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Abstract.

With the eddy covariance (EC) technique, net fluxes of carbon dioxide (CO2) and other trace gases as well as water and

energy fluxes can be measured at the ecosystem level. These flux measurements are a main source for understanding biosphere-

atmosphere interactions and feedbacks by cross-site analysis, model-data integration, and up-scaling. The raw fluxes measured

with the EC technique require an extensive and laborious data processing. While there are standard tools1 available in open5

source environment for processing high-frequency (10 or 20 Hz) data into half-hourly quality checked fluxes, there is a

need for more usable and extensible tools for the subsequent post-processing steps. We tackled this need by developing the

REddyProc package in the cross-platform language R that provides standard CO2-focused post-processing routines for reading

(half-)hourly data from different formats, estimating the u∗ threshold, gap-filling, flux-partitioning, and visualizing the results.

In addition to basic processing, the functions are extensible and allow easier integration in extended analysis than current tools.10

New features include cross-year processing and a better treatment of uncertainties. A comparison of REddyProc routines with

other state-of the art tools resulted in no significant differences in monthly and annual fluxes across sites. Lower uncertainty

estimates of both u∗ and resulting gap-filled fluxes by 50% with the presented tool were achieved by an improved treatment of

seasons during the bootstrap analysis. Higher estimates of uncertainty in day-time partitioning (about twice as high) resulted

from a better accounting for the uncertainty in estimates of temperature sensitivity of respiration. The provided routines can15

be easily installed, configured, and used. Hence, the eddy covariance community will benefit from the REddyProc package,

allowing easier integration of standard post-processing with extended analysis.

1fluxnet.fluxdata.org/2017/10/10/toolbox-a-rolling-list-of-softwarepackages-for-flux-related-data-processing
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1 Introduction

The availability of ecosystem level observations of net ecosystem exchange (NEE) of carbon dioxide (CO2) and other gases,

latent heat (LE) and sensible heat (H) fluxes measured by the eddy covariance (EC) method (Aubinet et al., 2000) greatly

advanced ecosystem understanding at site to global scales (Baldocchi et al., 2017). The EC method provides half-hourly or

hourly records of turbulent fluxes between an entire ecosystem and the atmosphere. These data are derived from high frequency5

measurements (10 or 20 Hz) of wind speed and direction together with measurements of air scalar characteristics such as CO2

and water vapor concentration, and temperature. Methods to compute fluxes from high frequency measurements, methods

for the quality check and quality assessment (QA/QC), and methods for the storage corrections have been consolidated in

the last decades (Rebmann et al., 2012; Foken et al., 2012; Aubinet et al., 2012) and are available as open source software2.

Although measured continuously, the (half)hourly EC data contain gaps due to instrument malfunctioning or records which10

are not representative of the ecosystem because of micrometeorological conditions under which the assumptions of the EC

technique are not met (details in e.g. Foken and Wichura, 1996; Foken et al., 2004; Göckede et al., 2004; Foken et al., 2012).

Hence, (half-)hourly records are marked with different quality flags and need further extensive post-processing as described by

Papale et al. (2006).

NEE from periods with low friction velocity (u∗) (Aubinet et al., 2012) need to be detected and filtered out to avoid systematic15

biases in nighttime NEE (Papale et al., 2006). The screened flux time series with gaps need to be filled (Reichstein et al., 2005a)

using the available flux data and meteorological measurements. An additional information can be obtained from NEE thanks to

flux partitioning methods, that provide model estimates of gross primary production (GPP) and ecosystem respiration (Reco)

(Reichstein et al., 2005a). These gross fluxes are important to understand land-atmosphere interactions.

All these post-processing steps need to be performed routinely for EC data. Hence, it is desirable to have automated and20

reproducible post-processing tools available that can be easily used, extended, and integrated into researcher’s own workflow.

For this purpose we compiled all routines for the important CO2-focused post-processing steps in the REddyProc package for

the free and cross-platform R language. The REddyProc package loads time series of quality checked and storage corrected

fluxes and the basic set of meteorological variables and provides a software environment to perform u∗ threshold detection and

filtering, gap filling and partitioning. Furthermore, a series of other functionalities like data import routines and data visualization25

are provided.

The objectives of the paper are to 1) provide a reference that describes the methodology of the processing used in the

REddyProc package, and 2) show that the obtained results do not differ systematically from results obtained with standard

post-processing implemented in the FLUXNET community (based on Papale et al., 2006; Reichstein et al., 2005a; Lasslop et al.,

2010; Pastorello et al., 2017).30

2 fluxnet.fluxdata.org/2017/10/10/toolbox-a-rolling-list-of-softwarepackages-for-flux-related-data-processing
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Table 1 explains used abbreviations. The first part of the paper (section 2) describes the post-processing methods. The second

part (Section 3) presents the benchmarks the REddyProc implementation with standard post-processing tools. It details

differences in the implementations and possible consequences in obtained results and aggregated fluxes. An appendix gives an

overview of the package with general design, an example of the post-processing, and links resources that get readers started with

post-processing their own data.5

Table 1. Abbreviations used repeatedly in the paper.

Symbol Description

EC eddy covariance

CO2 carbon dioxide

NEE net ecosystem exchange towards the atmosphere in

µmolCO2 m
−2s−1 (aggregated in gCm−2yr−1)

GPP gross primary productivity (same units as NEE)

Reco ecosystem respiration (same units as NEE)

H, LE sensible and latent heat flux in Wm−2

u∗ friction velocity in ms−1

Rg shortwave incoming global radiation in Wm−2

Tair air temperature in °C

Tsoil soil temperature in °C

VPD vapor pressure deficit in hPa

LUT look-up table (section 2.2.1)

MDC mean diurnal course (section 2.2.2)

MDS marginal distribution sampling (section 2.2.3)

E0 temperature sensitivity parameter in eq. 1

RRef respiration at reference temperature parameter eq. 1

LRC light response curve (section 2.3.2)

DP06 C-implementation of the u∗ threshold estimation by

Dario Papale (section 3)

BGC16 2016-version of the online tool provided by the MPI-

BGC, Jena, (section 3)

2.2
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2 Methods of post-processing

The post-processing relies on half-hourly or hourly measurements of NEE and ancillary meteorological data of u∗, global

radiation (Rg), air or soil temperature (Tair, Tsoil), and vapor pressure deficit (VPD). The fluxes should be quality checked and,

if applicable, storage corrected before their use in the package.

The post-processing follows a specific workflow:5

1. determination and filtering of periods with low turbulent mixing (u∗-filtering),

2. replacing missing data in the half-hourly/hourly records (gap-filling), and

3. partitioning NEE into the gross fluxes GPP and Reco (flux-partitioning).

Usage of the REddyProc package follows this data post-processing workflow (Fig.1). The following sections explain the steps

in more detail.10

2.1 u∗-filtering

Determining periods with low turbulent mixing is a critical step in the EC data post-processing. Standard steady state and

integral turbulence characteristics tests in the initial processing exclude the most problematic records of sensible (H), latent (LE)

heat and CO2 fluxes (Foken and Wichura, 1996). However, it is well known (summarized in Aubinet et al., 2012, chapter 5),

that such a quality checking strategy is not sufficient, especially in the case of CO2. Stable stratification that is present often15

during the night-time dampens turbulence and leads to an underestimation of the night-time NEE, i.e. the ecosystem respiration

(van Gorsel et al., 2007). Massman and Lee (2002) proposed that unfavorable conditions could be detected by inspecting the

relationship of night-time NEE versus u∗. Within similar time period and similar environmental conditions respiration should

not be dependent on the u∗. At low u∗ values, a negatively biased respiration is measured. A heuristic class of methods, which is

widely accepted, assumes that a threshold of u∗ can be established above that nighttime fluxes are considered valid. Hence, the20

u∗ threshold is the minimum u∗ above which respiration reaches a plateau (Fig. 2). This threshold is specific for each season of

a site year. Uncertainties in the u∗ threshold estimate represent one of the largest uncertainty components in the post-processing

of NEE.

There are at least two methods of estimating the u∗ threshold: the moving point method (Reichstein et al., 2005c; Papale et al.,

2006), which is currently more routinely used, and the break-point detection method (Barr et al., 2013).25

2.1.1 Moving point method for u∗

The method of Papale et al. (2006) detects a plateau in the relationship of night-time NEE versus u∗ among all records within

temperature subset by a moving point test of records binned into different u∗ bins.
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Import half-hourly data

Fill gaps

   NEE
+ Meteo

Estimate quantiles of u* threshold distribution

Partition fluxes

NEE_U05_f NEE_U95_fNEE_U50_f

GPP_U05_f Reco_U05_f

GPP_U50_f

Reco_U50_f
GPP_U95_f
Reco_U95_f

 u* > 0.35  u* > 0.41

Export results

Figure 1. The workflow starts with importing the half-hourly (or hourly) data, in this example the year 1998 of site DE-Tha. Next, a probability

distribution of u∗ threshold is estimated for each season. Gap-filling and flux-partitioning is performed for several quantiles of this distribution

for an estimate of uncertainty. Finally the results are exported.

The nighttime data (default: Rg < 10 Wm−2) is split into different times of year, here called seasons, to account for differing

surface roughness. Then the data of each season is split into default six temperature subsets of equal size (according to quantiles).

Within each temperature subset data is split into 20 about equally sized u∗ bins. The default moving point method, called

Forward2, determines the threshold based on these u∗ bins. It checks for each bin if the mean NEE is higher than 0.95 times

the mean of the following 10 bins. If this holds true also for the next bin, the mean u∗ of the bin is reported as threshold. There5

are often subsets of data, where no clear threshold can be detected. Hence, there are quality criteria on whether the estimate of a

given subset is used in subsequent aggregation. One quality criterion specifies that temperature and u∗ should not be correlated

within the temperature subset, another requires a minimum number of valid records within a subset. Next, the u∗ estimates for
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Figure 2. Concept of the u∗-filter: Night-time NEE at low u∗ is biased towards lower NEE values compared to cases with higher u∗. Unbiased

NEE should scatter around the same plateau because environmental conditions are similar. The u∗ threshold (dashed line), i.e the value below

which this bias is considered significant, is estimated by a moving point method on u∗ bins (crosses) across half-hourly records (circles). The

example uses a subset data from DE-Tha.

different temperature classes and seasons (details in section 3.2.1) are aggregated to derive a robust u∗ estimate. Within one

season, the median is taken across the estimates of different temperature subsets. Within one year, the maximum is taken across

the associated seasons.

Records during night-time with u∗ smaller than the estimated threshold are flagged as invalid and are replaced in the subsequent

gap-filling processing step. In addition, each half-hour after records with u∗ smaller than the threshold is flagged to be invalid.5

2.1.2 Breakpoint detection method for u∗

Alternatively, a breakpoint-detection can be applied to the unbinned data, that avoids the sensitivity of the Moving point method

to the specifics of the binning schemes (Barr et al., 2013). REddyProc provides this method by estimating the breakpoint based

on unbinned records within the seasons/temperature subsets using the segmented R-package (Muggeo, 2003, 2008). However,

REddyProc differs from Barr et al. (2013) by keeping the same aggregating scheme of seasonal/temperature estimates to10

annual thresholds as with the Moving point method.
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2.1.3 Bootstrapping uncertainty of the u∗ threshold

Estimates of the u∗ threshold are often sensitive to the specifics of the combination of methods and the data, e.g. the binning,

minimum number of records within a season or temperature subset, criteria in aggregation, etc. Therefore, bootstrap (re-sampling

with replacement) is applied to generate 200 artificial replicates of the dataset and for each replicate the threshold is estimated

(Efron and Tibshirani, 1986; Davison and Hinkley, 1997). The 5th, 50th, and 95th percentile of the estimates are reported as a5

range of threshold estimates. The subsequent post-processing steps of gap-filling and partitioning are then repeated using those

different thresholds to propagate the uncertainty of u∗ threshold estimation to derived quantities such as annual NEE, GPP and

Reco

2.2 Gap-filling methods

After quality checks and u∗-filtering, the dataset of half-hourly NEE fluxes may contain up to 50 percent gaps (sometimes10

this fraction is even higher, depending on the site conditions). For the benchmark datasets used in this manuscript, the

percentage of gaps before u∗-filtering was on average 32% and after u∗-filtering 60% and 48% for upper and lower u∗ threshold

estimate, respectively. Filling of gaps in half-hourly NEE data is necessary to obtain complete time series for the calculation

of daily averages or balances such as monthly or seasonal sums. The following three gap-filling methods are implemented in

REddyProc .15

2.2.1 Look-up tables

In the look-up table (LUT) approach, the fluxes are binned by the meteorological conditions within a certain time window.

Within the chosen time window and respective bin, each meteorological variable deviates less than a fixed margin to ensure

similar meteorological conditions. The missing value of the flux is then calculated as the average value of the binned records and

its uncertainty estimated from their standard deviation.20

The original LUT of Falge et al. (2001) consisted of fixed periods over a year, while in REddyProc the meteorological

conditions are sampled with a moving window around the gap to be filled.

2.2.2 Mean diurnal course

NEE fluxes have a mean diurnal course (MDC) that follows the course of the sun with only respiration during nighttime and

a combination of respiration and photosynthesis during daytime. This autocorrelation of the fluxes is exploited by taking the25

average value at the same time of day within a moving time window of adjacent days (Falge et al., 2001). In REddyProc the

same time of day includes also the fluxes of the adjacent hour (±1 hour).
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Though the MDC method only showed a medium performance in the gap filling comparison for net carbon fluxes by (Moffat

et al., 2007), it has the advantage that this approach can be used even if no meteorological information is available.

2.2.3 Marginal distribution sampling

The so-called marginal distribution sampling (MDS) by (Reichstein et al., 2005b) exploits the covariation of the fluxes with the

meteorological variables and their temporal autocorrelation based on the two methods LUT and MDC described above.5

The filling of each half-hourly NEE with the MDS algorithm depends on the availability of the meteorological data of Rg, Tair,

and VPD: 1) If all three meteorological variables are available, LUT will be used with default margins of 50 Wm−2, 2.5 °C,

and 5.0 hPa, respectively. 2) If Tair or VPD are missing, only the variable Rg will be used. 3) If no meteorology is available,

the gaps are filled with MDC. Following a specific sampling procedure, the MDS algorithm increases the number of days in

the vicinity of the gap until there are enough data points (at least two) for gap-filling. A more detailed description with a flow10

diagram is provided in Supplement 1.

The MDS algorithm is optimized for carbon dioxide and water fluxes and can also be used to estimate the uncertainty of the

half-hourly fluxes. In the comparison of gap-filling methods by Moffat et al. (2007), the MDS algorithm performed well for

different artificial gap scenarios ranging from single half-hours to several days. Due to its flexibility in dealing with missing

meteorological input data and its fast and highly automated routines available as online tool (BGC16, section 3), the MDS15

gap-filling method has been widely used.

2.3 Flux-partitioning methods

The gross fluxes of GPP into the land system and Reco out of the land system are the two opposing parts of NEE: NEE = Reco -

GPP. Availability of GPP and Reco is pivotal as they are the two biggest terms of the carbon cycle (e.g. Chapin et al., 2006; Jung

et al., 2011). Moreover, understanding their sensitivity to environmental drivers (e.g., radiation, temperature, and soil moisture)20

is important to interpret land-atmosphere interactions and to improve earth systems models (Reichstein et al., 2012). Therefore

several methods were developed to partition NEE into these two components (Reichstein et al., 2005c; Lasslop et al., 2010;

Moffat, 2012; Wehr and Saleska, 2015; Desai et al., 2008; Stoy et al., 2006).

The two most widely used methods are the so-called night-time partitioning and day-time partitioning (Reichstein et al., 2012).

The night-time partitioning (Reichstein et al., 2005c) relies on the temperature response function of nighttime NEE fluxes that25

are representative of Reco. It assumes that this relationship is applicable also to daytime data. The relationship is then used to

predict Reco from measured temperature and GPP is computed as a difference between Reco and NEE. This method is currently

the most widely used approach. Alternatively, the day-time partitioning (Lasslop et al., 2010) fits a model to observations of

daytime NEE and global radiation, accounting for the effects of radiation and VPD on GPP as well as the effects of temperature

on Reco.30
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2.3.1 Nighttime flux-partitioning

The method of Reichstein et al. (2005c) estimates a temporally varying respiration-temperature relationship from night-time

data. First night-time data is selected by a threshold of Rg < 10 Wm−2, which is congruent with the BGC online tool (BGC16,

section 3), but differs from the 20 Wm−2 reported in Reichstein et al. (2005c). Additionally, night-time data is constrained

between computed sunset and sunrise.5

Next, temperature sensitivity, E0 of the Lloyd and Taylor (1994) relationship (1) is estimated by fitting the model to successive

15 day periods of night-time data, and the resulting E0 series is aggregated to an annual estimate.

Reco(T ) =RRef exp
[
E0

(
1

TRef −T0
− 1

T −T0

)]
, (1)

where T0 is kept constant at -46.02°C (Lloyd and Taylor, 1994) and where reference temperature TRef is 15°C, which is

congruent with the BGC online tool (BGC16, section 3) but differs from the 10°C reported in (Reichstein et al., 2005c). For10

robustness each fit is repeated on a trimmed data set excluding records with residuals outside the 5%-95% residual distribution.

The annual aggregate is the mean across the 3 valid estimates having the lowest uncertainty in the fit. Single estimates of E0 are

considered valid, if there were minimum of 6 records, temperature ranged across at least 5°C, and estimates were inside the

range of 30 to 450 K.

Subsequently, the respiration at reference temperature, RRef , is re-estimated from night-time data using the annual E015

temperature sensitivity estimate for 7-day windows shifted consecutively for 4 days. The estimated value is then assigned to the

central time-point of the 4 day period and linearly interpolated between periods. Hence, the obtained respiration-temperature

relationship varies across time.

Finally, Reco is estimated for both day- and night-time from the temporarily varying Reco temperature relationship and daytime

GPP is computed as Reco - NEE.20

2.3.2 Daytime flux-partitioning

The method of (Lasslop et al., 2010) models NEE using the common rectangular hyperbolic light-response curve (LRC) (Falge

et al., 2001):

NEE =
αβRg

αRg +β
+ γ, (2)

where α (µmolCO2 J
−1) is the canopy light utilization efficiency and represents the initial slope of the light-response curve,25

β (µmolCO2 m
−2s−1) is the maximum CO2 uptake rate of the canopy at infinite Rg, and γ (µmolCO2 m

−2s−1) is a term

9



accounting for ecosystem respiration. The hyperbolic light-response curve is modified to account for the temperature dependency

of respiration after Gilmanov et al. (2003) by setting respiration γ to the Lloyd and Taylor respiration model (Lloyd and Taylor,

1994) (1). Further, the constant parameter β in (2) is replaced by an exponential decreasing function (Körner, 1995) at higher

VPD values (3).

β =

β0 exp [−k(VPD−VPD0)] if VPD > 10 hPa

β0 otherwise
, (3)5

where the VPD0 threshold is 10 hPa in accordance with earlier findings at the leaf level (Körner, 1995) ignoring potential

vegetation specific differences.

Parameter T0 in (1) was fixed as in the night-time partitioning (section 2.3.1). Parameter TRef was fixed in each window to the

median temperature within the window. The other parameters (E0,RRef ,α,β0,k) of the model are estimated by the following

steps. 1) A time varying temperature sensitivity E0 is estimated from night-time data for a window shifted by two days. 2) The10

E0 estimates are smoothed across successive windows by fitting a Gaussian Process (Rasmussen and Williams, 2006; Menzer

et al., 2013) using the mlegp R-package that also estimates uncertainty of the smoothed E0. Next, a prior respiration, RRef ,

for reference temperature TRef = 15 °C is re-estimated from night-time data for each window with smoothed E0. 3) Parameters

of the rectangular hyperbolic light-response curve (RRef , α, β0, k) are fitted using only day-time data and the previously

determined temperature sensitivity (E0) for each window. 4) Finally, for each NEE record, GPP and Reco are estimated with the15

parameter set of the previous valid window and the parameters of the next valid window, and the two results are interpolated

linearly by the time difference to the window centers. Supplement 1 reports necessary technical details to these steps.

Note, that contrary to the night-time based flux-partitioning, both GPP and Reco are model predictions and do not add up exactly

to observed NEE.

3 Benchmarking REddyProc post-processing steps20

The post-processing steps implementations of REddyProc were benchmarked with the post-processing tools widely used

in the FLUXNET processing. Specifically, REddyProc (version 0.8.1) u∗-filtering results were compared with results by a

C-implementation from Dario Papale (Papale et al., 2006), here referred to as DP06. Results of REddyProc (version 1.1.2)

gap-filling and flux-partitioning were compared with results obtained by the 2016-version web based tool provided by the

Max Planck Institute for Biogeochemistry, Jena, best described in Reichstein et al. (2005a). The tool was accessed in 201625

(29.07.2016) and is hereafter referred as BGC16. Annually and monthly aggregated values, here, refer to the mean across all

valid values in a month or a year, which can differ from real annual or monthly budgets in the presence of large gaps. The first

section describes the dataset used for benchmarking for each processing step implemented in the package. Within each of the

10



following sections for the processing steps, subsections describe differences in the code, report the results of benchmarking, and

discuss them. Supplement 1, additionally, provides more detailed results and statistics.

3.1 Dataset used for benchmarking

Data of twenty-five sites with open data policy of the LaThuile FLUXNET dataset3 were used for benchmarking. The sites

are located in different climate zones and belong to a variety of plant functional types (Table 2) to guarantee testing different5

conditions (i.e. presence of snow, management such as cuts and crop rotation, sites disturbed) and ecosystem types (e.g.

deciduous vs evergreen forests, grasslands and croplands). For each site the following variables were used: NEE already filtered

for quality flags (Foken and Wichura, 1996), despiked and u∗ filtered (Papale et al., 2006), random error of NEE computed as

described by Reichstein et al. (2005a), Tair, Tsoil, Rg, and VPD. Moreover, NEE time series before the u∗-filtering and the u∗

data were downloaded from AMERIFLUX and the European Flux Database to test the u∗ threshold estimation. Finally, time10

series of gap-filled NEE (NEEf), GPP partitioned with the night-time based method (GPPNT) (Reichstein et al., 2005a) were

downloaded from the LaThuile dataset, while GPP partitioned with the daytime method (GPPDT) were computed with BGC16.

3.2 u∗-filtering: Benchmarking with DP06

Estimation of u∗ threshold by REddyProc using the default moving point method (section 2.1.1) was benchmarked to

estimation based on Papale’s DP06 C-implementation (Papale et al., 2006). The benchmark applied a bootstrap sample of size15

60 and recorded lower, median, and upper quantiles of 10%, 50% and 90% instead of the default 5% and 95% based on a larger

sample size to save computing time.

The different estimates of the u∗ threshold have potential consequences for the inferred fluxes. To explore these consequences,

we used the different resulting thresholds to mark gaps, gap-fill the data, and compute the annual NEE based on the gap-filled

time series. NEE uncertainty was estimated by the difference between NEE based on lower quantile u∗ and NEE based on upper20

quantile u∗ estimate.

3.2.1 Differences in code

The biggest difference of REddyProc compared to DP06 is that REddyProc by default employs seasons that can span

across years. With the ’Within one year’ classification option, which is employed also by DP06, records of December are

associated to the same season as January and February of the same year. With the default ’continuous’ classification, seasons25

start the same as in DP06 by default in March, June, September, and December. However, December is treated in the same

season as January and February of the next year to avoid discontinuities at year boundaries. The annual u∗ threshold is then

applied according to those continuous seasons spanning year boundaries. For example, the processing of 2014 data would by

3www.fluxdata.org
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Table 2. Description of sites and times used for benchmarking REddyProc.
a Abbreviations for land cover type from International Geosphere-Biosphere Programme (IGBP) classification: CRO: cropland, DBF: deciduous

broadleaf forest, EBF: evergreen broadleaf forest, ENF: evergreen needleleaf forest, GRA: grassland, OSH: open shrubland, WET: permanent

wetland, WSA: woody savanna.
b Abbreviations for climate from Köppen-Geiger classification: Af: equatorial, rainforest; BSh: hot arid steppe; Cfa: humid, warm temperate,

hot summer; Cfb: humid, warm temperate, warm summer; Csa: summer dry, warm temperate, hot summer; Dfb: cold, humid, warm summer;

Dfc: cold, humid, cold summer.

Site Year Lat Lon Land covera Climateb

CA-NS7 2004 56.64 -99.95 OSH Dfc

CA-TP3 2005 42.71 -80.35 ENF Dfb

CH-Oe2 2004 47.29 7.73 CRO Cfb

DE-Hai 2002 51.08 10.45 DBF Cfb

DE-Tha 1998 50.96 13.57 ENF Cfb

DK-Sor 2006 55.49 11.65 DBF Cfb

ES-ES1 2000 39.35 -0.32 ENF Csa

ES-VDA 2005 42.15 1.45 GRA Cfb

FI-Hyy 1998 61.85 24.29 ENF Dfc

FI-Kaa 2001 69.14 27.30 WET Dfc

FR-Gri 2006 48.84 1.95 CRO Cfb

FR-Hes 1998 48.67 7.06 DBF Cfb

FR-Lq1 2006 45.64 2.74 GRA Cfb

FR-Lq2 2006 45.64 2.74 GRA Cfb

FR-Pue 2003 43.74 3.60 EBF Csa

IE-Dri 2004 51.99 -8.75 GRA Cfb

IL-Yat 2005 31.34 35.05 ENF BSh

IT-Amp 2004 41.90 13.61 GRA Cfa

IT-MBo 2005 46.02 11.05 GRA Cfb

IT-SRo 2001 43.73 10.28 ENF Csa

PT-Esp 2004 38.64 -8.60 EBF Csa

RU-Cok 2004 70.62 147.88 OSH Dfc

SE-Nor 1997 60.09 17.48 ENF Dfb

US-Ton 2004 38.43 -120.97 WSA Csa

VU-Coc 2002 -15.44 167.19 EBF Af

default use data from Winter 2014 (starting in December 2013) to Autumn 2014 (ending in November 2014). REddyProc also

allows more flexibility with the ’User specified’ classification into seasons as explained below.

12



FR−Pue

y = 0.0634 + 0.885 x   R2 = 0.53
0.0

0.2

0.4

0.6

0.1 0.2 0.3 0.4 0.5

u*−thresholdREddyProc (m s−1)

u*
−

th
re

sh
ol

d D
P

06
 (

m
 s

−1
)

Figure 3. Deviations between single sites but retained relationship between u∗ threshold derived with DP06 versus u∗ threshold derived with

REddyProc across site-years as shown by a regression (solid line with shaded uncertainty bound) close to the 1:1 line (dashed).

There are further slight differences between REddyProc and DP06. Both methods bin in a way such that the number of records

in each bin is similar. If there are numerically equal u∗ values, they are sorted into the same bin, resulting in bins with unequal

record numbers. In DP06 sometimes no records are sorted into the subsequent bins hampering the moving point detection.

Contrary, the binning with REddyProc ensures that there are a minimum number of records in all bins. This often results

in fewer bins. Moreover, differing from DP06, REddyProc employs several more quality criteria. First, when comparing5

the threshold bin to NEE in the following bins, it makes sure that there are least 3 bins to infer a plateau in NEE. Next, when

aggregating the thresholds of different temperature classes to season, it ensures that a threshold was found in at least 20% of the

temperature classes. For those seasons where no threshold could be determined, the annual estimate is used. When there are too

few records within one year, a single season comprising all records is used for threshold estimation.

In difference to DP06, REddyProc re-samples data only within seasons instead across the entire year during the bootstrap, in10

order to protect periods of similar u∗-NEE relationship and to avoid seasonal biases in re-sampling.

3.2.2 Benchmark results

The general relationship in the estimation of the u∗ threshold was retained between the two methods (Fig. 3), although individual

threshold estimates differed. The exceptionally high threshold value of > 0.6 ms−1 for site FR-Pue was very probably an

overestimate by DP06. However, one has to remember that each estimate has a high uncertainty, and the differences between15

the two methods were in the range of this uncertainty (suppl 1) The estimate of the uncertainty of the u∗ thresholds with

REddyProc was, however, only half of the uncertainty range estimated by DP06 (suppl 1). This increased precision was

mainly due to the modified bootstrapping scheme, that respects the u∗ seasons.

When propagating the differences in u∗ to differences in annual NEE, there was no bias and decreased scatter across sites

between all the methods (Fig. 4), despite the differences in u∗ threshold. The absolute differences in annual NEE between20
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Figure 4. Strong correspondence in NEE based on u∗ threshold estimated by REddyProc and NEE based on u∗ threshold estimated by

DP06 across site-years.

the methods were small (mostly < 20 gCm−2 yr−1), and mostly lower than half of the uncertainty range estimated from

the bootstrap (suppl 1) REddyProc estimates u∗ thresholds with roughly double the precision compared to DP06, due to

protecting seasons during bootstrap (suppl 1).

3.2.3 Discussion of u∗ threshold estimation

The agreement between NEE based on u∗ estimates of REddyProc moving point implementation and current FLUXNET5

standard post-processing (DP06) (Fig. 4) indicates that the sensitivity of NEE to the u∗ threshold estimate in the inferred ranges

is low, which also explains the large uncertainty of the u∗ threshold estimate. One reason for the missing effect could be site

selection of this study without many sites affected by advection, which show limited saturation of the NEE - u∗ dependence.

Since in such cases the filtering does not work properly anyway, it should not change the conclusions for NEE. Hence, we infer

that u∗ estimates of both DP06 and REddyProc are appropriate due to the negligible effect on NEE sums. The agreement10

implies that both methods can be interchanged in studies that are based on aggregated values, such as annual carbon budgets or

for upscaling, without the need to reprocess data.

However, the increase in estimated precision, i.e. lower standard deviation, of the u∗ threshold estimate also yields an increase in

estimated precision of the annual NEE by 50% (suppl 1). This will lead to improved accuracy and usability of EC measurements

and any downstream, post-processed data products in model-data integration studies.15

While the default seasons and their aggregation are in line with previous approaches, REddyProc allows to use site specific

knowledge to derive better threshold estimates. For example, if there is disturbance such as harvest, the u∗ threshold is expected

to change and a different threshold should be applied for filtering before and after the disturbance. In this case the user can
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define a season change at harvest date and use season-specific threshold estimates instead of the annually aggregated estimate

(section B7).

3.3 Gap-filling: Benchmark with BGC16

The gap-filling implementation of REddyProc was benchmarked with the BGC online tool (BGC16, section 3) that used

pvWave-code from Reichstein et al. (2005c).5

3.3.1 Differences in code

Compared to the BGC16, the new implementation of the MDS algorithm in REddyProc was not limited to single years

but filled the gaps with a window moving continuously over all years in the input data. This had the advantage of smoother

gap-filling over the end of year and will especially be of interest for sites in which vegetation is not dormant during this time.

This new feature led to different, probably more realistic gap-filled NEE values in the beginning and end of the year.10

There were also slight differences in the sequence of window sizes between REddyProc and BGC16. For MDC, window size

with BGC16 had a few more intermediate day steps than REddyProc, which affected longer gaps with missing meteorology.

The default meteorological variables and margins for LUT (see Chapter 4.2.2 above) were the same in both implementations.

While REddyProc restricts gap-filling to interpolation of gaps, BGC16 also extrapolated missing records in periods without

measurements.15

3.3.2 Benchmark results and discussion for gap-filling

In the benchmark, REddyProc gap-filling was run using the same measured NEE as input that passed the QA/QC routines

and u∗-filtering. The annually aggregated values comprised both, filled gaps and originally valid records.

REddyProc gap-filling results agreed with the results of BGC16. Few discrepancies at half-hourly time scale were mostly at

longer gaps due to usage of fewer window sizes, as shown for the DE-Tha case (Fig. 5 top). At annually aggregated time scale,20

the agreement between methods was strong (R2 = 0.99) (Fig. 5 bottom). The outlier of site RU-Cok is due to the availability of

only a few months of data for the whole year. While REddyProc filled gaps in the time period with data available, BGC16

extrapolated also into the time before and after. The seasonal cycle was well reproduced at each site (suppl 1).

The good agreement between NEE based on gap-filling by REddyProc and gap-filling by BGC16 (Fig. 5) imply that both

gap-filling tools can be used interchangeably without the need to reprocess data.25
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Figure 5. Predictions of NEE by REddyProc after gap-filling agree with BGC16 both at half-hourly values (top), shown for the DE-Tha

1998 use case, and annual means across sites (bottom). Larger quality flags are associated with larger window sizes.

3.4 Nighttime flux-partitioning: Benchmark BGC16

The night-time based flux-partitioning was benchmarked to BGC16, which used pvWave code developed by Reichstein et al.

(2005c).

3.4.1 Differences in code

The main features of the REddyProc implementation of the night-time based partitioning algorithm were very similar to5

BGC16, with using a reference temperature of 15°C and trimming the estimates of temperature sensitivity E0 before aggregating

them (section 2.3.1). REddyProc differed from BGC16 in computing the potential radiation that is used in subsetting the
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Figure 6. Predictions of annually aggregated ecosystem respiration, Reco from REddyProc night-time partitioning agree with the predictions

by BGC16.

night-time data to deriveE0 andRRef (Reichstein et al., 2005). While REddyProc used the exact solar time for the calculation

of the potential radiation, where the sun culminates exactly at noon, BGC16 used the local winter time which differs from the

solar time depending on the location within the time zone.

3.4.2 Benchmark results and discussion for night-time flux-partitioning

Annual aggregated values of Reco predicted by REddyProc were in very good agreement (R2 = 0.99; slope ≈ 1) with BGC165

as shown in Fig. 6 and in supplement 1.

In order to evaluate the effects of the differences introduced in the code described above, we also computed Reco by prescribing

in REddyProc either E0, selection of night-time data, or both from BGC16 output. Results are reported in supplement 1 and

showed that the most important factor affecting the Reco computed with REddyProc was the different selection of night-time

data, though the differences were almost negligible at annual time scale.10

The two implementations agree very well for most sites at annual time-scale. Because of no systematic deviations across sites,

the spatial upscaling of fluxes should not be affected by REddyProc implementation. However, for some sites, such as IT-Amp,

the quite large relative errors indicates problems related to selection of night-time data and problems due to large gaps in the

dataset.
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3.5 Daytime flux-partitioning: Benchmark with BGC16

The day-time flux-partitioning was benchmarked with results of the BGC online tool (BGC16, section 3), which is based on

pvWave code developed by Lasslop et al. (2010) and used in the processing of the 2015 Fluxnet release (Pastorello et al., 2017).

3.5.1 Differences in code

BGC16 differed from REddyProc (section 2.3.2) mainly in aspects of separation of nighttime data, estimation of temperature5

sensitivity from night-time data, uncertainty estimation, treatment of missing values, and optimization library code.

While for separating nighttime data REddyProc used exact solar time where sun culminates exactly at noon, BGC16 used the

local winter time zone time.

For the estimation of temperature sensitivity E0 from night-time data BGC16 used a reference temperature of 15 °C, instead of

the median temperature inside the window. Hence, it estimated stronger correlations between parameters for windows with a10

different temperature range. Moreover, it omitted smoothing of the estimated E0 across time, often leading to large fluctuations

of the E0 estimates across few days (suppl 1), larger estimates of its uncertainty, and differences in subsequent estimation of

LRC parameters.

For uncertainty estimation, BGC16 relied on the curvature of the LRC fit’s optimum instead of a bootstrap procedure. Hence, it

could not take into account the uncertainty of E0 estimated from night-time data before the day-time LRC fit. Moreover, during15

interpolation of fluxes based on previous and next valid estimates, the distance weights differed. While REddyProc assignes

the estimates to the time of the mean of valid record in a window, BGC16 assigned it to the start of the third day, also if there

were only valid data for the first day in the window.

For weighting the records in the LRC fit, BGC16 used the raw estimated NEE uncertainty of each record. It did not check

for high leverage of spurious low NEE uncertainty estimates. Its estimates, therefore, were in some windows very strongly20

influenced by a few records, and failed if a NEE uncertainty estimate of zero was provided. Moreover, when there were missing

values or values below zero in provided NEE uncertainty, it set all uncertainty to 1, while REddyProc fills the gaps by setting

the missing uncertainty to the maximum of 20% of respective NEE but at least 0.7 µmolCO2m
−2s−1.

Treatment of missing values was not considered by BGC16 and assumed to be handled prior to the processing. Hence, it did not

handle missing VPD values and did not re-try the LRC fit without the VPD-effect in order to use also records with missing25

VPD. Moreover, as described above, when there were missing values of NEE uncertainty, weighting records in the LRC fit was

omitted.

For compatibility with BGC16, the above code-differences can be disabled in REddyProc. But differences in optimization

library code and specifically the conditions of non-convergence on scattered data could not be eliminated, which led to differences

in results as shown in the following section.30
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Figure 7. Prediction of annually aggregated GPP from REddyProc day-time partitioning agree with BGC16 across sites.

3.5.2 Benchmark results for day-time partitioning

Annually GPP predictions of both implementations showed no significant bias across the test sites (Fig. 7), although, there

was some scatter among individual predictions. A similar scatter was observed when comparing the predictions of the default

REddyProc options to the predictions with compatibility options. Most of the differences were caused by decreasing the

unreasonable high influence of NEE records with small NEE uncertainty (suppl 1).5

The largest differences in aggregated fluxes between implementations were due to the extrapolation of fitted parameters to

periods where no parameter fits were obtained. In many of those cases, there were fits at the boundaries of these periods, whose

validity was questionable. Whether those fits passed the quality check or not had a large influence on the extrapolation and

hence on the aggregated values. For example, at RU-Cok parameter estimates for valid periods agreed between implementations.

However, no valid parameters could be obtained for winter months. While REddyProc reported missing values, BGC1610

reported GPP values based on summer parameterizations also for periods further away from summer, which in turn lead to

higher annual GPP estimates.

Uncertainty estimates of gross fluxes about doubled with REddyProc due to accounting for uncertainty in temperature

sensitivity estimates from night-time data (suppl 1).

3.5.3 Discussion of day-time flux-partitioning15

Agreement between aggregated fluxes predicted by the day-time method and absence of bias for the test sites (Fig. 7) suggest

that the methods can be used interchangeably for upscaling, although differences in results of influential sites can potentially

propagate to differences in upscaled estimates. REddyProc provides a quality flag for the results of the day-time partitioning,
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that allows excluding less reliable data in upscaling studies. For the results associated with good quality flags, we set stronger

trust in the REddyProc-based estimates.

The day-time flux-partitioning is quite sensitive to the details of LRC fit. Small changes in treatment of extreme or missing NEE

uncertainty estimates or changes in pre-processing and treatment of missing values cause different estimates of LRC parameters

and propagate to predicted fluxes of GPP and Reco. Although, we put much effort in trying to reproduce the results of BGC16,5

we were not able to eliminate all differences, especially in the subtle details in the parameter optimization library codes. The

differences in predicted half-hourly fluxes, however, average out across sites and across time (suppl. 1) making this issue less

severe at larger scales.

The estimated uncertainties are even more sensitive. Both implementations occasionally produce unreasonably high outliers that

affect the aggregated values. REddyProc, in general, estimates higher uncertainties of predicted fluxes, because it accounts for10

uncertainty in temperature sensitivity. Note, that the uncertainty introduced to annually aggregated fluxes due to flux-partitioning

is smaller than uncertainty due to uncertain u∗ threshold estimate. Hence, differences or difficulties in uncertainty estimation

caused by flux-partitioning do affect conclusions of the overall uncertainty estimates to a lesser extent.

4 Conclusions

The REddyProc software provides a set of tools for the CO2-focussed post-processing of eddy covariance flux data including15

u∗-filtering, gap-filling and flux-partitioning and propagation of the uncertainty from the u∗-filtering to the gap-filled NEE and

partitioned GPP and Reco.

The freely available R-package enables researchers to integrate the flux data processing into their own, offline environment or

work stream without the need of uploading data. This seamless integration allows to improve overall workflow, to speed up

processing routines and to ultimately generate cleaner, reproducible scientific results.20

The compatibility of the implemented methods to the available standard tools provides continuity of the data analysis, when

adopting REddyProc for processing EC-data. REddyProc can closely reproduce results of the widely used BGC online tool

(BGC16, section 3).

A number of enhancements provide more flexibility to the user in the processing of their data. For instance, the new processing

allows to treat multi-year data without breaks at annual boundaries that can significantly affect sites in the southern hemisphere25

or sites characterized by vegetation activity in winter. Another new feature of REddyProc is the flexibility to define different

seasons for the application of the u∗-filtering and gap-filling routines, which is important for sites with discontinuous surface

cover associated with snow melt, dry seasons, or harvest.

Sensitivity of the results to subtle details of the implementation, however, call for caution when interpreting results. This is

especially true for u∗ threshold estimation and the day-time flux-partitioning, and especially for data with long gaps.30
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Continued integration of new methodological developments into the package will support research using EC data. We strive to

provide new developments in a basic and extensible manner, while paying attention to compatibility with results of reference

implementations.

In summary, research using (half-)hourly eddy covariance data can benefit from building blocks for standardized and extensible

post-processing provided by REddyProc.5

Appendix A: The REddyProc package

The REddyProc processing tool is freely available in two options: a) online as a web-service4 with a smaller range of user

option, and b) as a package of the open-source R environment with a larger set of user options and with each of the steps and

methods available independently.

The REddyProc package can be installed by typing at the R-terminal:10

install.packages("REddyProc")

library(REddyProc)

?REddyProc

Alternatively, there is an automatically built docker image (Metzger et al., 2017) at docker hub allowing to run RStudio with

REddyProc from a browser without any other installation besides docker. Regarding installation issues and docker images we

refer the reader to the github project homepage5.

Some general principles and choices in the design of REddyProc that lead to trade-offs between robustness and flexibility are15

explained in supplement 1.

Appendix B: Example application

This section reports an example R session using REddyProc. Code is shown in a shaded area and corresponding output with

monospace font.

B1 Importing the half-hourly data20

The workflow starts with importing the half-hourly data. The example reads a text file with data of the year 1998 from the

DE-Tha site and converts the separate decimal columns year, day, and hour to a POSIX timestamp column. Next, it initializes

the sEddyProc class.
4 www.bgc-jena.mpg.de/bgi/index.php/Services/REddyProcWeb
5github.com/bgctw/REddyProc
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#+++ load libraries used in this vignette

library(REddyProc)

library(dplyr)

#+++ Load data with 1 header and 1 unit row from (tab-delimited) text file

fileName <- getExamplePath('Example_DETha98.txt', isTryDownload = TRUE)

EddyData.F <- if (length(fileName)) fLoadTXTIntoDataframe(fileName) else

# or use example dataset in RData format provided with REddyProc

Example_DETha98

#+++ Add time stamp in POSIX time format

EddyDataWithPosix.F <- fConvertTimeToPosix(EddyData.F, 'YDH',Year.s = 'Year'

,Day.s = 'DoY',Hour.s = 'Hour')

#+++ Initalize R5 reference class sEddyProc for post-processing of eddy data

#+++ with the variables needed for post-processing later

EddyProc.C <- sEddyProc$new('DE-Tha', EddyDataWithPosix.F,

c('NEE','Rg','Tair','VPD', 'Ustar'))

B2 Estimating the u∗ threshold distribution

The second step is the estimation of the distribution of u∗ thresholds to identify periods of low friction velocity (u∗), where

NEE is biased low. Discarding periods with low u∗ is one of the largest sources of uncertainty in aggregated fluxes. Hence,

several quantiles of the distribution of the uncertain u∗ threshold are estimated by a bootstrap.

The friction velocity, u∗, needs to be in a column named “Ustar” of the input dataset.5

uStarTh <- EddyProc.C$sEstUstarThresholdDistribution(

nSample = 100L, probs = c(0.05, 0.5, 0.95))

#filter(uStarTh, aggregationMode == "year")

select(uStarTh, -seasonYear)

## aggregationMode season uStar 5% 50% 95%

## 1 single <NA> 0.4162500 0.3658125 0.4414583 0.6197520

## 2 year <NA> 0.4162500 0.3658125 0.4414583 0.6197520

## 3 season 1998001 0.4162500 0.3658125 0.4414583 0.6197520

## 4 season 1998003 0.4162500 0.3198846 0.4037981 0.561550010

## 5 season 1998006 0.3520000 0.3192476 0.3858571 0.4393708

## 6 season 1998009 0.3369231 0.2195485 0.3906458 0.5235175

## 7 season 1998012 0.1740000 0.1829667 0.4189286 0.6180982
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The output reports u∗ estimates of 0.42 for the orignal data and 0.37, 0.44, 0.62 for lower, median, and upper quantile of the

estimated distribution. The threshold can vary between periods of different surface roughness, e.g. before and after harvest.

Therefore, there are estimates for different time periods of the year, called seasons, reported as different rows. These season-

estimates can be aggregated to entire years or to a single value across years, reported by rows with corresponding aggregation

mode.5

The subsequent post processing steps will be repeated using the three quantiles of the u∗ distribution. They require to specify a

u∗-threshold for each season and a suffix to distinguish the outputs related to different thresholds.

For this example of an evergreen forest site, the same annually aggregated u∗ threshold estimate will be chosen for each of the

seasons within a year. In order to distinguish the automatically generated columns, the column names of the estimation results

are written to variable uStarSuffixes.10

uStarThAnnual <- usGetAnnualSeasonUStarMap(uStarTh)[-2]

uStarSuffixes <- colnames(uStarThAnnual)[-1]

print(uStarThAnnual)

## season U05 U50 U95

## 1 1998001 0.3658125 0.4414583 0.619752

## 2 1998003 0.3658125 0.4414583 0.619752

## 3 1998006 0.3658125 0.4414583 0.619752

## 4 1998009 0.3658125 0.4414583 0.61975215

## 5 1998012 0.3658125 0.4414583 0.619752

B3 Gap-filling

The second post-processing step is filling the gaps using information of the valid data. In this case, the same annual u∗ threshold

estimate is used for each season, as described above, and the uncertainty will be computed also for valid records (FillAll).

EddyProc.C$sMDSGapFillAfterUStarDistr('NEE',

UstarThres.df = uStarThAnnual,

UstarSuffix.V.s = uStarSuffixes,

FillAll = TRUE

)

The screen output (not shown here) already shows that the u∗-filtering and gap-filling was repeated for each given estimate of20

the u∗ threshold , i.e. column in uStarThAnnual, with marking 22% to 38% of the data as gap.
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For each of the different u∗ threshold estimates, a separate set of output columns of filled NEE and its uncertainty is generated,

distinguished by the suffixes given with uStarSuffixes. Suffix “_f" denotes the filled value and “_fsd" the estimated

standard devation of its uncertainty.

grep("NEE_.*_f$",names(EddyProc.C$sExportResults()), value = TRUE)

grep("NEE_.*_fsd$",names(EddyProc.C$sExportResults()), value = TRUE)

## [1] "NEE_U05_f" "NEE_U50_f" "NEE_U95_f"

## [1] "NEE_U05_fsd" "NEE_U50_fsd" "NEE_U95_fsd"5

B4 Partitioning net flux into GPP and Reco

The third post-processing step is partitioning the net flux (NEE) into its gross components GPP and Reco. The partitioning

algorithm needs a precise criteria between night-time and day-time. Therefore, geographical coordinates and the time zone need

to be provided to allow computing exact solar time of sunrise and sunset. Further, missing values in the used meteorological data

need to be filled.10

EddyProc.C$sSetLocationInfo(Lat_deg.n = 51.0, Long_deg.n = 13.6, TimeZone_h.n = 1)

EddyProc.C$sMDSGapFill('Tair', FillAll.b = FALSE)

EddyProc.C$sMDSGapFill('VPD', FillAll.b = FALSE)

Now we are ready to invoke the partitioning, here by the night-time approach, for each of the several filled NEE columns.

#variable uStarSuffixes was defined above at the end of uStar threshold estimation

resPart <- lapply(uStarSuffixes, function(suffix){

EddyProc.C$sMRFluxPartition(Suffix.s = suffix)

})

The results are stored in columns Reco and GPP_f modified by the respective u∗ threshold suffix.

grep("GPP.*_f$|Reco",names(EddyProc.C$sExportResults()), value = TRUE)

## [1] "Reco_U05" "GPP_U05_f" "Reco_U50" "GPP_U50_f" "Reco_U95" "GPP_U95_f"

The visualizations of the results by a fingerprint plot gives a compact overview.
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EddyProc.C$sPlotFingerprintY('GPP_U50_f', Year.i = 1998)
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B5 Estimating the uncertainty of aggregated results

First, the mean of the GPP across all the year is computed for each u∗-scenario and converted from µmolCO2 m
−2s−1 to

gCm−2yr−1.

FilledEddyData.F <- EddyProc.C$sExportResults()

#suffix <- uStarSuffixes[2]

GPPAggCO2 <- sapply( uStarSuffixes, function(suffix) {

GPPHalfHour <- FilledEddyData.F[[paste0("GPP_",suffix,"_f")]]

mean(GPPHalfHour, na.rm = TRUE)

})

molarMass <- 12.011

GPPAgg <- GPPAggCO2 * 1e-6 * molarMass * 3600*24*365.25

print(GPPAgg)

## U05 U50 U955

## 1894.097 1956.090 1985.817

The difference between those aggregated values is a first estimate of uncertainty range in GPP due to uncertainty of the u∗

threshold.

(max(GPPAgg) - min(GPPAgg)) / median(GPPAgg)

In this run of the example a relative error of about 4.7% is inferred.

For a better but more time consuming uncertainty estimate, specify a larger sample of u∗ threshold values, for each repeat the10

post-processing, and compute statistics from the larger sample of resulting GPP columns. This can be achieved by specifying a

larger sequence of quantiles when calling sEstUstarThresholdDistribution in section B2.

EddyProc.C$sEstUstarThresholdDistribution(

nSample = 200, probs = seq(0.025,0.975,length.out = 39) )
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B6 Storing the results in a csv-file

The results still reside inside the sEddyProc class. To export them to an R Data.frame, the newly generated columns need to

be appended to the columns with the original input data. Then this data.frame is written to a text file in a temporary directory.

FilledEddyData.F <- EddyProc.C$sExportResults()

CombinedData.F <- cbind(EddyData.F, FilledEddyData.F)

fWriteDataframeToFile(CombinedData.F, 'DE-Tha-Results.txt', Dir.s = tempdir())

B7 Specifying seasons where u∗ thresholds differs

With changing surface roughness, e.g. on harvest or leaf-fall, also the u∗-NEE relationship can change. Therefore the u∗5

threshold needs to be re-estimated at different times of the year, called seasons. The default uses continuous seasons,

for details see section 3.2.1. In order to yield results corresponding to DP06, the user can specify seasonFactor.v =

usCreateSeasonFactorMonthWithinYear( EddyData.C$sDATA$sDateTime, startMonth= c(3,6,9,12)) as an argument to

routine sEstUstarThreshold. By default the annual aggregate of the season thresholds, i.e. maximum across seasons, is used to

identify unfavorable conditions, but the seasonal estimates can also be used instead.10

Moreover, the users can specify also other user-defined seasons, e.g. when harvest dates are known (see package

vignette DEGebExample). They can create a grouping by specifying exact starting days of the periods by function

usCreateSeasonFactorYdayYear, or they can provide a column with the data that indicates e.g. the same group for two wet

seasons. Each season is associated to the year corresponding to the center day between first and last day of the season.

With all methods, there is a required minimum number of 160 records within a season. If there are too few records, the data of15

the seasons within one year are combined and the u∗ threshold for this seasons is set to the estimate obtained for the data of the

entire year.
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