalised sensitivity of steady-state mean preformed [PO4] from each region to regional changes in b calculated with the
restoring-export scheme. Sensitivity is calculated using the same linear regression method as in Figure 3 except that preformed [PO4] is
normalised before so that sensitivity can be compared on the same scale. Bars show the magnitude and sign of sensitivity to changes in b
that are local to that region (black) and in other regions (grey). Panels are arranged by basins and by latitude. The equiavlent plot for the
constant-uptake scheme is found in Figure 5 of the main text.



