Review of Harms et al. (iteration #2)

General comments:

Overall, Harms *et al.* addressed most of my concerns. The dataset presented is interesting as it focuses on an under-sampled region of the ocean (the subtropical South Indian Ocean). While they now use their dual nitrate isotope data a bit more in their discussion, I was not entirely satisfied. In my opinion, this section of the manuscript remains insufficient. The study would be improved if they could use their dual nitrate isotope data in a simple model to validate their current estimate of newly fixed N derived using Redfield assumptions. I have provided the equations that I use for similar simple isotope box models in my 2009 and 2013 manuscripts below. The authors are welcome to contact me (abourbonnais@seoe.sc.edu) with any questions.

Specific comments and technical corrections:

Abstract:

Page 1, lines 14-15: Change to: "Our results are the first in this ocean region and provide new information on nitrogen sources and transformation processes."

Page 1, line 16: Change to "... IOSG with values of $<3 \mu M$ for both NO₃⁻ and PO₄³⁻...."

page 1, lines 23-24: What do they mean by "partial-assimilated organic matter"? Do they mean organic matter with a low δ^{15} N? Is there any evidence for low δ^{15} N of organic material in the SAMW?

Page 1, line: They did not use an isotope budget to derive this estimate (see my general comments above).

Materials and Methods:

page 5, lines 19-20: What was the δ^{15} N and δ^{18} O for the internal standard? What was the size of the blank (if any)?

Results:

Page 7, line 9: Change to ".... of $<3 \mu$ M for both NO₃⁻ and PO₄³⁻"

Discussion:

Page 14, lines 2-3: Change to "and biologically N2-fixation are major processes..."

Page 15, lines 9-11: Change to "... N*. The analytical error on N* estimate based on the relative error for nitrate and phosphate analysis was below 1.5% for duplicate sample measurements." Is the error on N* calculated from propagating the errors for these analysis?

page 15, line 15: Change "characterized" to "affected".

Page 16, lines 11-13: ${}^{18}\varepsilon$: ${}^{15}\varepsilon$ is associated with both assimilative (nitrate assimilation) and dissimilative (denitrification) nitrate reduction.

Page 16, lines 15-17: This sentence is not clear. The isotope effect associated with ammonium production and nitrification does not affect the δ^{15} N-NO₃⁻ because ammonium and nitrite generally does not accumulate in oxic waters.

Page 16 and 17, last and first sentences: This point needs to be discussed more. How the δ^{18} O of seawater is affected by ammonium and nitrite oxidation? For instance, they could add the following sentence: " δ^{18} O depends on the ε during NH₄⁺ and NO₂⁻ oxidation, water incorporation (with δ^{18} O- H₂O of ~0‰), and the exchange of oxygen atoms with water that should generate a δ^{18} O of newly produced NO₃⁻ between -8 and -1‰ (Buchwald and Casciotti, 2010; Casciotti *et al.*, 2010).

Page 19, lines 13-14: Provide an estimate of N atmospheric depositions in this region to support this claim.

Page 19, line 22: Correct "N2-fiaxtion"

Page 19, section 4.2.2. The manuscript would be improved if they could also derive an N_2 fixation estimate using a simple isotope model, as described below.

Additional references:

Bourbonnais, A., Lehmann, M. F., Hamme, R. C., Manning, C. C., & Juniper, S. K. (2013). Nitrate elimination and regeneration as evidenced by dissolved inorganic nitrogen isotopes in Saanich Inlet, a seasonally anoxic fjord. *Marine chemistry*, *157*, 194-207.

Casciotti, K. L., McIlvin, M., & Buchwald, C. (2010). Oxygen isotopic exchange and fractionation during bacterial ammonia oxidation. *Limnology and Oceanography*, 55(2), 753-762.

Example of simple isotope box model (Bourbonnais et al., 2009 and 2013)

Figure 1. Nitrate isotope box-model for scenario 2a in Bourbonnais et al. (2013).

Note: $\delta^{15}N_{rain}$ in this model represents the $\delta^{15}N$ in precipitations, but could be replaced by the $\delta^{15}N$ for N_2 fixation in the Harms *et al.* paper.

N flux terms:

- $\mathbf{a} = \mathbf{N}$ from precipitation flux
- **b** = seawater mixing
- \mathbf{c} = nitrate removal (by nitrate assimilation (C_{upt})
- **d** = organic matter remineralization and nitrification (recycled production)

 $\delta^{15}N_{Box}$ = steady-state $\delta^{15}N-NO_3^{-1}$ (under model assumptions)

 $\delta^{18}O_{Box}$ = steady-state $\delta^{18}O$ -NO₃⁻ (under model assumptions)

 $\delta^{15}N_{rain} = \delta^{15}N-NO_3^{-1}$ from precipitation (2‰)

 $\delta^{18}O_{rain} = \delta^{18}O-NO_3^-$ from precipitation (35‰)

 $\delta^{15}N_{dw mix} = \delta^{15}N-NO_3^{-3}$ added from vertical mixing with deep-water (7.5‰)

 $\delta^{18}O_{dw mix} = \delta^{18}O-NO_3^-$ added from vertical mixing with deep-water (2‰)

 $\delta^{15}N_{upt} = \delta^{15}N_{Box} - \varepsilon_{upt}$ (‰) = $\delta^{15}N-NO_3^{-1}$ of nitrate assimilated

 $\delta^{18}O_{upt} = \delta^{18}O_{Box} - \epsilon_{upt}$ (‰) = $\delta^{18}O$ -NO₃⁻ of nitrate assimilated

where

 ε_{upt} (‰) = nitrate assimilation isotope effect (5 ‰)

 $\delta^{15}N_{nitrif} = \delta^{15}N$ of nitrate generated in the process of organic matter remineralization and nitrification.

 $\delta^{18}O_{nitrif} = \delta^{18}O$ of nitrate generated in the process of organic matter remineralization and nitrification (-3.8 ‰).

The equation for $\delta^{15}N_{Box}$ is derived from:

$$\begin{split} \delta^{15}N_{Box} &= [\delta^{15}N_{rain} \times a] + [\delta^{15}N_{dw\ mix} \times b] - [(c_{upt} - d) \times (\delta^{15}N_{Box} - {}^{15}\epsilon_{upt})] \\ \delta^{15}N_{Box} &= [\delta^{15}N_{rain} \times a] + [\delta^{15}N_{dw\ mix} \times b] - [(c_{upt} - d) \times \delta^{15}N_{Box}] + [(c_{upt} - d) \times {}^{15}\epsilon_{upt}] \\ \delta^{15}N_{Box} &+ [(c_{upt} - d) \times \delta^{15}N_{Box}] = [\delta^{15}N_{rain} \times a] + [\delta^{15}N_{dw\ mix} \times b] + [(c_{upt} - d) \times {}^{15}\epsilon_{upt}] \\ \delta^{15}N_{Box} &+ [(c_{upt} - d) \times \delta^{15}N_{Box}] = [\delta^{15}N_{rain} \times a] + [\delta^{15}N_{dw\ mix} \times b] + [(c_{upt} - d) \times {}^{15}\epsilon_{upt}] \\ \delta^{15}N_{Box} &+ [(c_{upt} - d) \times \delta^{15}N_{Box}] = [\delta^{15}N_{rain} \times a] + [\delta^{15}N_{dw\ mix} \times b] + [(c_{upt} - d) \times {}^{15}\epsilon_{upt}] \\ \delta^{15}N_{Box} &\times [1 + (c_{upt} - d)] = [\delta^{15}N_{rain} \times a] + [\delta^{15}N_{dw\ mix} \times b] + [(c_{upt} - d) \times {}^{15}\epsilon_{upt}] \end{split}$$

The final equation for $\delta^{15}N_{Box}$ is:

 $\delta^{15}N_{Box} \ = \left[(\delta^{15}N_{rain} \times a) \ + \left[\delta^{15}N_{dw \ mix} \times b \right] \ + \left[(c_{upt} \ \text{-} \ d) \times \ ^{15}\epsilon_{upt} \right] / \left[1 + (c_{upt} \ \text{-} \ d) \right]$

The equation for $\delta^{18}O_{\text{box}}$ is derived from:

$$\begin{split} \delta^{18}O_{Box} &= [\delta^{18}O_{rain} \times a] + [\delta^{18}O_{sw \ mix} \times b] - [c_{upt} \times (\delta^{18}O_{Box} - {}^{18}\epsilon_{upt})] + [d \times \delta^{18}O_{nitrif}] \\ \delta^{18}O_{Box} &= [\delta^{18}O_{rain} \times a] + [\delta^{18}O_{sw \ mix} \times b] - [c_{upt} \times \delta^{18}O_{Box}] + [c_{upt} \times {}^{18}\epsilon_{upt})] + [d \times \delta^{18}O_{nitrif}] \\ \delta^{18}O_{Box} &+ [c_{upt} \times \delta^{18}O_{Box}] = [\delta^{18}O_{rain} \times a] + [\delta^{18}O_{sw \ mix} \times b] + [c_{upt} \times {}^{18}\epsilon_{upt})] + [d \times \delta^{18}O_{nitrif}] \\ \delta^{18}O_{Box} \times [1 + c_{upt}] = [\delta^{18}O_{rain} \times a] + [\delta^{18}O_{sw \ mix} \times b] + [c_{upt} \times {}^{18}\epsilon_{upt})] + [d \times \delta^{18}O_{nitrif}] \\ The final equation for \ \delta^{18}O_{Box} \ is: \\ \delta^{18}O_{Box} &= [\delta^{18}O_{rain} \times a] + [\delta^{18}O_{sw \ mix} \times b] + [c_{upt} \times {}^{18}\epsilon_{upt})] + [d \times \delta^{18}O_{nitrif}] / [1 + c_{upt}] \end{split}$$

The $\Delta(15,18)$ is calculated according to the following equation:

 $\Delta(15,18) = (\delta^{15}N \cdot \delta^{15}N_{deep}) - [({}^{18}\delta/{}^{15}\delta) \ (\delta^{18}O - \delta^{18}O_{deep})]$