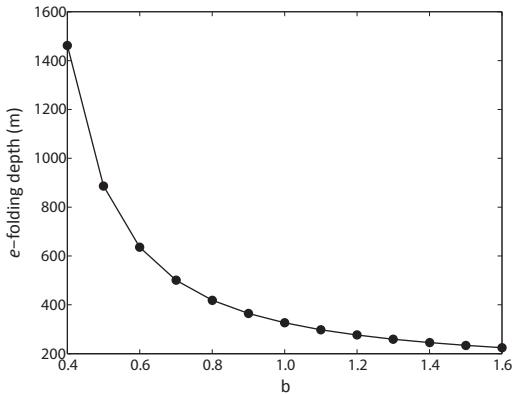


Supplementary Material

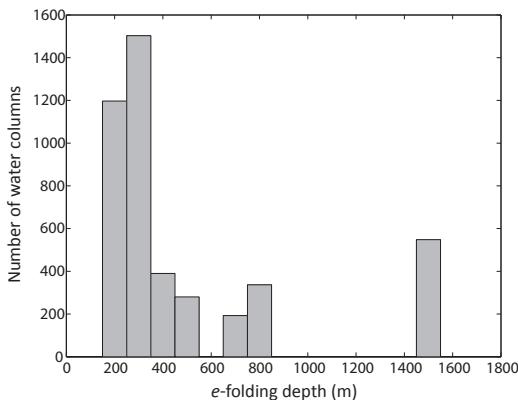
1 Global Averaging of Martin's b parameter

Here we describe the calculation of a global mean from samples of spatially variable b . Figure 6 in the manuscript shows that when CO_2 is plotted against the global mean b of the Latin hypercube samples, there is a constant offset versus runs 5 where b is varied uniformly. We suggest that this offset is a function of a non-linear relationship between b and the amount of organic carbon reaching the ocean interior. This is demonstrated by expressing b as an e -folding depth (the depth at which the proportion of organic matter that has remineralisation $= \frac{1}{e} \approx 0.63$). This is achieved by rearranging the Martin curve equation:

$$F_z = F_{z_0} \left(\frac{z}{z_0} \right)^{-b} \quad (1)$$


for depth (z) when $\frac{F_z}{F_{z_0}} = \frac{1}{e}$:

$$10 \quad z = -\sqrt[b]{\frac{F_z}{F_{z_0}}} z_0 \quad (2)$$


where z_0 is the depth of the euphotic zone (here $z_0=120$ m), F_z is the flux of POC at depth z and F_{z_0} is the flux of POC out of the euphotic zone (z_0). e -folding depths get increasingly deeper with decreasing values of b (Figure 1). For example, a change in b from 1.4 to 1.3 results in a decrease in e -folding depth of 14 m whereas a change in b from 0.4 to 0.3 results in a 1902 m. This follows from the fact that the Martin curve represents the scenario of a fixed remineralisation rate and an 15 increasing sinking rate (Kriest and Oschlies, 2008). Therefore, when averaging spatially variable b values, larger values will have disproportionately more weight in comparison to their impact on ocean biogeochemistry.

To account for this non-linear effect on biogeochemistry, we alternatively calculate the global mean of each Latin hypercube ensemble experiment when converted to e -folding depths. Because of the non-linear relationship between b and e -folding depths, an arithmetic mean is unsuitable (e.g., Figure 3). We alternatively calculate an area-weighted geometric-weighted 20 mean and convert this back to a value of b :

An alternative approach to calculating a global mean is to calculate a set of weights based on e -folding depths. However, the calculation of these weights is not straightforward. Alternatively, a Latin hypercube ensemble could be sample from a uniform distribution of e -folding depths rather than b and parameterising remineralisation with an exponential function. However, power-law based parameterisations are commonly used in biogeochemical models (e.g., Hülse et al., 2017) as well as in 25 interpreting observations (Honjo et al., 2008). We note that a number of different mathematical functions, each with different mechanistic interpretations and including a power-law and exponential function, are not statistically distinguishable from each other based on existing observations (Cael and Bisson, 2018).

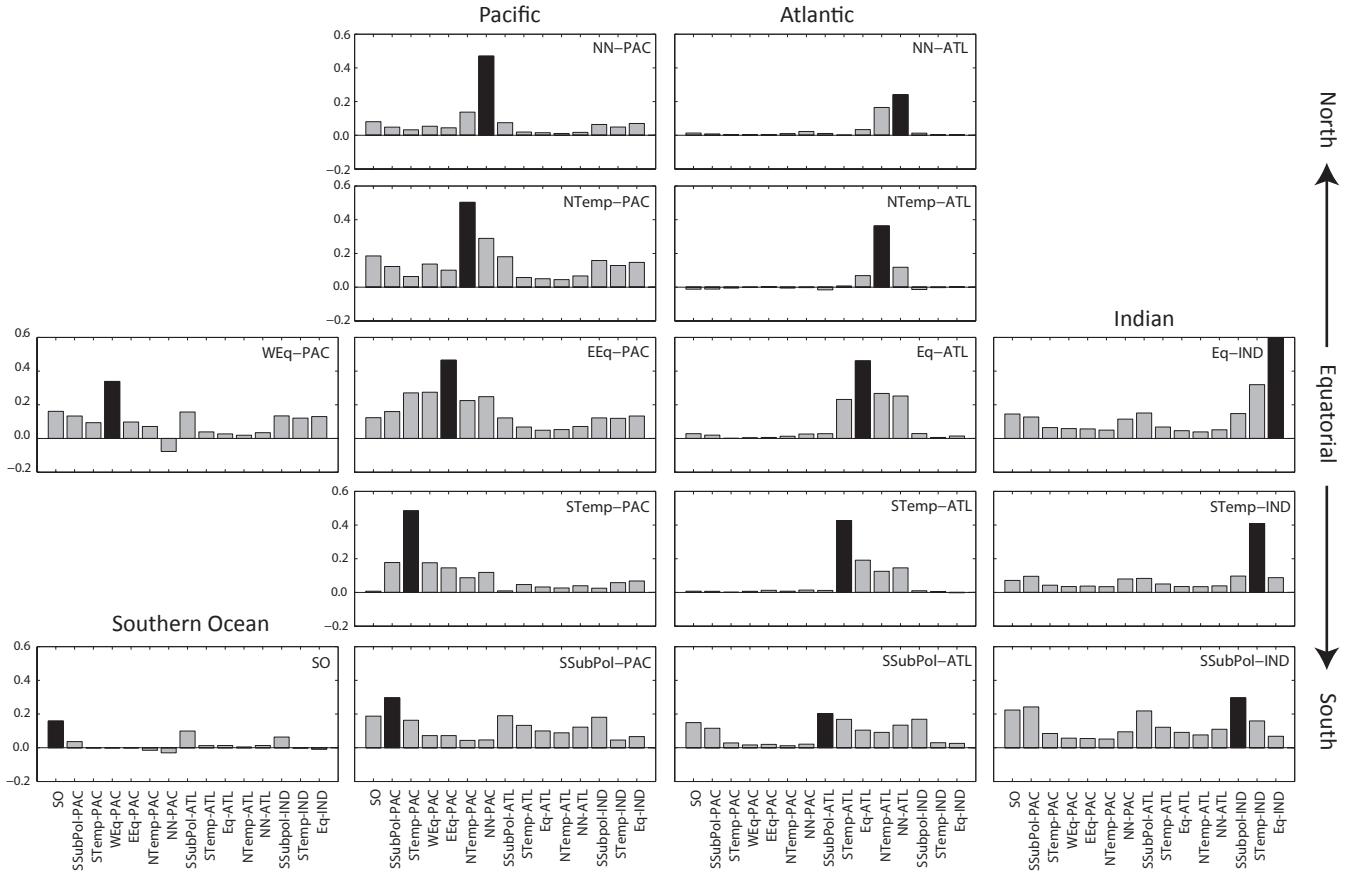

Figure 1. The e -folding depths (depth at which 0.63% of organic matter has been remineralised) corresponding to various Martin curve exponents. e -folding depths are calculated using eqn. 2.

Figure 2. Histogram of e -folding depths for all water columns in the model, calculated from b values from one Latin hypercube sample using equation 2.

References

- Cael, B. B. and Bisson, K.: Particle Flux Parameterizations: Quantitative and Mechanistic Similarities and Differences, *Frontiers in Marine Science*, 5, 395, <https://doi.org/10.3389/fmars.2018.00395>, <https://www.frontiersin.org/article/10.3389/fmars.2018.00395>, 2018.
- Honjo, S., Manganini, S. J., Krishfield, R. A., and Francois, R.: Particulate organic carbon fluxes to the ocean interior and factors controlling the biological pump: A synthesis of global sediment trap programs since 1983, *Progress in Oceanography*, 76, 217–285, <https://doi.org/10.1016/j.pocean.2007.11.003>, 2008.
- Hülse, D., Arndt, S., Wilson, J. D., Munhoven, G., and Ridgwell, A.: Understanding the causes and consequences of past marine carbon cycling variability through models, *Earth-Science Reviews*, 171, 349 – 382, <https://doi.org/https://doi.org/10.1016/j.earscirev.2017.06.004>, <http://www.sciencedirect.com/science/article/pii/S0012825216303191>, 2017.
- Kriest, I. and Oschlies, A.: On the treatment of particulate organic matter sinking in large-scale models of marine biogeochemical cycles, *Biogeosciences*, 5, 55–72, <https://doi.org/10.5194/bg-5-55-2008>, <http://www.biogeosciences.net/5/55/2008/>, 2008.

Figure 3. Normalised sensitivity of steady-state mean preformed $[\text{PO}_4]$ from each region to regional changes in b calculated with the restoring-export scheme. Sensitivity is calculated using the same linear regression method as in Figure 3 except that preformed $[\text{PO}_4]$ is normalised before so that sensitivity can be compared on the same scale. Bars show the magnitude and sign of sensitivity to changes in b that are local to that region (black) and in other regions (grey). Panels are arranged by basins and by latitude. The equivalent plot for the constant-uptake scheme is found in Figure 5 of the main text.