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Abstract. Autonomous underwater vehicles (AUVs) offer unique possibilities for exploring the 12 

deep seafloor in high resolution over large areas. We highlight the results from AUV-based 13 

multibeam echosounder (MBES) bathymetry / backscatter and digital optical imagery from the 14 

DISCOL area acquired during research cruise SO242 in 2015. AUV bathymetry reveals a 15 

morphologically complex seafloor with rough terrain in seamount areas and low-relief 16 

variations in sedimentary abyssal plains which are covered in Mn-nodules. Backscatter 17 

provides valuable information about the seafloor type and particularly about the influence of 18 

Mn-nodules on the response of the transmitted acoustic signal. Primarily, Mn-nodule 19 

abundances were determined by means of automated nodule detection on AUV seafloor 20 

imagery and nodule metrics such as nodules m-2 were calculated automatically for each image 21 

allowing further spatial analysis within GIS in conjunction with the acoustic data. AUV-based 22 

backscatter was clustered using both raw data and corrected backscatter mosaics.  23 

In total, two unsupervised methods and one machine learning approach were utilized for 24 

backscatter classification and Mn-nodule predictive mapping. Bayesian statistical analysis was 25 

applied to the raw backscatter values resulting in six acoustic classes. In addition, Iterative Self-26 

Organizing Data Analysis (ISODATA) clustering was applied to the backscatter mosaic and its 27 

statistics (mean, mode, 10th, and 90th quantiles) suggesting an optimum of six clusters as well. 28 

Part of the nodule metrics data was combined with bathymetry, bathymetric derivatives and 29 

backscatter statistics for predictive mapping of the Mn-nodule density using a Random Forest 30 

classifier. Results indicate that acoustic classes, predictions from Random Forest model and 31 

image-based nodule metrics show very similar spatial distribution patterns with acoustic 32 

classes hence capturing most of the fine-scale Mn-nodule variability. Backscatter classes reflect 33 

areas with homogeneous nodule density. A strong influence of mean backscatter, fine scale BPI 34 

and concavity of the bathymetry on nodule prediction is seen. These observations imply that 35 

nodule densities are generally affected by local micro-bathymetry in a way that is not yet fully 36 

understood. However, it can be concluded that the spatial occurrence of Mn-covered areas can 37 

be sufficiently analysed by means of acoustic classification and multivariate predictive 38 

mapping allowing to determine the spatial nodule density in a much more robust way than 39 

previously possible.   40 
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 41 

1. Introduction 42 

1.1 Mn-nodules exploration 43 

 44 

Research on Mn-nodules received increased attention in the last decade due to increasing 45 

prices for ores rich in Cu, Ni or Co, i.e. metal resources that are contained in Mn-nodules. In 46 

nature, the largest Mn-nodule occurrences are found in the deep sea, e.g. the equatorial 47 

Pacific between the Clarion and Clipperton fracture zone (CCZ), the Peru Basin as well as the 48 

Atlantic and Indian Ocean (Petersen et al., 2016 ). In the typically muddy sediments of the 49 

deep sea, Mn-nodules form an important hard substrate providing a habitat for deep sea 50 

sessile fauna such as sponges, corals and associated organisms (Vanreussel et al., 2016; Purser 51 

et al., 2016). Therefore, mapping Mn-nodule fields is a two-fold task, comprising not only the 52 

assessment of Mn-nodules and their density distribution for accurate resource assessment, 53 

but also the improved understanding of the natural habitat heterogeneity and its relation to 54 

the deep sea ecology. Knowledge about Mn-nodule habitats will support mitigation strategies 55 

for mining-induced impacts. Since an increasing number of countries move forward with 56 

exploitation plans for Mn-nodules in the CCZ, strategies for a detailed mapping of the deep sea 57 

Mn-nodule fields might become mandatory in order to proceed with licensing procedures 58 

prior to any mining activity. 59 

    Deep sea mining will cause substantial disturbances of the deep sea ecosystem since Mn-60 

nodules, the primary hard substrate, will be removed and massive re-sedimentation of the top 61 

20 to 30cm of sediment of the mined area will occur (Bluhm et al., 1995, Vanreussel et al., 62 

2016).Thus, efforts have been made to investigate the effects of potential mining disturbances 63 

in the past (e.g. Thiel et al., 2001) and currently during the project “Ecological Aspects of Deep 64 

Sea Mining” as part of the Joint Programming Initiative Healthy and Productive Seas and 65 

Oceans (JPI Oceans). To study in detail the potential effects of a deep sea disturbance by Mn-66 

nodule mining to benthic fauna, a plough-experiment was performed in 1989 in the Peru Basin 67 

as part of the DISturbance and reCOLonization project (DISCOL, www.discol.de). A plough of 68 

8m width was towed 78 times over a 2nmi wide circular area (February-March 1989) to 69 

generate dense and less dense impact sub-areas. Photographic surveys, sediment and 70 

biological sampling before and after the disturbance (September 1989, March 1992, February 71 

1996), showed that the plough marks were well visible even after 26 years and that the 72 

benthic fauna did not recover to its initial state. The data used in this study were collected 73 

during the SO242-1 cruise to the DISCOL area during summer 2015, 26 years after the DSICOL 74 

experiment.  75 

 76 

1.2 The DISCOL study area  77 

The DISCOL working area is situated 560 nmi SW of Guayaquil on the Pacific Oceanic 78 

Plate in the Peru Basin (Fig. 1A) in about 4150 m water depth. The larger DISCOL area ranges 79 

from 3800m to 4300m water depth (Fig. 1B) and is characterized by N-S oriented graben and 80 

horst structures with a deep N-S elongated basin with water depths down to 4300m. An 11 km 81 

wide seamount complex in the NE along with a second seamount complex to the SW and three 82 
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higher mounds to the NW clearly show that the DISCOL area is not located on a flat and 83 

homogenous deep seafloor. 84 

The ploughed DISCOL Experimental Area (DEA) itself is located on a relatively smooth, 85 

slightly elevated part of the seafloor with a central valley of about 20m depth that dips 86 

southward (Fig. 2A). When inspecting the bathymetry data generated by the autonomous 87 

underwater vehicle (AUV) in more detail, the central part of the area shows a 20m deep valley, 88 

the floor of which is comprised by low-relief N-S trending ridges giving the impression of a 89 

braided river system (Fig. 2A). Despite the rich morphological features in the study area, it 90 

does not contain steep slopes and represents a rather smooth seafloor (<5 degrees).  91 

 92 

 93 

1.3 Acoustic mapping of Mn-nodules and study objectives 94 

Acoustic mapping has proved to be a useful tool for supporting deep sea mineral 95 

resource assessments. The initial studies mentioned below, showed promising results for Mn-96 

nodule detection and quantification, however, progress in more detailed and meaningful 97 

method development and data processing capabilities has remained slow, mainly due to 98 

fluctuations in the global interest of deep sea mining. The majority of surveys performed for 99 

Mn-nodule mapping purposes rely on acoustic remote sensing and near-bottom photography 100 

(de Moustier, 1985). The applicability of acoustic methods is based on the clear acoustic 101 

contrast of at least 11 dB between the background deep sea soft sediment and the nodules (de 102 

Moustier 1985). Weydert (1985) found that the nodule size is proportional to the average 103 

backscatter strength for low frequency signals (<30 kHz). In addition, Weydert (1990) 104 

concluded that it is possible to map the percentage of seafloor covered by nodules based on 105 

backscatter measurements of sonar frequencies higher than 30 kHz , whereas for a frequency 106 

of 9 kHz it is possible to use the backscatter response to determine whether the nodule 107 

diameter is greater than 6 cm or smaller than 4 cm. Masson and Scanlon (1993) suggested that 108 

lower sonar frequencies produce a much weaker acoustic contrast between nodules and 109 

surrounding sediments for nodules of given size. They concluded that on a seafloor covered 110 

with mixed-size nodules larger nodules will have a greater impact on the backscattered energy 111 

than smaller ones. They also suggested that minor differences of nodule coverage will have a 112 

considerable effect in backscatter values. A more recent study by Chakrabotry et al. (1996) 113 

suggested that the nodule coverage is proportional to the backscatter strength and that for 114 

low frequency (15 kHz; wavelength ca. 10 cm) the main type of scattering is Rayleigh scattering 115 

(wavelength/10 < nodule size) for nodules and coherent scattering for fine sediments.  116 

During one of the first deep sea studies for acoustic mapping of Mn-nodules, de Moustier 117 

(1985) utilized a multi-beam echo-sounder (MBES) sonar combined with near-bottom acoustic 118 

measurements and photographs from a deep towed camera system to infer nodule coverage. 119 

He managed to obtain high agreement between relative backscatter intensity classes and 120 

three types of nodule coverage as interpreted from seafloor imagery (dense, intermediate and 121 

bare). At that time, his results highlighted the great potential of MBES technology in deep sea 122 

mineral prospecting. In more recent years Lee and Kim (2004) utilized side-scan sonar (SSS) to 123 

examine the relation of regional nodule abundance with geomorphology. According to their 124 
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qualitative analysis, lower backscatter values are related with abyssal troughs whereas 125 

increased backscatter values are related to abyssal hills. Additionally, Ko et al. (2006) 126 

attempted to examine the relation between MBES bathymetry and slope with nodule density 127 

in the equatorial Pacific without identifying a solid pattern. Most recently, Okazaki and Tsune 128 

(2013) utilized AUV-based MBES, SSS and image data for Mn-nodule abundance assessment 129 

and its relation to deep sea micro-topography.  130 

More recent projects regarding resource assessment of Mn-nodules at large scales (0.1’ by 0.1’ 131 

grid cell size) have been based on various spatial modelling and decision making techniques 132 

(ISA, 2010). Most commonly, the kriging method has been applied on sparse ground truth data 133 

(obtained by physical box-corer sampling) while logistic regression and fuzzy logic algorithms 134 

were applied in multivariate data sets of Mn-nodule-related environmental variables such as 135 

sediment type, sea surface chlorophyll and Ca Compensation Depth (CCD) (Agterberg & 136 

Bohnam-Carter, 1999, Carranza & Hale, 2001). 137 

In this study we analyse AUV-based MBES and image data for quantitative mapping of Mn-138 

nodule densities in the Peru Basin. Particularly, we utilize local ground-truth information (Mn-139 

nodule measurements from AUV photographs) in order to investigate a) its relation to acoustic 140 

classification maps and b) its potential use for predictive mapping of Mn-nodules in wider 141 

areas where only hydro-acoustic information is available. Therefore, we apply two 142 

unsupervised methods (Bayesian probability and ISODATA) for seafloor acoustic classification 143 

and a machine learning algorithm (Random Forest) for Mn-nodule density predictions beyond 144 

the areas that were optically imaged using the AUV.   145 

By applying different algorithms for unsupervised classification, we aim at comparing their 146 

results against quantitative ground truth data of nodule metrics from automated analyses on 147 

AUV imagery. This way, we will assess the ability of classification methods in discriminating 148 

areas with distinct nodule densities. To our knowledge, this is the first time the Random Forest 149 

algorithm is applied for predictive mapping of Mn-nodule densities. Therefore, we examine its 150 

performance and the influence of various AUV MBES data on the Mn-nodule prediction 151 

results.     152 

 153 

 154 

2. Methodology 155 

2.1  AUV MBES data acquisition and processing 156 

The data in this study were collected using the AUV “Abyss” (built by HYDROID Inc.) from 157 

GEOMAR, during cruise SO242-1 where various AUV missions were flown. The AUV is 158 

equipped with a RESON Seabat 7125 MBES sensor with 200 kHz operating frequency, 256 159 

beams with 1 by 2 degree opening angle along and across track, respectively. From the original 160 

PDS2000 sonar data, files backscatter snippet data were extracted into s7k format whereas 161 

bathymetry data were extracted into GSF format. Prior to exporting, MBES bathymetric data 162 

were filtered within the PDS2000 software. Bathymetry data from different AUV dive-missions 163 

were jointly used for interpolating one single grid of bathymetry and backscatter (Fig.2). 164 

Latency and roll-related artefacts affected bathymetry in places due to a none-constant time 165 

delay for roll values creating uncorrectable artefacts in the resulting grid. Therefore, the 166 
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bathymetry was smoothed by applying a Gaussian filter with a 10 m x 10 m rectangular 167 

window with 3 and 5 standard deviations as smoothing factors in SAGA GIS. Filtered 168 

bathymetry was visually inspected for artefacts using the hill-shade function in SAGA GIS, 169 

giving satisfactory results. Vertical differences between the smoothed grid with the originally 170 

processed surface were everywhere less than 1 m, highlighting that the filtering did not cause 171 

significant smoothing and removal of finer details. The filtered bathymetric grid was used for 172 

calculating a variety of derivatives listed in Table 2. 173 

The MBES backscatter data were processed in two ways. First, the s7k/GSF pairs were 174 

automatically corrected (for radiometric and geometric bias) and mosaicked in QPS FMGT (Fig. 175 

2B). In addition, backscatter mosaic statistics were calculated and exported as GEOTIF files 176 

using a 10 m x 10 m neighbourhood. The raw snippets data were exported prior to any 177 

processing using a combination of in-house conversion software and QPS DMagic for merging 178 

beam data with ray-traced easting and northing. The raw snippets data were transformed from 179 

16-bit amplitude units to dB using the formula in Eq. (1):  180 

 181 

Backscatter (dB) = 20*log10(amplitude)                                                                                              (1) 182 
 183 

 184 

Raw backscatter data were processed by applying the Bayesian approach on certain beams as 185 

described in Alevizos et al. (2015 and 2017) whereas the gridded data were analysed with 186 

Random Forest (RF) regression trees and ISODATA clustering (see section below). An overview 187 

of the software used to process and classify each type of dataset is presented in Table 1. 188 

 189 

 190 

2.2 Seafloor imagery and automated image analysis 191 

 192 

AUV surveys were undertaken for collecting close-up images from the seafloor using a camera 193 

system recently described by Kwasnitschka et al (2016). In this system the camera is mounted 194 

behind a dome port along with a 15mm fish-eye lens that produces extreme wide-angle 195 

images. This type of lens and dome port configuration induces significant distortions to the 196 

image which need to be corrected prior to any image analysis processing. Surveying at 197 

altitudes of 4-8m above the seafloor and using the novel state-of the-art LED flash system, the 198 

AUV collected several hundred-thousand seafloor images at a 1Hz interval. The respective AUV 199 

surveys were designed to cover a large part of the study area with a single-track dive pattern 200 

and also to focus on two selected areas running track lines 5m apart for dense 2D image 201 

mosaicking (Fig. 2A). Each image was individually georeferenced using the AUV navigation and 202 

altitude data. This way, each pixel of the AUV imagery is translated to an actual portion of the 203 

seafloor.   204 

For the automated image analyses (e.g. Mn-nodule counting), all images were smoothed by a 205 

Gaussian filter to remove noise and then converted to grayscale for computational speedup. 206 

Following, the images were corrected for inconsistent illumination due to the varying AUV 207 

altitude using the fSpice method described by Schoening, et al. (2012). The central (sharpest, 208 

best illuminated) region of each image was cropped and thresholded by an automatically 209 
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tuned intensity limit before contours in the resulting binary images were detected and fused to 210 

blobs of pixels that served as nodule candidates. Each nodule candidate was finally fitted with 211 

an ellipsoid to account for potentially buried parts of the nodule. The sizes of these ellipsoids 212 

constitute the nodule size distribution within one image from which descriptive parameters 213 

were derived. This kind of automated image processing resulted in quantitative information 214 

such as: image area (square meters), number of nodules (n), percentage of seafloor covered by 215 

nodules (amount of nodule pixels divided by total amount of image pixels), and the threshold 216 

sizes (estimated 2D surface) of 1, 25, 50, 75 and 99 percent quantiles of the nodule size 217 

distribution (comparable to a particle size analysis). A detailed publication on the nodule 218 

delineation algorithm can be found in Schoenning et al. (2017), while the source code is 219 

available online as Open Source (https://doi.pangaea.de/10.1594/PANGAEA.875070) 220 

In this study, we considered the number of Mn-nodules per square meter as a normalized 221 

measure of nodule density in order to avoid overestimation of Mn-nodules due to multiple-222 

detections between overlapping images. This metric is derived from the ratio of the number of 223 

nodules detected to the area (m2) of the image footprint (the size of the central ‘good’ part of 224 

the image). Therefore the results of the predictive mapping are presented with 6 m x 6 m 225 

resolution which is representative for the majority of image footprint sizes. 226 

 227 

 228 

2.3 Seafloor classification and prediction methods  229 

 230 

Three different approaches were applied for a predictive Mn-nodule mapping. The first 231 

approach is an unsupervised method based on Bayesian statistics applied on raw snippet data. 232 

It examines the within-beam backscatter variability in the entire area in order to estimate the 233 

optimum number of seafloor classes. The output acoustic classes can then be validated with 234 

available ground-truth data. The second approach, is based on the ISODATA algorithm (an 235 

unsupervised method as well), applied on gridded backscatter data. This algorithm can 236 

automatically adapt the number of classes to the data for given minimum and maximum 237 

values set by the user. Finally, a supervised machine learning method was applied on gridded 238 

bathymetric and backscatter data. This method requires a training set in order to model the 239 

complex relationship between the Mn-nodules occurrences and the bathymetry, bathymetric 240 

derivatives and backscatter information. The algorithm outputs a prediction grid for Mn-241 

nodule densities and also estimates the importance of each input variable in accurately 242 

predicting Mn-nodule densities.   243 

 244 

 245 

 246 

 247 

 248 

 249 

 250 

 251 
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Hardware 

AUV RESON 7125 
DeepSurveyCam 

(Kwasnitschka et al., 
2016) 

Software MBES bathymetry MBES backscatter (snippets) Imagery 

Processing 

PDS2000 (sonar data), 

SAGA GIS (xyz, grids), 

ArcMap (grids) 

Matlab (raw data), Fledermaus 

FMGT (corrected BS and 

mosaicking) 

in-house software, 

ArcGIS 

Classification / 

prediction 

Random Forests 

(MGET) 

Bayesian (raw data), ISODATA, 

Random Forests Mosaic and 

statistics 

Random Forests 

(MGET) 

 252 
Table 1: Datasets and methods applied in this study. 253 

 254 

2.3.1 Bayesian probability on beam backscatter  255 

 256 

The raw backscatter data were classified by applying the Bayesian methodology 257 

developed and implemented by Simons and Snellen (2009) and Amiri-Simkooei (2009) and 258 

applied by Alevizos et al. (2015). In order to enhance the method’s performance, strong 259 

outliers in the raw data were filtered by using a variance threshold set to 100 (i.e. 10 standard 260 

deviations). Thus, beams with a snippet data variance greater than 100 were disregarded from 261 

the classification process. The remaining snippet data were averaged for each beam for 262 

obtaining the mean relative backscatter intensity. The Bayesian method is based on the central 263 

limit theorem and the assumption that acoustic backscatter measurements of a homogeneous 264 

seafloor type would express normal distribution when derived from a certain incidence angle. 265 

Therefore all backscatter values were grouped per beam angle and their histograms were 266 

examined separately. At first, a number of Gaussian curves were fitted to each histogram and 267 

the goodness of fit was assessed by the χ2 criterion. The minimum number of Gaussian curves 268 

that fitted well the overall distribution pattern of the histogram values (i.e.: χ2 is less than 2), 269 

was considered as the optimum number of classes. Not all beam angles provided the same 270 

number of Gaussian curves; therefore it was important to identify those beam angles that gave 271 

consistent results about the number of classes. Usually the mid-range incidence angles 272 

provided the most consistent results (Alevizos et al., 2015) regarding the Gaussian fitting; 273 

hence beams from this range were utilized as reference in order to derive the optimum 274 

number of classes. Once the reference beams were identified, the mean and standard 275 

deviations of each Gaussian curve were used as conditions for classifying the backscatter 276 

values for the rest of the beams. 277 

The Bayesian technique does not require the MBES to be calibrated and allows for class 278 

assignment per beam, thus maximizing the spatial resolution of the final map. The most 279 

important aspects of the Bayesian technique are the internal cluster validation based on χ2 280 

criterion and the increased geo-acoustic resolution, allowing for maximal acoustic 281 

discrimination of similar seafloor types (Alevizos et al., 2015).  282 
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2.3.2 ISODATA classification for grids 283 

 284 

The ISODATA classification was applied to the backscatter mosaic and its derived 285 

statistics (Table 2) using the ISODATA algorithm implemented in SAGA GIS. ISODATA stands for 286 

Iterative Self-Organizing Data Analysis and has been applied in several marine mapping studies 287 

involving backscatter information (Diaz, 1999; Hühnerbach et al., 2008; Blondel and Gomez-288 

Sichi 2009). The fundamentals of ISODATA processing are described in detail by Dunn (1977) 289 

and Memarsadeghi et al. (2007). A particular advantage of this method apart from its fast 290 

execution is that it estimates a suitable number of classes by dividing clusters with large 291 

standard deviations and by merging similar clusters at the same time (Diaz 1999). This is done 292 

automatically and the user only defines an empirical minimum and maximum number of 293 

classes.   294 

 295 

2.3.3 Random Forest predictive mapping for grids 296 

 297 

To exploit the full range of MBES gridded data and for comparison purposes, supervised 298 

classification was applied to the bathymetry, bathymetric derivatives and backscatter statistics 299 

(Table 2). Applying a machine learning algorithm was encouraged due to the abundant ground-300 

truth data (nodule metrics from automated image analysis) and the high resolution of the 301 

various MBES layers. The Random Forest algorithm as implemented in the MGET toolbox for 302 

ArcGIS was used (http://mgel2011-kvm.env.duke.edu/mget). Initially developed by Breiman 303 

(2001) it has shown good results in marine predictive habitat mapping (Stephens and Diesing 304 

2014, Lucieer et al., 2013, Che-Hasan et al., 2014). The algorithm requires a training data set 305 

with the response variable (here: nodule density from AUV imagery analysis results) and a set 306 

of explanatory variables (here: bathymetry, bathymetric derivatives, backscatter) as inputs in 307 

order to model the relationship between them. The training set provides the required 308 

“knowledge” about the response variable and its corresponding explanatory variable’s values. 309 

At the next stage, an ensemble procedure based on several regression trees of random subsets 310 

of the explanatory variables is iteratively applied for classifying/predicting Mn-nodule density 311 

per grid-cell using a-priori information from the training sample. The prediction at a certain 312 

grid-cell is defined by the majority votes of all random subsets of trees (Gislason et al., 2006). 313 

During the iterative processing, the Random Forest will reserve randomly selected parts of the 314 

training sample for internal cross-validation of the results (out-of-bag sample). During each 315 

iteration, one explanatory variable is neglected and its importance score is calculated 316 

according to its contribution to the resulting prediction error. The variable importance 317 

calculation is considered one of the main advantages of the Random Forest algorithm. An 318 

important step prior to Random Forest application is data exploration. With data exploration it 319 

is possible to identify which explanatory variables are capable to discriminate patterns of 320 

nodule density in the study area better. A standard approach is to explore the probability 321 

density function of the response variable with each of the other gridded variables (e.g. slope, 322 

BPI, etc.). These plots give first indications about the distribution type of the response variable 323 

for a given explanatory variable.   324 
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The explanatory variables presented in Table 2 were chosen as good descriptors of nodule 325 

density in the area based on the probability density functions of arbitrarily chosen classes of 326 

nodule density (Fig. A1, Appendix). The arbitrary classes where based on the quantiles method 327 

for classifying the nodule density histogram. It has to be noted that the arbitrary classes were 328 

used only for data exploration and not for the prediction of nodule densities. All descriptor-329 

grids were resampled to 6 m x 6 m pixels in order to be compatible with the average effective 330 

area of the AUV images upon which nodule metrics were computed.  331 

An appropriate selection of training samples is fundamental for modelling the relationship 332 

between the response variable and the gridded descriptor data. Particularly, the training 333 

samples need to span the entire range of the study area capturing most of the data variability. 334 

They have to contain as diverse values as possible regarding both the nodule density and the 335 

corresponding gridded descriptor data.    336 

 337 

 338 

Explanatory 
variables 

Description 

From bathymetry Scale: 6 m cell size 

Depth AUV MBES, smoothed with Gaussian filter (5σ) 

Slope ArcGIS slope algorithm in percent units 

BPI 

Relative position of pixels compared to their 
neighbors. Inner radius 10m, outer radius 100 m 

(Iwashahi and Pike, 2007) SAGA GIS terrain analysis 
toolbox 

LS factor 
The integrated slope length and inclination, formula 
from Moore et al. (1991), SAGA GIS terrain analysis 

toolbox 

Terrain Ruggedness 
Index (TRI) 

Measure of the irregularity of a surface in 5m radius 
neighborhood (Iwashahi and Pike, 2007), SAGA GIS 

terrain analysis toolbox 

Concavity 
Measure of negative curvature of a surface (Iwashahi 

and Pike, 2007), SAGA GIS terrain analysis toolbox 

From backscatter Scale: 10x10 m neighborhood, 6 m cell size 

mean 
Average dB value of pixels falling within the 

neighborhood (FMGT module) 

mode 
Most frequent dB value of pixels falling within the 

neighborhood (FMGT module) 

10% quantile 
Value of neighborhood pixels describing the lower 

10% of the total dB distribution (FMGT module) 

90% quantile 
Value of neighborhood pixels describing the 90% of 

the total dB distribution (FMGT module) 

Table 2: Description of MBES features (bathymetric derivatives and backscatter statistics) that are used 339 
as explanatory variables in random forests predictions.  340 

 341 

 342 

 343 
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3.  Results 344 

3.1 Automated nodule detection from AUV images 345 

The automated nodule detection algorithm results for nodule density (number of nodules m-2) 346 

are shown in Fig. 3. The dense point cloud offers a detailed view of the nodule spatial 347 

distribution which can significantly enhance the interpretation of nodule density in 348 

conjunction with MBES bathymetry. In Fig. 3 the nodule density fluctuates in a pattern of 349 

alternating bands. By colorizing the seafloor surface and the bathymetric profile cross-section 350 

according to nodule density values, it can be seen that higher nodule densities appear on 351 

smooth slope features where the seafloor appears locally concave or terraced and also on the 352 

foot of these slopes which appear relatively lower compared to the surrounding area. By 353 

colouring the AUV bathymetry according to the nodule density it became clear that MBES 354 

derivatives may be useful for quantifying the nodule distribution in the entire study area. We 355 

thus calculated bathymetric derivatives such as BPI, concavity, slope and slope-related 356 

derivatives (LS factor, TRI) to be included in predicting nodule densities. 357 

 358 

3.2 Bayesian acoustic classification of raw BS data  359 

 360 

The Bayesian method identified six classes based on the analysis of beams with incidence 361 

angles between 38 and 42 degrees (Table 3). Despite the variance-based filtering, it was not 362 

possible to compensate for the remaining effects on beam incidence angles in the middle 363 

range and towards the nadir. We believe that these effects are responsible for the stripe-like 364 

classification at the outer part of the swath. The selection of six classes resulted from the 365 

agreement between two adjacent beams (Table 3) and the relative lower overlap of the 366 

Gaussian curves. The finally derived classes are ordinal; meaning that from class 1 to class 6 367 

there is an increase in backscatter intensity. The spatial distribution of the acoustic classes 368 

expresses a gradient of high to low backscatter classes in the N-S direction (Fig. 4A). The 369 

nodule-free areas holding lowest backscatter values are captured clearly.     370 

 371 

Acoustic 

class 

PORT: (38o & 40o) central 

value (dB) 

STARBOARD: (40o & 42o) 

central value (dB) 

1 -60.7 -61.2 

2 -59.4 -59.7 

3 -57.4 -58.1 

4 -56.3 -56.3 

5 -54.8 -54.8 

6 -52.8 -52.7 

Table 3: Averaged central dB values of the Gaussians derived from reference beam angles on both sides 372 
of the AUV MBES. 373 

 374 
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3.3 ISODATA applied to BS data 375 

 376 

The ISODATA algorithm was applied to the mean, mode, 10% and 90% quantiles of the 377 

backscatter mosaic. These datasets are considered more suitable than the raw backscatter 378 

data, as they hold a more realistic representation of backscatter spatial variability and they are 379 

slightly correlated (correlation coefficients: 0.5-0.9) with the mean backscatter. The ISODATA 380 

algorithm was set to produce an optimal number of clusters for different ranges of cluster 381 

amounts (minimum number of clusters from 2 to 5; maximum number of clusters from 6 to 382 

10). The results for all possible pairs regarding the minimum and maximum clusters were 383 

divided, indicating five or six clusters as optimal. To have comparable results with the Bayesian 384 

method, six clusters were selected for further analyses.  Although the algorithm does not 385 

output classes with ordering, the ISODATA classes were reclassified based on their nodule 386 

statistics to be comparable with Bayesian results (see discussion section). The classes show a 387 

decreasing amount of nodules from north to south with the nodule-free areas being 388 

sufficiently demarcated (Fig. 4B).  389 

 390 

 391 

 392 

3.4 Random Forest predictions using bathymetry derivatives and BS data 393 

 394 

The RF was performed in two steps: the training and the prediction step. First a sensitivity test 395 

was carried out using different percentages of training samples (Fig. 5B) and fitting models 396 

with 200 and 1000 trees. This test is essential for examining the optimal settings prior to 397 

applying a predictive model. It also helps in quantifying the stability of results (given the 398 

random character of the process) by running the model with optimal settings repeatedly. For 399 

quantifying the model accuracy we used the percentage of variance explained by the out-of-400 

bag samples (RF algorithm output report) whereas for assessing the prediction results, 401 

calculation of R2 was applied for measuring the correlation between the predicted and 402 

measured nodule density. According to the sensitivity analysis, a training set with 30% of the 403 

total amount of images with Mn-nodule statistics was sufficient to explain more than 70% of 404 

the variance of the out-of-bag sub-sample when training 200 trees. It was also found that this 405 

accuracy value is not improving significantly when increasing the training sample size (Fig. 5B). 406 

By maintaining the same amount of training samples (30% of the total images acquired, ca. 407 

2700 images) while using ten different parts of the data as training sample (ten-fold cross-408 

validation), the model performance was relatively consistent (69-72%) regarding the out-of-409 

bag variance explained (Table 4). These results refer to the Mn-nodules m-2 analyses. In 410 

addition we tested the predictability of the 2D size of nodules using the 50% and 75% 411 

quantiles of 2D sizes in square centimetres. The resulting out-of-bag variance explained was 412 

found to be much lower (35-40%), independently from the number of trees and the size of the 413 

training sample set. By using the results from the ten-fold cross-validation (or sensitivity test) 414 

we extracted the mean importance score of each bathymetry and backscatter parameter (Fig 415 

6C). Considering the prediction of Mn-nodules m-2, the mean backscatter data was found to be 416 

the most influencing variable which constantly scored first, followed by the BPI, bathymetry 417 
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and concavity. After the sensitivity test an optimal model using 30% of all images as training 418 

data and growing 200 trees (1000 trees did not produce better results) was developed using 419 

the explanatory variables for prediction of nodule densities. The final results of the RF method 420 

express a gradient from higher to lower nodule densities from North to South (Fig. 5A). An 421 

independent subsample of nodule measurements was used for validating the prediction 422 

results. This validation sample consists of measurements selected at least six meters away 423 

from any training location, to avoid the introduction of autocorrelation effects on the 424 

validation process which could overestimate the performance of the model. The value of 6m 425 

was selected as the majority of images cover a 6 m x 6 m area on the seafloor. A comparison 426 

between the image-based Mn-nodule measurements and the averaged predicted values based 427 

on ten different RF runs show a good average correlation based on the R2 coefficient (Table 4). 428 

This implies that there is a correlation between Mn-nodule density and MBES data, although 429 

there is some degree of uncertainty that remains in the prediction model (see Appendix).  430 

  431 
 432 
 433 

Training set size: 30% (ca. 2700 images) Trees: 200 

Model run# 
OOB variance 

explained% 

Predicted/Measured 

correlation (R2) 

1 72.5 0.69 

2 73.0 0.69 

3 70.6 0.68 

4 70.2 0.70 

5 72.2 0.70 

6 72.6 0.71 

7 69.3 0.69 

8 71.1 0.71 

9 72.9 0.68 

10 70.6 0.71 

average 71.5 0.7 

Table 4: RF model performance for minimum optimal settings of training sample and number of trees 434 
regarding prediction of Mn-nodule densities. 435 

 436 

4. Discussion 437 

 438 

Our results show that AUV imagery is capable to provide detailed information about Mn-439 

nodule densities hence assisting quantitative mapping of the Mn-nodule distribution on the 440 

seafloor. Consistency and repeatability of quantitative methods are fundamental factors in 441 

mapping studies and therefore automated image analysis is crucial in this regard. Expert 442 

assessments of several tens of thousands of images are practically not possible in a reasonable 443 

time frame and include a high rate of subjectivity. Thus, automated analysis of imagery is 444 

regarded as a very suitable method for quantitative mapping of Mn-nodules. This however 445 

comes at the cost that usually AUV image surveys are spatially restricted due to the low 446 
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altitude above the seafloor. For larger scale quantitative mapping of nodule fields, AUV 447 

imagery data need to get spatially linked with AUV hydro-acoustic data supporting with data 448 

from all regions of interest at the seafloor. Results from image analysis can then be used as 449 

alternative information for acoustic class validation and predictive mapping. Although image 450 

analysis results do not constitute ground-truth information they are the best available data to 451 

correlate with acoustic classification and prediction results. By exploring the relationship 452 

between Mn-nodule data with bathymetry, bathymetric derivatives and acoustic backscatter, 453 

we aim to identify potential linkages that allow extrapolation of nodule information to larger 454 

areas to assess mineral resources, determine benthic habitats or learn about geological 455 

processes that might influence nodule growth. The following paragraphs discuss the 456 

performance of the applied classification and prediction methods highlighting the potential 457 

use of high resolution Mn-nodule density maps by considering various sources of errors 458 

induced throughout the data analyses. 459 

 460 

 461 

4.1 Fine scale spatial variability of Mn-nodule density 462 

    463 

Both, the unsupervised classifications (ISODATA, Bayesian) and the random forest prediction 464 

results are largely comparable to the nodule detection measurements map (Fig. 6). Hence, 465 

both classification and prediction data, and nodule measurements reflect a similar spatial 466 

distribution pattern of nodule densities. The Mn-nodule densities seen in the imagery highlight 467 

a pattern of alternating high and low density bands on bathymetric slope features. According 468 

to studies on the fine scale (tens of meters) distribution of Mn-nodules as summarized by 469 

Margolis and Burns (1976) higher nodule densities are related to hilltops, slopes and the foot 470 

of slopes. The authors particularly highlighted that e.g. nodule sizes vary significantly over 471 

short distances; unfortunately there were no methods to capture this variability sufficiently at 472 

the time of this study. The correlation to the bathymetry is supported by the variable 473 

importance plot of the RF model (Fig. 5C). This plot shows that both bathymetry and 474 

backscatter features contribute significantly to the prediction of the Mn-nodule densities with  475 

variables such as mean backscatter intensity, fine scale BPI, and concavity as good predictors. 476 

The predictive potential of these variables needs to be validated in future studies using MBES 477 

data from different study areas.  478 

 479 

 Both unsupervised acoustic classes and the Random Forest prediction suggest a gradient of 480 

decreasing nodule densities from north to south while the RF quantitative map (Fig. 5A) shows 481 

more gradual changes regarding the fine-scale spatial distribution of Mn-nodules. The 482 

northern part of the MBES survey is located very close to, and partly within, a seamount area. 483 

According to towed camera video footage these seamounts comprise ancient volcanoes that 484 

are now covered with deep sea fine sediments. In addition, a few pillow-basalt outcrops were 485 

found along with basalt slabs being exposed on the seamount slopes. Greater nodule densities 486 

can be observed from these images suggesting that accumulated nodules or exposed basalt 487 

rocks may be assigned to the same acoustic class that represents higher acoustic intensities. In 488 

the random forest prediction, high nodule densities could be confused with basalt rock as well 489 
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(Fig. 5A, black arrows). Video data can be used in order to differentiate these seafloor types in 490 

the acoustic classes. Greater nodule densities in the vicinity of the seamounts area can be 491 

explained by the findings presented by Vineesh et al. (2009) and Sharma et al., (2013). These 492 

two studies propose that in the proximity of abyssal hills and slopes, abundant basalt 493 

fragments act as nodule nuclei that favour nodule development. Away from the seamount 494 

area, the nodule density variations follow a banded pattern of high and low density 495 

alternations with localized depressions representing nodule-free areas (Fig. 2B). The band-496 

pattern variation is not fully understood by the datasets available in this study; however, it is 497 

assumed that it is the result of a combination of the deep sea benthic boundary layer 498 

hydrodynamics, local sediment movement and active tectonics that impacts pore fluid 499 

migration. It is not clear why and how the nodule-free areas are formed and why we observe 500 

moderate nodule densities in broad deep plains of the area. Margolis and Burns (1977) suggest 501 

that bathymetric valleys are more influenced by sedimentation hence not favouring nodule 502 

growth, but that hill tops and bathymetric slopes are covered by a greater amount of nodules 503 

due to a lower impact of local sedimentation. Whether this explanation is also true for the 504 

described study area remains speculative. In any case, backscatter data clearly indicate where 505 

areas of higher and lower Mn-nodule densities exist, allowing for future investigations of the 506 

underlying factors.   507 

 508 

 509 

 510 

4.2 Assessing the Mn-nodule acoustic classification  511 

 512 

To assess the performance of unsupervised classification methods in clustering homogeneous 513 

areas of Mn-nodules, we examined the within- and between-class variability of the Mn-514 

nodules densities (nodules m-2). The assessment is based on the descriptive statistics of nodule 515 

measurements from each class (Table 5) and box-plots of nodules m-2 from each class (Fig. 7). 516 

The box-plots assist to better illustrate the separation between classes as well.   517 

To evaluate the separation of Mn-nodule densities that fall within different acoustic classes 518 

(Bayesian and ISODATA), we performed a Welch ANOVA along with a Games-Howell test for 519 

testing whether the mean values between the classes differ significantly. This test was 520 

selected, because the Levene’s test (Martin & Bridgmon, 2012) indicated that there is no 521 

homogeneity between the class variances for both classification methods (p<<0.05). 522 

Particularly the results of the Welch ANOVA for nodule populations belonging to the same 523 

Bayesian class (F(5,905)=700, p=<<0.05) and ISODATA (F(5, 2520)=810, p<<0.05) support the 524 

finding that the mean values of Mn-nodules densities differ significantly between the different 525 

classes. This finding supports that classification results effectively resolve acoustically 526 

homogenous areas of nodule patches which are statistically distinct to each other.  527 

Regarding the Bayesian classification results, the ordinal type of the classes can be noticed 528 

both in the statistics and the box-plots (Table 5, Fig. 7A). The mean and median values of 529 

nodules m-2 are increasing with increasing class number suggesting that higher backscatter 530 

values are related to higher nodule densities. Class 1 represents the lowest nodule densities 531 

but without including samples of zero nodules, this would make this class more distinguishable 532 

with an even lower mean value. Some class overlap can be observed in the box-plot for the 533 
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Bayesian classes; the within-class standard deviation is increasing with acoustic class number, 534 

suggesting larger ambiguity for areas with increased nodule density. Classes resulted from the 535 

ISODATA clustering hold similar standard deviations suggesting a similar degree of within-class 536 

variability. Overall, Mn-nodule density classes express high within-class variability with almost 537 

50% of within-class measurements spanning in a wider range of values causing class overlap 538 

(Fig. 7). This can be attributed to few factors such as inaccurate navigation between the 539 

different AUV deployments, shortcomings of the image-based nodule detection algorithm and 540 

noise in the backscatter data (see Appendix). However, it can be inferred from the box-plots for 541 

each unsupervised method that seafloor areas of homogeneous Mn-nodule density can be 542 

discriminated by classifying the MBES backscatter information only.  543 

No useful results were obtained for the 2D size of nodules (in cm2) when examining their 544 

descriptive statistics and box-plots with acoustic classes. This might be explained by limited 545 

interfering between acoustic wavelength and the nodules radii. The high frequency (200 kHz) 546 

MBES signal results in ca. 8 mm pulse-wavelength for 1500 m s-1 sound speed in seawater. This 547 

wavelength is significantly shorter than the average nodule size in the study area (>3 cm) 548 

suggesting that the dominant backscattering is sensitive to nodule density and not to nodule 549 

size. Early acoustic studies on Mn-nodules were based on low frequency sonars; therefore 550 

there is little or no information about the acoustic backscatter of nodules at high MBES 551 

frequencies (> 100 kHz). However, results from this study are in agreement with findings of 552 

Weydert (1985) according to which, frequencies higher than 30 kHz are more suitable for 553 

mapping the nodule density than the nodule size. This can be attributed to the fact that high 554 

frequency signals are more susceptible to surface roughness which is caused by fluctuating 555 

nodule densities. Therefore it is suggested that backscatter would increase with increased 556 

nodule density given that seafloor roughness increases as more nodules occur per seafloor 557 

area.  558 

 559 

 560 

Bayes – Mn-nodules m-2 

Class samples mean median mode St.dev. 

1 91 1.4 0.7 0.4 1.4 

2 1760 1.7 0.9 0.9 1.9 

3 2200 3.6 3.6 3.6 2.4 

4 2347 4.6 4.5 4.6 2.7 

5 1500 5.5 5.1 4.9 3.4 

6 756 7.5 7.3 6.4 3.6 

ISODATA – Mn-nodules m-2 

Class samples mean median mode St.dev. 

1 3468 2.2 1.4 0 2.3 

2 2732 3.5 3.5 2.9 2.3 

3 2800 4.8 4.7 4.7 2.4 

4 570 5.9 6.1 4.9 3.2 

5 628 7.0 6.9 5.2 3.6 

6 964 7.7 7.3 6.6 3.6 

 561 
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Table 5: Descriptive statistics highlighting the within-class variability of Mn-nodules for both 562 
classification methods. 563 

 564 

 565 

 566 

4.3 Implications of acoustic mapping on Mn-nodule resource assessment and benthic habitat 567 

characterization 568 

 569 

Obtaining high resolution seafloor acoustic classes and quantitative spatial predictions of the 570 

Mn-nodule density provides useful information for deep sea mining and impact management. 571 

The obvious application is a more realistic resource assessment (total tonnage of Mn-nodules 572 

per area) which can assist a better delineation of particular areas with mining interest on large 573 

and small scales. Resource assessment can be based on semi-quantitative information 574 

provided by acoustic classes that correspond to particular Mn-nodule densities or quantitative 575 

results from the RF predictive map. 576 

 577 

In addition, quantitative maps of Mn-nodule densities can be used to support extrapolations of 578 

benthic biota densities to seafloor areas where benthic information is not available. This is 579 

possible by considering the nodule substrate as surrogate for habitat mapping of certain biota. 580 

Surrogacy for mapping deep sea ecosystems has been incorporated in the study of Anderson 581 

et al. (2011); the authors point out, that geomorphic classes can be used for discriminating 582 

habitats in broad scales of tens to hundreds of kilometres. They also highlight that any 583 

surrogacy approach should be based on the correlation between the physical variables (e.g. 584 

bathymetry, backscatter) and the biological patterns that appear in the study area. In 585 

Vanreussel et al. (2016) and Amon et al. (2016) it is shown that seafloor covered with more 586 

Mn-nodules features higher epifaunal densities. This relation might be further evaluated to 587 

have a better and verified relationship between nodule and biota densities allowing estimating 588 

biota abundances in larger areas that have only been mapped acoustically.  589 

 590 

 591 

5. Conclusions 592 

 593 

AUV-based optical and acoustic mapping at high spatial resolution opens up new opportunities 594 

for mapping Mn-nodule fields. In this study, automated image analysis provided dense, 595 

quantitative information about Mn-nodules at fine scale. This information offers useful insights 596 

about the fine scale variability of Mn-nodule densities while it can be utilized for correlations 597 

with seafloor acoustic classes and predictive mapping. It was found that the Mn-nodule 598 

density within a 500 m x 500 m photo mosaic varies in a pattern of alternating bands (with 599 

denser and sparser amounts of nodules) according with smooth bathymetric slopes with a 600 

preference of increased nodule occurrence at concave seafloor morphologies. Areas with 601 

different nodule densities produced distinct backscatter classes that distinguished nodule 602 

populations with distinct mean density values. This suggests that Mn-nodule densities can be 603 

efficiently mapped with high resolution hydro-acoustic data. In addition, applying machine 604 

learning methodology showed great potential in quantitative predictive mapping of Mn-605 
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nodules through modelling the complex relation between image-derived nodule metrics with 606 

bathymetric derivatives and backscatter statistics. In essence, by using a relatively small 607 

amount of AUV images (ca. 2700) as the training set it was possible to obtain a 70% correlation 608 

between predicted and measured Mn-nodule densities. High quality and spatial resolution 609 

AUV hydro-acoustic and optical data can provide a fast and less costly mean for Mn-nodule 610 

mapping. This has three major implications in deep sea studies: 1) it raises questions about 611 

what causes the Mn-nodules to follow the fine scale bathymetric morphology, 2) it assists in 612 

better resource assessment of Mn-nodules and provides the information needed for planning 613 

the optimal mining path and 3) it provides more accurate information about Mn-nodule 614 

substrate as a benthic habitat, hence it can be utilized for better understanding the deep sea 615 

ecology and ecological impact of potential Mn-nodule mining.   616 

 617 
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Fig. 1: A) The DISCOL area location in the Peru Basin (red star). B) Ship-based, shaded bathymetry of the 
wider DISCOL area with 40 m pixel size. The black rectangle represents the boundaries of the AUV 
MBES dataset used in this study (Fig.2). 
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 749 
 

Fig. 2: A) AUV MBES bathymetry with black lines indicating the tracks of the AUV image survey. Closely 
spaced track lines covering a rectangular area in the lower part of the image correspond to the areas 

shown in Figures 3A & 6A-D. B) AUV backscatter mosaic. The polygons delineated in red represent 
nodule-free areas as observed from underwater video data.  
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Fig. 3: A) Points with nodule measurements derived from automated nodule detection, draped 

on AUV bathymetry, showing Mn-nodules per square meter from perspective view, B) Longitudinal 
section of bathymetric profile from same area highlighting the local scale morpho-bathymetry of Mn-

nodule fields.  
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Fig. 4: A) Bayesian classification map based on AUV backscatter beam data, B) ISODATA 
classification map based on AUV backscatter neighbourhood statistics (mean, mode, 10th Q 
and 90th Q, see Table 2).  
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Fig. 5: A) Random forests prediction map of Mn-nodules densities, Sensitivity analysis results: B) 

Percentage of training sample size and performance of RF model in terms of percentage of variance 
explained (out-of-bag). C) Importance scores of MBES explanatory variables, based on average 

percentage increase of mean prediction error from ten model runs. 
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Fig. 6: Inter-comparison of quantitative methods results from the same coverage area (Rectangle made 

by dense black lines in Fig. 2 A): A) Mn-nodules per image-point (automated nodule-detection from 
optical images), B) ISODATA classes (10m cell size), C) Bayesian classes (6m cell size), D) RF Mn-nodule 

density prediction map (6m cell size). 
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Fig. 7: Box-plots of nodule densities grouped by acoustic class to illustrate the between-class variability. 

A) Variation of measurements, from samples belonging A) to the same Bayesian classes and B) same 
ISODATA classes. Blue rectangle bottom and top represent the 25% and 75% percentiles respectively 
whereas the red line indicates the median value. The whiskers extend to the minimum and maximum 

value of the samples that are not considered outliers (i.e.: they are no more than ±2.7σ apart). Outliers 
are marked with red crosses.  
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APPENDIX 788 

 789 
 

Fig. A1: Data exploration results showing probability density functions for arbitrary classes of nodules 
per image (<10: no nodules, 10-184: low, 185-270: mid, >270: high) for A) bathymetry and derivatives 

and B) Backscatter and neighbourhood statistics. 
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APPENDIX A1 790 

Error sources in quantitative Mn-nodule mapping  791 

A few error sources need to be considered when performing seafloor classification and nodule 792 

density estimates with optical and acoustic data acquired during multiple AUV deployments. 793 

 794 

1) Noisy backscatter data: Since the Bayesian approach uses the raw backscatter data, 795 

any final classification is susceptible to the effects of noise. Hence, beam incidence 796 

angles less than 20 degrees were discarded due to extreme nadir noise effects. The 797 

ISODATA classification was based on the backscatter mosaic and its statistics which 798 

are also affected mainly by nadir specular noise. It is thus strongly recommended 799 

that backscatter data are properly corrected for geometric and sensor-related effects 800 

during pre-processing and grids are also filtered/smoothed before the final 801 

classification.   802 

 803 

2) AUV navigation: As exact underwater navigation in 4 km water depth is generally a 804 

difficult task, relative misalignments of data from different deployments are very 805 

common. Differences in absolute positioning between two deployments can easily 806 

amount to 100 m. Thus correlating image based nodule densities from one 807 

deployment with backscatter values from another dive might introduce correlation 808 

errors that also impact predictability. Although the large scale spatial pattern of 809 

classes is well defined, these misalignments can slightly alter the position of class 810 

boundaries causing disagreement with the nodule density measurements in places. A 811 

correct and verified re-navigation of all AUV-tracks is important for all subsequent 812 

analyses. This was done during this study, but slight misalignments remain. 813 

 814 

3) Nodule sediment blanketing: The effect of Mn-nodules being blanketed by sediment 815 

needs to be considered as a source of error here as the individual nodule size and 816 

thus the seafloor coverage might be underestimated by automated annotation. Apart 817 

from natural sedimentation, the re-deposition of the plume cloud caused by 818 

ploughing during the first disturbance experiment (conducted in 1989), has covered 819 

certain parts of the nodule field which might lead to a lower nodule densities in 820 

those areas. This effect can artificially reduce the correlation between acoustic 821 

classes and Mn-nodule densities given that backscatter is not affected by sediment 822 

blanketing. 823 

 824 
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