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Abstract 

Field measurements of aboveground net primary productivity (ANPP) in temperate grasslands suggest that both positive and 

negative asymmetric responses to changes in precipitation may occur. Under normal range of precipitation variability, wet 

years typically result in ANPP gains being larger than ANPP declines in dry years (positive asymmetry), whereas increases in 5 

ANPP are lower in magnitude in extreme wet years compared to reductions during extreme drought (negative asymmetry). 

Whether the current generation of ecosystem models with a coupled carbon-water system in grasslands are capable of 

simulating these asymmetric ANPP responses is an unresolved question. In this study, we evaluated the simulated responses 

of temperate grassland primary productivity to scenarios of altered precipitation with fourteen ecosystem models at three sites, 

Shortgrass Steppe (SGS), Konza Prairie (KNZ) and Stubai Valley meadow (STU), spanning a rainfall gradient from dry to 10 

moist. We found that: (1) The spatial slopes derived from modeled primary productivity and precipitation across sites were 

steeper than the temporal slopes obtained from inter-annual variations, which was consistent with empirical data. (2) The 

asymmetry of the responses of modeled primary productivity under normal inter-annual precipitation variability differed 

among models, and the mean of the model-ensemble suggested a negative asymmetry across the three sites, which was contrary 

to empirical evidence based on filed observations. (3) The mean sensitivity of modeled productivity to rainfall suggested 15 

greater negative response with reduced precipitation than positive response to an increased precipitation under extreme 

conditions at the three sites. (4) Gross primary productivity (GPP), net primary productivity (NPP), aboveground NPP (ANPP) 

and belowground NPP (BNPP) all showed concave-down nonlinear responses to altered precipitation in all the models, but 

with different curvatures and mean values. Our results indicated that most models overestimate the negative drought effects 

and/or underestimate the positive effects of increased precipitation on primary productivity under normal climate conditions, 20 

highlighting the need for improving eco-hydrological processes in those models in the future. 

1 Intr oduction 

Precipitation is a key climatic determinant of ecosystem productivity, especially in arid and semi-arid grasslands (Lambers et 

al., 2008; Sala et al., 1988; Hsu et al., 2012; Beer et al., 2010). Climate models project substantial changes in amounts and 

frequencies of precipitation regimes worldwide, and this is supported by observational data (Karl and Trenberth, 2003; Donat 25 

et al., 2016; Fischer and Knutti, 2016). Potential for increasing occurrence and severity of droughts and increased heavy rainfall 

events related to global warming will likely affect grassland growth (Knapp et al., 2008; Gherardi and Sala, 2015; Lau et al., 

2013; Reichstein et al., 2013). As a consequence, better understanding of the responses of grassland productivity to altered 

precipitation is needed to project future climate-carbon interactions, changes in ecosystem states, and to gain better insights 
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on the role of grasslands, in supporting crucial ecosystem services (e.g. livestock production). 

Gross primary productivity (GPP) of ecosystems is controlled by environmental conditions, in particular water availability 

(Jung et al., 2017), and by biotic factors affecting leaf photosynthetic rates and stomatal conductance, which scale up to canopy-

level functioning (Chapin III et al., 2011). About half of GPP is respired while the remainder, net primary productivity (NPP), 

is primarily invested in plant biomass production, including photosynthetic and structural pools aboveground (foliage and stem) 5 

and belowground (roots) (Waring et al., 1998; Chapin III et al., 2011). NPP responses to precipitation have been observed 

using multi-year, multi-site observations (Hsu et al., 2012; Estiarte et al., 2016; Knapp and Smith, 2001; Wilcox et al., 2015). 

Positive empirical relationships between grassland aboveground NPP (ANPP) and precipitation (P) have been found in spatial 

gradients across sites (Sala et al., 1988) and from temporal variability at individual sites (Huxman et al., 2004; Knapp and 

Smith, 2001; Roy et al., 2001; Hsu et al., 2012). The ANPP-P sensitivities obtained from spatial relationships are usually higher 10 

than those obtained by temporal relationships (Estiarte et al., 2016; Fatichi and Ivanov, 2014; Sala et al., 2012). Possible 

mechanisms behind the steeper spatial relationship may be (1) a óvegetation constraintô reflecting the adaptation of plant 

communities over long time scales in such a way that grasslands make the best use of the typical water received from rainfall 

for growth (Knapp et al., 2017b), and (2) the spatial variation in structural and functional traits of ecosystems (soil properties, 

nutrient pools, plant and microbial community composition) that constrain local ANPP-P sensitivities (Lauenroth and Sala, 15 

1992; Smith et al., 2009; Wilcox et al., 2016). For projecting the effect of climate change on grassland productivity in near to 

mid-term (coming decades), inter-annual relationships are arguably more informative than spatial relationships because spatial 

relationships reflect long-term adaptation of ecosystems, and because ANPP-P relationships from spatial gradients are 

confounded by the co-variation of gradients in other environmental variables (e.g. temperature and radiation) and soil 

properties (Estiarte et al., 2016; Knapp et al., 2017b). 20 

In temporal ANPP-P relationships, an important observation is the asymmetric responses of productivity in grasslands to 

altered precipitation (Knapp et al., 2017b; Wilcox et al., 2017). Compared to negative anomalies of ANPP from years with 

decreased precipitation, positive anomalies of ANPP during years with increased precipitation were usually found to have a 

larger absolute magnitude, suggesting a convex positive response (positive asymmetry) (Bai et al., 2008; Knapp and Smith, 

2001; Yang et al., 2008). Yet, when grasslands are subject to extreme precipitation anomalies that fall beyond the range of 25 

normal inter-annual variability, an extreme dry year is associated with a larger absolute ANPP loss than the gain found during 

an extreme wet year. This suggests a convex negative response (negative asymmetry) when considering a larger range of 

rainfall anomalies than the current inter-annual regime (Knapp et al., 2017b). This is also supported by current dynamical 

global vegetation models, which suggest a stronger response to extreme dry conditions compared to extreme wet conditions 

(Zscheischler et al., 2014). The sign of the asymmetric response of grassland productivity to altered rainfall thus depends on 30 

the magnitude of rainfall anomalies, the size-distribution of rainfall events, and ecosystem mean state (Gherardi and Sala, 2015; 
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Hoover and Rogers, 2016; Parolari et al., 2015; Peng et al., 2013). 

Relationships between precipitation and grassland productivity have previously been studied with site observations (Hsu et al., 

2012; Knapp et al., 2017b; Luo et al., 2017; Wilcox et al., 2017; Estiarte et al., 2016), but they remain to be quantified and 

characterized in ecosystem models used for diagnostic and future projections of the coupled carbon-water system in grasslands, 

in particular grid-based models used as the land surface component of Earth System Models. In this study, we aim to evaluate 5 

the responses of simulated productivity to altered precipitation from fourteen ecosystem models at three sites representing dry 

(304±118 mm yr-1), mesic (827±175 mm yr-1), and moist (1429±198 mm yr-1) rainfall regimes. The specific objectives of this 

study are to: (1) test if the productivity-P sensitivities of spatial relationships are greater than the temporal ones in the models 

like found in the observations; (2) test if models reproduce the observed asymmetric responses under inter-annual precipitation 

conditions; (3) assess the simulated productivity-P sensitivities related to different precipitation regimes including normal and 10 

extreme conditions, and to test in particular if sensitivities for extreme drought conditions are stronger than those for high-

rainfall conditions; (4) analyze the simulated curvilinear productivity-P relationships for a large range of altered precipitation 

amounts across the three sites. 

2 Materials and methods 

2.1 Experimental sites 15 

We conducted model simulations using three sites: the Shortgrass Steppe (SGS) site at the Central Plains Experimental Range, 

the Konza Prairie Biological Station (KNZ) site, and the Stubai Valley meadow (STU) site. These sites represent three 

grassland types spanning a productivity gradient from dry to moist climatic conditions. The dry SGS site is located in northern 

Colorado, USA (Knapp et al., 2015; Wilcox et al., 2015). The KNZ site is a native C4-dominated mesic tallgrass prairie in the 

Flint Hills of northeastern Kansas, USA (Heisler-White et al., 2009; Hoover et al., 2014). The moist site of STU is a subalpine 20 

meadow located in Austria Central Alps near the village of Neustift (Bahn et al., 2006; Bahn et al., 2008; Schmitt et al., 2010). 

Experimental measurements of annual ANPP were carried out spanning different time ranges. Estimated mean ANPP for SGS, 

KNZ and STU sites are 91±36 g DM (dry mass) m-2 yr-1, 387±8 2 g DM m-2 yr-1, and 525±210 g DM m-2 yr-1. Details of the 

ecological and environmental factors are summarized in Table 1. 

These three grasslands were selected because they lie along a mean annual precipitation (MAP) gradient, and have detailed 25 

meteorological data to force the models. While two are ñnaturalò grasslands (KNZ and SGS) and one (STU) is not, global land 

surface models do not typically differentiate regarding the origin of ecosystem types and heavily managed grasslands and 

pastures represent a significant fraction of mesic grasslands globally. Semi-natural subalpine grasslands in the Alps were 

created several centuries ago, are very lightly managed and should be in equilibrium concerning soil physical conditions. It 

should be noted though that the grassland at STU is cut once a year and lightly fertilized every 2-4 years and in consequence 30 



5 
 

differs in plant composition and soil fungi: bacteria ratio, which leads to different drought responses compared to abandoned 

grassland (Ingrisch et al., 2017; Karlowsky et al., 2018). Further, it is worth noting that the mesic grassland in the USA would 

also be forested if human-initiated prescribed fires were to be removed from the system (Briggs et al. 2005). Thus, these 

grassland sites lie along a continuum of dry natural grassland, mesic natural grassland maintained by human management, and 

anthropogenic moist grassland maintained by human management. 5 

2.2 Ecosystem model simulations 

In order to test the hypothesis of an asymmetric response of productivity to variable rainfall (Knapp et al., 2017b), simulations 

were conducted with fourteen ecosystem models CABLE, CLM45-ORNL, DLEM, DOS-TEM, JSBACH, JULES, LPJ-

GUESS, LPJmL-V3.5, ORCHIDEE-2, ORCHIDEE-11, T&C, TECO, TRIPLEX-GHG and VISIT all using the same protocol 

defined by the precipitation subgroup of the model-experiment interaction study (Table 2). At all three grassland sites, observed 10 

and altered multi-annual hourly rainfall forcing time series were combined with observations of other climate variables. These 

variables were air temperature, incoming solar radiation, air humidity, wind speed and surface pressure. Model simulations 

were carried out using soil texture properties measured at each site as reported in Table 1. Simulated productivity during the 

observational period is influenced at least in some models (for instance those having C-N interactions) by historical climate 

change and CO2 changes since the pre-industrial period. Thus instead of assuming that productivity was in equilibrium with 15 

current climate, historical reconstructions of meteorological variables from gridded CRUNCEP data at 1/2 hourly time step 

(Wei et al., 2014) were combined and bias-corrected with site observations to provide bias corrected historical forcing time 

series from 1901 to 2013 (CRUNCEP-BC). In addition to the observed current climate defining the ambient simulation, nine 

altered rainfall forcing datasets were constructed by decreasing/increasing the amount of precipitation in each precipitation 

event by -80%, -70%, -60%, -50%, -20%, +20%, +50%, +100% and +200% during the time-span of productivity observations 20 

at each site, leaving all other meteorological variables unchanged and equal to the observed values. Modelers performed all 

simulations described below based on the same protocol (see below) and the model output was compared with measured 

ecosystem productivities (GPP, NPP, ANPP and BNPP), whenever available 

- Simulation S0 spin-up: models simulated an initial steady state spin-up run for water and biomass pools under pre-

industrial conditions using the 1901-1910 CRUNCEP-BC climate forcing in a loop and applying fixed atmospheric CO2 25 

concentration at the 1850 level. 

- Simulation S1 historical simulation from 1850 until the first year of measurement (1986 for SGS, 1982 for KNZ, and 2009 

for STU): starting from the spin-up state, models were prescribed with increasing atmospheric CO2 concentrations and 

dynamic historical climate from CRUNCEP-BC. Because there is no CRUNCEP-BC data for 1850-1900, the CRUNCEP-

BC climate data from 1901 to 1910 was repeated in a loop instead. 30 
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- Simulation SC1 ambient simulation for the measurement periods (1986-2009 for SGS, 1982-2012 for KNZ, and 2009-

2013 for STU) with observed CO2 concentrations and meteorological data corresponding to site observations at the hourly 

or half-hourly scale. 

- Simulations SP1-SP9 altered precipitation simulations for the measurement periods (1986-2009 for SGS, 1982-2012 for 

KNZ, and 2009-2013 for STU), starting from the initial state in the start year of the period and run using the nine altered 5 

rainfall forcing datasets with observed CO2 concentration. 

2.3 Metrics of the response of productivity to precipitation changes 

In the analysis, we begin with testing our first specific objective, i.e., if the productivity-P sensitivities of spatial relationships 

are greater than the temporal ones in the models as found in the observations. We calculated the temporal slopes and spatial 

slopes between productivities and precipitation from multi-year ambient simulations (SC1). Temporal slopes are site based 10 

and relate inter-annual variability in precipitation to inter-annual variability in the productivities using linear regression 

analysis. Spatial slopes relate mean annual precipitation to mean annual productivity across the three sites.  

We then calculated two indices to analyze the asymmetric responses of primary productivity to precipitation simulated by 

ecosystem models and derived by observations whenever data were available. The two indices are: (1) the asymmetry of 

productivity-P for current inter-annual variability, based on SC1 where observations for ANPP are also available; and (2) the 15 

sensitivity of productivity to P for simulations where mean precipitation was altered, based on SP results. With these metrics, 

we test our second and third specific objectives, i.e., whether models could reproduce the observed asymmetric responses of 

productivity in grasslands to altered precipitation under normal and extreme conditions. 

Finally, we analyze the nonlinearity of modeled response of productivity to precipitation, which is described by the parameters 

of the curvilinear productivity-P relationships across the full range of altered precipitation scenarios, based on fits to model 20 

output for the ambient (SC1) and altered (SP) simulations. Detailed methods for the two indices used to analyze the asymmetric 

responses of primary productivity to altered precipitation and the curvilinear productivity-P relationships are introduced in the 

following. 

2.3.1 Asymmetry index from inter-annual productivity and precipitation  

In order to characterize the asymmetry of productivity to precipitation, we define the asymmetry index (AI) from inter-annual 25 

productivity and precipitation data as follows: 

ὃὍ Ὑ Ὑ                                                              (1) 

where Rp is the relative productivity pulse in wet years, and Rd is the relative productivity decline in dry years defined by: 
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Ὑ άὩὨὪ ὪӶȾὪӶ                                                    (2) 

Ὑ ὪӶάὩὨὪ ȾὪӶ                                                    (3) 

where Ὢ is the inter-annual productivity, being a function of environmental factors from models or observation; ὪӶ is mean 

annual productivity in the period of measurements (Table 1); άὩὨὪ  is the median value of productivities in wet years 

with annual precipitation higher than the 90th percentile level; άὩὨὪ  is median value of productivities in all the dry years 5 

when annual precipitation is lower than the 10th percentile level. 

In general, Ὑ  > 0 indicates that the median value of productivities in wet years is higher than the mean annual productivity 

in the period of measurements; and Ὑ  > 0 indicates that the median value of productivities in dry years is smaller than the 

mean annual productivity in the period of measurements. Therefore, if AI > 0, i.e., a positive asymmetry, means that there is a 

greater increase of productivity in wet years than decline in dry years; if AI < 0, i.e., a negative asymmetry, means that there is 10 

a greater decline of productivity in dry years than increase in wet years. 

Furthermore, uncertainty ranges of Ὑ , Ὑ  and AI were estimated as follows: 

Ὑ ᶰὙ ȟὙ
Ӷ

Ӷ
ȟ

Ӷ

Ӷ
                (4) 

Ὑ ᶰὙ ȟὙ
Ӷ

Ӷ
ȟ
Ӷ

Ӷ
                (5) 

ὃὍɴ ὃὍȟὃὍ Ὑ Ὑ ȟὙ Ὑ                                 (6) 15 

where Ὑ  and Ὑ  are the lower and upper bounds of Ὑ  using one median absolute deviation, i.e., άὥὨὪ ; Ὑ  

and Ὑ  are the lower and upper bounds of Ὑ  using one median absolute deviation, i.e., άὥὨὪ ; ὃὍ  and ὃὍ 

are the lower and upper bounds of AI corresponding to estimated Ὑ  and Ὑ  ranges. 

2.3.2 Sensitivity of productivity to altered versus inter-annual precipitation variability  

For altered precipitation, in particular for the extreme SP simulations where mean precipitation was altered and annual 20 

precipitation of a few years was outside the range of observed precipitation variation, we tested the hypothesis whether the 

asymmetry response becomes negative, that is the impacts of extreme dry conditions on productivity are much greater than the 

positive effects of extreme wet scenarios (Knapp et al., 2017b). Thus, we tested the mean change in productivity imposed by 

the change in precipitation, and we defined the sensitivity of productivity to altered rainfall conditions (S) as: 

Ὓ Ὢ Ὢ ȿὖ ὖȿϳ                                                   (7) 25 

where Ὢ  and Ὢ  are the mean productivities of altered and ambient simulations; ὖ and ὖ are the mean annual 

precipitation amounts in altered and ambient simulations. It should be noted that the sensitivity of productivity to altered 

rainfall conditions could present the asymmetry response from normal to extreme conditions. 
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2.3.3 Curvilinear productivity -P relationships across the entire range of altered P 

In general, plant productivity increases with increasing precipitation, and saturates when photosynthesis becomes less limited 

by water scarcity. We fitted the response of simulated productivity to altered precipitation using the Eq. (8): 

ώ ὥρ Ὡ                                                            (8) 

Where the independent variable x is the mean annual precipitation (mm), and the dependent variable y one of the productivities 5 

(GPP, NPP, ANPP and BNPP). Parameter a (g C m-2 yr-1) is the maximum value of productivity at high precipitation; and 

parameter b (mm-1) is the curvature of modeled productivity to altered precipitation. 

3 Results 

3.1 Temporal versus spatial slopes of productivity -P 

From the ambient simulations, ensemble model results indicate that the slopes of the spatial relationships were steeper than 10 

the temporal slopes for GPP, NPP and ANPP for the subset of models that simulated this flux, while these differences in slopes 

were less obvious for BNPP (Fig. 1). We compared model results with site-observations for ANPP-P temporal slopes of the 

ambient simulation across the three sites (Fig. 1c). Observed and modeled temporal slopes decreased from dry (SGS) to moist 

(STU) site, from 0.10 g C m-2 mm-1 (0.05 to 0.14 for the 10th and 90th percentiles) to 0.05 g C m-2 mm-1 (-0.14 to 0.55 for the 

10th and 90th percentiles) in the observations, and from 0.14 g C m-2 mm-1 (0.02 to 0.36 for the 10th and 90th percentiles) to 0.03 15 

g C m-2 mm-1 (-0.04 to 0.29 for the 10th and 90th percentiles) for the model ensemble mean. Although there were some 

discrepancies in the range of spatial and temporal slopes across models (Fig. S1), the multi-model ensemble mean captured 

the key observation of steeper spatial than temporal slopes for ANPP (Fig. 1). 

3.2 Asymmetry of the inter-annual primary productivity response to precipitation 

The asymmetry of each model was diagnosed using the asymmetry index (AI; Eq. (1)), which showed large variation across 20 

models (Fig. 2, S2). Considering all the models as independent ensemble members, the mean AI of GPP and NPP showed 

significantly negative values at p < 0.1 level for SGS (ensemble value of πȢρρȢ
   Ȣ  and πȢςπȢ

   Ȣ  respectively with 10th 

and 90th percentiles). Hence, for SGS simulated declines of GPP and NPP in dry years were larger than the increases in wet 

years. For STU, the mean AI values were only slightly negative (ensemble value for GPP πȢπσȢ
   Ȣ  and for NPP πȢπτȢ

   Ȣ  

with 10th and 90th percentiles), while AI was very close to zero at KNZ. By contrast, observation-based AI values, estimated 25 

from long-term inter-annual ANPP measurements, suggest a decrease from positive (πȢσςȢ
Ȣ  for SGS and πȢςπȢ

Ȣ  for KNZ) 

to negative (-0.21 for STU). At the dry (SGS) and mesic (KNZ) sites (Fig. S2), most of model simulations overestimated the 

extent of negative drought effects in dry years (Rd) and/or underestimated the positive impacts on ANPP in wet years (Rp). For 

example, CABLE and ORCHIDEE-2 overestimated the drought effects in dry years at both the two sites, and CLM45-ORNL 
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and VISIT underestimated the positive impacts in wet years at both the two sites (Fig. S2). At the moist site (STU), models 

agreed with observations regarding the negative sign of AI (negative asymmetry) but AI magnitude is not well captured. 

3.3 Sensitivities of primary productivity to altered precipitation  

The model-derived sensitivities given by Eq. (7) generally presented greater negative impacts of reduced precipitation than 

positive effects of increased precipitation under both normal (inter-annual) and extreme conditions (Fig. 3). The results also 5 

indicated that models represented a constant asymmetry pattern (negative asymmetry under normal and extreme conditions) 

across the full range of altered precipitation rather than a double asymmetry pattern (positive asymmetry under normal 

condition and negative asymmetry under extreme condition) established by Knapp et al. (2017b), which confirmed that models 

didnôt capture the positive asymmetric responses of productivities to altered precipitation under normal conditions for the dry 

(SGS) and mesic (KNZ) sites. 10 

Primary productivity at the dry site (SGS) was more sensitive to precipitation changes compared to the moist site (STU). Along 

with increases in precipitation, the largest sensitivity values were found for SGS (ensemble mean of ρȢσυȢ
Ȣ  g C m-2 mm-1 

for GPP with 10th and 90th percentiles, πȢφψȢ
Ȣ  g C m-2 mm-1 for NPP, πȢςτȢ

Ȣ  g C m-2 mm-1 for ANPP and πȢρφȢ
Ȣ  g C 

m-2 mm-1 for BNPP) and then KNZ (πȢσςȢ
   Ȣ  g C m-2 mm-1 for GPP, πȢςπȢ

   Ȣ  g C m-2 mm-1 for NPP, πȢρσȢ
Ȣ  g C m-2 

mm-1 ANPP and πȢπφȢ
Ȣ  g C m-2 mm-1 for BNPP with 10th and 90th percentiles) when precipitation was altered by +20%. 15 

The values of S decreased with further increased precipitation, indicating that additional water does not increase productivity 

in the same proportion exceeding a certain threshold. In contrast to SGS, the values of sensitivity for both GPP and NPP at 

STU are close to zero in response to added precipitation conditions, implying that the precipitation above ambient was not a 

limiting factor for grassland production in the models at this site. 

The values of sensitivity decreased with reduced precipitation at KNZ and SGS, indicating larger negative impacts on primary 20 

productivity when conditions become drier. For the moist site of STU, primary productivities showed less sensitivity to 

moderately dry conditions, and sensitivity only increased with more extreme rainfall alterations out of 3ů (~40% precipitation 

change). Additionally, the values of S for ANPP were smaller than those of BNPP at KNZ and SGS, while there were no 

differences between ANPP and BNPP at STU (Fig. 3). Thus, model results suggest that the dry site (SGS) can be particularly 

vulnerable to altered rainfall than the moist site (STU) which was more robust in response to altered rainfall. 25 

3.4 Curvilinear  responses of productivity to altered precipitation 

At SGS and KNZ, simulated GPP and NPP increased with increasing precipitation. In contrast, at the moist STU, most models 

showed saturation in productivity for precipitation above ambient values (Fig. 4). Along with increasing precipitation, GPP 

and NPP showed nonlinear concave-down response curves in all models, with different curvatures b and maximum 
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productivity a (Fig. S3). The ensemble mean values of the curvature parameter b fitted from Eq. (8) to each modeled GPP 

across the full range of altered precipitation are υȢρȢ
Ȣ*10-3 mm-1 at STU, σȢσȢ

Ȣ*10-3 mm-1 at KNZ and ρȢτȢ
Ȣ*10-3 mm-1 at 

SGS with 10th and 90th percentiles (Fig. S3). 

The responses of GPP and NPP to altered precipitation were proportional to each other for each model, and as a result changes 

in carbon use efficiency (CUE) were very small compared to the background CUE differences diagnosed in the ambient 5 

simulation (Fig. 4c, f, i). However, JSBACH and LPJmL-V3.5 produced a sharp decline of CUE below ambient precipitation 

at SGS and KNZ. 

Only seven models simulated ANPP and BNPP separately (Fig. 5). The responses of ANPP and BNPP to altered precipitation 

were similar to those of GPP and NPP. When fitting Eq. (8) to ANPP-P (Fig. S4), the curvatures b ranged from 3.0*10-3 mm-1 

(ORCHIDEE-11) to 9.2 *10-3 mm-1 (TECO) at STU, from 0.7*10-3 mm-1 (TRIPLEX-GHG) to 6.1*10-3 mm-1 (VISIT) at KNZ, 10 

and from 0.9*10-3 mm-1 (T&C) to 2.3*10-3 mm-1 (CLM45-ORNL) at SGS; the modeled maximum values a for ANPP ranged 

between 173 g C m-2 yr-1 (VISIT) and 827 g C m-2 yr-1 (TECO) at STU, 49 g C m-2 yr-1 (CLM45-ORNL) and 557 g C m-2 yr-1 

(ORCHIDEE-2) at KNZ, and 94 g C m-2 yr-1 (CLM45-ORNL) and 523 g C m-2 yr-1 (ORCHIDEE-2) at SGS. 

The ANPP:NPP ratio, i.e., aboveground carbon allocation, showed a nonlinear increase (concave-down) with increasing 

precipitation in ORCHIDEE-2 and ORCHIDEE-11, a nonlinear decrease (concave-up) in T&C due to translocation of C 15 

reserves from roots and only minor changes in other models (Fig. 5c, f, i). 

4 Discussion 

4.1 Comparison of modeled and observed responses of productivity to altered precipitation 

Steeper spatial than temporal slopes of ANPP to precipitation are usually explained by two hypotheses: (1) óvegetation 

constraintô effects on ANPP responses to precipitation play a more important role in the temporal as compared to the spatial 20 

domain (Knapp et al., 2017b; Estiarte et al., 2016); (2) biogeochemistry (mainly resource limitations) and confounding factors 

(e.g. temperature and radiation), rather than species attributes, constrain community level ANPP in response to precipitation 

(Huxman et al., 2004). Thus, the former theory stresses more long-term intrinsic ecosystem properties, while the latter one 

underlines the effects of external environmental factors. The current models tested here captured the relative magnitude of the 

difference between temporal and spatial slopes (Fig. 1c), which suggested that the models adequately considered the key 25 

processes underlying carbon-water interactions across different grassland sites. Only few grassland experiments have assessed 

BNPP (Luo et al., 2017), leaving the question open whether the minor differences between temporal and spatial slopes for 

BNPP responses to precipitation as simulated by the models, correspond to experimental observations (Fig. 1d). 

The asymmetry index obtained from available long-term ANPP and precipitation observations reported positive values at SGS 
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and KNZ (Fig. 2c), which suggested greater declines of ANPP in dry years than increases in wet years (Knapp and Smith, 

2001). Knapp et al (2017b) proposed the following underlying mechanisms: (1) In dry years, the carry-over effects of soil 

moisture from previous years alleviate strong declines of ANPP (Sala et al., 2012), which is usually treated as a time-lag effect 

(Petrie et al., 2018; Wu et al., 2015). Additionally, rain use efficiency also increases with water scarcity, meaning that less 

water is lost through runoff (Gutschick and BassiriRad, 2003; Huxman et al., 2004). (2) In wet years, other resources like 5 

nutrient availability, may increase with increasing precipitation, contributing to a supplementary increase of ANPP (Knapp et 

al., 2017b; Seastedt and Knapp, 1993). In contrast, the negative asymmetry index derived from observations at the moist STU 

suggest that this process is not dominant for this site, while temperature and/or light limitations that are associated with rainy 

periods may become important during wet years and neutralize the effect of increased precipitation on ANPP (Fig. S4) (Nemani 

et al., 2003; Wu et al., 2015; Wohlfahrt et al., 2008). 10 

In our results, most models did not capture the sign of observed asymmetry indices across the three sites (Fig. 2c), which 

suggests that some of the underlying processes (combined carbon-nutrient interactions, time-lag effects, dynamic root growth 

allowing variation in accessible soil water) are not accurately represented in the models. For example, grassland root depth 

affects ecosystem resilience to environmental stress such as drought, and arid and semi-arid grasses that have extensive lateral 

roots or possibly deep roots show relatively strong resistance (Fan et al., 2017). However, most models currently consider only 15 

two types of grasslands, C3 and C4 (Table S14) with fixed root fractions in each prescribed soil layers (Table S13). This is 

potentially unrealistic for semi-arid grass roots and can lead to underestimating the amount of soil water available to plants 

and their resistance to drought. The latter is a key candidate especially for explaining the negative asymmetry index at the dry 

SGS. 

The sensitivity of productivity to increased and decreased precipitation for simulations where mean precipitation was normally 20 

altered generally suggested negative asymmetric responses at dry (SGS) and mesic (KNZ) sites (Fig. 3c). This contrasts with 

a meta-analysis of grassland precipitation manipulation experiments (Wilcox et al., 2017) and with the ANPP-P conceptual 

model (Knapp et al., 2017b), which suggest a positive asymmetry response in the range of normal rainfall variation. This 

emphasizes the finding that most models overestimate drought effects and/or underestimate wet year impacts on primary 

productivity of dry and mesic sites for current precipitation variability. Under extreme conditions with modified precipitation, 25 

models were in line with the hypothesis and the data showing that ANPP saturates in very wet conditions but declines strongly 

in very dry conditions (Knapp et al., 2017b). For BNPP sensitivities to altered precipitation, meta-analysis of previous 

experiments indicated symmetric responses to increasing and decreasing rainfall (Luo et al., 2017; Wilcox et al., 2017), which 

may be regulated by allocation controls on the ratio of ANPP and BNPP to total NPP in response to altered precipitation. 

However, in the participating models, BNPP shows a negative asymmetric responses to altered rainfall (Fig. 3d), which may 30 

reflect a shortcoming of carbon-water interactions in the belowground ecosystems. 



12 
 

4.2 Curvilinear  responses of productivities to altered precipitation by models 

In general, precipitation in ecosystem models is distributed through three pathways (Smith et al., 2014b): (1) intercepted by 

vegetation and subsequently evaporated or falling on the ground; (2) infiltrated into the upper soil layers with subsequent 

evaporation, root water uptake and plant transpiration, or percolated down to deeper layers to form ground water; (3) runoff 

from the soil surface if the intensity of precipitation exceeds infiltration rates. In reality as well as in models, soil moisture 5 

rather than precipitation is the variable regulating vegetation growth, and biological responses to changes in precipitation are 

manifested as functions of soil moisture in different soil layers (Sitch et al., 2003; Smith et al., 2014b; Vicca et al., 2012). We 

calculated the surface soil water content (SSWC, 0-20cm depth converted from reported soil layers) and total soil water content 

(TSWC) under ambient and altered precipitation as simulated by the fourteen models, and we found different patterns with 

parabolic, asymptotic and threshold-like nonlinear curves, which is similar to the response curves of primary productivity at 10 

the three sites (Fig. S5, S6). For the moist STU, SSWC and TWSC did not show obvious changes in response to increased 

precipitation since soil moisture at this site is often relatively near field capacity, while the SSWC and TSWC quickly decreased 

with decreasing in precipitation (Fig. S5, S6). In contrast, SSWC and TSWC at SGS showed significant increases in response 

to altered increased precipitation, and slow decreases for decreased precipitation, because the soil was already very dry under 

average ambient conditions. Thus, changes of SWC in response to precipitation contribute to driving the different response 15 

patterns of simulated primary productivity across the grassland sites. 

The responses of primary productivity to precipitation in models might also be driven by the intrinsic structure and 

parameterizations of vegetation functioning besides changes of soil moisture (Gerten et al., 2008), which account for the large 

spread in the values of b and a among models at the three sites (Figure 4, 5, S3, S4). For example, carbon-nitrogen cycle 

coupling in ecosystem models reduced the simulated vegetation productivity relative to a carbon-only counterpart model 20 

(Thornton et al., 2007; Zaehle et al., 2010). Of those models used in this study, only five of the 14 models include carbon-

nitrogen-water interactions (Table 2, S1, S2). We calculated the ensemble mean of productivity for this group of carbon-

nitrogen models (CLM45-ORNL, DLEM, DOS-TEM, LPJ-GUESS and TRIPLEX-GHG) and carbon-only models (CABLE, 

JSBACH, JULES, LPJmL-V3.5, ORCHIDEE-2, ORCHIDEE-11, T&C, TECO and VISIT) across altered and ambient 

precipitation simulations at the three sites, and then fitted the productivity-P responses with Eq. (8) (Fig. S7, S8, S9). We found 25 

that ensemble mean of carbon-nitrogen models generally produce a weaker GPP, NPP and ANPP response to precipitation than 

ensemble mean of carbon-only models, and similar responses for BNPP. The latter may be explained by fixed root profiles in 

most models (Table S13). Our findings suggest that N interactions in ecosystem models reduced the productivity-P sensitivities, 

but should be confirmed using the same model prescribed with different N availability. In addition to the influence of nutrient 

cycling, different definitions of vegetation compositions (C3/C4) (Table S14), root profiles (Table S13), phenology (Table S9) 30 

and carbon allocation (Table S4) at the three sites may also contribute to the large variations of modeled productivity-P 
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responses and demands for more accurate calibration of models to the specificity of the local sites in future model 

intercomparison studies. 

4.3 Uncertainties, knowledge gaps and suggestions of further work 

In this work, we applied two indices to characterize the asymmetry responses in the normal precipitation range using inter-

annual variability of present conditions and forcing models with continuously modified precipitation amounts. Asymmetry 5 

indices from the inter-annual gross and net primary productivities suggest large uncertainties (Fig. 2), while the sensitivity 

analysis to changes in mean precipitation reported clear responses (Fig. 3). This can be explained by the differences in other 

climatic factors (for example, temperature, radiation, and vapor pressure), or timing and frequency of precipitation between 

dry and wet years. All these uncontrolled factors may contribute to the large uncertainties of asymmetric responses from inter-

annual variations (Chou et al., 2008; Peng et al., 2013; Robertson et al., 2009). 10 

Although the carbon-water interactions in current models have been improved during the last decades, there still exist large 

gaps for accurately diagnosing the errors in the representation of key processes and parameterizations. Suggestions that should 

be considered in future studies aimed at model-data interaction include: (1) models should report SWC at the same depth of 

experiments and experimental data should be made available for better comparisons in following studies. This can provide 

insights into the bias of modeled sensitivities to precipitation and check explicitly the sensitivity of vegetation productivity to 15 

change in SWC; (2) more experiments are needed that assess also BNPP in order to evaluate the corresponding processes in 

models (Luo et al., 2017; Wilcox et al., 2017); (3) there still exist large gaps between changes of precipitation occurrence and 

intensity in reality and how we simulated them in the current work, i.e., the altered rainfall forcing datasets were constructed 

by decreasing/increasing the amount of precipitation in each precipitation event by a fixed percentage during the time-span of 

productivity observations at each site and not by modifying precipitation structure or reproducing the real treatment. Further 20 

studies need to consider better different scenarios of precipitation occurrence and intensity under climate change (Lauenroth 

and Bradford, 2012), which will likely help to better understand the responses of productivities to altered precipitation in the 

next decades. In addition, modelers will need to simulate the control experiments corresponding to the real local precipitation 

manipulations applied by field scientists, e.g., considering the observed time series of modified precipitation and vegetation 

composition, root profiles, nutrient cycling, phenology and carbon allocation as close as possible to local conditions. This 25 

should be a priority for future model-experiment interaction studies.  

5 Conclusions 

This is the first study where a large group of modelers simulated the response of grassland primary productivity to precipitation 

using long-term observations for evaluating the asymmetry responses to altered precipitation. Our results demonstrated that 
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multi-model ensemble mean captured the key observation of steeper spatial than temporal slopes for ANPP. On the other hand, 

our analyses revealed that most models do not capture the observed positive asymmetry responses for the dry (SGS) and mesic 

(KNZ) sites under the normal precipitation conditions, suggesting an overestimation of the drought effects and/or 

underestimation of the watering impacts on primary productivity in the normal state. In generally, current models represented 

a constant asymmetry pattern (negative asymmetry under normal and extreme conditions) across the full range of altered 5 

precipitation rather than a double asymmetry pattern (positive asymmetry under normal condition and negative asymmetry 

under extreme condition) established by Knapp et al. (2017b).  

This study paves the path for further analyses where collaboration between modelers and site investigators needs to be 

strengthened such that also data other than ANPP can be considered and to identify which specific processes in ecosystem 

models are responsible for the observed discrepancies. This will eventually allow us to produce more reliable carbon-climate 10 

projections when facing different precipitation patterns in the future. 
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Figure 1 Relationships between GPP (a), NPP (b), ANPP (c) and BNPP (d) and precipitation (P) derived from multi-year 

ambient simulations (SC1) in two ways. Temporal slopes are site based and relate inter-annual variability in P to inter-annual 

variability in the productivities using linear regression analysis. Spatial slopes relate mean annual P to mean annual productivity 

across three sites. In each panel, SGS, KNZ and STU are from dry to moist, given from left to right. The red lines are the 5 

ensemble mean of modeled temporal slopes, and the red shading represents the model uncertainty range using interquartile 

spread of the temporal slopes between individual simulations (10th and 90th percentiles). The blue line is the ensemble mean 

of modeled productivities, and the blue error bar represents the model uncertainty range using interquartile spread of the 

productivities between individual simulations (10th and 90th percentiles). In (c), the grey lines are the observed temporal slopes, 

and the black line shows the observed spatial slope. The grey shading represents the observed uncertainty range using bootstrap 10 

sampling method (10th and 90th percentiles), and the black error bar represents the observed uncertainty range using 

interquartile spread of the inter-annual productivities (10th and 90th percentiles). Note that we simply converted observed ANPP 

from dry mass (g DM m-2 yr-1) to carbon mass (g C m-2 yr-1) with a factor of 0.5. 
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Figure 2 Asymmetry responses of inter-annual GPP (a), NPP (b), ANPP (c) and BNPP (d) to precipitation in ambient 

simulations at the three sites SGS, KNZ and STU. The asymmetry index was calculated as the difference between the relative 

productivity pulses (Rp) and declines (Rd) in wet years and dry years (see Eq. (1) - Eq. (3)). Black pentagrams in (c) represent 

asymmetry indices from observations. The corresponding black error bars represent the observed uncertainty ranges using Eq. 5 

(4) - Eq. (6). A black asterisk at the bottom of a panel indicates a significant asymmetry response of the model ensemble at 0.1 

significance level by a non-parametric statistical hypothesis test (Wilcoxon signed rank test). 
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Figure 3 Sensitivity of GPP (a), NPP (b), ANPP (c) and BNPP (d) for altered precipitation simulations at the three sites SGS, 

KNZ and STU. Curves show the ensemble mean of models, and the shading represents the model uncertainty range using 

interquartile spread of the sensitivities between individual simulations (10th and 90th percentiles). Curves above the zero line 

represent responses under increasing precipitation conditions relative to the control, and curves below the zero line show 5 

responses under decreasing precipitation conditions relative to the control. Vertical dashed lines represent precipitation 

variations of one standard deviation (1ů), two standard deviations (2ů), and three standard deviations (3ů), which were derived 

from long-term annual precipitation at the three sites respectively. 
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Figure 4 Responses of simulated annual GPP (left column), NPP (central column) and CUE (NPP / GPP; right column) to 

altered and ambient precipitation (P) levels at the three sites STU, KNZ and SGS. The fitted equation is Eq. (8) for GPP and 

NPP (see Fig. S3 for fitted a and b). The grey dashed line represents ambient precipitation. It should be noted that the x-axis 

scales are different between the sites. 5 
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Figure 5 Responses of simulated annual ANPP (left column), BNPP (central column) and the ratio of ANPP and NPP (right 

column) to altered and ambient precipitation (P) levels at the three sites STU, KNZ and SGS. The fitted equation is Eq. (8) for 

ANPP and BNPP (see Fig. S4 for fitted a and b). The grey dashed line represents ambient precipitation. It should be noted that 

the x-axis scales are different between the sites. 5 

  


