
We appreciate the comments from two anonymous reviews. We answer below in blue 
text to each comment listed in black adding the explicit change made in the revised 
manuscript. 
 
Reviewer #1 
 
This paper develops an analysis of the global land C fluxes for three decades. The aim 
of the paper is to analyse the performance of a data assimilation system, over a 
historical period. The paper misses clear science questions that would broaden the 
interest of the study. I lack a clear understanding of the novelty of this work. The 
conclusions focus on the result that a single decade of data leads to similar results to 3 
decades of assimilation, but I am not clear how robust this result is, and how 
significant it is. I suggest the authors focus more clearly on the novelty of their 
experimental results. It would be helpful to focus on science questions that are more 
broadly relevant to the C cycle science community.  
We appreciate the reviewer’s concerns and are grateful for the comments, which have 
helped us to formulate the manuscript more clearly. We present three decades of land 
C flux reanalysis with the aim to better understand the ability of MPI-CCDAS to 
make decadal projections of the land C cycle. Our approach was to assimilate 
different time-periods of data to understand the effect of data selection, but also the 
effect of withholding more recent information. In this way, we can assess the 
projection of carbon fluxes for the more recent period, and not only against the 
withheld observations, but also against a model run that has been constrained by this 
data, in order to disentangle model limitations (i.e. in reproducing an observation that 
the model was informed about through data assimilation) from prognostic uncertainty 
(i.e. in failing to reproduce an observation that it can reproduce when given this 
information). To our knowledge, this is a novel design and focus in data assimilation 
studies. Previous findings on the prognostic capacity of a CCDAS only looked at 
short timescales after the assimilation (Scholze et al. 2007; Schürmann et al. 2016), or 
in the case of Rayner et al. 2011, the authors used a much simpler model ignoring the 
interacting effects of water, energy and phenology on the carbon cycle predictions. In 
the revised manuscript, we are more explicit and clearer in the scientific contribution 
of our results that are relevant to the carbon cycle scientific community.  
Our results demonstrate that it is not necessary to ingest more than one decade of 
observations to improve important features of the global carbon cycle over the 
following 1-2 decades. In particular, improvements were observed in the long-term 
trend and seasonal amplitude of atmospheric CO2 concentrations at station level, as 
well as in the long-term trend, phenological seasonality and interannual variability of 
FAPAR. These results provide an insight into the amount of data that is necessary in 
data assimilation systems to improve the representation of the global carbon cycle 
components. This information might be decisive for opening the possibility of 
including newly measured data of other global indicators, such as SIF, that currently 
only exist for periods of less than a decade. 
The new paragraph in the introduction of the revised ms where the aim of the ms is 
clarified reads: 
“The overarching aim of this work is to understand the ability of the MPI-CCDAS v1 
to make decadal projections of the land C cycle when the assimilation is confronted to 
different temporal windows from two observational constraints: FAPAR from remote 
sensing data and atmospheric CO2 concentrations from the global flask measurements 
network. For this, we present three decades of modeled land carbon fluxes with the 
MPI-CCDAS and investigate the effect of withholding information from recent 
decades in the projected carbon fluxes and the ability of the model to reproduce the 



observations during the period of data assimilation. We also analyze trends and 
seasonal variations in the simulated signals during the periods of the assimilation and 
compare to independent results to evaluate the model performance. With these results, 
we gain insights in the number of observations (in terms of decadal scale) necessary 
in data assimilation systems to improve the representation of the global terrestrial 
carbon cycle components. These results open the possibility of including newly 
measured data in DAS that are only available for periods of less than a decade.” 
 
It might be helpful to add experiments assimilating just FAPAR or just CO2, and test 
the outputs against the other (withheld) observational dataset. This experiment might 
indicate whether the model effectively couples canopy processes with atmospheric 
concentrations. 
We appreciate the suggestion of the reviewer regarding the experiment of only 
assimilating one of the observational data sets at a time. However, we did not want to 
repeat this experiment because this has been previously done with the same system in 
Schürmann et al. 2016. In that work, 5 years of observational data (2005 – 2009) were 
assimilated in three independent experiments: only FAPAR, only atmospheric CO2 
concentrations and the two data sets simultaneously. The results showed that with this 
time period it was sufficient to demonstrate, in a nutshell, that when assimilating only 
FAPAR, the average growing season and vegetation seasonality (indicated by 
FAPAR) was considerably improved in the northern boreal areas. When atmospheric 
CO2 concentrations were the only assimilated observations, the global gross and net 
carbon fluxes were overall improved, but the GPP in the tropics was significantly 
reduced when compared to the GPP after the FAPAR-only assimilation.  
While we agree with the reviewer that in principle it would have been interesting to 
repeat these experiments to analyze their effect on long-term trends, this would 
require too much computational time to be included in this study and it was not the 
central focus of this work. 
 
The abstract is too long, it needs to be reduced to 300 words and focused on the key 
outcome. 
We significantly shortened the abstract and remain under 300 words, including only 
the key outcome regarding using different periods in the observational data during the 
assimilation. 
 
Writing style is clunky, missing words – for instance the opening sentence is poorly 
comprehensible: “The observed contemporary in atmospheric CO2 is driven by 
anthropogenic emissions from fossil fuels and land-use change”. I suggest the authors 
work together to improve the English, reduce sentence lengths, and shorten the more 
bloated paragraphs. 
We realized that we missed the word “increase” in the opening sentence and 
appreciate the reviewer for pointing this out. The sentence should read: “The observed 
contemporary increase in atmospheric CO2 …”, we apologize for this. Besides this 
correction, the revised manuscript has undergone a thorough revision for the English 
language with the aim of shortening sentences and paragraphs. 
 
Methods: The global grid is very coarse (8x10_) – what are the implications?  
A previous work with the dynamic global vegetation model LPG-DGVM (Müller and 
Lucht, 2007), demonstrated that the effect of increasing the spatial resolution did not 
have a strong effect on the simulated regional and global carbon fluxes, whereas 
temporal dynamics are unaffected. To our knowledge, the effect on the simulated C 
fluxes after assimilation due to changes in the horizontal spatial resolution of the 



model grid cells solely, has not yet been assessed with current data assimilation 
systems. One reason for this is that the computational cost of such approach is 
prohibitive. A study using ORCHIDAS (Peylin et al., 2016), suggested that the level 
of complexity of the ecosystem model in a data assimilation system, including its 
spatial resolution, does not guarantee improvements in the optimization of C fluxes. 
Such a conclusion is likely valid for the assimilation of atmospheric observations, but 
does decrease the ability of the CCDAS to adequately constrain phenology parameters 
given the mixed phenology in these large pixels. We would like to point out, however, 
that increasing the spatial resolution to a degree that would allow for a clean 
identification of PFT-wise parameters, exceeds the resolution of many state-of-the-art 
forward terrestrial biosphere models. The following paragraph in the revised ms is 
added in section 2.1 of Methods:  
“This horizontal resolution allows computational feasibility and a realistic 
computational cost for the set of experiments presented in this work. Furthermore, 
previous evidence has shown that a higher spatial resolution in global vegetation 
models does not exert a considerable influence in the simulated carbon fluxes at 
global or regional scales when compared to results obtained with a coarse grid 
(Müller and Lucht, 2007). The lack of influence to improve the simulated global C 
fluxes due to changes in the model spatial resolution might also apply to CCDAS 
(Peylin et al., 2016).” 
 
Why mix such a large spatial grid with such fine temporal scales? Is this valid or 
required? Why not have a grid that matches TM3? 
We are unsure on the meaning of the question by the reviewer, because it combines 
both spatial and temporal scales. In the CCDAS, we integrate the simulated daily net 
CO2 fluxes to monthly scale and transport them with the Jacobian representation of 
TM3. This approach allows us to account for the non-linear impact of weather 
anomalies on the surface fluxes, but removes the impact of synoptic atmospheric 
transport variability on the simulated seasonal and long-term dynamics of 
atmospheric CO2 at the monitoring stations. We improved this explanation in the 
revised manuscript. Although it would be desirable to use MPI-CCDAS on the same 
grid as TM3, the land-surface model is currently numerically too expensive to allow 
these higher resolutions.  
 
Explain what is meant by ‘each iteration’ (L. 139).  
The term “each iteration” refers to every cycle when the model re-calculates the cost 
function for the difference between the model parameters and the observational 
constraint. In section 2.1 of methods we completed the following paragraph for 
clarification: “During the optimization procedure, a new model trajectory is 
determined in each iteration (i.e. in every cycle when the model re-calculates the cost 
function for the difference between the model parameters and the observational 
constraint), such that energy and mass are conserved through the entire assimilation 
window (Kaminski and Mathieu, 2017).” 
 
It is unclear how FAPAR data are generated from equation 2, which seems to 
generate NDVI estimates. We require details on the FAPAR observation operator – I 
could not find any.  
We apologize for the error in Equation 2. In section 2.2 of the revised ms, this is 
corrected and now it reads: 
“Therefore, we used as FAPAR proxy the Global Inventory Monitoring and Modeling 
System (GIMMS) NDVI product for the period 1982 to 2006 (Tucker et al., 2005), 
and merged it with the TIP-FAPAR product to provide a longer record of vegetation 



greenness. The maximum and minimum NDVI values were rescaled at the pixel level 
to coincide with those from the TIP-FAPAR for the overlapping periods (i.e., 2003 to 
2006) following: 
 
 FAPAR%&' =
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Where x is the period 2003 to 2006 for each data set, NDVI is the full NDVI product 
from 1982 to 2006, with minimum values given by NDVImin and maximum by 
NDVImax. TIPmin and TIPmax are the corresponding minimum and maximum values 
from the TIP-FAPAR product. With this approach, the resulting merged product 
maintains the maximum and minimum values from TIP-FAPAR while preserving the 
temporal dynamics of NDVI. The median uncertainty of the available TIP-FAPAR 
data was considered as the uncertainty for the entire time-series.” 
 
Why are there no FAPAR data after 2006? (l. 278)  
Unfortunately, this is an error during the assimilation procedure. Due to a technical 
fault, the CCDAS did not consider the remaining four years of data from the original 
TIP-FAPAR time-series as planned. We discovered this issue only during the post-
processing phase, and we wrote it in the final sentence of the paragraph above. 
However, we believe that our results are still valid, because the main information gain 
of the CCDAS in terms of phenology stems from the seasonal cycle, with little effect 
on the overall trends between the three assimilation experiments with different time 
periods. This comment is added in section 2.1 of methods in the revised manuscript: 
“Due to a technical failure in the CCDAS, the final FAPARmod product spans only 
from 1982 to 2006 and the last four years from the TIP-FAPAR product were not 
included.” 
And in the Discussion: “The technical error during the assimilation procedure to not 
include the period from 2007-2010 in the FAPARmod product does not influence 
however the decadal results observed here, because the main information gain of the 
CCDAS in terms of phenology stems from the seasonal cycle, with little effect on the 
overall trends between the three assimilation experiments with different time 
periods.” 
 
What are the implications of not including fire emissions? Why were fire products 
such as GFED not used to provide this input?  
Omitting fire fluxes may impair the ability of the MPI-CCDAS to correctly infer the 
atmospheric growth rate of CO2 in years with strong contribution of a fire flux, such 
as the 1998 El Niño. It was not possible to use GFED-like products in this particular 
assimilation experiment, because for example GFED4 data do not exist prior to 1997, 
whereas our inversion started in 1982. Adding them only starting in 1997 would have 
biased the assimilation procedure. In the discussion part of the revised manuscript, 
and based on what was already presented in the discussion ms, we completed this 
information to read: “Omitting fluxes in the current model configuration due to fire 
events may impair the ability of the model to infer the atmospheric growth rate of 
CO2 associated with El Niño events (Frölicher et al., 2011; Frölicher et al., 2013). 
One way to overcome the IAV mismatch would be to include fire fluxes in the model 
by prescribing them from, e.g., the Global Fire Emissions Database (GFED, van der 
Werf et al., 2010), however the latest version of this data set (Version 4.0) is only 
available for years from 1997 which is a limiting factor for the timeframe of the 
simulations in this work. However, the contribution of these interannual variations to 
the overall CO2 cost function is low in comparison to the signal contained in the 



seasonal cycle and deviations in the long-term trend, such that the MPI-CCDAS may 
simply not be sensitive enough to these aggregate system properties like the response 
of the tropical carbon cycle to El Niño events given the uncertainty in the atmospheric 
transport and the observational representation error.” 
 
I would like to know more about the process to determine which parameters were 
selected for optimisation? These seems to mostly phenological variables which will 
link to FAPAR. I would expect to see other parameters related to C turnover, e.g. 
mortality rates, decomposition rates. 
The choices of parameters were done by an extensive parameter sensitivity study with 
a large set of MPI-CCDAS model parameters for a wide range of biomes. The 
retained parameters had a strong effect of the simulated carbon and water fluxes as 
well as in phenology. This selection process was extensively described in Schürmann 
et al. 2016. In Table 1 of the discussion and revised ms, we listed the parameters 
selected for the optimization. While the majority are indeed linked to phenology, we 
considered also parameters linked to photosynthesis and global parameters that 
control the land carbon turnover. Those are the last four parameters listed in Table 1: 
for the heterotrophic respiration the temperature sensitivity to respiration (Q10) and a 
multiplier for initial slow pool (fslow) to account for non-steady state conditions at the 
beginning of the assimilation; for the autotrophic respiration, the leaf fraction of 
maintenance respiration, and finally an initial atmospheric carbon concentration.  
 
Results:  
What are the substantial changes in tropical LAI (l. 306) – how do these match in situ 
measurements?  
As shown in Table 1 of the revised ms, the maximum LAI value is one of the 
optimization parameters and it was prescribed for each PFT. In the case of the tropical 
evergreen and deciduous trees, this equals to 7 m2 m-2. To provide a numerical 
context to the LAI changes, we summarize in the table below (added in the revised ms 
as Table A1 in appendix) the mean and maximum LAI values per regions of Fig. 1 for 
each experiment. 
 
 
Region PRIOR 

(mean / max) 
(m2 m-2) 

ALL 
(mean / max) 
(m2 m-2) 

DEC1 
(mean / max) 
(m2 m-2) 

DEC2 
(mean / max) 
(m2 m-2) 

BE 0.61 / 2.29 0.60 / 1.94 0.70 / 2.42 0.69 / 2.42 
BW 0.31 / 1.62 0.30 / 1.44 0.35 / 2.01 0.35 / 2.02 
TNE 1.28 / 4.28 1.17 / 3.33 1.31 / 3.49 1.32 / 3.79 
TNW 1.26 / 3.11 1.15 / 2.84 1.30 / 3.23 1.30 / 3.21 
TE 1.62 / 3.27 1.30 / 2.43 1.63 / 3.20 1.67 / 3.33 
TW 2.21 / 3.17 1.68 / 2.27 2.00 / 2.89 2.08 / 3.00 
TSE 1.54 / 2.72 1.43 / 2.51 1.86 / 2.77 1.83 / 2.68 
TSW 2.42 / 3.69 2.04 / 2.71 2.38 / 3.47 2.43 / 3.66 
 
 
We also show in the figure below, the average maximum LAI for each experiment for 
the period 1980-2010. 



 
 
When we compare the LAI mean values between the experiments and the PRIOR 
results (Fig. 3 in the discussion manuscript), we observe that the largest change in 
LAI values was in the tropical west area (TW) comprising Brazil, with a decrease in 
LAI values of up to 24 % in the ALL experiment with respect to the PRIOR, as a 
response of the maximum LAI decay in the tropical evergreen PFT (visible in the 
figure above). We argue that this decrease is a response of a global compensating 
effect to heterotrophic respiration, leading to the lower GPP tropical value.  
Ground based observations in the tropical Amazon-Savanna transition forest have 
been reported with an annual mean LAI value for the total canopy between 2005 and 
2008 of 7.4±0.6 m2 m-2, and for the seasonal flooded forest a value of 3.4±0.1 m2 m-2. 
For the remote sensing data from MODIS, the reported values are 6.2±0.2 m2 m-2 and 
5.8±0.3 m2 m-2, respectively (Biudes et al., 2014). 
In the eastern Amazon forest, the remote sensing-based LAI has been reported as 6.2 
m2 m-2 from LiDAR, and 4.8 m2 m-2 with a low end of 2.0 m2 m-2 from MODIS (Qu 
et al., 2011). The maximum LAI values from our model results before and after the 
assimilation (see table above) fall within the values from MODIS and LiDAR. 
However, this comparison is robust because of the spatial resolution of the different 
methods: a coarse model grid cell resolution vs. the resolution of ground-based 
measurements and the resolution of the remote sensing pixels (50x50 m for ground-
based and LiDAR data, and 463 x 463 m for MODIS). This discussion is added  
The following paragraph is now added with this information in the discussion of the 
revised ms:   
“Bearing in mind the different spatial resolution of methods (i.e., model grids and 
remote sensing pixels), a robust comparison between the mean and maximum LAI 
values before and after the assimilation per region are presented in Table A1 of the 
Appendix. The results fall within LAI values from MODIS and LiDAR reported in 
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the literature. Ground-based observations in the tropical Amazon-Savanna transition 
forest between 2005 and 2008 show an annual mean LAI value for the total canopy of 
7.4±0.6 m2 m–2 and for the seasonally flooded forest the value of 3.4±0.1 m2 m–2. For 
the remote sensing data from MODIS, the reported values are 6.2±0.2 m2 m–2 and 
5.8±0.3 m2 m–2, respectively (Biudes et al., 2014). In the eastern Amazon forest, the 
remote sensing-based LAI has been reported as 6.2 m2 m–2 from LiDAR, and 4.8 m2 
m–2 with a low end of 2.0 m2 m–2 from MODIS (Qu et al., 2011).” 
 
In addition, former Figure 3 was removed and replaced into the supplement by a 
figure (now Fig. S2 presented below) showing the differences between experiments 
for the average maximum LAI. This is for the sake of keeping the revised manuscript 
more focused on the main aim, and because the reference to the LAI results were 
done only sporadically through the manuscript. 
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What is the increase in R2 (l, 314) – please report in the text.  
The R2 values between the FAPAR observations and model results are: 0.1638 for 
PRIOR, 0.1984 for ALL, 0.3412 for DEC1 and 0.3402 for DEC2. The values are 
given in Lines 318-323 of the discussion ms. In the revised ms, we improved these 
paragraphs to make clearer that the values are given in those lines by moving the 
values to the lines above. 
 
The key result seems to be shifts in the timing of CO2 exchanges – it would be 
interesting to focus more on the shifts in model process representation (parameters) 
required to allow these changes. I do not find Figure A2 very helpful in this regard.  
We appreciate the comment from the reviewer, however we believe that an 
interpretation of the results at the level of changes in parameters only adds an 
incomplete picture to the analysis and it is difficult to conclude the effect of the 
changes. For this reason, we only focus on the relative changes summarized in Fig. 
A2 (now A3). In the revised manuscript we add a section in the Appendix regarding 
the assimilation performance where we discuss in more detail the response of each 
optimization parameter. 
 
The large drop in GPP in the posteriors is significant – what process is this traced to 
in the parameter adjustment?  
This results primarily from a reduction in tropical leaf area index. This is observed in 
the drop in the photosynthetic capacity (see larger change in now Fig. A3 and 
formerly A2, for parameter fphotos in the tropical evergreen and deciduous PFTs) after 
the assimilation. Also, this is observed in the new Fig. S2 (as replacement of former 
Figure 3 in the discussion manuscript) in the revised manuscript and presented above, 
where are shown the differences between experiments for the maximum LAI. In a 
new section in the Appendix, we explicitly add these observations as part of the 
assimilation performance analysis. 
 
I did not find fig 4 helpful in regard to identifying improvements in IAV modelling – 
it would help to have some statistics to support the statements here (l. 461). 
In the revised manuscript, we provide summary statistics of FAPAR which are also 
presented in Fig. 3: “In the decadal experiments DEC1 and DEC2, the largest error 
reduction compared to the PRIOR is 19 % for boreal regions, while in the temperate 
areas this reduction is about 16 %. In the ALL experiment, larger reductions of 21 % 
on average are obtained in the tropical regions TE and TW”. We also moved former 
Fig. 4 to the supplementary material (now Fig. S4) since it is only referred briefly in 
the main ms. 
 
Discussion 
“the mismatch between observations and model output is small, and thus of little 
concern”. This statement needs to be more rigorous – how is ‘small’ determined? 
What is the threshold for concern? The lack of tropical IAV suggests too weak an 
ENSO response – were any relevant parameters included in the CCDAS that would 
have allowed identification of drought response? Some of the discussion seems 
circular – that using FAPAR data in the assimilation improves modelling of FAPAR 
seasonality. 
In the revised ms, we clarify this statement a) to note that this corresponds to the IAV 
of FAPAR, b) that the observed signal is small compared to seasonal variations, and 
c) the retrieval error or the FAPAR product, which as a global average corresponds to 
±0.2088 (relative units, Schürmann et al. 2016). The assimilation procedure allows 
changes in the phenology response to water stress (tw). However, the assimilation 



tended to decrease rather than increase the drought sensitivity of tropical phenology 
given the entire spatially explicit FAPAR time series, and therefore did not allow to 
capture these excursions (assuming that they are actually driven by drought related 
changes in LAI). The modified paragraphs in the discussion are: 
 
“Except for the tropical latitudes, the difference between the regional IAV of the 
observations and model output is small compared to seasonal variations. The modeled 
signal remains within a range of 0.05 (dimensionless) FAPARobs. The signal and the 
model-data difference is also smaller than the global mean retrieval error of the 
FAPAR product, which is ±0.2088 (Schürmann et al., 2016). This error was used to 
quantify the observational FAPAR uncertainty in the assimilation, thereby reducing 
the ability of the MPI-CCDAS to detect and correct such smaller variation. Overall, 
the lacking match of the IAV may therefore be of little overall concern. Nevertheless, 
the lower than observed IAV in the tropical bands may be indicative of too weak 
drought response in the maximum leaf area index of the model. Although the 
assimilation procedure allows changes in the phenology response to water stress 
(given by parameter tw), the assimilation procedure decreased the drought sensitivity 
of tropical phenology given the entire spatially explicit FAPAR time series, and 
therefore did not allow capturing the regional drought events that could be in principle 
linked to changes in LAI.” 
 
It would be good to clarify the text to the explicit calibration and validation results to 
strengthen this section. It seems this result has already been identified in an earlier 
CCDAS publication, so it is not clear what is novel here. 
In the revised manuscript, we clarify the text and reduce redundancy to the earlier 
publication. However, since we are using new data and run a different set-up, we 
believe that it is important to establish the baseline performance of the CCDAS before 
looking into the novel results of long-term trends. We condensed this section to the 
absolute necessary to give more space to the novel results (see also our response to 
the selection of Figures below). 
 
The authors identify problems “results from the structural dependence of the 
MPICCDAS on few, globally applicable PFT-level parameters, and challenges in 
using the spatial mixed signal at the model resolution to infer PFT-specific 
parameters.” It would help to develop these ideas some more – do we expect these 
issues to specifically affect the current analysis and in what ways? 
In the revised manuscript, we expand this discussion. Firstly, this relates to the 
problem mentioned by the reviewer above with respect to the impact of coarse spatial 
resolution. We believe that aggregating the remote sensing data into PFT-specific 
classes per pixel from a high-resolution grid would allow reducing the problems in the 
identification of phenological parameters. Secondly, although some of the 
phenological parameters adapt to mean growing season temperature, some of the 
thresholds are globally applicable, which causes mainly a problem for temperate 
grasslands, which cover a wide climatological range. Finding appropriate means to 
cluster grasslands into more spatially refined classes would further reduce the errors 
of the MPI-CCDAS to simulating boreal, temperate and tropical phenology. Finally, 
some of the global parameters (such as faut_leaf and fslow) imply that improvements of 
modeled fluxes in the boreal regions directly affect fluxes in the tropics, inducing 
parameter changes to compensate for the altered C fluxes. Such dependency is typical 
in biosphere models, but may not be ecologically and eco-physiologically correct. 
Defining these parameters per PFT would reduce such a problem. However, any of 
these changes would inflate the inverse problem to be solved, therefore increasing 



computational costs and would not necessarily reduce overall uncertainty 
(equifinality). 
The new paragraphs in the discussion section reads: 
“Although some of the phenological parameters in CCDAS adapt to mean growing 
season temperature, other thresholds are only globally applicable, causing a trend to 
temperature grasslands that cover a wide climatological range. For example, some of 
the global parameters such as faut_leaf and fslow, imply that improvements of 
modeled fluxes in the boreal regions directly affect fluxes in the tropics, inducing 
parameter changes to compensate for the altered C fluxes. Defining instead such 
global parameters per PFT would alleviate this issue but will compromise the 
computational cost and might not necessarily reduce the overall uncertainty.” 
And: 
“A likely better strategy for constraining PFT-specific parameters would be to 
resample the highly resolved satellite product to PFT-specific FAPAR classes per 
pixel before the aggregation into a global grid. This change would allow finding more 
spatially refined classes and provide PFT-specific FAPAR maps to the CCDAS to 
reduce issues in the identification of phenological parameters for different climatic 
regions.”  
 
Table 3. The posteriors suggest a Ra:GPP ratio of _65% - it would be useful to 
discuss this value which seems high for a global estimate. 
We believe that this feature is a result of the fact that net primary production itself is 
not well constrained from the atmospheric record. We suspect that two factors 
contribute to the low NPP:GPP ratio: i) the observed fast coupling between GPP and 
both autotrophic and heterotrophic respiration, which cannot be reproduced by a state-
of-the-art first-order-decay soil carbon turnover model. Since autotrophic respiration 
in MPI-CCDAS is directly coupled to GPP, increasing the fraction of GPP partitioned 
to it increases the seasonal cycle of ecosystem respiration; ii) Increasing Ra reduces 
the net land carbon uptake, and may mask changes in vegetation carbon turnover, 
which were excluded from the analysis, because their effect on carbon storage was 
much lower than that of changing faut_leaf. We note that accounting for the vegetation 
carbon turnover parameters without any further constraint on NPP would likely not 
have increased the confidence in the CCDAS outcome because of equifinality. 
 
The added paragraph in the discussion of the revised ms reads: 
“The NPP:GPP ratio in ALL and DEC2 decreased to 0.35 and 0.31, respectively, 
when compared to the PRIOR value (0.45). This reduction might be mainly because 
the NPP is not well constrained from the atmospheric record. Also, the instantaneous 
coupling between GPP and both autotrophic and heterotrophic respiration (Ra and 
Rh), cannot yet be reproduced by a state-of-the-art first-order-decay soil carbon 
turnover model. Because Ra is directly coupled to GPP in MPI-CCDAS, increasing 
the fraction of GPP partitioned to Ra leads to an increase in the seasonal cycle of the 
ecosystem respiration. An increase in Ra with respect to the PRIOR (which is only 
visible in the global average value in DEC2; Table 3), leads to a reduction in the net 
land carbon uptake, masking the smaller changes in the vegetation turnover.” 
 
The very large reduction in soil C stocks from the prior needs further discussion – 
JSBACH was spun up to steady state for the prior, so I am not clear how the 
experiments generated 50% drops in this value. How far is the model from steady 
state with such a reduction in soil C? 
The model was spun-up initially until the soil carbon pools reached equilibrium 
considering pre-industrial forcing. However, this new “initial state” for the model is 



not on steady state when considering climate variability, hence to compensate this, the 
CCDAS creates an artificial sink of C, leading to a reduction in the soil C stocks, in 
order to reduce the respiration. Unfortunately, this is unavoidable and is rather a 
model effect to compensate by contemporary climate changes. 
 
We added this discussion and the new paragraph reads: 
“The reduction in the soil C pool after the assimilation can be explained due to an 
unavoidable effect in the model. The MPI-CCDAS was initially spun-up until the soil 
C pools reached equilibrium considering pre-industrial forcing; however, this new 
initial state does not consider climate variability. To compensate for this and to reduce 
the respiration when the MPI-CCDAS is confronted with contemporary changes in 
the climate, the model creates an artificial C sink that leads to a reduction in the soil C 
stocks. It is important noting that the JSBACH 3.0 version used in this MPI-CCDAS 
does not include permafrost processes; therefore, the global soil C stock might still be 
underestimated.” 
 
We hear again that a result here repeats an earlier CCDAs result (l. 660), which 
reduces the novelty of the analysis. 
To investigate the mechanisms that influence the patterns observed in the simulated 
global GPP or NEP after the assimilation is out of the scope of the presented 
manuscript. The reference to the work of Schürmann et al. 2016 in this line, as well as 
in previous others throughout the ms, serves as a point of comparison to previous 
results with the same model but obtained under a different experimental design (5 
years only of assimilation), which also contributes to set the preceding performance of 
the current set up (see comment above). 
 
Other comments: 
Figures – there are too many figures, some of which are of low value, and this 
distracts from the key message of the paper. Some of the figures in the appendix are 
referred to several times, so why are they not in the main text (replacing those 
referenced less). 
With the aim of shortening the manuscript and avoid distraction to the main findings, 
we removed some figures in the revised version. Specifically, we removed those 
figures that are less referenced in the main manuscript such as: Fig. 2, on the 
experimental design and mentioned only once in the main text, it is now Fig. A2 of 
the Appendix. Figures 3 and 4 were moved to the supplement: Fig. 3, showing the 
spatial distribution of mean LAI before and after the assimilation, but the manuscript 
does not focus on the specific changes on LAI after the assimilation, instead R2 values 
are given in Table 2 and a replacement figure (Fig. S2) shows the differences of the 
average maximum LAI between experiments. Former Fig. 4 shows the interannual 
variability of FAPAR for the different sub-regions, and since it is only mentioned 
briefly in the results it is now moved to the supplement as Fig. S4.  
As from figures from the Appendix, former Figures A3 and A4 were mentioned more 
frequently in the text, hence they are now Fig. 2 and 9 in the main revised text. 
Former Fig. 8 (showing the comparison of global C fluxes to GCP17 models results) 
is now in Appendix as Fig. A4. In new Fig. 8 (on the four-years mean atm. CO2 
difference to the observations) and Fig. 9 (RMSE between atm. CO2 observations and 
model results), we added the inversion results. 
In total, 9 figures are shown in the main text, 4 in the appendix and 7 in the 
supplement.  
 
 



L. 59. Citation needed for this 5.6% value 
The reference for this value is LeQueré et al., 2018 which is cited in the lines below. 
 
L. 297. The zone between 20-60_ is not well described as “sub-tropical” 
We refer in the revised ms to this range of latitudes as north and south temperate 
zones (TNW and TNE for west and east northern hemisphere, and TSW and STE for 
west and east southern hemisphere). 
 
Table 1: Add row numbers 
Ok, in a first column of Table 1 we added row numbers. 
 
 
 
Reviewer #2 
 
This is an interesting and useful paper, albeit of more technical than scientific interest. 
There are a number of factors that reduce the scientific impact of the paper, while 
focusing more on the interaction of observations with a model of this type when used 
in assimilation mode.  
The reanalysis is limited by a number of factors, the very low spatial resolution 
dictated (I suppose) by the resolution of the atmospheric inverse model, the limited 
data fields assimilated (just carbon fluxes and FAPAR) and the lack of potentially 
important processes, such as fire.  
Reviewer #2 rightly points out the relevant insights and limitations of our study, 
which some of those were also mentioned by anonymous Reviewer #1. In the revised 
ms, we improve considerably the focus of our main aim at the same time of 
discussing the limitations in more detail. Our aim centers in the use and effect of 
long-term data sets for assimilation and the question on how long the improved 
model/data agreement can last. We hope that this study will inspire the future use of 
CCDAS systems to integrate further data streams (such as SIF or VOD), for which a 
CCDAS is uniquely suited given its ability to use data at different resolutions and for 
different time-periods. We discuss this also further in the revised manuscript.  
 
The new paragraph in the revised ms with the overarching aim reads: “The 
overarching aim of this work is to understand the ability of the MPI-CCDAS v1 to 
make decadal projections of the land C cycle when the assimilation is confronted to 
different temporal windows from two observational constraints: FAPAR from remote 
sensing data and atmospheric CO2 concentrations from the global flask measurements 
network. For this, we present three decades of modeled land carbon fluxes with the 
MPI-CCDAS and investigate the effect of withholding information from recent 
decades in the projected carbon fluxes and the ability of the model to reproduce the 
observations during the period of data assimilation. We also analyze trends and 
seasonal variations in the simulated signals during the periods of the assimilation and 
compare to independent results to evaluate the model performance. With these results, 
we gain insights in the number of observations (in terms of decadal scale) necessary 
in data assimilation systems to improve the representation of the global terrestrial 
carbon cycle components. These results open the possibility of including newly 
measured data in DAS that are only available for periods of less than a decade.”  
 
As in our response to reviewer #1, the spatial resolution is indeed dictated by the 
computational setup. Increasing resolution would of course allow for a better 
integration of remote sensing data as well as the current sub-grid scale variability in 



climate. However, previous studies (Müller and Lucht, 2007; Peylin et al., 2016), 
have suggested that increased resolution would not necessarily have a strong effect on 
the overall performance of the model against global carbon cycle observations. In this 
regard, we added the following paragraph in the 2.1 section of methods of the revised 
ms: “This horizontal resolution allows computational feasibility and a realistic 
computational cost for the set of experiments presented in this work. Furthermore, 
previous evidence has shown that a higher spatial resolution in global vegetation 
models does not exert a considerable influence in the simulated carbon fluxes at 
global or regional scales when compared to results obtained with a coarse grid 
(Müller and Lucht, 2007). The lack of influence to improve the simulated global C 
fluxes due to changes in the model spatial resolution might also apply to DAS models 
(Peylin et al., 2016).” 
Further, MPI-CCDAS does not include all processes as in any model study. As noted 
in our response to reviewer #1, using data sets to account for processes such as fluxes 
due to fires is not possible given the lack of data before 1997. While there is a fire 
module in MPI-CCDAS (Lasslop et al., 2014), a number of issues have been 
identified with that module that would need to be addressed before attempting its use 
into DAS. Also, the effect of these issues on the spatio-temporal dynamics of the land 
carbon balance would need to be clarified before it is possible to include it into these 
long-term and computationally expensive MPI-CCDAS simulations. We agree that 
the addition of disturbance processes due to fires is an interesting aspect for future 
MPI-CCDAS developments and may contribute to an improved representation of the 
interannual variability. However, we note that some of the major fluxes 
(deforestation, peatland fires) are not considered by this, and many other, fire models. 
In the discussion of the revised manuscript, we included the following paragraph 
containing the potential implications to our results of not having explicitly included 
fire emissions in our experiments:  
“Notably, the model lacks the representation of some key processes that contribute to 
climate induced interannual variability of the carbon cycle, such as the possibility to 
dynamically account for fire disturbance (Lasslop et al., 2014), ENSO related tropical 
peat-land fires (van der Werf et al., 2008), or the increase of terrestrial carbon uptake 
after large-scale volcanic eruptions such as for Mt. Pinatubo in 1991 (Lucht et al., 
2002; Mercado et al., 2009). Omitting fluxes in the current model configuration due 
to fire events may impair the ability of the model to infer the atmospheric growth rate 
of CO2 associated with El Niño events (Frölicher et al., 2011; Frölicher et al., 2013). 
One way to overcome the IAV mismatch would be to include fire fluxes in the model 
by prescribing them from, e.g., the Global Fire Emissions Database (GFED, van der 
Werf et al., 2010), however the latest version of this data set (Version 4.0) is only 
available for years from 1997 which is a limiting factor for the timeframe of the 
simulations in this work. However, the contribution of these interannual variations to 
the overall CO2 cost function is low in comparison to the signal contained in the 
seasonal cycle and deviations in the long-term trend, such that the MPI-CCDAS may 
simply not be sensitive enough to these aggregate system properties like the response 
of the tropical carbon cycle to El Niño events given the uncertainty in the atmospheric 
transport and the observational representation error.”  
 
The author’s assessment of model skill is ambivalent, they point to low errors in some 
places, while noting that the El Nino cycle is not well-captured, a time scale that 
others have argued provides a critical clue to climate sensitivity (eg Cox et al).  
In the revised manuscript we target this point in the paragraph above. The core issue 
of many model-data inter-comparison studies relies in the absolute misfit calculation 
through cost functions, which limits the representation of these individual climatic 



events because they are not specifically weighted in the long-term scales. By 
including other fluxes such as fires, either prescribed or by adding specific modules 
into the model, that are indicators of such climatic events, may support its 
representation.  
 
By contrast, the advanced methods used and the useful assessment of the impact of 
the duration of the assimilation experiment, as well as other technical innovations 
provides a useful update to their prior paper, as the scientific conclusions are 
overlapping. As assimilation becomes more prevalent, and as data records lengthen 
(for this study, of a 30-year time scale these really are the most relevant global fields) 
with SIF, radar-constrained biomass, and water variables such as vegetation optical 
depth becoming available for > 10 years, this paper provides encouraging news about 
the utility and impact of records of decadal length.  
We appreciate the comments and support from the reviewer to this manuscript and for 
valuing the scientific contribution of our work.  
I’d suggest rewriting the paper modestly to emphasize the lessons learned about the 
impact of assimilation, and the time horizons, and placing less emphasis on the carbon 
cycle results, especially as the authors note (and correctly) the conclusions broadly 
overlap their earlier paper. I note that papets of the paper are awkwardly written and 
could use a careful edit, and there are a lot of figures I found them helpful in 
reviewing the paper but several of the figures could clearly be moved to supplemental 
material. 
We believe that it is important to demonstrate that the carbon cycle results of a 30 
years and a 5 years experiment (as in Schürmann et al. 2016) are broadly comparable 
to set the stage for the impact of the different time horizons. However, we agree with 
both reviewers that in the previous version this obscured the key innovation of the 
study and we therefore revised the manuscript to make this clearer. More concretely, 
we focus our results and discussions of the time horizons and the evaluation material 
was shortened with some associated text moved to the appendix (e.g. pixel level 
FAPAR analysis) or supplementary material.  
Specifically, for the figure’s changes: we removed those figures that are less 
referenced in the main manuscript such as: Fig. 2, on the experimental design and 
mentioned only once in the main text, it is now Fig. A2 of the Appendix. Figures 3 
and 4 were moved to the supplement: Fig. 3, showing the spatial distribution of mean 
LAI before and after the assimilation, but the manuscript does not focus on the 
specific changes on LAI after the assimilation, instead R2 values are given in Table 2 
and a replacement figure (Fig. S2) shows the differences of the average maximum 
LAI between experiments. Former Fig. 4 shows the interannual variability of FAPAR 
for the different sub-regions, and since it is only mentioned briefly in the results it is 
now moved to the supplement as Fig. S4.  
As from figures from the Appendix, former Figures A3 and A4 were mentioned more 
frequently in the text, hence they are now Fig. 2 and 9 in the main revised text. 
Former Fig. 8 (showing the comparison of global C fluxes to GCP17 models results) 
is now in Appendix as Fig. A4. In new Fig. 8 (on the four-years mean atm. CO2 
difference to the observations) and Fig. 9 (RMSE between atm. CO2 observations and 
model results), we added the inversion results. In total, 9 figures are shown in the 
main text, 4 in the appendix and 7 in the supplement.  
With the aim of delivering a clearer message in our manuscript, the revised version 
underwent a thorough English revision before re-submission. 
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Abstract 12	
During the last decade, carbon cycle data assimilation systems (CCDAS) have focused 13	
on improving the simulation of seasonal and mean global carbon fluxes over a few 14	
years by simultaneous assimilation of multiple data streams. However, the ability of a 15	
CCDAS to predict longer-term trends and variability of the global carbon cycle, and 16	
the constraint provided by the observations, have not yet been assessed. Here, we 17	
evaluate two near-decade long assimilation experiments of the Max Planck Institute – 18	
Carbon Cycle Data Assimilation System (MPI-CCDAS v1) using spaceborne estimates 19	
of the fraction of absorbed photosynthetic active radiation (FAPAR) and atmospheric 20	
CO2 concentrations from the global network of flasks measurements sites from either 21	
1982-1990 or 1990-2000. We contrast these simulations with independent observations 22	
from the period 1982-2010, as well as a third MPI-CCDAS assimilation run using data 23	
from the full 1982-2010 period, and an atmospheric inversion covering the same data 24	
and time. With 30 years of data, MPI-CCDAS is capable of representing land uptake to 25	
a sufficient degree to make it compatible with the atmospheric CO2 record. The long-26	
term trend and seasonal amplitude of atmospheric CO2 concentrations at station level 27	
over the period 1982 to 2010 is considerably improved after assimilating only the first 28	
decade (1982-1990) of observations. After 15-19 years of prognostic simulation, the 29	
simulated CO2 mixing ratio in 2007-2010 diverges by only 2±1.3 ppm from the 30	
observations, the atmospheric inversion and the MPI-CCDAS assimilation run using 31	
observations from the full period. The long-term trend, phenological seasonality and 32	
interannual variability (IAV) of FAPAR in the Northern Hemisphere over the last one 33	
to two decades after the assimilation were also improved. Despite imperfections in the 34	
representation of the IAV in atmospheric CO2, model-data fusion for a decade of data 35	
can already contribute to the prognostic capacity of land carbon cycle models at 36	
relevant time-scales. 37	
Keywords:  Data assimilation, Global Carbon cycle, land biosphere modeling, 38	
atmospheric CO2. 39	
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The primary aim of this work is to analyze the performance 47	
of the MPI-CCDAS when it is confronted with three different 48	
time periods for data assimilation (DA), and thereby to assess 49	
its prognostic capability. To this extend we assimilated nearly 50	
three decades (1982-2010) of space borne measurements of 51	
the fraction of absorbed photosynthetic active radiation 52	
(FAPAR) and atmospheric CO2 concentrations from the 53	
global network of flask and in situ measurements. Both data 54	
sets were incorporated with different assimilation windows 55	
covering the periods 1982-1990, 1990-2000 and 1982-2010. 56	
The assimilation results show a considerable improvement in57	
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1 Introduction 71	
The observed contemporary increase in atmospheric CO2 is driven by anthropogenic 72	
emissions from fossil fuels and land-use change (2007-2016 average: 11.1±0.6 GtC 73	
yr−1), and the concurrent net carbon uptake of the ocean and land from the atmosphere, 74	
which take up approximately 22.4 % and 28 % of the anthropogenic flux, respectively. 75	
Despite recent advances in atmospheric observations, ocean and land modeling, there 76	
is an imbalance of 5.6 % (0.6 GtC yr−1) between the ocean and land sinks, carbon 77	
emissions and changes in the atmospheric CO2 concentration (Le Quéré et al., 2018). 78	
Throughout past decades, notable progress has been made to improve the performance 79	
of terrestrial biosphere models, but the simulated global terrestrial carbon fluxes and 80	
the net land carbon balance still have the highest uncertainties from all of the 81	
components of the global carbon cycle (Friedlingstein et al., 2014; Le Quéré et al., 82	
2018). Quantifying the magnitude and dynamics of the global terrestrial carbon cycle 83	
across different temporal scales, and their contribution to the global carbon cycle, is 84	
challenging because the substantial heterogeneity and complexity in land ecosystems, 85	
and challenges in the quantification of contemporary effects and response of these 86	
ecosystems to increasing post-industrial CO2 concentrations (Lienert and Joos, 2018; 87	
Stocker et al., 2014; Wang et al., 2017). 88	
One strategy to reduce the mismatch between carbon flux predictions from land surface 89	
models and measured atmospheric CO2 concentrations is through data assimilation 90	
(DA) techniques, meaning to “train” the land models by confronting them 91	
systematically with observations of carbon-related variables (Raupach et al., 2005). 92	
During DA, process-parameters of land surface models are adjusted through numerical 93	
minimization techniques to reduce the misfit between model results and actual 94	
observations under consideration of the statistical properties of both data sets. While 95	
atmospheric transport inversions are a method used to infer the sinks and sources of 96	
CO2 between the atmosphere and land, or ocean, from atmospheric CO2 measurements 97	
(Newsam and Enting, 1988; Peylin et al., 2013; Rayner et al., 1999; Rödenbeck et al., 98	
2003), the application of  carbon cycle data assimilation systems (CCDAS) provides 99	
additional opportunities. In CCDAS, the process-based carbon cycle mechanisms in 100	
land surface models are informed with measurements to support a better estimate of the 101	
terrestrial carbon cycle, and improve the capacity to project its dynamics. With this 102	
purpose, several CCDAS have been developed in the past (e.g., Kaminski et al., 2012; 103	
Kaminski et al., 2013; Lienert and Joos, 2018; Peylin et al., 2016; Scholze et al., 2016). 104	
The difference among some of these models is the variational or sequential statistical 105	
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approach they follow during the data assimilation process (Montzka et al., 2012). A 139	
common characteristic in these models is their capacity for integrating long-term and 140	
time consistent global available observational records related to the carbon cycle such 141	
as: atmospheric CO2 measurements from flask and in situ networks (Conway et al., 142	
1994), as well as remote sensing products of canopy phenology properties such as 143	
MODIS-NDVI (Moderate Resolution Imaging Spectroradiometer - Normalized 144	
Difference Vegetation Index) (Rouse et al., 1974) and FAPAR (Disney et al., 2016; 145	
Pinty et al., 2011a).  146	
Previous studies have analyzed the prognostic capability of the data assimilation 147	
systems (e.g., Rayner et al., 2011; Rayner et al., 2005; Scholze et al., 2007; Schürmann 148	
et al., 2016), but only for few years of prognosis after the assimilation. Scholze et al. 149	
2007, concluded that the CCDAS built around BETHY (Biosphere Energy-Transfer 150	
Hydrology) is capable of providing a prognostic period of four years (2000-2003) of 151	
atmospheric CO2 after data assimilation of 21 years (1979 to 1999) of CO2 152	
concentrations. Schürmann et al., (2016) discussed the prognosis capability of the Max 153	
Planck Institute - Carbon Cycle Data Assimilation System (MPI-CCDAS v1) for two 154	
years after a short assimilation period of five years. Rayner et al. (2011) showed that 155	
the uncertainty related to model parameters during the prediction of CO2 fluxes with a 156	
CCDAS is considerably reduced when the model parameters are constrained with two 157	
decades of atmospheric measurements; however, these results were obtained with a 158	
model that ignores the interacting effects of water, energy, and phenology on the carbon 159	
cycle predictions. 160	
The overarching aim of this work is to understand the ability of the MPI-CCDAS v1 to 161	
make decadal projections of the land C cycle when the assimilation is confronted to 162	
different temporal windows from two observational constraints: FAPAR from remote 163	
sensing data and atmospheric CO2 concentrations from the global flask measurements 164	
network. For this, we present three decades of modeled land carbon fluxes with the 165	
MPI-CCDAS and investigate the effect of withholding information from recent decades 166	
in the projected carbon fluxes and the ability of the model to reproduce the observations 167	
during the period of data assimilation. We also analyze trends and seasonal variations 168	
in the simulated signals during the periods of the assimilation and compare to 169	
independent results to evaluate the model performance. With these results, we gain 170	
insights in the number of observations (in terms of decadal scale) necessary in data 171	
assimilation systems to improve the representation of the global terrestrial carbon cycle 172	
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components. These results open the possibility of including newly measured data in 176	
CCDAS that are only available for periods of less than a decade. 177	
2 Methods 178	
2.1 MPI-CCDAS  179	
The MPI-CCDAS was built around the Jena Scheme Biosphere-Atmosphere Coupling 180	
in Hamburg (JSBACH) land-surface model (Dalmonech and Zaehle, 2013; Raddatz et 181	
al., 2007; Reick et al., 2013) and follows a variational approach that simultaneously 182	
reduces the model-data misfit for multiple independent carbon cycle data sets 183	
(Kaminski et al., 2013). Since its first development based on the BETHY - CCDAS, 184	
the MPI-CCDAS has undergone several code modifications and improvements, as well 185	
as tests of the assimilation of new observational data sets (e.g. Kaminski et al., 2012; 186	
Kaminski et al., 2013; Rayner et al., 2005; Scholze et al., 2016; Schürmann et al., 2016), 187	
with the aim of further improving the representation of land carbon fluxes. The history 188	
of the MPI-CCDAS and other current CCDAS is extensively discussed in Scholze et 189	
al. (2017).  190	
The code of the MPI-CCDAS version in this work is identical to the one used in 191	
Schürmann et al. (2016). The model calculates the half-hourly storage and surface 192	
fluxes of energy, water and carbon in terrestrial ecosystems at coarse spatial resolution 193	
(8° ´ 10° grid) (Fig. 1). This horizontal resolution allows computational feasibility and 194	
a realistic computational cost for the set of experiments presented in this work. 195	
Furthermore, previous evidence has shown that a higher spatial resolution in global 196	
vegetation models does not exert a considerable influence in the simulated carbon 197	
fluxes at global or regional scales when compared to results obtained with a coarse grid 198	
(Müller and Lucht, 2007). The lack of influence to improve the simulated global C 199	
fluxes due to changes in the model spatial resolution might also apply to CCDAS 200	
(Peylin et al., 2016). 201	
The spatial distribution of the different plant-functional types (PFTs) in JSBACH is 202	
shown in Fig. S1 (Supplement). The selected parameters for the assimilation procedure, 203	
their prior and range of values were based on Schürmann et al. (2016), where an 204	
extensive sensitivity study lead to retain those parameters with a substantial effect on 205	
the simulated carbon and water fluxes, as well as in phenology. The majority of the 206	
selected parameters for the optimization are linked to phenology, but also there are 207	
parameters related to photosynthesis and global parameters that control the land carbon 208	
turnover during the assimilation. The final list of parameters together with their initial 209	

Deleted: In this work, we use the Max Planck Institute - 210	
Carbon Cycle Data Assimilation System (MPI-CCDAS v1, 211	
Schürmann et al., 2016) 212	

Deleted: that has been built around the Jena Scheme 273	
Biosphere-Atmosphere Coupling in Hamburg (JSBACH) 274	
land-surface model (Dalmonech and Zaehle, 2013; Raddatz et 275	
al., 2007; Reick et al., 2013). The MPI-CCDAS follows a 276	
variational approach that iteratively reduces the model-data 277	
misfit simultaneously for multiple observational and 278	
independent carbon cycle data sets (Kaminski et al., 2013). 279	
Since its first development based on the BETHY (Biosphere 280	
Energy-Transfer Hydrology) - CCDAS, the MPI-CCDAS has 281	
undergone several code modifications and improvements, as 282	
well as tests of the assimilation of new observational data sets 283	
(e.g. Kaminski et al., 2012; Kaminski et al., 2013; Rayner et 284	
al., 2005; Scholze et al., 2016; Schürmann et al., 2016), with 285	
the aim of further improving the representation of land carbon 286	
fluxes. The history of the MPI-CCDAS and other current DA 287	
systems is extensively discussed in Scholze et al. (2017).¶288	
In this paper, we seek to analyze the extent to which the 289	
application of a CCDAS leads to the improved representation 290	
of the contemporary land carbon cycle and its prognostic 291	
capacity for subsequent years. To this extent, we analyze the 292	
estimated major components of the terrestrial carbon cycle 293	
with the MPI-CCDAS in response to the simultaneous 294	
assimilation of three decades of data from two observational 295	
constraints: FAPAR from remote sensing data and 296	
atmospheric CO2 concentrations from the global flask 297	 ... [1]

Moved down [3]: The MPI-CCDAS follows a variational 246	
approach that iteratively reduces the model-data misfit 247	
simultaneously for multiple observational and independent 248	
carbon cycle data sets (Kaminski et al., 2013). Since its first 249	
development based on the BETHY (Biosphere Energy-250	
Transfer Hydrology) - CCDAS, the MPI-CCDAS has 251	
undergone several code modifications and improvements, as 252	
well as tests of the assimilation of new observational data sets 253	
(e.g. Kaminski et al., 2012; Kaminski et al., 2013; Rayner et 254	
al., 2005; Scholze et al., 2016; Schürmann et al., 2016), with 255	
the aim of further improving the representation of land carbon 256	
fluxes. The history of the MPI-CCDAS and other current DA 257	
systems is extensively discussed in Scholze et al. (2017).258	

Moved (insertion) [3]

Deleted: The MPI-CCDAS 259	
Deleted: iteratively 260	
Deleted: simultaneously 261	
Deleted: observational and 262	
Deleted: (Biosphere Energy-Transfer Hydrology) 263	
Field Code Changed

Deleted:  systems264	
Deleted: a 265	
Deleted: for computational feasibility 266	
Deleted: by267	
Deleted: , Table 1268	
Deleted: selection of269	
Deleted: and range 270	
Deleted: as271	
Deleted: ; Table 1)272	



 5	

Formatted: Wrap Around

value obtained from an independent forward simulation of JSBACH 3.0 (see Sect. 298	
2.3.1) is shown in Table 1. 299	
The MPI-CCDAS starts with an initial guess for the model control vector (ppr) of, e.g. 300	
carbon cycle properties, and model states, and their Gaussian uncertainty (“prior”) with 301	
covariance Cpr. The model control vector p is iteratively updated to minimize a joint 302	
cost function J (Eq. 1) describing the misfit between observational data-streams (d; 303	
FAPAR and atmospheric CO2, both with covariance Cd) and the corresponding 304	
simulated observation operators of the MPI-CCDAS M(p), taking into account the 305	
uncertainties in the observational data assuming a Gaussian distribution and the 306	
information from the prior. 307	
 !(#) = 	

'

( ()(#) − 	+)
,-.

/'()(#) − +) + 1# − #234
,
-23/'1# − #234 (1) 308	

During the optimization procedure, a new model trajectory is determined in each 309	
iteration (i.e. in every cycle when the model re-calculates the cost function for the 310	
difference between the model parameters and the observational constraint), such that 311	
energy and mass are conserved through the entire assimilation window (Kaminski and 312	
Mathieu, 2017). The gradient of the cost function with respect to the model control 313	
vector (56

57
) is evaluated with a tangent-linear version of JSBACH 3.0, which was 314	

generated through automatic differentiation using a TAF (Transformation of 315	
Algorithms in Fortran) compiler tool (Giering and Kaminski, 1998). With this tangent-316	
linear version of the model code, the derivatives for the parts of the model code where 317	
J(p) is evaluated (i.e., code parts that depend on the control variables), are accurately 318	
calculated following the chain rule of calculus. Thus, the mathematical formulation of 319	
the code involved in the cost function must be differentiable. Since this was not the case 320	
for the phenological code of JSBACH 3.0, the phenology scheme was updated 321	
following Knorr et al. (2010) where the minimum and maximum calculations in the 322	
entire code were replaced by smoothing functions to avoid abrupt transitions 323	
(Schürmann et al., 2016). 324	
2.2 Observational data sets 325	
2.2.1 FAPAR 326	
The fraction of the radiation that is absorbed by plants during photosynthesis (FAPAR) 327	
is a component of the land-surface radiation budget that dynamically indicates the status 328	
of the vegetation canopy over space and time (Gobron et al., 2006). In a previous study, 329	
MPI-CCDAS was constrained by MODIS-TIP (Two-stream Inversion Package) 330	
FAPAR (hereafter TIP-FAPAR) generated from the inversion of a 1-D radiation 331	
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transfer model (Pinty et al., 2006; Pinty et al., 2007) using the MODIS broadband 345	
visible and near-infrared spectral white sky surface albedo as input (Clerici et al., 2010; 346	
Pinty et al., 2011a; Pinty et al., 2011b). For this study, the TIP-FAPAR product was 347	
available only from 2003 to 2011, making it unsuitable for the indented longer 348	
assimilation period. While there are long-term remotely sensed proxies of FAPAR, 349	
such as the NDVI (Rouse et al., 1974), it has been found previously that NDVI was less 350	
reliable than TIP-FAPAR in terms of the seasonal cycle amplitude of vegetation 351	
seasonality (Dalmonech and Zaehle, 2013; Dalmonech et al., 2015). Therefore, we used 352	
as FAPAR proxy the Global Inventory Monitoring and Modeling System (GIMMS) 353	
NDVI product for the period 1982 to 2006 (Tucker et al., 2005), and merged it with the 354	
TIP-FAPAR product to provide a longer record of vegetation greenness. The maximum 355	
and minimum NDVI values were rescaled at the pixel level to coincide with those from 356	
the TIP-FAPAR for the overlapping periods (i.e., 2003 to 2006) following: 357	
 89:9;<=. =

>?@A/	>?@ABCD,F

>?@ABGF,F/>?@ABCD,F
× 1IJ:<KL,L − IJ:<MN,L4 + IJ:<MN,L   (2) 358	

Where x is the period 2003 to 2006 for each data set, NDVI is the full NDVI product 359	
from 1982 to 2006, with minimum values given by NDVImin and maximum by 360	
NDVImax. TIPmin and TIPmax are the corresponding minimum and maximum values 361	
from the TIP-FAPAR product. With this approach, the resulting merged product 362	
maintains the maximum and minimum values from TIP-FAPAR while preserving the 363	
temporal dynamics of NDVI. The median uncertainty of the available TIP-FAPAR data 364	
was considered as the uncertainty for the entire time-series. Due to a technical failure 365	
in the MPI-CCDAS, the final FAPARmod product used in the assimilation procedure 366	
only spans from 1982 to 2006 and the last four years from the TIP-FAPAR product 367	
were not considered.  For this study, this product was aggregated to match the model 368	
grid horizontal resolution considering background snow-free and snow-covered 369	
conditions separately (Schürmann et al., 2016). 370	
To discard pixels in the global FAPAR data that might lead to bias during the 371	
assimilation procedure, we applied a mask to the global FAPAR grid following three 372	
criteria: 1) we masked out the grid cells with crop-dominating phenology of > 20 % 373	
since no explicit crop phenology is described in JSBACH. This step has consequences 374	
in areas where other relevant functional types are also present in the same grid cells, 375	
such as deciduous broadleaves that are also abundant in the USA and Europe. As a 376	
result, the parameters related to deciduous broadleaves are constrained from other 377	
locations; 2) we further masked out pixels that hold a low correlation (R2 < 0.2) when 378	
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compared the prior model result and the observations, as we had previously found that 404	
the MPI-CCDAS is incapable of correcting such poor model behaviors (Schürmann et 405	
al. 2016). Finally, 3) we masked out pixels located in areas where phenology abundance 406	
is low, i.e. deserts, because they would influence the optimization causing significant 407	
bias due to global compensating effects. The final FAPAR product used during the 408	
assimilation contains 40 % of the original number of pixels after the applied mask, 409	
resulting in more pixels distributed in the Northern Hemisphere compared to the 410	
Southern areas. This observational data will be referred hereafter as FAPARobs (see Fig. 411	
1 for the global distribution of mean FAPARobs from 1982 to 2006). 412	
2.2.2 Atmospheric CO2 concentrations and observation operator 413	
Measurements of atmospheric CO2 mixing ratios were taken from the flask data 414	
continuous record of 28 sites in the NOAA/CMDL station network (Conway et al., 415	
1994; Rödenbeck et al., 2003). The selection criteria included the length of the record 416	
(on average 19 years) (Fig. A1) and focused on remote and ocean stations with low 417	
impact of local carbon sources and sinks of carbon (Schürmann et al., 2016) (see the 418	
location of CO2 stations in Fig. 1). In the MPI-CCDAS, the atmospheric transport of 419	
CO2 is calculated by integrating the simulated half-hourly net CO2 fluxes to monthly 420	
values followed by the transport calculation with the Jacobian representation of the 421	
atmospheric transport model TM3 that is driven with meteorology fields from NCEP 422	
(National Centers for Environmental Prediction) reanalysis (Heimann and Körner, 423	
2003; Rödenbeck et al., 2003). During the generation of the monthly transport matrices, 424	
the precise sampling time of flask measurements as well as the 3-hourly atmospheric 425	
transport was considered to minimize the representation error due to short-term 426	
fluctuations in atmospheric transport and to minimize the impact of synoptic 427	
atmospheric transport variability on the simulated seasonal and long-term dynamics of 428	
atmospheric CO2 at the monitoring stations. Through this approach, the non-linear 429	
effect of weather anomalies on the surface fluxes were also taken into account. TM3 430	
runs at horizontal “fine grid” (fg) resolution of 4° × 5°. Due to computational demands, 431	
it is not possible at this stage to use the MPI-CCDAS at the same fine grid resolution 432	
than in the TM3. The treatment of uncertainties is done in the same way as in the TM3 433	
atmospheric inversion (Rödenbeck et al., 2003) but imposing a floor value of 1 ppm to 434	
the uncertainties (Rayner et al., 2005) to allow a range for the comparison to the 435	
observational operator. 436	
We also compare the fluxes from the assimilation to fluxes obtained from an 437	
atmospheric transport inversion (referred to as INV). Similar to the MPI-CCDAS, the 438	
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atmospheric transport inversion is constrained by atmospheric CO2 data linked to 457	
surface fluxes through a tracer transport model, but the land surface CO2 fluxes are 458	
adjusted directly rather than through changes in the parameters of a land-surface 459	
process model. The inversion set-up used in this study is similar to the Jena CarboScope 460	
v4.1 (Rödenbeck, 2005; Rödenbeck et al., 2003), involving the same TM3 model as in 461	
the MPI-CCDAS. To make the inversion results as comparable as possible to those 462	
from the MPI-CCDAS, we used in the inversion the same prior fluxes from fossil fuel 463	
emissions and ocean (Section 2.2.3), as well as the same CO2 stations. This comparison 464	
also helps to gauge the impact of non-land surface fluxes on the ability to reproduce the 465	
observations.  466	
2.2.3 Background carbon fluxes 467	
To account for the total carbon balance during the comparison between the land fluxes 468	
from MPI-CCDAS and atmospheric concentrations, it is necessary to include 469	
background carbon fluxes (i.e., from fossil fuel emissions, use and change of land 470	
cover, and from the ocean). 471	
Land-use and land-cover change: the LULCC fluxes were obtained from a transient 472	
simulation done with the JSBACH 3.0 forced with prescribed annual maps of modified 473	
cover fractions (Hurtt et al., 2006). These fluxes do not consider disturbances such as 474	
fluxes from fires.  475	
Fossil fuel emissions: The FF emissions used for this work are the result of a merged 476	
product from various data sets to complete a long record of emissions, i.e., 1980 to 477	
2012. This product was prepared for the GEOCARBON project (www.geocarbon.net) 478	
by P. Peylin after merging and harmonizing various data sets: 1) for the period 1980 to 479	
1989, the CDIAC (Carbon Dioxide Information Analysis Center; http://cdiac.ess-480	
dive.lbl.gov/) product prepared for the CMIP5 exercise (Andres et al., 2013; Andres et 481	
al., 2011; Andres et al., 1996); 2) for the period 1990 to 2009, the IER-EDGAR 482	
(Institute of Energy and Rational use of Energy, Stuttgart, Germany - Emission 483	
Database for Global Atmospheric Research; www.carbones.eu/wcmqs/project/) 484	
product where the FF emissions are constructed using the EDGAR v4.2 data set 485	
(http://edgar.jrc.ec.europa.eu/overview.php?v=42) and completed with profiles for 486	
different countries, emission sectors and time zones available for different temporal 487	
resolutions; and 3) for the period 2010 to 2012, the CarbonTracker product derived at 488	
NOAA-Climate Monitoring and Diagnostics Laboratory (CMDL;  489	
https://www.esrl.noaa.gov/gmd/ccgg/carbontracker/).  490	
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Ocean fluxes: Two products were merged to account for the oceanic CO2 fluxes: 1) 502	
results from the Jena CarboScope v3.4 for the period between 1990-2007 (Rödenbeck 503	
et al., 2013) (http://www.bgc-jena.mpg.de/CarboScope/?ID=s), and 2) annual ocean 504	
fluxes from the Global Carbon Budget 2014 (Le Quéré et al., 2015) (http://cdiac.ess-505	
dive.lbl.gov/GCP/carbonbudget/2014/). The ocean fluxes for monthly resolution 506	
follow Takahashi et al. (2002), and the spatial distributions follow Mikaloff Fletcher et 507	
al. (2006). 508	
2.3 Experimental setup 509	
2.3.1 Spin up and preparation of initial files 510	
The MPI-CCDAS was forced with meteorology from CRU-NCEP (the Climate 511	
Research Unit from the University of East Anglia, analysis of the NCEP reanalysis 512	
atmospheric forcing) version 6.1, available at daily resolution from 1901 to 2014 and a 513	
spatial resolution of 0.5° (Viovy and Ciais, 2015; last access July 2015). The 514	
atmospheric forcing fields (i.e., wind speed, air temperature, precipitation, downward 515	
short- and long-wave radiation and specific humidity) were remapped to the coarse (8° 516	
× 10°) model grid. Prescribed annual means (one annual global mean value) of 517	
atmospheric CO2 were also included as part of the forcing fields for the model 518	
(https://www.esrl.noaa.gov/gmd/ccgg/trends/global.html, accessed July 2015). 519	
Before the assimilation experiments, the JSBACH 3.0 model was spun up to 520	
equilibrium of the vegetation and soil carbon pools with 1901 atmospheric CO2, land 521	
cover and 1901-1910 climate. The spin-up procedure was done for a model period of 522	
1000 years with repeated cycles of atmospheric forcing data. After this period, a 523	
transient model simulation was also done with JSBACH 3.0 for the period 1901 to 524	
2012. This transient simulation included a change in atmospheric CO2, climate and land 525	
cover. The purpose of this simulation was: i) to obtain the initial conditions for the 526	
CCDAS experiments, and ii) to derive spatially resolved land-use emissions from a 527	
JSBACH 3.0 simulation as additional forcing (see section 2.2.2). Due to technical 528	
limitations, the cover fraction of each PFT is kept constant in MPI-CCDAS during data 529	
assimilation, and thus remained fixed through the simulation period to account for the 530	
imprint of the space-time dynamics of land-use change emissions on atmospheric CO2 531	
concentrations. After the spin-up procedure, an initial global scaling factor was set for 532	
the slowly varying carbon pool (fslow, also selected as optimization parameter) to 533	
account for non-steady-state conditions at the beginning of the assimilation (Carvalhais 534	
et al., 2008; Schürmann et al., 2016). 535	
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2.3.2 Assimilation experiments 549	
During the assimilation procedure, the model was forced with the same daily reanalysis 550	
atmospheric data used during the model spin up.	In this study we present the results of 551	
three long-term experiments using the MPI-CCDAS, which differ in the timeframe of 552	
the observational records used during the assimilation: 1) ALL, covers data in 1980-553	
2010 and includes the complete available timeframe of the two observational data sets, 554	
i.e., for FAPAR is from 1982 to 2006 and for the atmospheric CO2 concentrations from 555	
1982 to 2010; 2) DEC1, covers observations from the two data sets available from 1982 556	
to 1990; and 3) DEC2, covers measurements available from the two data sets from 1990 557	
to 2000 (Fig. A2). Because of the different lengths of the CO2 records for some stations, 558	
this ultimately leads to a different number of observations used for each experiment 559	
(Fig. A1).  560	
The simulation period in the three assimilation experiments is from 1970 to 2010. The 561	
first ten years (1970 to 1979) of the results are discarded because during this period the 562	
phenology, vegetation productivity, and the fast land C pools adjust to the new model 563	
control vector p. Through this adjustment any imprint of the initial conditions on the 564	
calculation of the cost function is avoided. The soil C pool at the beginning of the 565	
experiment was included in the model control vector. and only results from 1980 are 566	
reported below. The results of the assimilation for the periods of time that fall within 567	
the observational temporal window are considered for model diagnostic, whereas the 568	
periods that fall outside the assimilation window on each experiment are periods of 569	
model prognosis, i.e., the prognosis period in DEC1 is from 1991 to 2010, and in DEC2 570	
for 2001 to 2010. 571	
3 Results 572	
We first evaluate the long-term trends, seasonal and spatial variability of the FAPAR 573	
and carbon fluxes from the different assimilation experiments (Section 3.1 to 3.3), and 574	
based on these analyze the prognostic ability of the MPI-CCDAS (Section 3.4). To 575	
facilitate the analysis in some of our results, the global land is divided into eight regions: 576	
Boreal West and East (BW and BE, for latitudes north of 60° N), temperate Northwest 577	
and Northeast (TNW and TNE, between latitudes 20° N and 60° N); tropical West and 578	
East (TW and TE, between latitudes 20° N and 20° S); temperate Southwest and 579	
Southeast (TSW and TSE, for latitudes south of 20° S) (Fig. 1). 580	
3.1 Phenology  581	
In all assimilation experiments, the RMSE and the bias between the modeled and 582	
observed FAPAR for 1982 to 2006 is reduced compared to the PRIOR (Table 2). One 583	
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important cause for this improvement is the change in the spatial distribution of the 619	
yearly maximum leaf area index (LAI) due to the optimization of the PFT-specific 620	
maximum LAI (Lmax) parameter (Fig. S2) (see also section A1 and Fig. A3 in the 621	
Appendix for more specific results of parameters changes due to the assimilation).  The 622	
improvement occurs in all regions (Fig. 2), despite notable differences between the 623	
different assimilation experiments. In the decadal experiments DEC1 and DEC2, the 624	
largest error reduction compared to the PRIOR is 19 % for boreal regions, while in the 625	
temperate areas this reduction is about 16 %. In the ALL experiment, larger reductions 626	
of 21 % on average are obtained in the tropical regions TE and TW. 627	
One important factor in the error reduction is a substantial increase in the linear global 628	
correlation (R2) in FAPAR during spring and autumn in experiments DEC1 (0.42 and 629	
0.48, respectively) and DEC2 (0.48 and 0.47, respectively) with respect to the PRIOR 630	
(0.31 and 0.33, respectively), with changes mostly taking place in the Northern 631	
Hemisphere (Fig. S3). An analysis for representative pixels (Fig. 1) shows that the 632	
assimilation procedure results in a better representation of the timing and amplitude of 633	
the mean seasonal cycle, particularly in the temperate and boreal zones of the Northern 634	
Hemisphere (Fig. S4). As a result, the average global R2 between modeled and observed 635	
FAPAR increased with respect to the PRIOR experiment from 0.17 in the PRIOR to 636	
0.20 for ALL and 0.34 for both DEC1 and DEC2 (Table 2, Fig. S3). Further details on 637	
the pixel level analysis are presented in section A2 of the Appendix. 638	
The observed FAPAR signal exhibits positive long-trends, indicating a greening trend 639	
of vegetation for most of the regions, with the exception of the TSW region, where the 640	
long-term trend indicates a decrease of FAPAR (i.e., browning). In most of the regions, 641	
the assimilation the assimilation results agree on a positive long-term trend as in the 642	
observations, the magnitude of this trend is in disagreement to the observations (Fig. 643	
3). Particularly in the BE region, the PRIOR experiment overestimates the FAPARobs 644	
trend by almost double. After the assimilation, the simulated FAPAR trend is reduced 645	
leading instead to a slight underestimation of the growth rate in all of the posterior 646	
experiments. In the TWS region, the assimilation improved the long-term trend from a 647	
positive to a negative growth rate in the three posterior experiments. The most 648	
substantial disagreement between FAPARobs and FAPARmod occurs in the TW region, 649	
where the observations show a positive trend in FAPAR during the period of analysis, 650	
whereas this is not captured in the PRIOR and all the posterior experiments. Despite 651	
these trend adjustments, the model-data error (based on the four-years mean differences 652	
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to the observations at regional scale) remains more or less constant across the thirty-657	
year period (Fig. 4). 658	
The observed FAPAR signal also contains a small amount of interannual variability 659	
(Fig. S5). Compared to observations, the simulated IAV of FAPAR (obtained from the 660	
monthly signal for each experiment) is improved only in the predominantly temperature 661	
controlled boreal regions, whereas in temperate and tropical areas with a larger 662	
contribution of moisture-controlled phenology, the assimilation does not improve the 663	
variability (Fig. S5).  664	
3.2 Atmospheric CO2 665	
To diagnose the performance of the MPI-CCDAS with respect to the atmospheric mole 666	
fractions of CO2, we compare the observed and simulated values, in terms of the mean 667	
seasonal cycle, IAV and monthly growth rate, in three stations: 1) Alert (ALT) at the 668	
Northern Hemisphere, 2) Mauna Loa (MLO) at the Tropics, and 3) South Pole (SPO) 669	
at the Southern Hemisphere. Results of this comparison are shown in Fig. 5. For MLO 670	
and ALT, the timing of the seasonal cycle is already well reproduced in the PRIOR 671	
simulation, and the assimilation corrects errors in the amplitude of the seasonal cycle 672	
and the long-term trend. At SPO, there are also large relative differences between the 673	
model results and the observations, however, of a much smaller magnitude than for the 674	
two other stations. After the assimilation, the seasonal phase of CO2 is shifted by 675	
approximately a month to better match the pattern in the measurements in the three 676	
experiments, and the amplitude of the seasonal cycle is in better agreement with the 677	
observations than compared to the PRIOR. 678	
Figure 6 demonstrates that these examples are broadly representative of the global 679	
changes due to the assimilation. Fig. 6a shows a reduction in the CO2 amplitude for 680	
stations of the Northern Hemisphere (> 40 °N) after the assimilation, which is in better 681	
agreement to the observations than the PRIOR simulation. The most substantial 682	
amplitude reduction occurs in the northernmost station (ALT), where the seasonal 683	
amplitude decreases from 23.5 ppm in the PRIOR experiment to 16.5 ppm in the ALL 684	
experiment, bringing it closer to the observed amplitude of 14.4 ppm. The latitudinal 685	
distribution of the linear correlation coefficient between the observed and simulated 686	
mean seasonal cycles is depicted in Fig. 6b, and demonstrates a very good agreement 687	
(R2 > 0.9) in the Northern Hemisphere in all of the experiments (including the PRIOR 688	
simulation). In the tropics (specifically between 20 °N and 40 °N), the misfit of the 689	
phasing of the seasonal cycle is improved after the assimilation, as evidenced by an 690	
increased linear correlation. However, this is achieved at the expense of a considerable 691	
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reduction in the amplitude of the seasonal cycle compared to the observations. The 963	
results from the atmospheric inversions (INV) show a closer statistical agreement with 964	
the observations, as shown in Fig. 5 and Fig. 6. 965	
During the nearly thirty years of atmospheric CO2 data available, the time series of the 966	
CO2 mole fractions in the PRIOR model results, strongly underestimate the long-term 967	
trend, and start to deviate in the first five years of the time series. In all the assimilation 968	
experiments, the long-term atmospheric CO2 trend is in much better agreement to the 969	
thirty-years trend of the measurements in the entire period of the assimilation (leftmost 970	
panels of Fig. 5 and Fig. 6c). The mean growth rate calculated from the results of the 971	
ALL experiment is in good agreement with the results in the observations (0.15 ppm 972	
month−1 in both cases) compared to the PRIOR model (0.087 ppm month−1). Despite 973	
the moderate improvement, the MPI-CCDAS is incapable of improving the IAV of the 974	
atmospheric CO2 concentration substantially; with the most notable deviations from the 975	
observed signals remaining unchanged after the assimilation procedure (Fig. 5). 976	
3.3 Global and regional carbon pools and fluxes 977	
We next compare the simulated land carbon cycle in the PRIOR and posterior 978	
experiments to independent data. In the posterior experiments, the vegetation C pool 979	
decreased between 14 and 20 % of the value in the PRIOR but remaining within the 980	
range of the literature estimate (442±146 PgC). The global soil C stock showed 981	
significant changes after the assimilation. In all the posterior experiments, the soil C 982	
pool decreased by 45, 43 and 53 % with respect to the value in the PRIOR. Still, the 983	
total C in the soil (1362 PgC) in the ALL experiment after the assimilation is in closer 984	
agreement to the estimate from the Harmonized World Soil Database 985	
(http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML; 986	
last access January 2015) of 1343 PgC (Table 3). As for the total global vegetation C 987	
stock, the PRIOR and assimilation are in closer agreement to the lower end of the 988	
estimate by Carvalhais et al., 2014 (296 PgC). 989	
The simulated latitudinal GPP values agree well with the data-driven Model Tree 990	
Ensemble (MTE) estimate from Jung et al. (2011) for the period 1982 to 2010 north of 991	
30 °N. However, the assimilation results are low biased in the tropics, which propagated 992	
into lower estimates of global GPP in all the posterior results (Fig. 7d and Table 3). 993	
After the assimilation, the global GPP and NPP are reduced in the three posterior 994	
experiments compared to the PRIOR (118.8 PgC yr−1 and 54.5 PgC yr−1, respectively). 995	
In contrast to the posterior global mean of GPP, the value in the PRIOR simulation 996	
compares favorably well to the global mean from the MTE product (118.9 PgC yr−1) 997	
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for the same period of analysis. The global mean GPP is reduced by up to 26 PgC yr−1 1014	
on average in the three posterior experiments compared to the PRIOR experiment. 1015	
Simulation DEC1 experienced the largest reduction in the global photosynthetic C 1016	
uptake (83.1 PgC yr−1) relative to the PRIOR value (Table 3 and spatial distribution of 1017	
the GPP difference to the PRIOR in Fig. S6d, f, and h).  1018	
At large-scale, the variation of the NBE (net biome exchange of CO2 with the 1019	
atmosphere, calculated as the Net Ecosystem Exchange (NEE) minus the flux related 1020	
to land use change) from all of the simulations through the time series is similar to that 1021	
from the Global Carbon Project 2017 (GCP17; Le Quéré et al., 2018) and INV, with 1022	
the significant anomalies collocated in time (Fig. 7a, Fig. A4). Contrary to the PRIOR 1023	
simulation, the total annual NBE from the three posterior experiments falls within the 1024	
uncertainty (shadow green area in Fig. A4d calculated as ±1 standard deviation) of the 1025	
mean NBE from the terrestrial ecosystem models in the GCP17. However, the 1982-1026	
2010 mean net biome exchange in all of the assimilation experiments through the time 1027	
series is on average 1.4 PgC yr−1 lower than the flux in the PRIOR simulation (−2.06 1028	
PgC yr−1) and 0.8 PgC yr−1 less than the GCP17 value (−1.27±0.97 PgC yr−1) (Table 3, 1029	
Fig. A4d and Fig. S7 for summary of C balance). 1030	
In all MPI-CCDAS simulations, the NEE is reduced relative to the PRIOR in most of 1031	
the Southern Hemisphere, while it is increased in the Northern Hemisphere (Fig. S6c, 1032	
e, and g). Temperate northern areas contribute the most to the global net CO2 uptake. 1033	
In the boreal east and west regions (BE and BW), the net land C emissions increased in 1034	
all of the posterior experiments compared to the PRIOR (Fig. S6c, e and g) with the 1035	
most significant increase in BE for DEC2 (−0.29 PgC yr−1) relative to the corresponding 1036	
value in the PRIOR (−0.09 PgC yr−1). The decrease in GPP in the tropics is depicted in 1037	
the latitudinal gradient of NBE shown in Fig. 7c and in the spatial distribution of the 1038	
NEE difference between the PRIOR and the posterior experiments (Fig. S6c, e, and g). 1039	
As in the tropics, the NEE in the southern temperate region is consistently reduced after 1040	
the assimilation experiments, also switching the NEE of the TSE region from a C sink 1041	
of −0.18 PgC yr−1 in the PRIOR to a mean C source to the atmosphere of 0.016 PgC 1042	
yr−1 in the DEC2 experiment. 1043	
The magnitude of the global NBE and GPP is smaller in the posterior experiments than 1044	
in the PRIOR. However, the trend in the anomaly of these fluxes (calculated relative to 1045	
the temporal mean of each time series) is comparable in all the experiments (Fig. 7a 1046	
and b), suggesting that the response to the environmental conditions is similar through 1047	
the simulation period also after the assimilation. This robust response shows, e.g., in 1048	
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GPP a similar and gradual increasing C uptake (positive trend) during the period of 1161	
analysis, only with a slightly reduced slope in the PRIOR experiment (Fig. 7b).  1162	
3.4 Prognostic capability of MPI-CCDAS 1163	
Finally, we evaluate the goodness of the model-data fit of the decadal assimilation runs 1164	
with respect to their long-term carbon cycle simulation relative to: i) that of the prior 1165	
and ii) that of the assimilation run using data from the 30 years-experiment as a 1166	
reference case for “best possible” model-data match given the structural limitations of 1167	
the MPI-CCDAS to match the observations (as evaluated in Sections 3.1 and 3.2). We 1168	
calculate the four-years mean differences between the atmospheric CO2 mole fraction 1169	
measurements and the CO2 model results and also the INV results, for all of the stations 1170	
(Fig. 8). In the ALL assimilation experiment, the atmospheric CO2 concentration 1171	
consistently matches the observations across the entire assimilation period (that also 1172	
corresponds to the window of assimilation) with a −0.03±1 ppm average bias to the 1173	
observations (Fig. 8). This is comparable to the trend (Fig. 6c), and four-years mean 1174	
differences inferred by the inversions, where the four-years mean results in the ALL 1175	
fall within the standard deviation of the four-years mean of the INV (Fig. 8). This is in 1176	
striking contrast to the PRIOR experiment, where the four-years mean of the CO2 mole 1177	
fraction at the end of this simulation is 18.8 ppm lower than observed. For the DEC1 1178	
experiment, the four-year mean difference among the measurements and the model 1179	
results is between −0.3 and 0.3 ppm in the 1980s. This level of model-data agreement 1180	
remains for the 1990s, where the experiment did not see any observations. After the 1181	
year 2000, the fit increasingly degrades, with an underestimation of the CO2 mole 1182	
fraction by 1.6 ppm for the last four-years average. However, this is still a 90 % 1183	
reduction in misfit compared to the PRIOR experiment.  1184	
We next quantify the RMSE between the CO2 measurements and model results for each 1185	
station for four different periods: 1982-1990, 1990-2000, 2000-2010 and 1982-2010 1186	
(Fig. 9 and Fig. A2). The large bias of the PRIOR is reflected in the RMSE where the 1187	
results of this experiment have the most substantial error in all of the stations and 1188	
periods (between 2.8 and 18.7 ppm) (Fig. 9). For the posterior experiments with a 1189	
decadal window of assimilation (DEC1 and DEC2), the performance of the assimilation 1190	
of CO2 mole fraction also improves substantially across all time periods. Within the 1191	
period of the assimilation, the difference to the measurements and RMSE is most 1192	
strongly reduced, and the error increases somewhat outside of the window of 1193	
assimilation. The model results show that when only the first decade of data is 1194	
assimilated (DEC1), a more significant deviation to the long-term trend of atmospheric 1195	
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CO2 occurs between 2000 and 2010 compared to DEC2 and ALL (Fig. 9c). Similarly, 1340	
a larger bias is also observed in the results from DEC2 where the lowest four-years 1341	
mean difference between the observations and the assimilation results takes place in the 1342	
period of the window of assimilation for this experiment (1990-2000) (Fig. 8 and Fig. 1343	
9b for RMSE). During this period, the model overestimates the CO2 atmospheric 1344	
concentration only by 0.15 ppm on average whereas, for the periods outside the window 1345	
of assimilation, the CO2 concentration is underestimated by 0.64 ppm in the period 1346	
1982-1990, and by 1.04 ppm in the period 2000-2010. Thus, also in experiment DEC2 1347	
the prognostic skill of CCDAS is reduced outside the window of assimilation, and the 1348	
long-term trend is less well reproduced than in the ALL experiment.  1349	
The analysis of the four-year mean differences for the period 1982-2006 between 1350	
FAPARobs and the results of the PRIOR and assimilation experiments at the regional 1351	
scale (areas in Fig. 1) reveals, contrary to the CO2 observations, a near constant four-1352	
years mean FAPAR difference within the time series and each of the experiments (Fig. 1353	
4). In general terms, the decadal experiments are better able to reproduce the mean 1354	
FAPAR across all regions. The largest difference between posterior results to the 1355	
observations is in the tropical regions, where the FAPAR four-years mean difference 1356	
showed that the observations remained consistently larger than the ALL results by on 1357	
average 0.042 in TE and 0.095 in TW (Fig. 4). Importantly, however, the trend 1358	
correction for the boreal and temperate areas (Fig. 3) are similar across the different 1359	
assimilation experiments, suggesting that important biases of the JSBACH 3.0 model, 1360	
including the tendency to simulate too strong boreal greening, can be readily reduced 1361	
with only 10 years of data, as the further improvement with the 30 years record is small. 1362	
4 Discussion 1363	
The parameter optimization with a simultaneous assimilation of long-term spaceborne 1364	
FAPAR and atmospheric CO2 measurements in the MPI-CCDAS, resulted in a 1365	
considerable reduction in the cost function and norm of the gradient, which can be seen 1366	
as an overall improvement in the modeled global carbon fluxes with a decrease in the 1367	
root mean squared error of the MPI-CCDAS compared to the CO2 and FAPAR and 1368	
observations (Fig. 9 and Fig. 2). The trajectory of model parameters involved in the 1369	
optimization differed for each experiment and each phenotype. While some parameters 1370	
were consistently retrieved after the assimilation, such as the maximum leaf area of 1371	
grasses and shrubs and the correction parameter for the initial soil pool size, some final 1372	
parameter estimates varied considerably between the three experiments, e.g., the 1373	
tropical maximum leaf area index and some of the parameters controlling the 1374	

Deleted: is identified after1375	
Deleted: This1376	
Deleted:  identified1377	
Deleted: 101378	
Deleted: A1379	
Deleted: 41380	
Deleted: of time 1381	
Deleted: (1382	
Deleted: )1383	
Deleted: (1384	
Deleted: )1385	
Deleted: In the ALL assimilation experiment, the 1386	
atmospheric CO2 concentration is 0±1 ppm lower than the 1387	
average value in the observations for the entire simulation 1388	
period (that corresponds also to the window of assimilation). 1389	
This suggests that a longer record of atmospheric CO2 1390	
measurements favorably contributes to a better representation 1391	
of the long-term values after the assimilation, but the average 1392	
deviation to the observations by using shorter assimilation 1393	
periods do not deviate far from the upper limit of the 1394	
uncertainty when using the longest record.¶1395	
We also calculated t1396	
Deleted: the satellite 1397	
Formatted: Subscript

Deleted: (Fig. 11). 1398	
Formatted: Subscript

Deleted: In this case, the prognostic skill of CCDAS for the 1399	
periods outside the windows of assimilation is less evident, 1400	
with a consistent 1401	
Deleted:  between 1402	
Deleted: ¶1403	
Deleted: pixels P1, P2, and P6, where the magnitude of the 1489	
mean seasonal cycle is better represented when compared to 1490	
the observations (Fig. S2). Also, the timing of the mean 1491	
seasonal cycle is corrected e.g. in pixels with large seasonal 1492	
amplitude such as in P1 (located in Eastern Siberia) and in P6 1493	
(located in Canada). While in the PRIOR experiment (and 1494	
ALL experiment) the onset and peak of the growing season in 1495	
P1 and P6 are delayed by up to two months, in the results 1496	
from experiments DEC1 and DEC2 this delay is reduced to 1497	
only one month. This correction might be partially due to 1498	
changes in some optimized parameters: increase in the day 1499	
length at leaf shedding (tc) and reduction in the temperature at 1500	
leaf onset Tf� detected for both the CD and CE phenotypes 1501	
(as well as for ETD and TeCr) (Fig. A2); this is because these 1502	
parameters control the onset and end of the vegetation 1503	
activity. This temporal shift however, is less evident in other 1504	
pixels such as in P2, despite changes in Tf and tc after the 1505	
assimilation in TrH, and this is because the amplitude of the 1506	
seasonal cycle is small and only changes in the magnitude of 1507	
the amplitude are evident (Fig. S2).¶1508	 ... [12]
Formatted: Heading 1, Line spacing:  1.5 lines

Formatted: Subscript

Deleted: ¶1488	



 17	

Formatted: Wrap Around

seasonality of the phenology (Fig. A3). These variations lead to regional differences in 1509	
the simulated compartment fluxes GPP and ecosystem respiration, which are not well 1510	
constrained from the observations. Interestingly, these differences result in very similar 1511	
absolute values in global carbon fluxes and their trends. This demonstrates a certain 1512	
degree of equifinality in the results and cautions a too stringent interpretation of the 1513	
MPI-CCDAS outcome in terms of improving understanding about biosphere processes 1514	
and their long-term trends. 1515	
4.1 FAPAR 1516	
MPI-CCDAS is capable of extracting information about the seasonal cycle and the 1517	
long-term trends from the FAPAR observations. Using decade-long FAPAR data 1518	
during the assimilation (DEC1 and DEC2), already leads to notable improvement of 1519	
the simulated seasonal phenology of the land surface within and outside the window of 1520	
assimilation, i.e., maintaining these changes during the prognosis periods. This 1521	
improvement is predominantly the result of the ability in the model to simulate the 1522	
timing of green-up and brown-down in spring and summer through the optimization of 1523	
parameters that regulate the onset and end of the growing season (i.e., parameters for 1524	
temperature and day-length thresholds). The greening effect is especially taking place 1525	
in the Northern Hemisphere, dominated by the phenotypes deciduous and evergreen 1526	
needle leaf and extra-tropical deciduous trees.  1527	
The long-term greening trend in the vegetation of boreal regions previously observed 1528	
in spaceborne data (Forkel et al., 2016; Lucht et al., 2002), was captured in the results 1529	
of MPI-CCDAS before the assimilation, but it was mostly overestimated in northern 1530	
regions and underestimated in the Southern Hemisphere. After the assimilation 1531	
experiments, the greening trend was improved primarily in the boreal areas and is in 1532	
closer agreement to the reported satellite FAPAR data. The modest improvements 1533	
achieved in the simulated greening trend of temperate areas in the western hemisphere 1534	
are associated with a decreased performance in the eastern hemisphere, indicating that 1535	
the model structure of MPI-CCDAS is incapable of reconciling regional differences. 1536	
This difference could be an indicator of the need to parameterize both hemispheres 1537	
differently in terms of their phenological response to the underlying driving factors 1538	
(such as temperature, moisture availability and day-length); also, this could be due to 1539	
the lack of process to account for the land-use or vegetation dynamics in the MPI-1540	
CCDAS.  1541	
Despite these broad-scale improvements, the MPI-CCDAS does not reproduce the 1542	
magnitude of the greening trend and its interannual variability in all the posterior 1543	
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experiments at pixel and regional levels. This is likely a result of the MPI-CCDAS 1638	
structure, which relies on few globally relevant PFT-level parameters. Although some 1639	
of the phenological parameters in CCDAS adapt to local mean growing season 1640	
temperature, other thresholds are only globally applicable, causing a trend to 1641	
temperature grasslands that cover a wide climatological range. For example, some of 1642	
the global parameters such as faut_leaf and fslow, imply that improvements of modeled 1643	
fluxes in the boreal regions directly affect fluxes in the tropics, inducing parameter 1644	
changes to compensate for the altered C fluxes. Defining instead such global parameters 1645	
per PFT would alleviate this issue but will compromise the computational cost and 1646	
might not necessarily reduce the overall uncertainty. Another technical challenge is the 1647	
use of a spatially mixed signal at the coarse spatial model resolution (due to the high 1648	
computational requirements necessary to increase model resolution) to infer PFT-1649	
specific parameters. A likely better strategy for constraining PFT-specific parameters 1650	
would be to resample the highly resolved satellite product to PFT-specific FAPAR 1651	
classes per pixel before the aggregation into a global grid. This change would allow 1652	
finding more spatially refined classes and provide PFT-specific FAPAR maps to the 1653	
CCDAS to reduce issues in the identification of phenological parameters for different 1654	
climatic regions. 1655	
Except for the tropical latitudes, the difference between the regional IAV of the 1656	
observations and model output is small compared to seasonal variations. The modeled 1657	
signal remains within a range of 0.05 (dimensionless) FAPARobs. The signal and the 1658	
model-data difference is also smaller than the global mean retrieval error of the FAPAR 1659	
product, which is ±0.2088 (Schürmann et al., 2016). This error was used to quantify the 1660	
observational FAPAR uncertainty in the assimilation, thereby reducing the ability of 1661	
the MPI-CCDAS to detect and correct such smaller variation. Overall, the lacking 1662	
match of the IAV may therefore be of little overall concern. Nevertheless, the lower 1663	
than observed IAV in the tropical bands may be indicative of too weak drought response 1664	
in the maximum leaf area index of the model. Although the assimilation procedure 1665	
allows changes in the phenology response to water stress (given by parameter tw), the 1666	
assimilation procedure decreased the drought sensitivity of tropical phenology given 1667	
the entire spatially explicit FAPAR time series, and therefore did not allow capturing 1668	
the regional drought events that could be in principle linked to changes in LAI.  1669	
The technical error during the assimilation procedure to not include the period from 1670	
2007-2010 in the FAPARmod product does not influence however the decadal results 1671	
observed here, because the main information gain of the CCDAS in terms of phenology 1672	
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stems from the seasonal cycle, with little effect on the overall trends between the three 1685	
assimilation experiments with different time periods. 1686	
Bearing in mind the different spatial resolution of methods (i.e., model grids and remote 1687	
sensing pixels), a robust comparison between the mean and maximum LAI values 1688	
before and after the assimilation per region are presented in Table A1 of the Appendix. 1689	
The results fall within LAI values from MODIS and LiDAR reported in the literature. 1690	
Ground-based observations in the tropical Amazon-Savanna transition forest between 1691	
2005 and 2008 show an annual mean LAI value for the total canopy of 7.4±0.6 m2 m–1692	
2, and for the seasonally flooded forest the value of 3.4±0.1 m2 m–2. For the remote 1693	
sensing data from MODIS, the reported values are 6.2±0.2 m2 m–2 and 5.8±0.3 m2 m–1694	
2, respectively (Biudes et al., 2014). In the eastern Amazon forest, the remote sensing-1695	
based LAI has been reported as 6.2 m2 m–2 from LiDAR, and 4.8 m2 m–2 with a low 1696	
end of 2.0 m2 m–2 from MODIS (Qu et al., 2011). 1697	
4.2 Atmospheric CO2 1698	
The considerable improvement of the seasonal amplitude and the long-term trend of 1699	
atmospheric CO2 at Northern Hemisphere stations is independent of the different 1700	
periods of data used for the assimilation. However, the MPI-CCDAS consistently fails 1701	
to resolve some of the features of the year-to-year variability detected in the measured 1702	
atmospheric CO2 stations, which translates into an acceptable, but far from perfect fit 1703	
to the inferred annual carbon budget of the GCP17 (Le Quéré et al., 2018). We 1704	
compared the performance to the results from an atmospheric CO2 inversion (INV) with 1705	
the same input fields and atmospheric transport model than MPI-CCDAS, to illustrate 1706	
that these deviations do not reflect uncertainties in the representation of the atmospheric 1707	
transport. It needs to be mentioned that both the choice of the atmospheric transport 1708	
model (and associated imperfections at resolving the vertical and lateral atmospheric 1709	
transport of CO2), and the method to aggregate atmospheric observations to obtain an 1710	
estimate of the annual growth rate in the global carbon budget introduce some error in 1711	
any forecast of the interannual variability. As a consequence, only the occurrence of 1712	
more significant model-data mismatches can be interpreted as an actual result of the 1713	
MPI-CCDAS’ inability to correctly resolve the carbon flux variation.  1714	
Notably, the model lacks the representation of some key processes that contribute to 1715	
climate induced interannual variability of the carbon cycle, such as the possibility to 1716	
dynamically account for fire disturbance (Lasslop et al., 2014), ENSO related tropical 1717	
peat-land fires (van der Werf et al., 2008), or the increase of terrestrial carbon uptake 1718	
after large-scale volcanic eruptions such as for Mt. Pinatubo in 1991 (Lucht et al., 2002; 1719	
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Mercado et al., 2009). Omitting fluxes in the current model configuration due to fire 1741	
events may impair the ability of the model to infer the atmospheric growth rate of CO2 1742	
associated with El Niño events (Frölicher et al., 2011; Frölicher et al., 2013). One way 1743	
to overcome the IAV mismatch would be to include fire fluxes in the model by 1744	
prescribing them from, e.g., the Global Fire Emissions Database (GFED, van der Werf 1745	
et al., 2010), however the latest version of this data set (Version 4.0) is only available 1746	
for years from 1997 which is a limiting factor for the timeframe of the simulations in 1747	
this work. However, the contribution of these interannual variations to the overall CO2 1748	
cost function is low in comparison to the signal contained in the seasonal cycle and 1749	
deviations in the long-term trend, such that the MPI-CCDAS may simply not be 1750	
sensitive enough to these aggregate system properties like the response of the tropical 1751	
carbon cycle to El Niño events given the uncertainty in the atmospheric transport and 1752	
the observational representation error.  1753	
4.3 Carbon-cycle simulation 1754	
Independent of the amount of data used in the assimilation window, our results show 1755	
that the GPP and NEE were consistently reduced globally compared to the PRIOR run, 1756	
i.e., less carbon uptake by plants leading to the model results to be in closer agreement 1757	
to other independent estimates such as the GCP17. The MPI-CCDAS suggests a 1758	
somewhat lower average annual atmospheric CO2 growth rate (calculated by the sum 1759	
of the net C fluxes from the ocean, land and fossil fuel emissions) than the one estimated 1760	
in the GCP17 (Le Quéré et al., 2018), even if the MPI-CCDAS estimate falls within the 1761	
uncertainty of the GCP17 (Fig. 7 and S7). Most of the difference stems from small 1762	
differences in the assumed fossil and ocean carbon fluxes. In the case of the carbon 1763	
fluxes from fossil fuels, the data prescribed in MPI-CCDAS does not contain fluxes 1764	
due to, e.g., cement and flaring, thus the magnitude of the annual carbon sources 1765	
through the time series is consistently lower but still within the ±5 % uncertainty of the 1766	
GCP17 data (Le Quéré et al., 2018) (Fig. A4). As for the ocean carbon sink, the annual 1767	
mean values prescribed in MPI-CCDAS are also of lower magnitude than the mean 1768	
value in the GCP17 but falling in the lower limit of the uncertainty value (Fig. A4c and 1769	
S7). The flux due to LULCC prescribed in MPI-CCDAS is also of smaller magnitude 1770	
than that one from the GCP17 because the simulation made by JSBACH 3.0 does not 1771	
consider disturbances like fires and gross transitions, which might have also contributed 1772	
to the lower land C sink obtained in the assimilation experiments compared to the total 1773	
land C sink in GCP17 (Fig. A4d).  1774	
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The MPI-CCDAS GPP matches well the observation-based product MTE-GPP (Jung 1787	
et al., 2007) in regions with a distinct, light- and temperature-driven seasonal cycle (i.e., 1788	
north of approx. 30 °N), translating to a reduction in modeled GPP by 0.7 PgC yr−1 in 1789	
boreal regions. However, similar to the results in Schürmann et al. (2016) with only 1790	
five years of assimilation, the tropical productivity is strongly reduced by the 1791	
assimilation to estimates that are substantially lower than independent estimates such 1792	
as MTE.  This feature is likely the result of a global compensating effect to 1793	
heterotrophic respiration, and this effect is observed in the drop of the photosynthetic 1794	
capacity (fphotos) in the tropical evergreen and deciduous PFTs, as well as in the 1795	
reduction of the maximum tropical LAI in the three assimilation experiments compared 1796	
to the PRIOR. In addition, another critical factor influencing the global reduction of 1797	
GPP and the tropical uptake of C appears to be related to the difference in data 1798	
availability of CO2 stations between the defined assimilation windows. Specifically, 1799	
this is evident in the results of the data-poorer experiment DEC1, where the topical GPP 1800	
is substantially lower than in the independent estimates and in the assimilation 1801	
experiments that use more stations (DEC2 and ALL). As a result, the mean tropical 1802	
land C source to the atmosphere in the prior experiment (mean NBE value of 0.12 PgC 1803	
yr−1, and minimum value of −0.07 PgC yr−1, reflecting C uptake in the 4 °S latitudinal 1804	
band) was increased to 0.37±0.17 PgC yr−1 on average for all the posterior results. 1805	
The NPP:GPP ratio in ALL and DEC2 decreased to 0.35 and 0.31, respectively, when 1806	
compared to the PRIOR value (0.45). This reduction might be mainly because the NPP 1807	
is not well constrained from the atmospheric record. In JSBACH 3.0, autotrophic 1808	
respiration (Ra) is directly coupled to GPP, hence the fraction of GPP partitioned to Ra 1809	
leads to an increase in the seasonal cycle of the ecosystem respiration. An increase in 1810	
Ra with respect to the PRIOR (which is only visible in the global average value in 1811	
DEC2; Table 3), results in a reduced net land carbon uptake, masking the smaller 1812	
changes in the vegetation turnover. 1813	
The reduction in the soil C pool after the assimilation can be explained due to an 1814	
unavoidable effect in the model. The MPI-CCDAS was initially spun-up until the soil 1815	
C pools reached equilibrium considering pre-industrial forcing; however, this new 1816	
initial state does not consider climate variability. To compensate for this and to reduce 1817	
the respiration when the MPI-CCDAS is confronted with contemporary changes in the 1818	
climate, the model creates an artificial C sink that leads to a reduction in the soil C 1819	
stocks. It is important noting that the JSBACH 3.0 version used in this MPI-CCDAS 1820	
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does not include permafrost processes; therefore, the global soil C stock might still be 1858	
underestimated. 1859	
4.4 Value of long-term data sets to constrain CCDAS 1860	
Notwithstanding the MPI-CCDAS conceptual issues, the set-up of this study enables to 1861	
test by how much the quality of the data-model agreement is reduced after exposing the 1862	
MPI-CCDAS to shorter observational time-series. In terms of FAPAR, there is no 1863	
apparent degradation of fit with time, despite that in general terms, the trend in the data 1864	
is best matched with the ALL experiment. This is foremost a consequence of 1865	
comparatively small trends in the observed FAPAR, implying that extracting the mean 1866	
seasonal patterns and amplitude for few years, is essential for simulating current and 1867	
near-term FAPAR. Issues with model structure and with the assimilation set-up prevent 1868	
a better model-data fit irrespective of the length of the record. This would suggest that 1869	
a focus of assimilation on high-quality and highly spatially resolved FAPAR should be 1870	
a priority over the use of long-term data sets. The results are different for the case of 1871	
projecting atmospheric CO2, where a long record of atmospheric CO2 measurements 1872	
favorably contributes to a better representation of the long-term values after the 1873	
assimilation, whereas a shorter window leads to deviations to the observations in the 1874	
periods outside the assimilation years. The model-data agreement is of approximately 1875	
±0.5 ppm during the assimilation period and starts to deviate for the DEC1 experiment 1876	
later than 10 years after the end of the assimilation window, whereas in the DEC2 1877	
experiment, the degradation of the model-data match already starts after approximately 1878	
5 years. Still, the average deviation to the observations by using shorter assimilation 1879	
periods do not deviate far from the upper limit of the uncertainty when using the longest 1880	
record. Nonetheless, with the caveat that MPI-CCDAS does not fully explain the 1881	
interannual variability of the land net carbon flux, this suggests a reasonable short-term 1882	
(for a small number of years) forecasting skill of atmospheric CO2. 1883	
5 Conclusion 1884	
The MPI-CCDAS is capable of simultaneously integrating two independent 1885	
observational data sets over three consecutive decades at the global scale to estimate 1886	
global carbon fluxes. The results demonstrate that assimilating only one decade of 1887	
observations, for two observational data (FAPAR and atmospheric CO2 1888	
concentrations), leads to broadly comparable results and trends in the global carbon 1889	
cycle components than using the entire time series of available observations (thirty 1890	
years). Currently, the system can confidently predict the carbon fluxes in short time 1891	
scales (up to 5 years after the end of the window of assimilation), e.g., for atmospheric 1892	
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CO2 concentrations at the site level, and the mean prediction remains within the 1934	
uncertainty of the observations. However, long-term forecasts with CCDAS are less 1935	
certain, as the observational record does not sufficiently constrain the interannual 1936	
variability of the simulated land carbon fluxes, and longer-term changes in the decadal 1937	
net carbon uptake. Nevertheless, the comparatively small error of 2±1.3 ppm after 15-1938	
19 years of prognostic simulation shows the potential for mid-term carbon cycle 1939	
predictions constrained using the CCDAS approach.  1940	
The MPI-CCDAS is a computationally expensive system, and the demonstration that 1941	
large-scale carbon fluxes can be improved by only using a limited period of 1942	
observations increases the feasibility of using data assimilation systems to constrain the 1943	
land carbon budget in land surface models. However, we also show that there are 1944	
considerable variations in the estimated parameters and the regional distribution of the 1945	
land C uptake suggesting that further improvements in the land-surface model, 1946	
especially in the current structure and design, must be first solved to improve the model 1947	
and computational efficiencies of the system. This is recommended to be done before 1948	
an attempt to include another observational stream or other modifications aiming to test 1949	
an enhancement on the prognostic skill in the full MPI-CCDAS. 1950	
6 Code availability 1951	
The code of the JSBACH model is available upon request to S. Zaehle (szaehle@bgc-1952	
jena.mpg.de). The TM3 model code is available upon request to C. Rödenbeck 1953	
(christian.roedenbeck@bgc-jena.mpg.de). The TAF-generated derivative code is not 1954	
available and it is subject to license restrictions. 1955	
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Table 1 – Model parameters selected for the optimization: No. 1 to 6: related to phenology; No. 7 to photosynthesis and No. 8 to 11 to land-carbon 
turnover. The values in the table for each PFT (where applies only) are for the prior conditions: ppr±Cpr. &Values in fphotos are the photosynthetic 
parameters Vcmax / Jmax  (µmol CO2 m-2 s-1 / µmol m-2 s-1). In Lmax the values marked with * are multiplied in the model by a factor of 1±0.2 and those 
with ^ (in Lmax and in fphotos) by a factor of 1±0.1; in fphotos values with a are multiplied by 1±0.02, b by 1±0.03 and c by 1±0.06; these operations 
allowed a change in the standard values in the model. Letters in parenthesis below each PFT name are the predominant environmental controls 
that influence each group: T, temperature; D, daylight; W, water. No. 6 and 8 to 11 are global parameters and apply to all PFTs. 

# Parameter Description TrBe 

(W) 
TrBD 

(W) 
ETD 

(T,D) 
CE 

(T,D) 
CD 

(T,D) 
RS 

(W) 
TeH 

(T,W) 
TeCr 

(T,W) 
TrH 

(T,W) 
TrCr 

(T,W) 

1 
Lmax  Maximum LAI 

(m2 m-2) 7.0* 7.0* 5.0* 1.7* 5.0* 2.0* 3.0^ 4.0^ 3.0^ 4.0^ 

2 1/tl Leaf shedding timescale (d-1) - - 0.07± 
0.01 

5e-4± 
1e-4 0.07±0.01 0.07±0.01 0.07±0.01 0.07±0.01 

3 tw Water stress tolerance time (d) 300±30 114±10 - - - 50±5 250±25 250±25 

4 Tf Temperature at leaf onset (oC) - - 9.21±1 9.21±1 9.21±1 - 1.92±0.5 1.92± 0.5 

5 tc Day length at leaf shedding (h) - - 13.37±1 13.37±1 13.37±1 - - - - - 

6 x Initial leaf growth state (d-1) 0.37±0.03 

7 fphotos
& Photosynthesis rate modifier 39.0/ 

74.1^ 
31.0/ 
58.9^ 

66.0/ 
125.4a 

62.5/ 
118.8b 

39.1/ 
74.3c 

61.7/ 
117.2^ 

78.2/ 
148.6^ 

100.7/ 
191.3^ 

8.0/ 
140.0^ 

39.0/ 
700.0^ 

8 Q10 Temperature sensitivity to resp. 1.8±0.15 

9 fslow Multiplier for initial slow pool 1.0±0.1 

10 faut_leaf Leaf fraction of maintenance resp. 0.4±0.1 

11 CO2
offset Initial atmospheric carbon (ppm) 0±3 

TrBE, Tropical evergreen trees; TrBD, Tropical deciduous trees; RS, Rain-green shrubs;  
CE, Coniferous evergreen trees; ETD, Extra-tropical deciduous trees; CD, Coniferous deciduous trees; TeH, C3 grasses; TeCr, C3 crops; TrH, C4 grasses; TrCr, C4 crops.
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Table 2 – Statistical analysis of FAPAR for 1982 – 2006 in all of the experiments, and 
also for the periods of the window of assimilation only for DEC1 and DEC2. R2 is 
obtained from the linear correlation between FAPARobs and FAPARmod calculated for 
the entire period and by seasons. NRMSE is the normalized root mean squared error, 
defined as RMSE / mean (FAPARobs). 
 

 Bias NRMSE R2 

   All 

year 

DJF MAM JJA SON 

PRIOR 0.37 0.95 0.16 0.14 0.31 0.21 0.33 
ALL 0.10 0.76 0.20 0.14 0.34 0.20 0.37 
DEC1 0.08 0.64 0.34 0.15 0.39 0.18 0.41 
DEC2 0.09 0.65 0.34 0.14 0.39 0.18 0.41 

Only for the period of the assimilation window 
DEC1  
(1980-1990) 

0.09 0.66 0.34 0.18 0.42 0.21 0.48 

DEC2  
(1990-2000) 

0.05 0.48 0.34 0.18 0.41 0.21 0.47 

 
 
Table 3 – Global average of the terrestrial carbon cycle components and carbon stocks 
in results from the assimilation experiments and prior (1982-2010), and other 
independent estimates (see table foot for description). 
 

 PRIOR ALL DEC1 DEC2 INV Literature 

GPP (PgC yr�1) 118.8 96.9 83.1 97.2 - 118.9a 
NPP (PgC yr�1) 54.5 34.2 37.3 30.3 - - 
NEE (PgC yr�1) �2.64 �1.13 �1.32 �1.18 �1.20c �2.52±0.98b 
NBE (NEE + LUCC)           
      (PgC yr�1) �2.06 �0.54 −0.74 −0.60 - �1.27±0.97b 

ER (PgC yr�1) 115.7 95.2 81.0 95.3 - - 
Ra (PgC yr�1) 64.2 62.7 45.8 66.9 - - 
Rh (PgC yr�1) 51.5 32.4 35.2 28.4 - - 
Root Exudates  
      (PgC yr�1) 

3.3 2.0 2.2 1.7 - - 

Soil C (PgC) 2481 1364 1423 1167 - 1343d 

Vegetation C (PgC) 394 310 335 311 - 442±146e 

Litter C (PgC) 228 166 171 158 - - 

a Model Tree Ensemble data-driven product; Jung et al., 2011; average for 1982-2010, 
b Global Carbon Project 2017; Le Quéré et al., 2018; average for 1982-2010. The 
NBE values include the LULCC reported for each individual model. 
c Inversion result is the average for 1982-2009 
d http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML 
e Carvalhais et al. (2014). 
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Appendix 

A1. Assimilation performance 

Fig. A3 depicts the final posterior value (Xf) for each optimization parameter I and in 

each assimilation experiment. The last parameter value is normalized to its 

corresponding prior value (Xp, shown in Table 1), i.e. (Xfi/Xp)-1; this is done to make a 

comparison between parameters on their response to the assimilation because each 

parameter holds a different range of values. The normalized result is also shown for 

each phenotype for the phenology and photosynthesis-related parameters, and also for 

the initial leaf growth rate (x), CO2 initial offset and land carbon turnover parameters 

that are applied globally.  

More significant changes in some phenology parameter values are observed, e.g. the 

maximum LAI (Lmax) decreased in almost all PFT’s and in all experiments, except for 

the phenotypes CE (coniferous evergreen) in the ALL experiment, ETD (temperate 

broadleaf evergreen and deciduous; mostly dominating in Europe and eastern USA and 

Asia). In CD (coniferous-deciduous trees; located in Northeast Asia, specifically in the 

east Siberian Taiga) the Lmax value increased notably in the DEC1 and DEC2 

experiments (Fig. A3e). 

In the tropical forest areas, the reduction of the Lmax was from 3.17 in the PRIOR 

experiment to 2.27 (33 %) in ALL for the TW area, and from 3.27 in the PRIOR to 2.43 

(26 %) in ALL for the TE area respectively. For the other assimilation experiments the 

average maximum LAI moderately decreased in TW from 3.17 in the PRIOR to 2.89 

(8.8 %) in DEC1 and from 3.17 in the PRIOR to 3.00 (5.3 %) in DEC2. 

In other extra-tropical areas results from experiments DEC1 and DEC2 experienced an 

average increase in Lmax by 5.6 % in BE (from 2.29 in the PRIOR to 2.42), 24 % in BW 

(from 1.62 in the PRIOR to 2.01), and 3.8 % in TNW (from 3.11 in the PRIOR to 3.23). 

As a result, the temperature and daylight-related parameters were modulated such that 

the largest decrease with respect to the prior value in the temperature at leaf onset (Tf) 
was also observed for these two PFT’s, especially for CD in the DEC1 and DEC2 

experiments. Also, the day length at leaf shedding (tc) and the timescale of leaf 

senescence (leaf shedding timescale, 1/t1) primarily increased for CD. As for the PFT’s 

influenced by temperature and water (TeH, TeCr, TrH and TrCr), the most significant 

change with respect to the prior value took place in the posterior value for the C3 crops 

(TeCr; distributed in Europe, USA and East Asia) whose value decreased considerably 

for the water stress tolerance (tw) in experiments DEC1 and DEC2, whereas the value 
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of the timescale of leaf senescence (leaf shedding timescale, 1/t1) also increased 

considerably for the same experiments; these changes seemed to be a response of the 

large decrease in the foliar area Lmax for this PFT which took place in all three 

experiments. The value of the photosynthesis rate modifier (fphotos) influences the 

productivity at leaf-level. Thus, a lower value of fphotos will lead to lower GPP (less 

carbon uptake and a potential increase in NEE). Our results show that after the 

assimilation experiments the value of fphotos decreased with respect to the PRIOR 

experiment, mainly for the C3 grasses and pasture (TeH; distributed mostly in the 

Northern Hemisphere) as well as for the tropical evergreen and deciduous trees (TrBE 

and TrBD), and this is more noticeable in the DEC1 experiment.  

As for the global parameters, significant deviations from the prior value are observed 

in the parameter that controls the initial size of the slow soil C pool (fslow) and also in 

the parameter that defines the initial atmospheric CO2 mole fraction (CO2offset) which 

is globally set to be constant. The posterior value of both of these parameters decreased 

in the three posterior experiments. Variations in fslow induce changes in the global 

heterotrophic respiration, controlling in this way the disequilibrium between GPP and 

the ecosystem respiration. Because JSBACH tends to overestimate the soil C pool, 

optimizing fslow is a mean to improve this estimation; however, the spatial distribution 

of the carbon pools remains unchanged, and the prior value controls the prior value, 

meaning that the GPP and ER relation remains similar in the posterior experiments to 

that in the PRIOR experiment. Since the magnitude of the initial slow carbon pool was 

set, this might influence the other modeled carbon pools to the soil carbon pool, leading 

to biased soil and vegetation carbon stocks; therefore, the assessment on the predicted 

pools should be done with care. We compare the resulting global total soil and 

vegetation carbon pools robustly to independent estimates from the literature or other 

products, and results are shown in the main text of the Discussion section.  
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Table A1 – Regional mean and maximum Leaf Area Index in prior and posterior 
experiments. 

Region PRIOR 

(LAI  

mean ; max) 

(m2 m-2) 

ALL 

(LAI  

mean ; max) 

(m2 m-2) 

DEC1 

(LAI  

mean ; max) 

(m2 m-2) 

DEC2 

(LAI 

mean ; max) 

(m2 m-2) 

BE 0.61 ; 2.29 0.60 ; 1.94 0.70 ; 2.42 0.69 ; 2.42 
BW 0.31 ; 1.62 0.30 ; 1.44 0.35 ; 2.01 0.35 ; 2.02 
TNE 1.28 ; 4.28 1.17 ; 3.33 1.31 ; 3.49 1.32 ; 3.79 
TNW 1.26 ; 3.11 1.15 ; 2.84 1.30 ; 3.23 1.30 ; 3.21 
TE 1.62 ; 3.27 1.30 ; 2.43 1.63 ; 3.20 1.67 ; 3.33 
TW 2.21 ; 3.17 1.68 ; 2.27 2.00 ; 2.89 2.08 ; 3.00 
TSE 1.54 ; 2.72 1.43 ; 2.51 1.86 ; 2.77 1.83 ; 2.68 
TSW 2.42 ; 3.69 2.04 ; 2.71 2.38 ; 3.47 2.43 ; 3.66 

 

A2. Pixel level phenology analysis  

The FAPAR analysis at the pixel level, shows that in pixels P1 (located in Eastern 

Siberia), P2 (located in eastern Brazil), and P6 (located in Canada), the magnitude of 

the mean seasonal cycle is better represented when compared to the observations (Fig. 

S4). Also, the timing of the mean seasonal cycle is corrected, e.g., in pixels with large 

seasonal amplitude such as in P1 and in P6. While in the PRIOR experiment (and ALL 

experiment) the onset and peak of the growing season in P1 and P6 are delayed by up 

to two months, in the results from experiments DEC1 and DEC2 this delay is reduced 

to only one month. This correction might be partially due to changes in some optimized 

parameters: increase in the day length at leaf shedding (tc) and reduction in the 

temperature at leaf onset Tf detected for both the CE and CD, as well as for ETD and 

TeCr/TeH phenotypes (Fig. A3 panels c, d, e and g); this is because these parameters 

control the onset and end of the vegetation activity. Despite changes in Tf and tc after 

the assimilation in TrH, this temporal shift is less evident in P2. In this pixel, the 

amplitude of the seasonal cycle is small, and only changes in the magnitude of the 

amplitude are visible after the assimilation (Fig. S4). In the results of DEC1 and DEC2 

for pixel P3 (located in USA and dominated by TeCr), the water stress tolerance time 

(tw) and Tf were primarily reduced, whereas the leaf shedding timescale (1/tl; earlier 

shedding) increased.  
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Figure 1 – Global distribution of the temporal mean (1982-2006) of the merged 
satellite FAPAR product used in the assimilation procedure. It shows also the spatial 
coverage of eight regions globally distributed: Boreal West and East (BW and BE, for 
latitudes north of 60 °N), Temperate Northwest and Northeast (TNW and TNE, 
between latitudes 20 °N and 60 °N); tropical West and East (TW and TE, between 
latitudes 20 °N and 20 °S); Temperate Southwest and Southeast (TSW and TSE, for 
latitudes south of 20 S). Also shown six selected pixels: P1, for the coniferous 
deciduous (CD) phenotype in the East Siberian Taiga; P2, for the C4 pastures and 
grasses (TrH) of central Brazil; P3, for the C3 and C4 crops, pastures and grasses 
(TeCr and TeH) of Northern USA; P4 and P5, for tropical evergreen trees (TrBe) 
situated in Northwestern Brazil and central Africa; and P6, for coniferous evergreen 
(CE) located in Canada; and the location of 28 stations of the CO2 network 
measurements (filled triangles, stations only included in DEC1; empty triangles, 
stations included also in ALL and DEC2) for analysis of the assimilation results. 
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Figure 2 – RMSE for FAPAR from the model results and observations for the period 
1982-2006 and for different regions. 
 
 
 
 

 
 
Figure 3 – Mean monthly growth rate of FAPAR for 1982-2006 on each analyzed 
geographical region for the satellite observations and results of PRIOR and the 
posterior experiments. 
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Figure 4 – Time series of the four-years mean of the FAPAR anomaly to the satellite 
data for each model experiment in six selected model pixels. The error bar indicates 
one standard deviation of the four-years differences. The first marker to the left (as 
asterisk) in the time series is the single value for 1982. 
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Figure 5 – Statistical analysis of atmospheric CO2 in three flask measurement sites: 
Alert (ALT; top panels), Mauna Loa (MLO, center panels) and South Pole (SPO, 
bottom panels), from the measurements, PRIOR, posterior experiments (ALL, DEC1 
and DEC2) and inversion (INV1). For each station the panels show the time series of 
the mean monthly values, the mean seasonal cycle, the interannual variability and the 
monthly growth rate for the entire period of the simulation (1980-2010). 
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Figure 6 – a) Latitudinal distribution of the mean CO2 seasonal amplitude for the 28 
flask-measurement stations from the observations, PRIOR and posterior experiments; 
b) Latitudinal distribution of R2 obtained from the correlation between the 
observations and each simulation results of the mean atm. CO2 seasonal cycle and c) 
average atmospheric CO2 monthly growth rate across stations for the observations and 
model results. The star on each bar is the mean of the atm. CO2 monthly growth rate, 
the horizontal middle black line on each box is the median, the red whiskers depict 
the error as +/− 1s, and the grey dots on each box are the actual monthly growth rate 
values for all the stations in each data set.  
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Figure 7 – Time series of the anomaly to the temporal mean of the time series (a and 
b), and latitudinal gradient (c and d) of the total Net Ecosystem Exchange (NEE 
including the influence of LULCC) (left) and Gross Primary Production (right) for the 
results of each model simulation. NEE from the model is compared to the GCP 2017 
and INV data set (a and c). GPP is compared to the MTE data-data driven estimate of 
Jung et al., (2011) (b and d). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8 – Time series of the four-years mean of the atm. CO2 anomaly to the 
observations for each model experiment and inversion results, for all the stations. The 
y-axis is limited to the results in the posterior experiments. The error bar is one 
standard deviation to the four-years mean of the differences to the observations. The 
first marker to the left in the time series (as asterisk) is the single value for 1982 not 
included in the subsequent four-year means.  
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Figure 9 – RMSE for different periods between CO2 atm. concentrations from 
measurements and model results for the different assimilation experiments for each of 
the flask measurement stations. 
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Figure A1 – Data availability and latitudinal location of the 28 stations where the 
long-term flask measurements of atmospheric CO2 mole fractions were taken for 
assimilation in CCDAS. ALL experiment used all the stations of the time series (blue 
and red bars) (1980-2010); DEC1 used data only from stations with blue bars (1980-
1990), and DEC2 used also the data in the stations with red bars (1990-2000) (except 
stations SBL and CRZ marked with patterned bar). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A2 – Experimental set up for posterior experiments ALL, DEC1 and DEC2 
with different temporal windows for the assimilation of FAPAR and molar fractions 
of atmospheric CO2. 
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Figure 10 – Time series of the four-year mean of the atm. 
CO2 anomaly to the observations for each model experiment 
and for all the stations. The y-axis is limited to the results in 
the posterior experiments. The error bar indicates +/− 1 
standard deviation of the four-year mean of the differences to 
the observations. The first marker  in the time series (as 
asterisk) is the single value for 1982.¶
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Figure A3 – Final value for each parameter p at the end of the assimilation 
experiments, normalized to the prior value (ppr), i.e. (p/ppr)-1. This is shown for each 
model plant functional type (a to h) and globally for the land C turnover parameters (i 
and j). 
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Figure A4 – Time series of the annual mean of the major components of the C cycle 
used as background fluxes in CCDAS compared to those from the GCP 2017. The 
atm. CO2 growth from the model output is the result of the sum of fossil fuel, ocean, 
and land C fluxes. The blue shadow in the ocean C sink of the GCP 2017 data is the 
standard deviation of the mean sink from the models that contributed to the GCP. The 
land C flux is the total NEE with contribution of the flux due to LULCC. The green 
shadow area is the standard deviation of the mean land C flux from the terrestrial 
models that contributed to the GCP. 
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