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The	original	comment	is	in	bold	font.	The	response	to	the	comment	is	in	regular	
font.	
	
Overview:	The	paper	targets	a	useful	goal	–	providing	a	map	of	15N-NO3	
estimates	for	the	global	ocean	for	use	in	biogeochemical	studies.	To	do	this,	it	
uses	a	neural	network	to	obtain	a	relationship	between	sparse	observed	15N-
NO3	and	World	Ocean	Atlas	(WOA)	values	of	temperature,	salinity,	oxygen,	
phosphate	and	nitrate,	and	then	maps	the	derived	15N-NO3	estimates.		The	
utility	of	the	approach	is	assessed	via	correlation	statistics	between	the	
estimates	and	the	observations.	There	are	areas	where	the	estimates	and	
observations	agree	well	and	others	where	they	agree	poorly.		The	latter	are	
ascribed	to	temporal	offsets	between	the	WOA	data	collection	and	the	15N-NO3	
observations.			
To	be	clear,	our	interpretation	of	the	observation-model	comparison	is	that	the	model	
estimates	the	mean	values	quite	well,	but	does	not	include	temporal	variability	and	
therefore	will	not	capture	temporal	variability.	(beginning	LINE	381;	revised	
manuscript)	
	
As	far	as	it	goes,	the	paper	is	sound,	but	it	doesn’t	go	very	far	(as	an	aside	it	does	
provide	clear	and	well-constructed	descriptions	of	possible	mechanistic	causes	
of	the	spatial	variations	in	the	15N-NO3	observations,	although	these	do	not	
really	derive	from	or	depend	on	the	mapping	exercise).	It	could	be	improved	by	
addressing	the	following	issues:	1.	Is	the	neural	network	(NN)	approach	
demonstrably	better	than	a	multiple	linear	regression	(MLR)	to	the	same	input	
variables?	Assessing	this	would	be	useful	for	two	reasons:	a.		The	MLR	has	the	
advantage	that	is	provides	a	simple	equation	that	all	can	use	with	their	local	
and	future	input	variable	observations	[(notably	MLR	approaches	are	becoming	
widely	used	for	nitrate	in	the	context	of	BGC-Argo	observations;	Carter	et	al.	
2017,	https://doi.org/10.1002/lom3.10232]	b.	Determining	whether	and	in	
which	parts	of	the	ocean	the	non-linear	NN	approach	out-	performs	the	linear	
MLR	approach	is	likely	to	shed	light	on	the	processes	that	drive	15N-NO3	
variations.			
	
Great	comment.	To	address	this	we	built	a	single	global	Multiple	Linear	Regression	
(MLR)	model	using	all	the	same	predictors	used	in	the	Ensemble	Array	of	Neural	
Networks	(EANN).	We	found	that	the	MLR	performs	much	worse	than	the	EANN	at	
predicting	nitrate	δ15N.	The	coefficient	of	determination	for	each	method	and	each	
ocean	basin’s	upper	1000	m	is	shown	in	the	table	below.		

 
Atlantic Pacific  Indian 

Southern 
Ocean 

MLR R2 0.04 0.49 0.51 0.34 
EANN R2 0.53 0.78 0.76 0.68 
	
	



The	reason	for	this	worse	performance	is	likely	that	the	MLR	approach	assumes	the	
training	parameters	are	independent	of	each	other,	but	also	dependent	on	nitrate	
δ15N.	This	is	not	the	case	and	so	the	EANN	approach	performs	noticeably	better.	
	
2.		Are	there	other	metrics	that	could	assess	possible	causes	of	the	quality	of	the	
matches	and	mismatches	between	estimates	and	observations,	to	go	beyond	
simply	ascribing	them	to	temporal	offsets?	For	example	since	some	of	the	15N-
NO3	estimates	were	probably	collected	synchronously	with	the	WOA	data,	do	
these	points	show	closer	agreement?		
We	do	not	ascribe	differences	between	model	and	observations	to	temporal	offsets.	
We	suggest	that	the	model	predicts	an	annual	climatology	of	nitrate	δ15N,	while	the	
observations	measure	the	instantaneous	δ15N.	There	is	no	temporal	component	in	
the	ANN.	The	WOA	data	that	we	are	using	are	the	annual	climatologies	–	there	are	no	
corresponding	observations	of	δ15N.	
	
Can	agreement	with	mechanistic	understanding	be	assessed	–	for	example	in	
regions	where	single	processes	largely	dominate	15N-	NO3	variations	(e.g.	
nitrate	assimilation	in	Southern	Ocean	surface	waters)	does	the	NN	approach	
produce	sensible	correlations	between	[nitrate]	and	15N-NO3	?	
	
This	is	a	good	suggestion,	but	we	find	that	adding	an	additional	analysis	of	the	
regional	model	estimates	is	beyond	the	scope	of	this	paper.	In	fact,	we	are	already	
using	the	EANN	results	to	examine	global	nitrate	uptake	patterns	in	a	current	study	
that	will	be	outlined	in	a	dedicated	manuscript.	
	
Details:	Line	63:	ammonia	assimilation	is	also	a	significant	determinant	of	the	
15N	of	organic	matter.		
We	revised	the	manuscript	to	clarify	that	these	sentences	refer	to	organic	matter	
production	by	the	assimilation	of	nitrate.	Good	comment.	(LINE	60;	revised	
manuscript)	
	
Line	370:	meaning	of	sentence	beginning	“Equivalent	processes…	was	opaque.		
The	revised	manuscript	clarifies	this	sentence.	It	refers	to	how	the	model	nitrate	δ15N	
predicts	that	intermediate	water	nitrate	δ15N	in	the	Indian	Ocean	has	a	similar	value	
as	the	corresponding	waters	in	the	Pacific.	We	argue	that	this	is	likely	because	
“equivalent	processes”	established	the	pre-formed	characteristics	of	both	water	
masses	(i.e.,	partial	nitrate	assimilation	in	the	Southern	Ocean	surface).	(LINE	556;	
revised	manuscript)	
	
Lines	384-395:	This	discussion	of	separating	nitrification	from	denitrification	
influences	on	deep	water	15N-NO3	values	would	benefit	from	recognition	that	
relationships	with	O2	and	nitrate	have	opposite	signs.	
Good	comment.	The	well-known	south-to-north	lowering	of	deep	Pacific	O2	and	
increase	in	nitrate	concentrations	is	consistent	with	the	remineralization	of	organic	
matter	and	not	the	lateral	advection	of	nitrate	from	ODZ	regions.	This	will	be	added	to	
the	revised	manuscript.	(LINE	633;	revised	manuscript)	
	
Line	403:	The	estimate	low	sinking	organic	matter	d15N	estimate	of	+1.5	should	
be	compared	to	published	results	in	Lourey	et	al.,	2003,	which	show	good	



agreement.		
We	have	added	and	refer	to	this	citation’s	results	in	the	revised	manuscript.		



Interactive	comment	on	“Global	trends	in	marine	nitrate	N	isotopes	from	
observations	and	a	neural	network-based	climatology”	by	Patrick	A.	Rafter	et	al.	
	
Anonymous	Referee	#2	
Received	and	published:	16	February	2019		
	
There	are	many	detailed	responses	to	Reviewer	#2’s	comments.	We	have	stated	
where	these	responses	translate	into	revised	text	in	the	manuscript.	Please	let	us	
know	if	there	are	any	comments	that	should	also	drive	a	revision	of	manuscript	text.	
	
The	original	comment	is	in	bold	font.	The	response	to	the	comment	is	in	regular	
font.	
	
The	nitrate	isotope	database	and	gridded	product	generated	by	the	authors	
has	the	potential	to	be	extremely	valuable	for	studies	of	the	marine	nitrogen	
cycle.	I	commend	them	for	undertaking	this	important	task,	which	will	benefit	
researchers	broadly.	Because	it	does	have	such	strong	potential	utility,	I	
would	really	like	to	see	the	paper	describe	a	bit	more	clearly	what	was	
actually	done	here,	and	how	it	compares	with	other	methods	of	data	gridding.		
	
In	particular,	I	think	the	authors	should	further	explain	and	reference	the	
neural	network	model	used	to	generate	the	gridded	product.	There’s	only	one	
paper	in	the	references,	from	1996,	that	seems	to	relate	at	all	to	the	methods	
they	applied.	More	detail	should	be	given	here	so	that	the	results	could	be	
reproduced,	or	extended	as	additional	nitrate	isotope	data	become	available.	
	
Next,	the	discussion	and	conclusions	about	the	marine	nitrogen	cycle	were	
largely	confirmatory	of	earlier	studies,	but	also	almost	beside	the	point	of	this	
particular	manuscript.	I	would	have	found	it	more	interesting,	in	the	context	
of	what	was	done	here,	to	see	how	this	kind	of	approach	to	data	binning	
compares	to	alternative	methods.	Are	there	significant	difference	between	
this	neural	network	approach,	and	a	World	Ocean	Atlas	approach	of	data	
interpolation?	What	are	the	implications	of	some	of	the	choices	made	in	
building	the	model?	
	
Specific	comments	are	given	below.	
	
Lines	106-111:	How	does	this	neural	network	actually	work?	Does	it	use	
learning	based	on	surrounding	data	to	inform	the	values	of	unknown	points?	
Where	are	the	equations	that	go	into	the	model?	What	is/are	the	function(s)	
that	produces	d15N	values	from	the	gridded	T,	S,	NO3-,	O2,	and	PO43-	data?	
Our	neural	network	has	no	explicit	spatial	component.	We	do	not	use	latitude,	
longitude,	or	sampling	depth	as	inputs	to	the	model.	Instead	our	model	is	purely	a	
nonlinear	function	of	physical	and	biological	ocean	parameters	such	as	T,	S	NO3,	etc.	
that	all	have	implicit	spatial	characteristics.	The	model	learns	the	relationship	
between	d15N	and	these	parameters	for	the	locations	where	there	are	d15N	



observations	and,	since	we	are	using	fields	from	the	World	Ocean	Atlas	(WOA)	that	
have	data	everywhere,	the	model	can	estimate	d15N	for	the	locations	where	there	
are	no	observations	using	the	nonlinear	relationship	it	has	learned.	The	function	
that	models	the	relationship	between	d15N	and	training	inputs	is	
d15N	=	a(a(I*W1+B1)*W2+B2)	
	
where	a	is	our	activation	function,	which	in	this	case	is	the	hyperbolic	tangent,	I	
(size	7,170	binned	observations	by	6	input	parameters)	is	our	array	of	inputs	[T	S	
NO3	O2	…],	and	W1	(size	6	by	25),	W2	(size	25	by	1),	B1	(size	25	by	1),	and	B2	(size	
1	by	1)	are	our	adjustable	free	parameters.				
	
As	a	simple	example,	let	us	assume	our	only	inputs	(I)	are	T	and	S	and	they	connect	
to	a	single	node	in	the	hidden	layer.	In	this	case,	there	are	three	total	weights.	One	
weight	connects	T	to	the	hidden	layer,	one	connects	S,	and	another	weight	connects	
the	hidden	layer	to	the	predicted	d15N	value.	Let	us	also	assume	our	activation	
function	(a)	is	linear	so	we	do	not	need	to	normalize	our	input	data,	and	our	bias	
weights	(B1,	B2)	are	zero.	This	simplifies	the	above	equation	to	
	
d15N	=	(I*W1)*W2		=	(T*w11+S*w12)*w21	
	
For	a	single	temperature	and	salinity	pair	(25	oC,	33	PSU)	and	initial	weights	w11	=	
0.5	oC-1,	w12	=	0.5	PSU-1,	and	w21	=	0.2	permil	
	
d15N	=	(25	*0.5	+	33*0.5)*0.2	=	5.8	permil.	This	is	a	predicted	value.	If	our	target	
value	were	6	permil	only	small	adjustments	to	the	value	of	the	weights	would	be	
necessary	to	match	that	observation.	This	works	for	a	single	observation.	In	reality,	
we	have	thousands	of	observations	we	would	like	to	optimally	match	our	
predictions	to,	while	at	the	same	time	not	overfitting.	
	
Lines	116-119:	Please	clarify	the	description	of	depth	binning.		
An	observation	is	binned	to	the	depth	layer	closest	to	its	sampling	depth.	
Observations	with	sampling	depths	at	the	midpoint	between	layers	in	the	model	
grid	are	binned	to	the	shallower	layer.	We	have	updated	the	manuscript	
accordingly.	(LINE	117;	new	manuscript)	
	
Lines	122-123:	Why	were	whole	ship	tracks	used	for	validation,	rather	than	a	
more	random	selection?	
Our	rationale	for	using	whole	ship	tracks	will	be	more	clearly	detailed	in	the	revised	
manuscript	and	will	be	similar	to	the	following	response.		
	
Note	that	this	comment	refers	to	our	external	validation,	which	is	in	addition	to	an	
internal	validation	that	uses	randomly	selected	data.		
	
Imagine	that	we	have	a	dataset	that	is	made	up	of	many	cruises	and	we	use	a	
randomly	selected	20%	of	this	dataset	for	internal	validation	and	another	randomly	
selected	10%	of	this	data	to	perform	an	external	validation.	Despite	being	randomly	



selected,	the	external	validating	dataset	will	be	from	the	same	cruises	as	the	wider	
data.	In	other	words,	despite	being	randomly	selected,	the	validating	dataset	will	be	
highly	correlated	geographically.	
	
Instead,	we	have	selected	several	cruises	where	none	of	the	data	was	used	to	teach	
the	model.	These	cruises	are	in	areas	where	the	model	has	not	“learned”	anything	
about	nitrate	and	these	data	therefore	provide	a	more	difficult	test	of	the	model.	
(LINE	254;	revised	manuscript)	
	
Line	131:	How	was	the	daily	chlorophyll	used	in	an	otherwise	annual	gridded	
product?	
We	have	updated	the	manuscript	to	clarify	that	daily	chlorophyll	data	from	the	
specified	time	period	is	not	only	binned	to	the	model	grid	but	also	averaged	to	
produce	an	annual	field.	(LINE	133;	revised	manuscript)	
	
	
Section	2.2	needs	more	references,	especially	2.2.3	(lines	137-151).	There	is	a	
lot	of	terminology	here	that	is	not	defined	or	referenced,	such	as	hidden	layer,	
node,	activation	function,	which	should	be	defined	and	explained	further.	
Also,	it	is	not	clear	what	you	are	applying	weights	to	in	the	model.	
We	have	updated	the	text	to	provide	a	brief	description	of	the	neural	network	
workflow,	including	defining	some	of	the	terms	used	and	including	a	few	additional	
citations.	Weights	form	a	linear	system	using	inputs	from	the	prior	layer	to	produce	
values	for	the	nodes	in	the	next	layer,	as	defined	in	a	previous	response.	Using	an	
activation	function	transforms	this	linear	system	to	a	nonlinear	system.		The	hidden	
layer	acts	as	intermediary	between	the	input	features	and	the	target	variable.	Each	
of	its	nodes	act	as	targets	for	the	input	layer	and	inputs	for	the	final	target	layer.	
This	increases	the	amount	of	learning	the	model	can	achieve	by	adding	additional	
free	parameters	in	the	form	of	connections	between	nodes	in	one	layer	and	nodes	in	
the	next.	(LINE	106;	revised	manuscript)	
	
Line	158:	It	says	that	10%	of	the	observations	were	withheld	to	validate	the	
networks.	How	were	these	chosen?	More	generally,	how	were	the	data	for	
training,	text,	and	validation	chosen?		
We	specify	that	10%	of	the	data	is	withheld	randomly,	but	we	updated	the	
manuscript	to	clarify	that	EACH	individual	network	has	a	random	10	percent	
withheld.	This	means	each	individual	network	sees	a	somewhat	different	training	
and	test	set.	Some	of	the	training	data	for	one	might	be	test	data	for	another,	and	
vice	versa.	Our	final	external	validation	set	contains	data	that	no	individual	network	
had	available	to	it	for	training	and	is	used	to	test	the	performance	of	the	ensemble	
mean.	(LINE	266;	revised	manuscript)	
	
Line	165:	What	are	the	implications	of	using	whole	cruise	tracks	for	external	
validation	rather	than	randomly	chosen	stations	or	grid	cells?	
We	responded	to	this	above	and	will	update	the	manuscript	accordingly.	
	



Lines	179-180:	Could	this	be	shown	(that	the	ensemble	performs	better	than	
any	single	member	of	the	ensemble)	using	your	results,	or	is	this	a	general	
feature?	Does	it	apply	here?	
This	is	a	general	feature	noted	by	Breiman	(1996)	that	applies	to	certain	machine	
learning	methods	such	as	EANNs.	As	our	method	uses	EANNs,	it	applies	here	as	well	
and	the	R2	values	of	the	internal	validation	sets	versus	the	ensemble	mean	is	greater	
than	the	R2	value	of	each	individual	ensemble	member	because	the	ensemble	mean	
incorporates	members	that	saw	different	data	during	training.	This	does	not	
necessarily	apply	to	the	external	validation	set,	as	that	is	comprised	of	data	that	no	
member	has	seen.	However,	the	ensemble	mean	performs	better	than	19	out	of	25	
of	the	ensemble	members	on	the	external	validation	set	in	terms	of	a	greater	R2	
value	and	lower	RMSE.	Recall	also	that,	since	we	curated	ensemble	members	by	first	
using	the	internal	validation	sets,	these	members	are	all	higher	performers,	so	the	
odds	of	roughly	1	in	5	of	picking	an	ensemble	member	that	does	better	on	this	
particular	external	validation	set	is	an	overestimate	of	the	actual	odds	if	members	
were	not	curated.	This	is	something	that	will	be	clarified	in	the	updated	manuscript.	
(LINE	330;	revised	manuscript)	
	
Discussion	section:	
How	does	the	discussion	stem	from	their	results	from	the	neural	network	
model?	Most	of	the	discussion	seems	to	focus	on	general	features	discussed	in	
the	original	papers	about	the	data	used	to	generate	the	product.	It	would	be	
more	satisfying	for	this	reviewer	to	read	about	how	some	of	the	choices	they	
made	in	producing	the	model	impacted	the	results.	
In	order	to	reply	to	previous	comments,	the	revised	manuscript	will	necessarily	
have	much	more	information	on	the	inner	workings	of	the	model	and	how	these	
choices	impact	the	results.	Hopefully	these	will	address	the	immediate	concerns	of	
the	Reviewer.	(beginning	SECTION	2.2;	revised	manuscript)	
	
However,	speaking	as	an	observationalist	(this	is	Rafter	writing),	I	believe	the	most	
logical	discussion	of	these	modeling	results	requires	an	examination	of	how	they	fit	
with	the	published	literature.	As	such,	the	Discussion	section	uses	the	model	results	
to	provide	insight	to	marine	nitrate	δ15N	that	was	previously	hampered	by	poor	
geographic	coverage.	
	
For	example,	1)	Is	there	only	one	way	to	produce	the	neural	network	model?		
	

1. A	neural	network	model	is	a	very	general	method,	so	there	are	many	
different	ways	to	set	up	the	architecture	of	the	network,	including	number	of	
hidden	layers,	size	of	hidden	layers,	how	nodes	in	the	hidden	layer	are	
activated,	the	type	and	number	of	input	features	we	choose	to	include	or	not	
include,	and	the	training	algorithm	among	others.	Aspects	of	these	are	
covered	by	Rumelhart	et	al.	(1986),	Hornik	et	al.	(1989),	Weigand	et	al.	
(1990),	and	Thimm	and	Fiesler	(1997).	
	

	



2)	How	were	choices	made?	What	tradeoffs	were	tolerated?	What	are	the	
implications?	
	

2. The	rationale	for	some	of	these	choices	were	explicitly	stated	in	section	2.2.3	
of	the	manuscript,	such	as	using	only	one	hidden	layer	with	25	nodes	in	
order	to	keep	the	number	of	weights	(free	parameters)	low	relative	to	the	
number	of	training	data,	or	our	use	of	a	hyperbolic	tangent	activation	
function.		
	
Other	choices	were	not	explicitly	stated	and	will	be	in	the	revised	
manuscript.	For	instance,	the	specific	choice	of	our	input	features	was	
dictated	by	our	desire	to	achieve	the	best	possible	R2	value	on	our	internal	
validation	sets.	Additional	inputs	besides	those	we	included,	such	as	latitude,	
longitude,	silicate,	euphotic	depth,	or	sampling	depth	either	did	not	improve	
the	R2	value	or	degraded	it,	indicating	that	they	are	not	essential	parameters	
for	characterizing	this	system.		
	
Every	choice	was	made	for	model	simplicity,	accuracy	or	a	combination	of	
the	two.	The	inclusion	of	larger	networks	in	terms	of	more	input	parameters	
resulted	in	models	that	did	not	generalize	as	well	to	new	data,	as	indicated	by	
their	degraded	performance	on	test	data.	Larger	networks	in	terms	of	hidden	
layers	and	nodes	increase	each	individual	network’s	ability	to	learn	on	
training	data	by	virtue	of	there	being	more	free	parameters,	but	there	is	a	
general	rule	of	how	large	a	network	should	be	relative	to	the	amount	of	
training	data,	as	discussed	by	Weigand	et	al.	(1990),	and	we	tried	to	stay	well	
within	it.	
	
One	potential	tradeoff	is	that	other	combinations	of	input	features	might	
better	apply	to	certain	regions	than	others.	We	opted	to	use	the	set	of	input	
features	that	yielded	the	best	results	globally,	but	on	a	regional	scale	other	
combinations	of	inputs	may	be	better.		
	
Having	created	a	globally	optimized,	annual	d15N	climatology,	there	are	
several	implications	to	consider.	While,	our	external	validation	set	
demonstrates	our	model	generalizes	well	to	certain	regions,	it	is	clear	that	
our	model	does	not	perform	equally	well	everywhere.	We	opted	for	overall	
accuracy	in	our	model,	so	for	regions	with	relatively	poor	fit	it	is	unclear	
whether	this	is	due	to	our	chosen	combination	of	input	features	not	working	
as	well	for	a	specific	region	or	whether	it	is	due	to	training	data	that	is	not	
representative	of	the	mean	state	of	d15N	in	that	region.		
	

3)	How	does	this	approach	compare	with	other	methods	for	gridding?		
	

3. Standard	interpolation	techniques	such	as	objective	mapping	would	not	
work	here,	especially	at	1-degree	resolution	and	33	vertical	depth	levels,	due	
to	the	sparseness	of	the	d15N	data.	Ocean	parameters	from	the	WOA,	for	



instance,	have	much	greater	sampling	density	in	order	to	create	the	
interpolated	fields.	The	EANN	approach	is	more	appropriate	for	sparse	data,	
as	it	forms	a	relationship	with	more	highly	sampled	ocean	parameters	to	
estimate	d15N.	There	are	many	possible	methods	to	model	the	relationship	
between	these	parameters	and	d15N,	but	simpler	methods	lack	the	
complexity	to	adequately	match	the	training	data,	let	alone	extrapolate	well	
to	new	data.	As	an	example,	we	built	a	single	global	Multiple	Linear	
Regression	(MLR)	model	using	all	the	same	predictors	used	in	the	Ensemble	
Array	of	Neural	Networks	(EANN).	We	found	that	the	MLR	performs	much	
worse	than	the	EANN	at	predicting	nitrate	δ15N.	The	coefficient	of	
determination	for	each	method	and	each	ocean	basin’s	upper	1000	m	is	
shown	in	the	table	below.		
	

 
Atlantic Pacific  Indian 

Southern 
Ocean 

MLR R2 0.04 0.49 0.51 0.34 
EANN R2 0.53 0.78 0.76 0.68 
	

	
4)	Are	there	particular	nodes	that	performed	well	in	some	locations	vs.	
others?	
	

4. Because	we	randomly	sampled	from	available	observations	to	create	the	
training	data	for	each	network,	this	sampling	is	pretty	evenly	distributed	
spatially.	The	same	applies	to	test	data.	Since	each	network	had	to	pass	the	
same	criteria	on	the	test	set	in	order	to	be	admitted	into	the	ensemble	the	
individual	networks	do	not	greatly	differ	in	their	performance	in	regions	
where	there	is	data,	especially	given	that	we	optimized	our	combination	of	
input	parameters	for	a	global	analysis	and	did	not	consider	different	
combinations	that	might	lead	to	better	regional	performance.		
	
There	are	certain	fairly	large	areas	of	the	ocean	where	no	observational	data	
was	available	for	this	analysis.	In	these	areas	the	individual	ensemble	
members	generate	a	larger	range	of	estimates,	as	there	is	higher	uncertainty	
about	what	the	“truth”	is.	In	these	cases,	the	ensemble	mean	can	be	seen	as	
splitting	the	difference	or	taking	the	most	likely	scenario	of	the	estimates	of	
d15N	in	these	regions.	That	is	the	benefit	of	using	the	ensemble,	as	it	
provides	the	best	general	fit	for	the	global	ocean.	The	uncertainties	of	the	
EANN	predictions	are	illustrated	in	Figure	5.	
	

Lines	415-423:	It’s	not	clear	how	the	authors	‘easily	dismiss’	an	explanation	
about	lateral	advection	of	elevated	nitrate	d15N	from	ODZ	regions.	I	think	this	
section	should	be	clarified.	The	way	they	set	it	up	(seeing	an	increase	in	the	
Pacific	but	not	Atlantic)	does	not	seem	to	further	the	argument	they	are	trying	
to	make	since	the	largest	ODZ	regions	are	in	the	Pacific,	not	the	Atlantic.	



	
This	discussion	(which	will	be	revised	in	the	new	manuscript)	refers	to	deep	Pacific	
nitrate	δ15N,	which	increases	from	the	Southern	to	Northern	hemisphere.	Similarly,	
deep	Pacific	waters	originate	at	the	Southern	Ocean	surface	and	move	from	the	
southern	to	northern	hemisphere.	An	important	addition	to	this	discussion	
(suggested	by	Reviewer	1)	is	that	while	deep	Pacific	nitrate	δ15N	increases	from	
south-to-north,	dissolved	oxygen	concentrations	DECREASE	and	nitrate	
concentrations	INCREASE.	Grouping	these	observations	together	we	have:	(1)	
abyssal	Pacific	circulation	moves	from	south-to-north,	(2)	oxygen	decreases,	(3)	
nitrate	concentration	increases,	and	(4)	nitrate	δ15N	increases.	Taken	together,	
these	known	changes	in	deep	Pacific	waters	are	a	persuasive	argument	that	the	
change	in	deep	Pacific	nitrate	δ15N	originates	from	the	remineralization	of	sinking	
organic	matter	(i.e.,	ammonification	and	nitrification	of	organic	matter	N).		
	
The	confusing	part	of	this	discussion	(pointed	out	by	the	reviewer)	is	that	this	
south-to-north	elevation	of	deep	Pacific	nitrate	δ15N	cannot	be	explained	by	the	
lateral	advection	(i.e.,	along	isopycnal)	transport	of	high	nitrate	δ15N	from	the	upper	
Pacific	ODZ	regions.	This	is	because	this	explanation	predicts	that	the	highest	nitrate	
δ15N	would	be	found	where	shallow	Pacific	waters	are	first	converted	into	deep	
Pacific	waters	in	the	deep	South	Pacific.	Because	this	is	the	opposite	of	what	we	
observe,	it	cannot	explain	the	data.	(LINE	633;	revised	manuscript)	
	
Figure	2.	How	many	different	selections	of	training,	test,	and	validation	sets	
did	the	authors	test	in	the	neural	network	model?	What	was	the	rationale	
behind	the	choice	of	the	whole	cruise	tracks	that	were	used	for	validation?	
This	was	answered	above	and	new	text	will	be	available	in	the	revised	manuscript.	
	



Figure	3.	Panel	C	was	helpful.	Panels	A	and	B	were	also	useful,	but	the	choice	of	
the	non-linear	color	scale	bar,	where	most	of	the	data	points	were	off	scale,	
was	unusual.	In	panel	A,	also	please	clarify	whether	this	includes	all	of	the	
data,	or	just	those	from	the	training	set?	Or	validation	set?	
	
We	have	adjusted	the	color	bar	in	the	revised	manuscript	(and	see	below).	This	
figure	includes	all	of	the	data	where	there	are	model	results.	
	

	
	



Figure	4.	The	statistics	for	the	different	zonally	averaged	sections	were	useful,	
but	I	question	the	utility	of	the	zonally	averaged	Pacific,	given	some	of	the	
large	zonal	gradients	in	d15N	from	the	ODZs	in	the	eastern	tropical	Pacific.	
	
We	agree	that	they	obscure	the	strong	zonal	gradients	that	occur	in	the	lower	
latitude	upper	Pacific.	But	we	also	find	them	to	be	useful	sources	of	discussion	(for	
example	the	trends	in	deep	Pacific	nitrate	δ15N).	We	will	highlight	the	limitations	of	
zonally-averaged	view	in	the	revised	manuscript.	
	
Figure	5.	The	contours	were	extremely	difficult	to	read,	and	the	panels	on	the	
right	hand	side	(E-H)	were	not	particularly	helpful.	I	also	wondered	how	much	
of	the	patchiness,	especially	in	panel	A,	is	driven	by	the	distribution	of	
available	d15N	data?		
	
The	revised	Figure	5	can	be	seen	below.	We	have	discretized	the	color	bar	to	more	
clearly	indicate	the	contour	value	and	use	a	color	bar	instead	of	black	and	white	
contours	to	show	the	standard	deviation	(right).	
	

	



Figure	6.	Again,	the	contours	are	difficult	to	see.	Can	you	indicate	negative	
numbers	with	a	different	color,	or	allow	the	color	bar	to	include	negative	
numbers?	
	
The	revised	Figure	6	can	be	seen	below.	Once	again	we	have	discretized	the	color	
bar	to	more	clearly	illustrate	the	variability.	We	identify	negative	values	by	the	
dashed	contour	lines.	
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shallower	interval.	If	more	than	one	raw	data	point	falls	in	a	grid	cell	we	take	the	
average	of	all	those	points	as	the	value	for	that	grid	cell.	Certain	whole	ship	tracks	of	
nitrate	δ15N	data	were	withheld	from	binning	to	be	used	as	an	independent	
validation	set	(see	section	2.2.4).	
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The	choice	of	these	specific	input	features	was	dictated	by	our	desire	to	achieve	the	
best	possible	R2	value	on	our	internal	validation	sets	(Step	4).	Additional	inputs	
besides	those	we	included,	such	as	latitude,	longitude,	silicate,	euphotic	depth,	or	
sampling	depth	either	did	not	improve	the	R2	value	on	the	validation	dataset	or	
degraded	it,	indicating	that	they	are	not	essential	parameters	for	characterizing	this	
system	globally.	By	opting	to	use	the	set	of	input	features	that	yielded	the	best	
results	for	the	global	oceans,	we	potentially	overlooked	combinations	of	inputs	that	
perform	better	at	regional	scales.	However,	given	the	sparsity	
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	of	δ15N	data	in	some	regions,	it	is	not	possible	to	ascribe	the	impact	of	a	specific	
combination	of	input	features	versus	the	impact	of	available	δ15N	data,	which	may	
not	be	representative	of	the	region’s	climatological	state,	to	the	relative	model	
performance	in	these	regions.	
 

Page 4: Formatted Microsoft Office User 3/8/19 11:39 AM 

Font:(Default)	Cambria	
 

Page 4: Deleted Microsoft Office User 3/8/19 1:53 PM 

	
 

Page 4: Inserted Patrick Rafter 3/6/19 9:35 PM 

The	role	of	the	hidden	layer	is	to	transform	input	features	into	new	features	
contained	in	the	nodes.	These	are	given	to	the	output	layer	to	estimate	the	target	
variable,	introducing	nonlinearities	via	an	activation	function.		
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	that	act	as	new	features	for	estimating	the	target	δ15N	data.	Our	model	utilizes	the	
hyperbolic	tangent	as	its	activation	function	between	the	input	and	hidden	layer	as	
well	as	between	the	hidden	and	output	layer	due	to	its	relative	speed	and	general	
performance	(Thimm	and	Fiesler,	1997).	
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The	values	of	nodes	in	the	hidden	layer	(H)	can	be	defined	as	
	

H =  a(I ∙W!  +  b!)	
	
where	H	is	an	array	containing	the	values	of	the	hidden	nodes,	a	is	the	activation	
function	
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	at	the	locations	of	the	binned	observations	(there	are	7170	binned	observations	
and	6	input	parameters)	
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	of	weights	that	connect	input	features	to	hidden	nodes,	and	b1		
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The	factor	of	25	represents	the	number	of	nodes	in	the	hidden	layer,	and	ischosen			
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by	experimentation	to	find	the	maximum	number	of	effective	parameters	(Foresee	
and	Hagan	1997),	i.e.	where	adding	new	parameters	no	longer	improves	
performance	on		
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an	internal	validation	set	(Step	4).			
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The	bias	node	acts	as	an	offset	term,	similar	to	a	constant	term	in	a	linear	function,	
and	has	a	value	that	is	always	1.	
	
At	the	output	layer,	the	network	produces	a	prediction	of	the	target	nitrate	isotopic	
data	(	
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tpred).	Similar	to	how	nodes	in	the	hidden	layer	are	a	function	of	the	inputs	and	a	set	
of	weights,		
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tpred	is	a	function	of	the	hidden	nodes	and	an	additional	set	of	weights.	The	predicted	
values	(tpred)	can	be	defined	as	
	

< 𝐷𝐸𝐿𝑇𝐴 > �15N t !"#$ = a(H ∙W!  +  b!)	
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where	H	(size	7170x25)	has	been	previously	defined,	W2	(size	25x1)	is	a	matrix	of	
weights	that	connect	features	in	the	hidden	layer	to	nodes	in	the	output	layer,	and	b2	
(size	7170x1)	is	an	array	of	weights	(all	of	the	same	value)	that	connects	a	bias	node	
to	the	output	layer.		
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tpred	to	the	actual	δ15N	data	(	
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tdata),	attempting	to	minimize	the	value	of	the	cost	function	
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A	nonlinear	activation	function	transforms	the	product	of	the	weights	and	input	
features,	creating	the	values	assigned	to	nodes	in	the	hidden	layer.	Our	model	
utilizes	the	hyperbolic	tangent	as	its	activation	function	between	the	input	and	
hidden	layer	as	well	as	between	the	hidden	and	output	layer	due	to	its	relative	
speed	and	general	performance	(Thimm	and	Fiesler,	1997).	At	the	output	layer,	the	
network	produces	a	prediction	of	the	target	nitrate	isotopic	data	(tpred),	which	it	
then	compares	to	the	actual	values	of	that	dataset	(tdata).	The	ANN	attempts	to	
minimize	the	value	of	the	cost	function	
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between	δ15Npred	and	δ15Ndata	backwards	though	the	network	(Rumelhart	et	al.,	
1986)	
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each	trained	ANN	to	novel	data,	we	randomly	withhold	10%	of	the		
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	different	internal	validation	set	for	each	network.	This	is	data	that	the	individual	
network	never	sees,	meaning	it	does	not	factor	into	the	cost	function,	so	it	works	as	
a	test	of	the	ANN’s	ability	to	generalize.	This	internal	validation	set	acts	as	a	
gatekeeper	to	prevent	poor	models	from	being	accepted	into	the	ensemble	of	
trained	networks	
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	(see	Step	5)	
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.	Our	pass	criterion	is	an	R2	value	greater	than	0.81	To	ensure	good	generalization	of	
the	trained	ANN	to	novel	data,	we	randomly	withhold	10%	of	the	target	isotopic	
data	(tdata)	to	be	used	as	an	internal	validation	set	for	each	network.	This	is	data	that	
the	network	never	sees,	meaning	it	does	not	factor	into	the	cost	function,	so	it	works	
as	a	test	of	the	ANN’s	ability	to	generalize.	This	internal	validation	set	acts	as	a	gate-
keeper	to	prevent	poor	models	from	being	accepted	into	the	ensemble	of	trained	
networks.	Our	pass	criterion	is	an	R2	value	greater	than	0.9	between	the	ANN’s	
predicted	value	and	the	actual	values	of	the	validation	set	
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.	Our	pass	criterion	is	an	R2	value	greater	than	0.81		
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Our	rationale	for	using	complete	ship	transects	is	the	following.	If	we	randomly	
chose	10%	of	observations	to	perform	an	external	validation,	this	dataset	will	be	
from	the	same	cruises	as	the	wider	data.	In	other	words,	despite	being	randomly	
selected,	the	validating	observational	dataset	will	be	highly	correlated	
geographically.	Contrast	this	with	validating	the	EANN	results	with	observations	
from	whole	research	cruises	in	unique	geographic	regions—areas	where	the	model	
has	not	“learned”	anything	about	nitrate.	We	therefore	argue	that	these	
observations	from	whole	ship	tracks	therefore	provide	a	more	difficult	test	of	the	
model.	
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This	independent	validation	set	is	never	used	in	the	process	of	developing	our	
ensemble	of	ANNs.	
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(using	a	different	random	10%	validation	set)		
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A	network	is	admitted	into	the	ensemble	if	it	yields	an	R2	value	greater	than	0.81	on	
the	validation	dataset.			
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on	average		
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	compared	to	a	single	randomly	generated	ensemble	member.	Compared	to	each	of	
its	members,		
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,	as	demonstrated	by	the		
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our	ensemble	mean	sees	improved	performance	on	all	internal	validation	sets	and	
has	a	higher	R2	and	lower	root	mean	square	error	on	the	independent	validation	set	
compared	to	19	of	the	25	members	
 

Page 6: Deleted Microsoft Office User 3/8/19 11:24 AM 

improved	performance	of	the	ensemble	versus	any	single	member	on	the	
independent	validation	set	
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all	areas	of	research	using	this	widely	used	geochemical	measurement	
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studies	of	the	marine	nitrogen	cycle	
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A	notable	difference	between	the	EANN	and	a	3D	circulation	model	nitrate	δ15N	is	
that	the	EANN	does	not	overestimate	values	for	the	Bay	of	Bengal	and	
underestimate	it	in	the	Arabian	Sea	(Somes	et	al.,	2010).		
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that	the	EANN	does	not	overestimate	values	for	the	Bay	of	Bengal	and	
underestimate	it	in	the	Arabian	Sea		
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A	notable	difference	between	the	EANN	and	a	previous	biogeochemical	model	
estimate	of	nitrate	δ15N	(Somes	et	al.,	2010)	is	that	the	EANN	correctly	captures	the	
higher	nitrate	δ15N	in	the	Arabian	Sea	compared	to	the	Bay	of	Bengal.	
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	and	in	Fig.	1B	
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as	far	as	the	tropics		
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The	South	Indian	Ocean	is	one	region	particularly	devoid	of	published	nitrate	δ15N	
observations	(Fig.	2),	but	the	EANN	makes	specific	predictions	about	its	
distribution.	For	example,	the	modeled	nitrate	δ15N	predicts	that	intermediate-
depth	Indian	Ocean	nitrate	is	similarly	elevated	in	δ15N	to	the	intermediate-depth	
South	Pacific	(Fig.	5C).	Considering	that	both	intermediate-depth	water	masses	are	
formed	from	Southern	Ocean	surface	waters,	it	is	reasonable	to	propose	that	nitrate	
δ15N	are	similarly	elevated	by	partial	nitrate	consumption.	The	EANN	therefore	
provides	testable	predictions	for	nitrate	δ15N	observations	throughout	the	Indian	
Ocean.	
 

Page 10: Deleted Patrick Rafter 2/17/19 1:13 PM 

Equivalent	processes	must	drive	the	δ15N	in	the	intermediate-depth	Indian	Ocean,	
which	is	similarly	elevated	in	the	EANN,	although	direct	observations	are	needed	in	
order	to	confirm	how	well	the	EANN	extrapolates	in	this	region.	
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	(here	defined	as	3000	m	and	below)	
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smaller	than	the	corresponding		
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larger	for	the	nitrate	
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,	which		
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is	consistent	with	annually-averaged	sinking	organic	matter	δ15N	of	≈0.9	to	1.6‰		
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This	is	consistent	with	the	known	increase	in	nitrate	concentrations	and	lowering	of	
deep	oxygen	concentrations	from	the	deep	South	to	Tropical	and	North	Pacific	(e.g.,	
see	Fig.	4E	in	(Rafter	et	al.,	2013)).		
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Many	figures	were	made	using	Ocean	Data	View	software	(Schlitzer,	2002).		
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Abstract	9	
Nitrate	is	a	critical	ingredient	for	life	in	the	ocean	because,	as	the	most	abundant	form	of	10	
fixed	nitrogen	in	the	ocean,	it	is	an	essential	nutrient	for	primary	production.	The	11	
availability	of	marine	nitrate	is	principally	determined	by	biological	processes,	each	having	12	
a	distinct	influence	on	the	N	isotopic	composition	of	nitrate	(nitrate	δ15N)—a	property	that	13	
informs	much	of	our	understanding	of	the	marine	N	cycle	as	well	as	marine	ecology,	14	
fisheries,	and	past	ocean	conditions.	However,	the	sparse	spatial	distribution	of	nitrate	δ15N	15	
observations	makes	it	difficult	to	apply	this	useful	property	in	global	studies,	or	to	facilitate	16	
robust	model-data	comparisons.	Here,	we	use	a	compilation	of	published	nitrate	δ15N	17	
measurements	(n	=	12277)	and	climatological	maps	of	physical	and	biogeochemical	tracers	18	
to	create	a	surface-to-seafloor,	1°	resolution	map	of	nitrate	δ15N	using	an	Ensemble	of	19	
Artificial	Neural	Networks	(EANN).	The	strong	correlation	(R2	>	0.87)	and	small	mean	20	
difference	(<0.05‰)	between	EANN-estimated	and	observed	nitrate	δ15N	indicates	that	21	
the	EANN	provides	a	good	estimate	of	climatological	nitrate	δ15N	without	a	significant	bias.	22	
The	magnitude	of	observation-model	residuals	is	consistent	with	the	magnitude	of	23	
seasonal-decadal	changes	in	observed	nitrate	δ15N	that	are	not	captured	by	our	24	
climatological	model.	As	such,	these	observation-constrained	results	provide	a	globally-25	
resolved	map	of	mean	nitrate	δ15N	for	observational	and	modeling	studies	of	marine	26	
biogeochemistry,	paleoceanography,	and	marine	ecology.	27	
	28	
1	Introduction	29	
In	contrast	to	other	marine	nutrients	(e.g.,	phosphate	and	silicate),	the	inventory	of	nitrate	30	
(NO3-)	is	mediated	by	biological	processes,	where	the	main	source	is	N2	fixation	by	31	
diazotrophic	phytoplankton	and	the	main	sink	is	denitrification	(via	a	microbial	32	
consortium	in	oxygen	deficient	waters	and	sediments)	(Codispoti	and	Christensen,	1985).	33	
Biological	processes	also	determine	the	distribution	of	marine	nitrate	throughout	the	water	34	
column,	with	phytoplankton	assimilating	nitrate	/	lowering	nitrate	concentrations	in	the	35	
surface	ocean	and	the	microbially-mediated	degradation	of	organic	matter	in	the	36	
subsurface.	(The	latter	involving	the	multi-step	process	of	ammonification	(organic	matter	37	
à	NH4+)	and	nitrification	(NH4+	à	NO2-	à	NO3-).)	By	regulating	the	global	inventory	and	38	
distribution	of	marine	nitrate,	these	N	cycling	processes	control	global	net	primary	39	
productivity,	the	transfer	of	nutrients	to	higher	trophic	levels	such	as	fishes,	and	the	40	
strength	of	the	ocean’s	biological	carbon	pump	(Dugdale	and	Goering,	1967).		41	
	42	
Each	of	these	biologically	mediated	N	transformations	affects	the	N	isotopic	composition	of	43	
nitrate	in	unique	ways	(Fig.s	1A	&	1B	and	see	Section	2),	adjusting	the	relative	abundance	44	
of	15N	and	14N	in	oceanic	nitrate	relative	to	the	atmosphere.	δ15N	=	(15N/14Nsample	/	45	
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15N/14Nstandard)	–	1),	multiplied	by	1000	to	give	units	of	per	mil	(‰);	see	(Sigman	and	46	
Casciotti,	2001)	for	simplified	equations	from	(Mariotti	et	al.,	1981).	Nitrate	δ15N	47	
measurements	have	become	a	powerful	tool	for	understanding	the	‘biogeochemical	history’	48	
of	marine	nitrate,	which	includes	nitrate	assimilation	by	phytoplankton	(Miyake	and	Wada,	49	
1967;	Wada	and	Hattori,	1978),	nitrogen	fixation	(Carpenter	et	al.,	1997;	Hoering	and	Ford,	50	
1960),	denitrification	(Liu,	1979),	and	nitrification	(Casciotti	et	al.,	2013).	For	example,	the	51	
consumption	of	nitrate	by	denitrification	(red	line	in	Fig.	1A)	has	a	larger	impact	on	the	52	
residual	nitrate	δ15N	than	does	partial	nitrate	assimilation	by	phytoplankton	(yellow	line	in	53	
Fig.	1),	and	thus	very	high	δ15N	values	serve	as	a	fingerprint	of	denitrification.	Nitrate	δ15N	54	
is	also	influenced	by	the	addition	of	nitrate	via	remineralization	of	organic	matter.	The	55	
exact	influence	of	remineralization	depends	on	the	isotopic	composition	of	the	organic	56	
matter,	and	could	result	in	both	higher	or	lower	nitrate	δ15N	(Fig.	1A).	Nitrate	introduced	57	
into	the	water	column	by	the	remineralization	of	organic	matter	formed	by	N2-fixing	58	
phytoplankton	has	an	isotopic	composition	close	to	that	of	air	(0-1%),	and	serves	to	lower	59	
the	mean	ocean	δ15N	(Fig.	1B).	On	the	other	hand,	organic	matter	formed	from	nitrate	60	
assimilation	in	regions	where	the	plankton	use	most	of	the	available	nitrate	can	be	61	
isotopically	heavy,	and	its	remineralization	will	increase	the	δ15N	of	ambient	nitrate	(Fig.	62	
1B).	The	actual	value	of	organic	matter	δ15N	formed	from	nitrate	assimilation	is	mostly	63	
determined	by:	(1)	the	δ15N	of	nitrate	delivered	to	the	euphotic	zone	(the	subsurface	64	
source),	which	in	turn	is	dependent	on	the	degree	of	water-column	denitrification	and	(2)	65	
the	degree	of	nitrate	consumption	at	the	ocean	surface,	with	heavier	values	associated	with	66	
greater	nitrate	consumption	(Fig.	1B).	Accordingly,	changes	in	organic	matter	δ15N	(and	67	
therefore	sediment	δ15N	used	for	paleoceanographic	work)	can	reflect	variability	of	the	68	
source	nitrate	δ15N	and/or	variability	of	the	degree	of	nitrate	consumption	(e.g.,	see	(Rafter	69	
and	Charles,	2012)).	70	
	71	
Because	of	nitrate’s	place	at	the	base	of	the	marine	ecosystem,	nitrate	δ15N	is	also	useful	for	72	
understanding	the	lifecycles	of	higher	trophic	level	organisms	such	as	fish	(Graham	et	al.,	73	
2007;	Tawa	et	al.,	2017)	and	fishery	productivity	(Finney	et	al.,	2002,	2000).	The	δ15N	of	74	
whole	sediment	and	microfossils	provides	insight	by	proxy	of	past	ocean	nitrate	75	
transformations	(Altabet	and	Francois,	1994a;	Kienast	et	al.,	2008;	Ren	et	al.,	2009;	76	
Robinson	et	al.,	2004;	Sigman	et	al.,	1999b)—work	that	places	important	constraints	on	77	
modern	ocean	N	cycling	(Altabet,	2007;	Eugster	et	al.,	2013;	Ren	et	al.,	2017).	With	an	78	
understanding	of	the	N	transformations	described	above	and	their	influences	on	the	N	79	
isotopic	composition	of	nitrate,	we	can	begin	using	nitrate	δ15N	measurements	to	trace	the	80	
integrated	biogeochemical	history	of	marine	nitrate.	However,	identifying	basin-	and	81	
global-scale	trends	in	nitrate	δ15N	is	challenged	by	the	limited	spatial	extent	of	nitrate	δ15N	82	
observations	(Fig.	2).	Here,	we	compile	a	global	database	of	nitrate	δ15N	measurements	83	
(Fig.	2)	and	use	an	Ensemble	Artificial	Neural	Network	(EANN)	to	produce	a	map	of	the	84	
global	nitrate	δ15N	distribution	at	1-degree	spatial	resolution.	We	find	that	the	mapped	85	
nitrate	δ15N	climatology	matches	the	observations	well	and	should	be	a	valuable	tool	for	86	
estimating	mean	conditions	and	for	constraining	predictive	nitrate	δ15N	models	(Somes	et	87	
al.,	2010;	Yang	and	Gruber,	2016).	Below	we	briefly	discuss	how	the	EANN	was	used	to	88	
produce	global	maps	of	nitrate	δ15N	(Section	2),	address	the	ability	of	the	EANN	to	match	89	
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the	measured	δ15N	(Section	3),	and	examine	the	EANN-mapped	δ15N	climatology	and	global	91	
compilation	of	nitrate	δ15N	in	the	context	of	published	work	(Section	4).	92	
	93	
2	Methods	94	
2.1	Data	Compilation	95	
Nitrate	δ15N	observations	(Fig.	2;	references	in	Table	3)	were	compiled	from	studies	dating	96	
from	1975	(Cline	and	Kaplan,	1975)	to	2018	(Fripiat	et	al.,	2018),	including	data	from	the	97	
GEOTRACES	Intermediate	Data	Product	(Schlitzer	et	al.,	2018).	Whenever	possible,	the	98	
data	was	acquired	via	the	original	author,	but	in	other	cases	the	data	was	estimated	from	99	
the	publication	directly.	All	observations	were	treated	equally,	although	the	failure	to	100	
remove	nitrite	when	using	the	“denitrifier	method”	may	bias	the	nitrate	δ15N	to	low	values	101	
(Rafter	et	al.,	2013).	These	measurements	have	been	identified	as	“nitrate+nitrite”	in	the	102	
dataset	to	acknowledge	this	potential	biasing,	which	predominantly	affects	observations	in	103	
the	upper	100	m	(Kemeny	et	al.,	2016;	Rafter	et	al.,	2013).	104	
	105	
2.2	Building	the	neural	network	model	106	
We	utilize	an	ensemble	of	artificial	neural	networks	(EANNs)	to	interpolate	our	global	107	
ocean	nitrate	δ15N	database	(Fig.	2),	producing	complete	3D	maps	of	the	data.	By	utilizing	108	
an	artificial	neural	network	(ANN),	a	machine	learning	approach	that	effectively	identifies	109	
nonlinear	relationships	between	a	target	variable	(the	isotopic	dataset)	and	a	set	of	input	110	
features	(other	available	ocean	datasets),	we	can	fill	holes	in	our	data	sampling	coverage	of	111	
nitrate	δ15N.		112	
	113	
2.2.1	Binning	target	variables	(Step	1)	114	
We	binned	the	nitrate	δ15N	observations	(red	symbols	in	Fig.	2)	to	the	World	Ocean	Atlas	115	
2009	(WOA09)	grid	with	a	1-degree	spatial	resolution	and	33	vertical	depth	layers	(0-5500	116	
m)	(Garcia	et	al.,	2010).	When	binning	vertically,	we	use	the	depth	layer	whose	value	is	117	
closest	to	the	observation’s	sampling	depth		(e.g.	the	first	depth	layer	has	a	value	of	0	m,	the	118	
second	of	10	m,	and	the	third	of	20	m,	so	all	nitrate	isotopic	data	sampled	between	0-5	m	119	
fall	in	the	0	m	bin;	between	5-15	m	they	fall	in	the	10	m	bin,	etc.).	An	observation	with	a	120	
sampling	depth	that	lies	right	at	the	midpoint	between	depth	layers	is	binned	to	the	121	
shallower	layer.	If	more	than	one	raw	data	point	falls	in	a	grid	cell	we	take	the	average	of	all	122	
those	points	as	the	value	for	that	grid	cell.	Certain	whole	ship	tracks	of	nitrate	δ15N	data	123	
were	withheld	from	binning	to	be	used	as	an	independent	validation	set	(see	section	2.2.4).	124	
	125	
2.2.2	Obtaining	input	features	(Step	2)	126	
Our	input	dataset	contains	a	set	of	climatological	values	for	physical	and	biogeochemical	127	
ocean	parameters	that	form	a	non-linear	relationship	with	the	target	data.	We	have	six	128	
input	features	including	objectively	analyzed	annual-mean	fields	for	temperature,	salinity,	129	
nitrate,	oxygen,	and	phosphate	taken	from	the	WOA09	130	
(https://www.nodc.noaa.gov/OC5/WOA09/woa09data.html)	at	1-degree	resolution.	131	
Additionally,	daily	chlorophyll	data	from	Modis	Aqua	for	the	period	Jan-1-2003	through	132	
Dec-31-2012	is	averaged	and	binned	to	the	WOA09	grid	(as	described	in	Step	1)	to	produce	133	
an	annual	climatological	field	of	chlorophyll	values,	which	we	then	log	transform	to	reduce	134	
their	dynamic	range.	135	
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	155	
The	choice	of	these	specific	input	features	was	dictated	by	our	desire	to	achieve	the	best	156	
possible	R2	value	on	our	internal	validation	sets	(Step	4).	Additional	inputs	besides	those	157	
we	included,	such	as	latitude,	longitude,	silicate,	euphotic	depth,	or	sampling	depth	either	158	
did	not	improve	the	R2	value	on	the	validation	dataset	or	degraded	it,	indicating	that	they	159	
are	not	essential	parameters	for	characterizing	this	system	globally.	By	opting	to	use	the	160	
set	of	input	features	that	yielded	the	best	results	for	the	global	oceans,	we	potentially	161	
overlooked	combinations	of	inputs	that	perform	better	at	regional	scales.	However,	given	162	
the	scarcity	of	δ15N	data	in	some	regions,	it	is	not	possible	to	ascribe	the	impact	of	a	specific	163	
combination	of	input	features	versus	the	impact	of	available	δ15N	data,	which	may	not	be	164	
representative	of	the	region’s	climatological	state,	to	the	relative	model	performance	in	165	
these	regions.	166	
	167	
2.2.3	Training	the	ANN	(Step	3)	168	
The	architecture	of	our	ANN	consists	of	a	single	hidden	layer,	containing	25	nodes,	that	169	
connects	the	biological	and	physical	input	features	(discussed	in	Step	2)	to	the	target	170	
nitrate	isotopic	variable	(as	discussed	in	Step	1).	The	role	of	the	hidden	layer	is	to	171	
transform	input	features	into	new	features	contained	in	the	nodes.	These	are	given	to	the	172	
output	layer	to	estimate	the	target	variable,	introducing	nonlinearities	via	an	activation	173	
function.	The	number	of	nodes	in	this	hidden	layer,	as	well	as	the	number	of	input	features,	174	
determines	the	number	of	adjustable	weights	(the	free	parameters)	in	the	network.	175	
Because	there	is	a	danger	of	over-fitting	the	model,	which	occurs	when	the	ANN	is	over-176	
trained	on	a	dataset	so	that	it	cannot	generalize	well	when	presented	with	new	data,	it	is	a	177	
good	practice	to	have	a	large	number	of	training	data	(we	have	7170	binned	data	points)	178	
relative	to	the	number	of	weights	(we	have	201	free	parameters)	(Weigend	et	al.,	1990).	To	179	
create	a	nonlinear	system,	an	activation	function	transforms	the	product	of	the	weights	and	180	
input	features	and	creates	the	values	assigned	to	nodes	in	the	hidden	layer.	These	act	as	181	
new	features	for	estimating	the	target	δ15N	data.	Our	model	utilizes	the	hyperbolic	tangent	182	
as	its	activation	function	between	the	input	and	hidden	layer	as	well	as	between	the	hidden	183	
and	output	layer	due	to	its	speed	and	general	performance	(Thimm	and	Fiesler,	1997).	184	
	185	
The	values	of	nodes	in	the	hidden	layer	(H)	can	be	defined	as	186	
	187	

H =  a(I ∙W!  +  b!)	
	188	
where	H	is	an	array	containing	the	values	of	the	hidden	nodes,	a	is	the	activation	function	189	
(here,	the	hyperbolic	tangent),	I	is	a	7170x6	array	containing	the	values	of	the	input	190	
features	at	the	locations	of	the	binned	observations	(there	are	7170	binned	observations	191	
and	6	input	parameters),	W1	is	a	6x25	array	of	weights	that	connect	input	features	to	192	
hidden	nodes,	and	b1	is	a	7170x25	array	of	weights	(25	unique	values	repeated7170	times)	193	
that	connects	a	bias	node	to	the	hidden	nodes.	The	factor	of	25	represents	the	number	of	194	
nodes	in	the	hidden	layer,	chosen	by	experimentation	to	find	the	maximum	number	of	195	
effective	parameters	(Foresee	and	Hagan	1997),	i.e.	where	adding	new	parameters	no	196	
longer	improves	performance	on	an	internal	validation	set	(Step	4).	The	bias	node	acts	as	197	
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an	offset	term,	similar	to	a	constant	term	in	a	linear	function,	and	has	a	value	that	is	always	225	
1.	226	
	227	
At	the	output	layer,	the	network	produces	a	prediction	of	the	target	nitrate	isotopic	data	228	
(δ15Npred).	Similar	to	how	nodes	in	the	hidden	layer	are	a	function	of	the	inputs	and	a	set	of	229	
weights,	δ15Npred	is	a	function	of	the	hidden	nodes	and	an	additional	set	of	weights.	The	230	
predicted	values	can	be	defined	as	231	
	232	

< 𝐷𝐸𝐿𝑇𝐴 > 15N!"#$ = a(H ∙W!  +  b!)	
	233	
where	H	(size	7170x25)	has	been	previously	defined,	W2	(size	25x1)	is	a	matrix	of	weights	234	
that	connect	features	in	the	hidden	layer	to	nodes	in	the	output	layer,	and	b2	(size	7170x1)	235	
is	an	array	of	weights	(all	of	the	same	value)	that	connects	a	bias	node	to	the	output	layer.		236	
	237	
The	ANN	learns	by	comparing	δ15Npred	to	the	actual	δ15N	data	(δ15Ndata),	attempting	to	238	
minimize	the	value	of	the	cost	function	239	
	240	

cost =  
(< 𝐷𝐸𝐿𝑇𝐴 > 15N!"#$!!

!!! − < 𝐷𝐸𝐿𝑇𝐴 >  15N!"#"! )!

𝑛 	
	241	

by	iteratively	adjusting	the	weights	using	the	Levenberg-Marquardt	algorithm	(Marquardt,	242	
1963)	as	a	way	of	propagating	the	errors	between	δ15Npred	and	δ15Ndata	backwards	though	243	
the	network	(Rumelhart	et	al.,	1986).	244	
	245	
2.2.4	Validating	the	ANN	(Step	4)	246	
To	ensure	good	generalization	of	the	trained	ANN,	we	randomly	withhold	10%	of	the	δ15N	247	
data	to	be	used	as	an	internal	validation	set	for	each	network.	This	is	data	that	the	network	248	
never	sees,	meaning	it	does	not	factor	into	the	cost	function,	so	it	works	as	a	test	of	the	249	
ANN’s	ability	to	generalize.	This	internal	validation	set	acts	as	a	gatekeeper	to	prevent	poor	250	
models	from	being	accepted	into	the	ensemble	of	trained	networks	(see	Step	5).		A	second,	251	
independent	or	‘external’	validation	set	(blue	symbols	in	Fig.	2),	composed	of	complete	ship	252	
transects	from	the	high	and	low	latitude	ocean	were	omitted	from	binning	in	Step	1	and	253	
used	to	establish	the	performance	of	the	entire	ensemble.	Our	rationale	for	using	complete	254	
ship	transects	is	the	following.	If	we	randomly	chose	10%	of	observations	to	perform	an	255	
external	validation,	this	dataset	will	be	from	the	same	cruises	as	the	wider	data.	In	other	256	
words,	despite	being	randomly	selected,	the	validating	observational	dataset	will	be	highly	257	
correlated	geographically.	Contrast	this	with	validating	the	EANN	results	with	observations	258	
from	whole	research	cruises	in	unique	geographic	regions—areas	where	the	model	has	not	259	
“learned”	anything	about	nitrate.	We	therefore	argue	that	these	observations	from	whole	260	
ship	tracks	therefore	provide	a	more	difficult	test	of	the	model.	261	
	262	
2.2.5	Forming	the	Ensemble	(Step	5)	263	
The	ensemble	is	formed	by	repeating	Steps	3	to	4	(using	a	different	random	10%	validation	264	
set)	until	we	obtain	25	trained	networks	for	the	nitrate	δ15N	dataset.	A	network	is	admitted	265	
into	the	ensemble	if	it	yields	an	R2	value	greater	than	0.81	on	the	validation	dataset.		Using	266	
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an	EANN	instead	of	any	single	network	provides	several	advantages.	For	example,	the	326	
random	initialization	of	the	weight	values	in	each	network	as	well	as	differences	in	the	327	
training	and	internal	validation	sets	used	across	members	make	it	possible	for	many	328	
different	networks	to	achieve	similar	performance	on	their	respective	validation	set	while	329	
generalizing	to	areas	with	no	data	coverage	differently.	By	performing	this	type	of	data	330	
subsampling	and	taking	an	ensemble	average,	similar	to	bootstrap	aggregating	(Breiman,	331	
1996)	this	approach	on	average	improves	the	robustness	of	the	generalization	in	areas	332	
without	data	coverage	compared	to	a	single	randomly	generated	ensemble	member.	333	
Compared	to	each	of	its	members,	our	ensemble	mean	sees	improved	performance	on	all	334	
internal	validation	sets	and	has	a	higher	R2	and	lower	root	mean	square	error	on	the	335	
independent	validation	set	compared	to	19	of	the	25	members.	The	range	of	values	given	336	
by	the	ensemble	also	provides	a	measure	of	the	uncertainty	for	our	estimations	of	δ15N.	337	
	338	
3	Results	339	
3.1	Global	nitrate	δ15N	observations	340	
The	global	compilation	of	nitrate	δ15N	includes	1180	stations	from	all	major	ocean	basins	341	
and	some	minor	seas	(Fig.	2)	giving	a	total	of	12277	nitrate	δ15N	measurements.	Within	342	
this	dataset,	1197	nitrate	δ15N	measurements	were	withheld	from	the	EANN	and	used	to	343	
validate	the	EANN	results	to	ensure	good	extrapolation	(the	‘external’	validation	dataset;	344	
blue	symbols	in	Fig.	2,	see	Section	2).	With	observations	from	the	surface	to	as	deep	as	345	
6002	m	(Rafter	et	al.,	2012),	we	find	that	nitrate	δ15N	ranges	from	≈1‰	in	the	North	346	
Atlantic	(e.g.,	Marconi	et	al.,	(2015))	to	68.7‰	in	the	Eastern	Tropical	South	Pacific	347	
(Bourbonnais	et	al.,	2015).	Nitrate	δ15N	of	≈1‰	was	also	irregularly	observed	in	the	348	
shallow	North	and	South	Pacific	(Liu	et	al.,	1996;	Yoshikawa	et	al.,	2015).	These	latter	349	
observations	were	included	in	the	training	dataset,	although	we	should	note	that	the	350	
measurements	using	the	‘Devarda’s	Alloy’	method	(Liu	et	al.,	1996)	is	thought	to	be	biased	351	
low	(Altabet	and	Francois,	2001).	Similarly,	the	inclusion	of	nitrite	for	‘denitrifier	method’	352	
nitrate	δ15N	can	bias	the	measurement	to	lower	values	(Kemeny	et	al.,	2016;	Rafter	et	al.,	353	
2013).	354	
	355	
3.2	Marine	nitrate	δ15N	observations-model	comparison	356	
The	observed	and	EANN-predicted	nitrate	δ15N	measurements	are	distributed	around	a	1:1	357	
line	in	Fig.	3A	(all	data),	with	considerably	less	scatter	for	the	deeper	values	(data	>1000	m;	358	
Fig.	3B).	The	correlation	coefficient	of	determination	for	the	observations	versus	the	model	359	
nitrate	δ15N	gives	an	R2=0.75	for	the	raw	/	unbinned	observations	used	to	train	the	EANN	360	
and	an	R2	of	0.78	for	the	validation	dataset.	We	can	also	examine	the	performance	of	the	361	
EANN	with	the	nitrate	δ15N	“residual”	or	the	difference	between	observed	and	modeled	362	
δ15N,	which	indicates	a	mean	residual	or	‘mean	bias’	value	of	-0.03‰	for	the	entire	dataset	363	
and	+0.18‰	for	the	validation	dataset.		364	
	365	
Examining	the	observation-EANN	residuals	via	the	Root	Mean	Square	Error	(RMSE),	we	366	
find	an	RMSE	of	1.94‰	for	the	data	used	to	train	the	EANN	and	an	RMSE	of	1.26‰	for	the	367	
external	validation	dataset.	There	is	a	clear	relationship	between	RMSE	and	depth,	with	a	368	
significantly	higher	RMSE	for	the	upper	500	m	(Figs.	3C	and	3D).	Comparing	these	residual	369	
values	with	dissolved	oxygen	concentrations	(color	in	Fig.	3C),	we	find	that	>2‰	RMSE	for	370	
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the	surface	is	associated	with	high	oxygen	while	>2.7‰	RMSE	at	≈250	m	is	associated	with	376	
the	lowest	oxygen.	Furthermore,	the	RMSE	of	the	observation-EANN	residuals	differs	377	
between	the	datasets	used	to	train	the	model	(solid	red	line	in	Fig.	3D)	and	validate	the	378	
model	(dashed	line	in	Fig.	3D).		379	
	380	
The	RMSE	patterns	in	Figs.	3C	and	3D	are	to	be	expected	given	the	natural	variability	in	381	
nitrate	δ15N	driven	by	assimilation	in	the	upper	ocean	and	denitrification	in	the	shallow	382	
sub-surface—variability	which	is	not	captured	by	the	climatological	EANN.	Rafter	and	383	
Sigman,	(2016),	presented	a	5-year	time-series	of	nitrate	δ15N	from	the	eastern	equatorial	384	
Pacific,	which	showed	that	variability	of	nitrate	assimilation	produces	seasonal-to-385	
interannual	deviations	of	δ15N	of	±2.5‰,	which	is	similar	to	the	magnitude	of	the	RMSE	in	386	
the	surface	ocean	(2.2‰).	Although	there	are	no	nitrate	δ15N	time-series	measurements	387	
from	the	subsurface	Oxygen	Deficient	Zone	(ODZ)	waters	where	denitrification	occurs,	388	
nitrate	δ15N	in	ODZs	presumably	have	similar	seasonal-to-interannual	(or	longer	timescale)	389	
variability	due	to	changes	in	the	rate	and	extent	of	water	column	denitrification	(Deutsch	et	390	
al.,	2011;	Yang	et	al.,	2017).	For	example,	a	larger	degree	of	nitrate	undergoing	water	391	
column	denitrification	would	explain	the	extreme	δ15N	values	at	the	bottom	right	of	Fig.	392	
3A—observations	that	all	come	from	the	ODZ	waters	of	the	Eastern	Tropical	South	Pacific	393	
(Bourbonnais	et	al.,	2015;	Casciotti	et	al.,	2013;	Rafter	et	al.,	2012;	Ryabenko	et	al.,	2012).	394	
Some	of	these	very	high	nitrate	δ15N	values	are	associated	with	nitrate	concentrations	<1	395	
µmol	kg-1	(Bourbonnais	et	al.,	2015),	values	much	lower	than	within	our	climatology	for	the	396	
subsurface	Eastern	Tropical	South	Pacific.	These	values	thus	represent	episodic	397	
denitrification	events	that	the	EANN	will	not	be	able	to	capture	because	it	is	trained	on	398	
climatological	data.	In	the	deep	ocean	where	temporal	variability	is	smaller,	the	399	
observation-EANN	residuals	of	0.2‰	are	the	same	magnitude	as	the	δ15N	analytical	errors,	400	
further	emphasizing	the	ability	of	the	model	to	match	climatological	average	conditions.	401	
	402	
4	Discussion	403	
The	EANN’s	skillful	estimate	of	climatological	nitrate	δ15N	will	be	useful	for	studies	of	the	404	
marine	nitrogen	cycle.	The	zonal	average	view	of	EANN	nitrate	δ15N	for	each	major	ocean	405	
basin	(Fig.	4)	includes	statistics	comparing	the	observations	versus	EANN	results	above	406	
and	below	1000	m.	These	region-specific	statistics	show	a	weaker	correlation	between	407	
EANN	and	observed	nitrate	δ15N	in	the	deep	Atlantic	and	Southern	Ocean,	despite	low	408	
RMSE	and	negligible	mean	bias.	This	weak	correlation	likely	derives	from	the	limited	409	
variability	of	deep	nitrate	δ15N	(±0.1‰)	in	these	basins	(see	Fig.	5D).	410	
	411	
The	nitrate	δ15N	sections	in	Fig.	4	show	elevated	values	for	the	low	latitude,	upper	412	
mesopelagic	Pacific	(Fig.	4A)	and	Indian	Oceans	(Fig.	4D)	where	water	column	413	
denitrification	raises	the	residual	nitrate	δ15N	(Fig.	1A).	Viewing	this	elevated	nitrate	δ15N	414	
at	the	250	m	depth	horizon	(Fig.	5)	better	reveals	the	spatial	heterogeneity	of	the	415	
observations	and	EANN	results.	(It	is	because	of	this	intra-basin	heterogeneity,	and	the	fact	416	
that	many	observations	are	biased	towards	the	areas	of	denitrification,	that	we	did	not	plot	417	
the	observed	nitrate	δ15N	within	the	zonally-averaged	Fig.	4	views.)	The	EANN	error	for	the	418	
Fig.	5	depth	intervals	(Figs.	5E-5H)	is	the	standard	deviation	of	the	25	ensemble	members	419	
of	the	EANN	and	shows	a	decrease	in	ensemble	variability	with	depth—a	trend	that	is	420	
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consistent	with	the	overall	decrease	in	observed	nitrate	δ15N	variability	with	depth	(Figs.	4	437	
&	5).		438	
	439	
Below	we	inspect	the	observed	and	EANN-predicted	nitrate	δ15N	and	discuss	the	440	
consistency	of	these	results	with	our	understanding	of	published	work.	This	analysis	begins	441	
with	the	spatial	distribution	of	nitrate	delivered	to	the	upper	ocean.	We	then	discuss	the	442	
impacts	of	upper	ocean	nitrate	assimilation	on	organic	matter	δ15N	and	consider	the	443	
influence	of	organic	matter	remineralization	on	sub-surface	nitrate.		444	
	445	
4.1	Subsurface	and	surface	nitrate	δ15N		446	
The	nitrate	δ15N	distribution	at	250	m	depth	(Fig.	5B)	offers	a	view	of	nitrate	at	a	depth	447	
that	is	deeper	than	source	waters	in	many	ocean	regions	(e.g.,	100	to	150	m	in	the	448	
equatorial	Pacific	(Rafter	and	Sigman,	2016)),	but	is	negligibly	influenced	by	nitrate	449	
assimilation,	and	therefore	provides	a	qualitative	view	of	spatial	trends	in	nitrate	delivered	450	
to	the	surface	ocean.	Nitrate	δ15N	at	this	depth	is	highest	in	the	North	and	South	Eastern	451	
Tropical	Pacific	and	Arabian	Seas	(Fig.	5B),	due	to	the	influence	of	water	column	452	
denitrification	in	the	ODZs	in	these	regions	(Altabet	et	al.,	2012;	Bourbonnais	et	al.,	2015;	453	
Ryabenko	et	al.,	2012),	which	preferentially	uses	the	light	isotope	and	leaves	the	residual	454	
nitrate	enriched	in	15N.	A	notable	difference	between	the	EANN	and	a	previous	455	
biogeochemical	model	estimate	of	nitrate	δ15N	(Somes	et	al.,	2010)	is	that	the	EANN	456	
correctly	captures	the	higher	nitrate	δ15N	in	the	Arabian	Sea	compared	to	the	Bay	of	457	
Bengal.	458	
	459	
Lowest	δ15N	values	of	sub-surface	nitrate	are	found	in	the	Southern	Ocean	and	in	the	North	460	
Atlantic.	The	North	Atlantic	subtropical	gyre	in	particular	has	the	lowest	δ15N	values	in	any	461	
basin	(Fig.	5B;	also	see	(Fawcett	et	al.,	2011;	Knapp	et	al.,	2005,	2008)),	which	can	be	462	
attributed	to	the	remineralization	of	low-δ15N	organic	matter	originating	from	N2-fixation,	463	
which	produces	organic	matter	with	a	δ15N	between	0	and	-1‰	(similar	to	atmospheric	N2;	464	
see	Fig.	1B	(Carpenter	et	al.,	1997;	Hoering	and	Ford,	1960)).	Prior	work	argues	that	this	465	
nitrate	δ15N	lowering	requires	the	bulk	of	Atlantic	N2-fixation	(≈90%)	to	occur	in	the	466	
tropics	(Marconi	et	al.,	2017)	followed	by	the	advection	of	remineralized	nitrate	to	the	467	
North	Atlantic.	This	contrasts	with	numerical	models	arguing	for	high	N2-fixation	rates	in	468	
the	North	Atlantic	(Ko	et	al.,	2018).	Similar	local	minima	of	sub-surface	δ15N	appear	in	all	469	
the	sub-tropical	gyres	(Fig.	5B),	which	is	consistent	with	observations	(Casciotti	et	al.,	470	
2008;	Yoshikawa	et	al.,	2015)	and	presumably	indicates	the	importance	of	N2-fixation	in	471	
these	regions	(Ko	et	al.,	(2018)	and	others).	The	N2-fixation	δ15N	signal	in	the	Pacific	Ocean	472	
is	counteracted	by	the	influence	of	water-column	denitrification	in	that	basin,	which	473	
imparts	a	high	δ15N	signal,	but	a	local	minimum	in	δ15N	can	still	be	seen	in	the	Pacific	474	
subtropical	gyres	(Fig.	4A).	475	
	476	
Nitrate	assimilation	by	phytoplankton	in	the	upper	ocean	is	influenced	by	both	the	477	
subsurface	source	nitrate	δ15N	and	the	degree	of	nitrate	assimilation	(Miyake	and	Wada,	478	
1967;	Wada	and	Hattori,	1978)	(Fig.	1B).	This	gives	the	expectation	that	average	nitrate	479	
δ15N	values	for	the	upper	50	m	(Fig.	5A)	will	be	consistently	higher	than	those	at	250	m	480	
(Fig.	5B).	However,	the	highest	values	in	the	upper	50	m	are	not	found	above	the	ODZ	481	
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regions,	but	are	on	the	edges	of	high	nitrate	concentration	upwelling	zones	in	the	Southern	483	
Ocean,	equatorial	Pacific,	and	subarctic	gyres	(contours	in	Fig.	2).	Circulation	in	these	‘edge’	484	
regions	allows	for	nitrate	to	be	advected	along	the	surface,	lengthening	its	time	in	the	485	
surface	ocean	and	allowing	more	utilization	to	elevate	the	residual	nitrate	δ15N	pool.	In	486	
other	words,	the	degree	of	nitrate	utilization	appears	to	play	a	more	important	role	in	487	
determining	surface	nitrate	δ15N	than	the	initial	value.	(This	is	not	the	case	for	the	organic	488	
matter	δ15N	produced	from	this	nitrate,	which	will	be	discussed	more	below.)		489	
	490	
Despite	our	expectation	of	higher	nitrate	δ15N	in	the	upper	50	m	versus	250	m	(Figs.	5A	vs.	491	
5B),	we	identify	two	types	of	regions	where	this	difference	is	negative	(Fig.	6):	above	ODZ	492	
waters	and	in	subtropical	gyres.	The	explanation	for	the	negative	values	above	the	ODZ	493	
regions	is	that	the	nitrate	δ15N	at	250	m	must	be	much	higher	than	the	nitrate	δ15N	494	
upwelled	to	the	surface.	This	is	consistent	with	elevated	ODZ	nitrate	δ15N	having	an	495	
indirect	path	to	waters	outside	of	ODZ	regions	(Peters	et	al.,	2017;	Rafter	et	al.,	2013).	The	496	
subtropical	gyres	also	have	modeled	nitrate	δ15N	in	the	upper	50	m	that	is	less	than	250	m,	497	
but	this	finding	is	difficult	to	test	with	observations	because	of	low	nitrate	concentrations.	498	
That	said,	the	model	predicts	a	lower	nitrate	δ15N	in	the	upper	ocean	relative	to	that	at	250	499	
m,	which	is	consistent	with	N2-fixation	in	these	regions.	500	
	501	
Our	discussion	above	highlights	the	difficulty	of	distinguishing	between	the	competing	502	
influences	of	the	subsurface	source	nitrate	δ15N	and	the	degree	of	nitrate	utilization	on	503	
residual	nitrate	δ15N.	Clearly	a	static	depth	does	not	reflect	the	subsurface	source	of	nitrate	504	
delivered	to	the	surface	and	a	more	robust	method	for	estimating	this	subsurface	source	505	
needs	to	be	developed.	However,	some	generalizations	can	be	made	regarding	the	organic	506	
matter	δ15N	produced	in	these	regions	and	its	potential	influence	(via	remineralization)	on	507	
subsurface	nitrate	throughout	the	water	column	via	the	export	and	remineralization	of	508	
organic	matter	(Sigman	et	al.,	2009a).	For	example,	a	local	minimum	in	δ15N	is	visible	at	509	
250	m	depth	in	the	Eastern	Equatorial	Pacific	(Fig.	5B;	also	discussed	in	several	studies	510	
(Rafter	et	al.,	2012;	Rafter	and	Sigman,	2016))	is	caused	by	the	remineralization	of	organic	511	
matter	with	a	low	δ15N	due	to	partial	nitrate	consumption	at	the	surface.	Below	we	discuss	512	
these	and	other	influences	on	intermediate-depth	nitrate	δ15N.	513	
	514	
4.2	Intermediate-depth	nitrate	δ15N	variability	515	
Waters	at	“intermediate”	depths	(here shown as the 750	m	surface	in	Fig.	5C)	are	important	516	
because	they	are	part	of	a	large-scale	circulation	that	initially	upwells	in	the	Southern	517	
Ocean	and	ultimately	resupplies	nutrients	to	the	low	latitude	thermocline	(Palter	et	al.,	518	
2010;	Sarmiento	et	al.,	2004;	Toggweiler	et	al.,	1991;	Toggweiler	and	Carson,	1995).	Within	519	
the	context	of	this	overturning,	the	nitrate	upwelling	in	the	Southern	Ocean	is	initially	520	
≈5‰	(Figs.	4C	&	5C)	and	the	δ15N	is	elevated	≈2‰	by	partial	nitrate	assimilation	in	521	
surface	waters	as	they	are	advected	equatorward	(see	Figs.	5A	and	6).	Deep	wintertime	522	
mixing	in	the	Subantarctic	Pacific	converts	these	surface	waters	into	mode	and	523	
intermediate	waters	(Herraiz-Borreguero	and	Rintoul,	2011),	introducing	nitrate	with	a	524	
“pre-formed”	δ15N	of	≈6‰	into	the	intermediate-depth	South	Pacific	and	South	Atlantic	525	
(Rafter	et	al.,	2012,	2013;	Tuerena	et	al.,	2015)	at	depths	between	≈600-1200	m.	The	526	
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penetration	of	this	pre-formed	signal	(nitrate	≥	6‰)	into	the	interior	can	be	clearly	seen	in	532	
the	Atlantic	Ocean	between	≈40°S	to	20°N	(Fig.	4B).	533	
	534	
The	same	signal	is	carried	with	Southern	Ocean	mode	and	intermediate	waters	into	the	535	
Pacific	basin	as	far	as	the	tropics	(Lehmann	et	al.,	2018;	Rafter	et	al.,	2013),	although	it	is	536	
difficult	to	distinguish	in	the	model	results	against	the	higher	background	δ15N	in	this	537	
basins	(Figs.	4A,	4D,	5C).	The	same	process	presumably	introduces	elevated	nitrate	δ15N	to	538	
the	Indian	Ocean,	which	has	similar	values	at	this	depth.	Nitrate	δ15N	increases	from	the	539	
Southern	Ocean	toward	the	equator	in	the	Pacific	and	Indian	Oceans,	but	not	in	the	Atlantic	540	
(Fig.	5C).	Organic	matter	has	a	lower	δ15N	in	the	Atlantic	than	in	the	Pacific	and	Indian	541	
because	of	a	lack	of	water-column	denitrification	supplying	high-δ15N	water	to	the	surface,	542	
and	because	of	the	high	rates	of	N2-fixation	which	supply	isotopically	light	N	to	organic	543	
matter	(Marconi	et	al.,	2017;	Tuerena	et	al.,	2015).	This	contrast	in	intermediate-depth	544	
nitrate	δ15N	can	be	traced	to	the	lower	δ15N	of	organic	matter	remineralized	in	this	545	
region—an	explanation	that	is	also	consistent	with	enhanced	N2	fixation	in	the	tropical	546	
Atlantic	(Marconi	et	al.,	2017).	The	increase	in	intermediate-depth	nitrate	δ15N	from	the	547	
Subantarctic	to	the	tropical	Pacific	appears	to	result	from	the	remineralization	of	organic	548	
matter	with	a	δ15N	elevated	by	high	source	nitrate	δ15N	(near	the	ODZ)	or	extreme	549	
elevation	of	residual	nitrate	δ15N	(advected	along	the	surface	away	from	the	equator;	see	550	
high	surface	nitrate	δ15N	in	Fig.	5A).	Previous	work	suggests	that	direct	mixing	with	551	
denitrified	waters	represents	only	a	small	fraction	of	the	change	from	the	pre-formed	high	552	
latitude	value	(≈6‰)	to	tropical	nitrate	δ15N	of	≈7‰	(Peters	et	al.,	2017;	Rafter	et	al.,	553	
2012,	2013).		554	
	555	
The	South	Indian	Ocean	is	one	region	particularly	devoid	of	published	nitrate	δ15N	556	
observations	(Fig.	2),	but	the	EANN	makes	specific	predictions	about	its	distribution.	For	557	
example,	the	modeled	nitrate	δ15N	predicts	that	intermediate-depth	Indian	Ocean	nitrate	is	558	
similarly	elevated	in	δ15N	to	the	intermediate-depth	South	Pacific	(Fig.	5C).	Considering	559	
that	both	intermediate-depth	water	masses	are	formed	from	Southern	Ocean	surface	560	
waters,	it	is	reasonable	to	propose	that	nitrate	δ15N	are	similarly	elevated	by	partial	nitrate	561	
consumption.	The	EANN	therefore	provides	testable	predictions	for	nitrate	δ15N	562	
observations	throughout	the	Indian	Ocean.	563	
	564	
4.4	Deep-sea	nitrate	δ15N	trends	565	
Our	discussion	above	suggests	that	the	basin-scale	balance	of	N2-fixation	and	water-column	566	
denitrification	is	a	major	contributor	to	inter-basin	nitrate	δ15N	gradients	in	the	upper	567	
ocean,	lowering	values	in	the	Atlantic	Oceans	compared	to	the	Pacific	and	Indian	Oceans.	568	
Averaging	EANN	nitrate	δ15N	with	depth	for	each	ocean	basin	(Fig.	7),	we	find	that	these	569	
basin-scale	nitrate	δ15N	differences	also	persist	into	the	deep-sea	(here	defined	as	3000	m	570	
and	below).	(Note	that	the	inter-basin	EANN	nitrate	δ15N	gradients	in	Fig.	7	are	smaller	571	
than	the	corresponding	inter-basin	gradients	in	observed	δ15N,	because	the	observations	572	
are	spatially	biased	towards	areas	of	water	column	denitrification	in	the	Pacific	and	Indian	573	
Oceans	(see	Fig.	2).)	574	
	575	
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The	remineralization	of	organic	matter	is	one	process	that	can—and	has	been	used	to—592	
explain	both	the	elevation	of	deep	Pacific	nitrate	δ15N	(Peters	et	al.,	2017;	Rafter	et	al.,	593	
2013;	Sigman	et	al.,	2009a)(Peters	et	al.,	2017;	Rafter	et	al.,	2013;	Sigman	et	al.,	2009)	and	594	
lowering	of	deep	Atlantic	nitrate	δ15N	(Knapp	et	al.,	2008;	Marconi	et	al.,	2017;	Tuerena	et	595	
al.,	2015)	relative	to	the	deep	ocean	mean.	Here	we	provide	two	additional	pieces	of	596	
evidence	that	argue	for	the	remineralization	of	organic	matter	as	the	key	driver	of	these	597	
deep-sea	nitrate	δ15N	differences.	Our	first	piece	of	evidence	is	that	the	average	subsurface	598	
source	of	nitrate	to	the	Pacific	and	Indian	Ocean	surface	has	a	significantly	higher	δ15N	(by	599	
2‰	at	the	250	m	depth	surface)	than	the	Atlantic	and	Southern	Oceans	(Figs.	5B	and	7).	600	
Nitrate	δ15N	at	250	m	is	an	admittedly	imprecise	estimate	for	the	nitrate	upwelled	to	the	601	
surface,	but	even	a	slight	elevation	in	Pacific	source	nitrate	δ15N	and	near	complete	nitrate	602	
utilization	at	the	surface	will	translate	into	higher	sinking	organic	matter	δ15N	(i.e.,	see	Fig.	603	
1B).		604	
	605	
Our	second	piece	of	evidence	that	the	export	and	remineralization	of	organic	matter	drives	606	
the	inter-basin	differences	in	deep	nitrate	δ15N	comes	from	sediment	trap	measurements.	607	
Averaging	published	sediment	trap	organic	matter	δ15N	from	the	subtropical	and	tropical	608	
Pacific	gives	a	value	of	8.5±2.9‰	(Knapp	et	al.,	2016;	Robinson	et	al.,	2012),	which	is	609	
significantly	higher	than	measured	in	traps	from	the	Atlantic	(4.5±1.5‰)	(Freudenthal	et	610	
al.,	2001;	Holmes	et	al.,	2002;	Lavik,	2000;	Thunell	et	al.,	2004).	Given	observed	Southern	611	
Ocean	nitrate	characteristics	(Rafter	et	al.,	2013),	we	estimate	an	even	lower	typical	sinking	612	
organic	matter	δ15N	of	+1.5‰	for	this	region,	which	assumes	initial	nitrate	values	equal	the	613	
Upper	Circumpolar	Deep	Water	and	final	values	from	the	Open	Antarctic	Zone.	This	value	is	614	
consistent	with	annually-averaged	sinking	organic	matter	δ15N	of	≈0.9	to	1.6‰	(Lourey	et	615	
al.,	2003),	although	published	results	from	the	iron-fertilized	Kerguelen	Plateau	region	are	616	
predictably	higher	(Trull	et	al.,	2008).	The	much	lower	Southern	Ocean	sinking	organic	617	
matter	δ15N	is	consistent	with	partial	consumption	of	nitrate	at	the	surface	(see	Fig.	1B)	618	
and	the	entrainment	of	this	nitrate	in	equatorward-moving	intermediate	waters	acts	to	619	
export	nitrate	with	elevated	δ15N	to	intermediate	waters	throughout	the	Southern	620	
Hemisphere	(see	discussion	above).	Based	on	this	evidence,	it	appears	that	global	patterns	621	
of	sinking	organic	matter	δ15N	are	consistent	with	the	remineralization	of	this	organic	622	
matter	driving	subtle,	but	significant	differences	in	deep-sea	nitrate	δ15N.		623	
	624	
An	alternative	explanation	for	the	deep-sea	nitrate	δ15N	differences	in	Fig.	7	is	that	they	625	
reflect	the	lateral	(along	isopycnal)	advection	of	elevated	nitrate	δ15N	from	ODZ	regions.	626	
However,	we	can	easily	dismiss	this	explanation	by	looking	at	the	meridional	trends	in	627	
deep-sea	nitrate	δ15N—following	the	deep	waters	from	their	entrance	in	the	south	and	628	
movement	northward.	What	we	find	is	that	deep	EANN	nitrate	δ15N	(Fig.	5D)	is	lowest	in	629	
the	Southern	Ocean	and	increases	equatorward	in	the	Pacific.	Average	observed	nitrate	630	
δ15N	below	2500	m	increases	from	4.7±0.1‰	in	the	Pacific	sector	of	the	Southern	Ocean	to	631	
4.9±0.2‰	in	the	deep	South	Pacific,	5.4±0.2‰	in	the	deep	tropical	Pacific,	and	5.2±0.2‰	632	
in	the	deep	North	Pacific.	This	is	consistent	with	the	known	increase	in	nitrate	633	
concentrations	and	lowering	of	deep	oxygen	concentrations	from	the	deep	South	to	634	
Tropical	and	North	Pacific	(e.g.,	see	Fig.	4E	in	(Rafter	et	al.,	2013)).	This	contrasts	with	no	635	
significant	change	in	deep	Atlantic	nitrate	δ15N,	despite	the	export	of	slightly	elevated	636	
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nitrate	δ15N	into	intermediate-depth	Atlantic	(see	above	and	(Tuerena	et	al.,	2015))	and	the	638	
introduction	of	a	different	deep	water	mass	(North	Atlantic	Deep	Water)	in	the	North	639	
Atlantic.	The	distribution	of	deep	Pacific	nitrate	δ15N	is	coherent	with	elevated	organic	640	
matter	δ15N	being	produced	and	exported	from	the	lower	latitude	surface	and	641	
remineralized	at	depth.	In	other	words,	inter-basin	differences	sinking	organic	matter	δ15N	642	
best	explains	the	inter-basin	differences	in	deep	EANN	and	observed	nitrate	δ15N.	643	
Diapycnal	mixing	from	the	low	latitude	Pacific	ODZ	regions	may	also	play	a	role	in	the	644	
south-to-north	elevation	of	deep	Pacific	nitrate	δ15N,	but	we	cannot	quantify	the	magnitude	645	
of	that	influence	without	a	circulation	model.	Future	work	should	look	into	this	issue.	646	
	647	
5	Conclusions	648	
We	find	that	an	Ensemble	of	Artificial	Neural	Networks	(EANN)	can	be	trained	on	649	
climatological	distributions	of	physical	and	biogeochemical	tracers	to	reproduce	a	global	650	
database	of	nitrate	δ15N	observations	(Fig.	2)	with	good	fidelity	(Fig.	3).	We	used	the	EANN	651	
to	produce	global	climatological	maps	of	nitrate	δ15N	at	a	1	degree-resolution	from	the	652	
surface	to	the	seafloor.	These	results	help	identify	spatial	patterns	(Figs.	4-6)	and	quantify	653	
regional	and	basin-average	oceanic	values	of	nitrate	δ15N	(Fig.	7).	Major	differences	654	
between	the	observed	and	EANN-predicted	nitrate	δ15N	appear	to	be	caused	by	temporal	655	
variability	of	nitrate	δ15N	in	the	upper	ocean	and	in	ODZs	associated	with	variable	nitrate	656	
uptake	and	denitrification	rates.	Additional	measurements	of	nitrate	δ15N	will	help	to	657	
develop	seasonally-resolved	maps	that	can	improve	upon	the	climatological	mean	map	658	
provided	here.		659	
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Appendix:	References	for	this	version	of	seawater	nitrate	δ15N	compilation	998	
region	 year	of	sampling	 month	of	

sampling	
reference	

Pacific	North	–	
Subarctic	

Unknown	sampling	
date	

na	 (Altabet	and	Francois,	
1994b)	

Indian	–	Arabian	
Sea	

1995	 8	 (Altabet	et	al.,	1999)	

Southern	Ocean	-	
Pacific	

1996-1998	 1-4,8-11	 (Altabet	and	Francois,	
2001)	

Pacific	North	–	Gulf	
of	California	

1990	 6	 (Altabet,	1999)	

Pacific	North	–	
Subarctic	

1971	 7	 (Wada,	1980)	

Indian	–	Arabian	
Sea	

1994	 4	 (Brandes	et	al.,	1998)	

Pacific	North	–	
ETNP	

1993	 12	 (Brandes	et	al.,	1998)	

Pacific	North	-	
Kuroshio	

1992	&	1994	 3	&	4	 (Liu	et	al.,	1996)	

Pacific	North	–	
Tropical	

1997	 10	&	11	 (Voss	et	al.,	2001)	

Pacific	North	–	
Subarctic	

2003	 2	 (Galbraith,	2007)	

Atlantic	North	 2004	 5	 (Bourbonnais	et	al.,	2009)	
Mediterranean	 1996	 5	 (Sachs,	1999)	
Mediterranean	 1998	 1	 (Pantoja	et	al.,	2002)	
Pacific	North	–	
Subarctic	

2002	 6	 (Lehmann	et	al.,	2005)	

Pacific	South	–	
Tropical	

1977	 6	 (Liu,	1979)	

Pacific	South	–	
Tropical	

2002	&	2004	 4	&	5	 (De	Pol-Holz	et	al.,	2009)	

Pacific	North	–	
Okhotsk	

1998,	1999,	2000	 6	&	9	 (Yoshikawa	et	al.,	2006)	

Pacific	Tropical	 2006	 6	 (Kienast	et	al.,	2008)	
Southern	Ocean	–	
Indian	

2005	 1	&	2	 (Trull	et	al.,	2008)	

Pacific	South	–	
Tropical	

2008	&	2009	 1,	2,	&	12	 (Ryabenko	et	al.,	2012)	

Indian	South	 2011	 10	&	11	 (Dehairs	et	al.,	2015)	
Pacific	South	–	
Tropical	

2012	 11	 (Bourbonnais	et	al.,	2015)	

Indian	North	 2007	 9	 (Gaye	et	al.,	2013)	
Atlantic	South	 2010	&	2012	 10	&	1	 (Tuerena	et	al.,	2015)	
Pacific	South	 2009	 6	 (Yoshikawa	et	al.,	2015)	
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Pacific	North	–SCS	 1997	 4	 (Wong	et	al.,	2002)	
Pacific	North	–	
Bering	Sea	

2008	&	2007	 4	&	5	 (Granger	et	al.,	2011,	2013)	

Arctic	–	Beaufort	 2009	 9	 Granger	unpublished	
Atlantic	North	 2010	 10	&	11	 Jenkins	et	al.	Unpublished	

GEOTRACES	
(Knorr_199_leg4.pdf) 

Atlantic	Tropical	 2010	 2	&	3	 Frank	et	al.	Unpublished	
GEOTRACES	
(meteor81_1.pdf) 

Pacific	Tropical	 2013	 5	&	6	 (Lehmann	et	al.,	2018)	
Pacific	North	 2008	 7	 Granger	Unpublished	
Pacific	North	 2009	&	2011	 2	&	7	 (Umezawa	et	al.,	2014)	
Pacific	South	–	
Tropical	

2010	&	2011	 2-4	 (Knapp	et	al.,	2016)	

Atlantic	North	–	
Subarctic	

1989	 6	 (Voss,	1991)	

Southern	Ocean	–	
Pacific	

1995	 4	 (Sigman	et	al.,	1999a)	

Southern	Ocean	–	
Indian	

1995	 1	 (Sigman	et	al.,	1999a)	

Southern	Ocean	–	
Pacific	

2016	 	 (Kemeny	et	al.,	2016)	

Pacific	North	–
Tropical	

2003	 10	 (Sigman	et	al.,	2005)	

Pacific	North	–	
ALOHA	

2000	 11	 (Sigman	et	al.,	2009b)	

Atlantic	–	North	 2001-2002	 1-12	 (Knapp	et	al.,	2005)	
Atlantic	–	North	 2002	 10	 (Knapp	et	al.,	2008)	
Pacific	–	North	 2003	 7	&	8	 (Knapp	et	al.,	2011)	
Indian	-	South	 1999	 1	&	2	 (Karsh	et	al.,	2003)	
Southern	–	Indian	 1998	&	1999	 2,3,4,9,	&	

12	
(DiFiore	et	al.,	2006)	

Southern	–	Atlantic	 2012	 7	 (Smart	et	al.,	2015)	
Atlantic	–	North	 2011	 10	&	11	 (Marconi	et	al.,	2015)	
Pacific	–	North	
ALOHA	

2004	 7	 (Casciotti	et	al.,	2008)	

Pacific	–	South	
Tropical	

2005	 11	 (Casciotti	et	al.,	2013)	

Pacific	–	North	
Tropical	

2003	 11	 (Casciotti	and	McIlvin,	
2007)	

Indian	–	Arabian	 2007	 9	 (Martin	and	Casciotti,	
2017)	

Pacific	–	Tropical	 2004-2007	 3-12	 (Rafter	et	al.,	2012;	Rafter	
and	Sigman,	2016)	
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Indian	–	Arabian	
Sea	

2007	 10	 (DeVries	et	al.,	2012)	or	
Rafter	and	Sigman	
Unpublished	

Pacific	South	–	
Tasman	Sea	

2010	 1	&	2	 Rafter	and	Sigman	
Unpublished	

Pacific	South	–	
Tropical	

2010	 2	 (Rafter	et	al.,	2012)	

Atlantic	North	–	
Subarctic	

2010	 4	 Rafter	and	Sigman	
Unpublished	

Pacific	South	 2005	 1	 (Rafter	et	al.,	2013)	
Pacific	South	–	
Tropical	

2013	 10-12	 (Peters	et	al.,	2017)	

Atlantic	North	–	
Subarctic	

2013	 8	 (Marconi	et	al.,	2017)	

Pacific	North	–	
Subarctic	

1993	 5	 (Wu	et	al.,	1997)	

Arctic	 2014	 7	&	8	 (Fripiat	et	al.,	2018)	
	999	
	1000	


