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1 Reply to reviewer S. Zaehle

We want to thank the reviewer for the time and effort for the careful and very insightful review. In the following, we respond
to the reviewer point by point, with our responses in bold and quotations from the updated manuscript in cursive. Please also
consider the updated manuscript with track changes in the supplementary. Also note that we expanded the discussion section

to include a paragraph on a potential bias in the fossil fuel emissions used for the deconvolution by including non-fuel uses.

Point-by-point response

Lienert and Joos apply a bayesian data assimilation framework to the LPX-Bern model in order to constrain a selection of
model parameters using a range of local to global carbon and water cycle observations. In the manuscript, they describe
the framework and illustrate the key model performance criteria. This framework allows them to provide a data-constrained
simulation of the regional and global terrestrial carbon balance between 1860 and 2016, and in particular to estimate the
land-use related carbon emission, including an uncertainty range. This is a very good study integrating multiple observations
in a systematic and reproducable way to constrain a process-based global carbon cycle model. This system is not only used
to produce a newly calibrated LPX-Bern version for future use, but also to provide useful insight into the magnitude (and
particularly the uncertainty) of land-use emissions. Overall this is a valid contribution to Biogeosciences.

Thank you

Unfortunately, I have troubles following the method description. The description of the way, the parameter distributions are
updated is remains fairly unclear. I recommend that the authors devote a special section in the Methods section to clarify a
couple of points:

A separate section on prior selection is added to the manuscript.

a) how was the prior distribution of the parameters derived (literature ranges typically only allow to assume uniform distri-
butions); b) how exactly is the ensemble updated after the metrics are calculated. Is it the probability distribution of each
parameter, which is updates? This would lead to a new LHS set to be produced, and subsequent new model runs? Figure 1
would suggest that this is the case, but in this case, the new set would be dependent on the metric and metric weighting, which
contradicts the statements made on P2 (also, it’s computationally probably prohibitive). Or is each LHS sample weighted ac-
cording to the model performance, and this weight then used to calculate the PDF of a modelled output? If that is the case,
I don’t understand the iterative nature of the LHS sample updates? Also, in this case, it would be good if the authors would
elaborate on the way they’ve estimates the posteriori distributions.

We introduced a new subsection discussing the method used to obtain the prior parameter distribution and reordered
the section for clarity. Please refer to section 2.3.2 (p.6 1.9-p.8 1.7 in the manuscript).

Figure 1 in this reply shows the evolution of the median parameter values and ranges of the ensembles with 200 and
300 members (T1-T6) and large ensembles with 1000 members (E1-E3), discussed in the new section in the manuscript.
Only the parameters used in the final ensemble E3 are shown. In the small ensembles, different model configuration

and parameters were tested. For instance, in ensemble T2 nitrogen limitation was not considered and thus the nitrogen
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Figure 1. Median and 90% confidence intervals used for the prior distributions of the parameters of 9 ensembles. T1-T6 are ensembles with

fewer members and E1 and E2 were precursors of the final ensemble E3.

cycle related parameters were not sampled. The factorial simulation and small ensembles informed the choice for the

prior of ensemble E1, which is then iteratively improved to arrive at the prior of E3.

Given that the authors highlight the ability to change the cost-function and weighting as a key strength of their method, it would
be also interesting if they would add a discussion point as to how robust they believe the posteriori parameter distributions are
against their choice of metric & weighting.

We qualitatively assessed the robustness by reevaluating the ensemble for a subset of the observational targets. For
this purpose we created multiple hierarchical weighting schemes, each missing one of the observational targets or a
category of targets when compared to the default version, and looked at the induced changes in the parametrization of
the best guess version. We added a section discussing this approach to the manuscript:

“We investigate the dependency of the constrained ensemble on the choice of the observational constraints by reevaluating
the ensemble for a subset of observations. We created 19 weighting schemes, each missing one of the individual observational

constraints (Figure 2 and table 2) and otherwise identical to the default scheme. Then the median skill weighted parameter
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values of these ensembles are compared to the best-guess values of Myt net (section 3.3). The relative change in parame-
terization is less than 1% for 15 out of the 19 considered alternative weighting schemes. Leaving away the global vegetation
and soil carbon constraints lead to moderate changes, notably to a change in the parameter for mortality (mort,,q.) of 4%
and 2% respectively. Not including the soil carbon distribution in high latitudes lead to an increase of the parameter for the
dependency of soil respiration on temperature (Eq 1) of 2%. The largest changes in parameterization were observed when
not considering the atmospheric deconvolution, most notably the sapwood-heartwood turnover time Tgqpwood decreased by
5%. When omitting entire categories in the benchmarking scheme, the changes in parametrization are larger than for omitting
individual constraints, with parameter changes of up to 1% for the fluxes, 5% for the inventory and 6% for the transient cat-
egory. This shows that the final parameterization is not overly sensitive to the inclusion or omission of a single observational

product.”

I have a number of further suggestions to improve the clarity of the manuscript: P1 L17: in the context of a data assimilation
paper, the use of assimilated here is confusing. replace by stored?

Done

P2 L3: Add “Amongst others,” at the beginning of the sentence

Done

P2 L4: unclear what uncertain prescribed LULCC processes are meant to be, perhaps give examples, or clarify that it’s the
representation of these processes that is uncertain

Done, the sentence now reads:
“In addition to uncertainties in the prescribed LULCC forcings and the representation of LULCC and other processes in

DGVMSs, the values of the applied parameters are subject to substantial uncertainties.”

P2 1.9 DA “should” be an integral part of model development, but unfortunately it is not always.
Replaced “is” by ‘‘should be”.

P2 L10: Is the Houwelling reference appropriate here? This does mostly relate to inverse atmospheric modelling

Removed Houweling reference

P2 L12: Not sure that I understand sequentially correct here. Most DA methods would assimilate different data sources simu-
lateneously. Also, I think cost-function is the more common term for metric in this context
Revised sentence to read: “A drawback of these methods is that the sampling process is dependent on the choice of the cost

function, the design of which is not trivial when assimilating multiple observations simultaneously.”

P2 .14 This sentence is a bit out of context in a paragraph on alternative DA methods, because benchmarking does in general
not imply DA. It seems more logical to merge this sentence with the Paragraph starting in L25, and move the entire paragraph
to L6 after Le Quere et al. 2016.

Moved, the paragraph now reads:
“Amongst others, Dynamic Global Vegetation Models (DGVMs) can be used to assess the contribution of LULCC to the terres-

trial carbon budget (Le Quéré et al., 2016). The assessment of the performance of a given model version using observational
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benchmarks has been actively discussed in the literature (Hoffman et al., 2017; Peng et al., 2014; Kelley et al., 2013; Luo
et al., 2012; Blyth et al., 2011; Randerson et al., 2009) and different frameworks have been proposed. The selection of ob-
servational targets is vital to a successful assimilation of observational data. In order to constrain the contemporary carbon
cycle, 14 data products are used, ranging from global inventories of carbon (Ciais et al., 2013) to spatially resolved satellite
estimates of photosynthetically absorbed radiation (Gobron et al., 2006). The goal of the data set selection process was to
have observations capturing the magnitudes of fluxes and inventories in the carbon cycle, as well as its transient response to
anthropogenic perturbance. In addition to uncertainties in the prescribed LULCC forcings and the representation of LULCC
and other processes in DGVMs, the values of the applied parameters are subject to substantial uncertainties. We use a Monte-
Carlo-like data assimilation approach (Steinacher et al., 2013; Steinacher and Joos, 2016, Battaglia and Joos, 2017) to sample
15 key model parameters and construct a 1000-member model ensemble to investigate this parameter related uncertainty in

the DGVM LPX-Bern. Furthermore, we establish a new reference version of the model.”

L2 L18: As noted above, I have troubles following here: LHS simply provides a set of parameter combinations, in which
each parameter is sampled given a specified distribution and notably, ensuring that there is no correlation amongst any of
the parameters. LHS does not imply any model metric per se. The way the posterior distribution is derived from the prior
distribution and the model metrics is unclear. How many iterations would be needed to arrive at a stable solution, what is
the stopping criteria, and why is it possible to change the metric during the DA procedure? This would change the posterior
distribution, and therefore impede convergence.

Please see the answer to the major points.

P2 L31: I wonder if the flow of the introduction would be more logical if one would first talk about the LULCC processes as
in this paragraph, then about the benchmarking in the preceding paragraph, and only then about data assimilation?

We have restructured the introduction but slightly deviated from the reviewers suggestion to improve text flow. Please
also see the attached manuscript with track changes.
P2 L31: While the (add) “net” land-atmosphere flux can “to some extent” be . . .

Done
P2 L32: add “residual” terrestrial carbon sink?

Done
P4 L21: I think it is worth highlighting that the strength of LHS over other sampling techniques is that the set of parameters in
uncorrelated.

Done:
“.to generate an uncorrelated parameter ensemble of a given size.”
P4 1.20: The text confuses MC parameter sampling techniques, which are indepedent of any purpose the sampling is made for,
from MC Data assimilation techniques, which are not?

Changed “Monte Carlo sampling techniques” to “Monte Carlo data assimilation techniques”

P4 1.26: the description of alpha_a should correspond to table 1, it is not FAPAR!
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Done:

"The fraction of photosynthetically active radiation assimilitated at ecosystem level relative to leaf level, o, .."

P4 L7: Literature range only allow to give uniform distribution. How where the nonuniform distribuition parameters obtained
/ estimated?

See answer to major points and attached manuscript.

P4 L7: I have trouble following from here on. Maybe this would become clearer, if first all the metrics and data sources were
explained, and then the way the distributions are updated is clearer presented.

Revised this section (See answer to major points)

P8 L10: which winds were used for the transport? I assume that the winds were not interannually varying?
Yes, the transport matrix does not include interannual variability. Added:
This method does not include the interannual variability of the transport.
Additionally, we added an explanation to Figure 8 for clarity:
"As expected, the interannual variability in seasonal amplitude of CO5 is not captured as the atmospheric transport model

TM?2 does not represent interannual variability in mass transport.”

L9 L5: Inversion typically refers to the inverse modeling of atmospheric transport, whereas here - as far as I understand this,
you simply take the land flux as the residual of the fossil fuel emission and ocean uptake.

We changed all occurrences of inversion to deconvolution.

P9 L10: Are these data sources not redundant with the global maps of total and soil C storage described earlier?
While the information of the global carbon content is also contained in the maps, we feel the inclusion of the addi-
tional, well established, global target is warranted by the importance of these targets. This is effectively increasing the

weight of these targets.

P9 L27: I don’t understand the reasoning for the duplication of ensembles with gross transitions. Please motivate.

We did not repeat the procedure to improve the prior distribution (See updated manuscript) for M;.,,5 gr0ss and as
such the prior and posterior distributions do not converge. Consequently we do not feel comfortable to use Mg,.55 gross
as the basis for our estimates for E;yc. As a compromise we introduced Mg, .s; nct, retaining the confidence in the

performance of M,,.; ., and simply adding the important processes of shifting cultivation and wood harvest.

P9 L31: As noted above, I have difficulties following this description.

Section revised completely, see the answer to major points.

P10 L5-8: Is material for the introduction, not the results section

Removed Paragraph

P10 L 8-11 can be safely removed.

Removed Paragraph
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Section 3: When giving numerical estimates, please add either range or standard deviation, whenever the number is based
on the ensemble. I also think that the more logical arrangement of the Results sections would be to first talk about model
performance, and then about the attribution of the net land flux to LULCC and residual.

Added the skill weighted 90% confidence interval for every reported number, except when reporting the median
difference between two ensemble configurations. We agree that the suggested order of the result section is more logical,
however we feel that the results on LULCC are of more interest to a broader range of readers, and thus prefer to lead

with those results.

P13 L4: Why would an underestimation of the ELUC not affect your conclusions about ELUC?

The net land-atmosphere flux is underestimated because E ;.. .; features additional processes that lead to an in-
crease in F1,yc, while the residual land sink remains constant. However if only considering F1 ;¢ we expect the magni-
tude of the residual land-sink and net land-atmosphere flux to be less important than for instance model performance
in the vegetation carbon benchmarks (Li et al., 2017). For clarity we revised the sentence:

“A caveat of this choice is that the net land-atmosphere flux is underestimated in M yr 55 net because the residual land sink only
responds to the lower E1,uc of Myet,net. However if only considering Er,uc we expect the magnitude of the residual land-sink
and net land-atmosphere flux to be less important than model performance with respect to vegetation carbon (Li et al., 2017)

and other benchmarks.”

P17 L6: is the use of the word significant appropriate here?

Changed ’significant’ to ’relevant’

P17 L8: why not?
Using the vegetation carbon distribution directly, would have been a valid choice. Exchanging the total carbon distri-
bution for the vegetation carbon distribution in the hierarchical weighting scheme reveals that the median parameter

values used for the best guess version change less than 0.5%.

P 18 L 3: Why is this different from the approach described in Section 2?
Sentence shortened and clarified to read:

“We compare the total land-atmosphere exchange flux to the results of the atmospheric COy deconvolution in Fig. 11”7

Conclusion Section: There is no need to repeat details of the methods or approach undertaken

Shortened conclusion section by removing sentences which go into too much detail.

Figure 1: Ensure all lines are visible

Adjusted legend

Table 1: Check units and definition for EO. This seems more like an activation energy to me (not a temperature sensitivity What
are the units of the k_la:sa? Is this simply a scalar?
E, is defined according to Lloyd and Taylor 1994, which considers the effect of an activation energy which is varying

with temperature. Using their representation it has the unit [K] and is strictly speaking not an activation energy. As such



we find the definition appropriate. k;,.;, scales the PFT dependent leaf area to sapwood area and is as such unitless.

The leaf area to sapwood area has the units [m?/m?]
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2 Reply to reviewer J.-F. Exbrayat

We want to thank the reviewer for the time and effort for the careful and very insightful review. In the following, we respond
to the reviewer point by point, with our responses in bold and quotations from the updated manuscript in cursive. Please also
consider the updated manuscript with track changes and a high-resolution figure for this reply in the supplementary. Also note
that we expanded the discussion section to include a paragraph on a potential bias in the fossil fuel emissions used for the

deconvolution by including non-fuel uses.

Point-by-point response

The study presents an approach to constrain a DGVM with multiple observational streams of carbon stocks, gross and net
fluxes. The authors rely on a latin hypercube stratified sampling to perturb model parameters and create several 1,000-member
ensemble simulations of the terrestrial carbon cycle for the historical period. Results focus on the estimation of land-use and
land-cover change emissions. This study is quite innovative in the context of the global terrestrial carbon cycle as model
parameters are constrained globally.

Thank you

I have found several similarities between the method described here and the Generalised Likelihood Uncertainty Estimation
C1 method used in hydrological sciences (Beven and Binley 1992).

We have added a reference to Beven and Binley in the introduction:
“Other approaches have also been investigated, such as using generalized likelihood function for model calibration and un-

certainty estimation (Beven and Binley, 1992)”

First, my main criticism targets the description of the sampling method. It is very unclear how the prior probability distribution
in Figure 1 and the new best-guess values in Table 1 have been obtained, and how the posterior distribution of the parameters
is calculated. Is it based on the selection criterion used to exclude the less skilled model parameters (p7 15-8)? If Figure 1 and
Table 1 present results from the current manuscript they should be described in the corresponding section.

We restructured the method section and introduced a new subsection describing the explorative approach used to
obtain the prior distribution. Additionally, we clarified the procedure to arrive at the posterior distribution in Section
2.3.2 (p.61.9-p.8 1.7 in the manuscript with track changes).

Figure 1 in this reply shows the evolution of the median parameter values and ranges of the ensembles with 200 and
300 members (T1-T6) and large ensembles with 1000 members (E1-E3), discussed in the new section in the manuscript.
Only the parameters used in the final ensemble E3 are shown. In the small ensembles, different model configuration
and parameters were tested. For instance, in ensemble T2 nitrogen limitation was not considered and thus the nitrogen
cycle related parameters were not sampled. The factorial simulation and small ensembles informed the choice for the

prior of ensemble E1, which is then iteratively improved to arrive at the prior of E3.

Second, I struggle to understand what experiments were actually undertaken. From section 2.6, it seems that three simulations

are performed for each parameter set. These three simulations differ in the representation of LULCC: none (reference), gross
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or net transitions. Then, the results section reports the three different model configurations Mnet,net, Mgross,net, Mgross,gross
while these are first described as three alternative skill weighted median.

To clarify we added the following text to section 2.5 (Former 2.6):
“For each of the parameter sets 4 transient simulations over the industrial period are performed: (i) a simulation with
prescribed net transitions (Mpet et and Mgross net), (ii) a simulation with prescribed gross transitions (Mgross net and
M gross,gross) (i) a run with landuse area fixed at preindustrial levels and (iv) a run with landuse including shifting culti-

vation held at preindustrial levels. The last two simulations are used purely diagnostic to determine Eryc.”

Third, I am unclear about the skill-weighted mean method. Simulations with either net or gross land-use configuration are
likely to yield different results so it is hard for me to justify Mgross,net. I understand that the Mgross,net skill-weighted mean
provides the best results compared to benchmarks (Table 3) but it could be an artefact, couldn’t it?

As now explained in the revised MS (see our answer above), we did not perform the procedure for optimizing the prior
distribution for My, gr0ss.- The prior and posterior distributions of this configuration do not converge and as such we
feel not confident in using it as the basis for our estimates for F1yc. However, it is clear from literature that processes
such as shifting cultivation and wood harvest are an important component of landuse change. As a compromise we use
the optimized M,,.; ,,.: ensemble with the additional gross transition processes added, without the retuning of the model

parameters.

Also, some parameter sets are likely to perform better in some regions and worse in other. Therefore, would a spatially-explicit
weighting scheme (Schwalm et al., 2015; Exbrayat et al. 2018) be more suited to constrain the ensemble?

The use of spatially dependent parametrization offers numerous advantages, which include the potential to yield bet-
ter performance with regard to observational data. However we believe that assessing the performance of an individual
model using global parametrization, can still provide valuable insight in the terrestrial carbon cycle, as a potential
caveat of regional parametrization are the additional degrees of freedom which could potentially lead to an over-fitting
of the problem. We have added the following text to the discussion:

“An other avenue of increasing model performance is to introduce spatially explicit parametrization, as recently used in multi-
model averaging studies (Exbrayat et al., 2018; Schwalm et al., 2015). A caveat of using this approach with a single model is

a potential overfitting of the parameters.”

Hereafter are some more specific comments p4 16: CRU TS3.23 covers 1901-2014, so how are simulations performed for 1800-
2014 (or is it 1800-2016 like in the abstract?) please clarify throughout the manuscript

Simulations are performed from 1800 to 2016 with recycled climate data from 1901-1930. Corrected wrong period
1901-2014 to 1901-2016 and changed the wrong reference from CRU TS3.23 to CRU TS3.25 (1901-2016). The recycling

of the climate data is described at the end of section 2.2.

p4 121: please define what model metrics
Added specification in sentence:

“..,the sampling is independent of the metrics used to assess model performance,..”

10
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p5S 16: how have these distributions been chosen?

Please see update to sampling description.

p7 11: please write MSEi rel

Done

p9 128: "LULUC’? please correct here and in several other places
Done, corrected LULUC to LULCC throughout the text

p10 113-23: please include some information about the uncertainty displayed in the Figures here and throughout the text
We now report the skill weighted 90% confidence interval throughout the text, except for differences between differ-

ent ensemble configurations.

pl111: please quantify ’slight’

The uptake from 1980 to 2016 amounts to 2.6 PgC. We now report the interval 1990-2016 and revised the sentence to
read:
“The resulting total change in land carbon is negative, with a slight uptake of carbon at the end of the century, amounting to

9.3 (-0.9,22.2) PgC between 1990 and 2016~

pl4111: see previous comment on the study period

The simulation spans 1800-2016, however spatial output was only saved after 1901 due to storage limitations.

pl16 13: an informative figure would a covariance matrix of the parameter sets’ scores for each criterion

Figure 2 in this reply shows plots of the skill in individual observational targets for all parameter sets. A striking
feature is the high correlation of the skill in total carbon map with skill in soil carbon map, which is not unexpected.
There is no scatter plot with a lack of points in the upper right corner, i.e. no observational constraints are mutually
exclusive. While we agree that this figure is informative, the sheer size and number of subplots make an inclusion in the
manuscript or supplementary difficult. Please note that a version of the figure in vector graphic format is included in

the supplementary of this reply.

pl6 112: according to Figure 8b and d, the model captures the seasonality but not the interannual variability. This is worth
reporting (and explaining).

The interannual variability is not captured because the transport model used does not feature winds with interannual
variability. Added sentence:
“As expected, the interannual variability in seasonal amplitude of COs is not captured as the atmospheric transport model

TM?2 does not represent interannual variability in mass transport.”

Fig 1: Mnet,net is not defined
Added:

il

“... ensemble with net land-use (Mpet net)’

Fig 3: please explain the sign convention as it seems at odd with figure 4 (ELUC in particular)

11
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Figure 2. Skill in observational targets for all parameter sets. The diagonal shows a histogram of the skills for the targets, the off-diagonal
shows the skill of two observational datasets in a scatter plot. A high resolution version of this plot is attached to the reply in the open

discussion.

We updated Figure 4 to show a release of carbon to the atmosphere due to LULCC as positive, which is consistent

with Figure 3 (And the rest of the text). Updated the figure caption and text to be consistent with this change.

Fig 7: this figure is very complicated. Why is it important to look at the whole ensemble, and the constrained one? Constraining
the ensemble uncertainty is not a major point in the rest of the manuscript and uncertainties are not reported in most of the text.
We expanded the section explaining the constraining process (See answer above) and added additional confidence
intervals for the numeric results. We revised the text in the first paragraph of 3.2 to better explain the figure:
In Fig. 7 a mapping of the MSE,.; to an individual skill score is displayed for the observational data-sets with a spatial
structure, to demonstrate how well the median of the ensemble and the new version LPX v1.4 are able to simulate individual
observations. The figure also demonstrates the success of the assimilation process: the skill scores for many individual targets
are improved in the ensemble median and LPX v1.4 compared to LPX v1.2, the starting point of our work. As a consequence of
our iterative prior selection (section 2.3.2) the median skill for an individual constraint is similar in the constrained ensemble
compared to the unconstrained ensemble. In all but the fAPAR benchmark the skill is consistently higher than the minimum
skill criterion. With the exception of the biomass measurements by (Keith et al., 2009) and the fAPAR benchmark, the maximum
skill in the constrained ensemble is identical to the full ensemble. The reduced maximum skill in those benchmarks is due to an

exclusion of singular runs excelling at this benchmark but performing badly in others.

Fig 8: please move the legend

Done

12



3 List of changes

Following is a short overview of the most important changes in the manuscript. Please also consider the more detailed point-

by-point replies above and the manuscript with track changes below.

* Introduction: Improved text flow and added additional references.
* Method section - Model setup and spinup: Corrected used climate forcing

* Method section - Sampling and Constraining: Extensive changes: restructured, improved text and added new subsection

“Selection of the prior distribution”.

* Method section - Observational constraints: Renamed the atomspheric deconvolution from inversion to deconvolution

throughout the text.

¢ Method section - Definition of Land-Use emissions and the setup of the model ensembles: Clarified simulations per-

formed.

* Result section: 90% confidence interval reported on numerical results in the text. Slight changes in the median value
are due to changing to taking the ensemble median after performing the temporal summation/average on individual

simulations instead of calculating the median for every year and then performing the temporal aggregate for consistency.

* Result section - Evaluation of ensemble performance with respect to observational targets: Improved description of

Figure 7 in the text.

* Result section - Evaluation of ensemble performance with respect to observational targets: Added paragraph investigating

the dependency of the constrained ensemble on the selection of observational constraints.

¢ Discussion - Benchmark performance and best guess version: Added new paragraph discussing the potential influence

of neglecting non-fuel uses of fossil fuel on our atmospheric deconvolution.

¢ Discussion - Benchmark performance and best guess version: Added new paragraph mentioning spatially explicit parametriza-

tion.
* References: Removed superfluous URLs in addition to DOIs.

* Various small changes throughout the text, such as corrected spelling errors or moved legends in plots, please also

consider the manuscript with track changes and the replies to the reviewers.

4 Manuscript with track changes

13
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A Bayesian Ensemble Data Assimilation to Constrain Model
Parameters and Land Use Carbon Emissions

Sebastian Lienert!? and Fortunat Joos!-

IClimate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland
2Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland.

Correspondence to: Sebastian Lienert (lienert@climate.unibe.ch)

Abstract.

A dynamic global vegetation model (DGVM) is applied in a probabilistic framework and benchmarking system to constrain
uncertain model parameters by observations and to quantify carbon emissions from land-use and land-cover change (LULCC).
Processes featured in DGVMs include parameters which are prone to substantial uncertainty. To cope with these uncertainties
Latin Hypercube Sampling (LHS) is used to create a 1000-member perturbed parameter ensemble, which is then evaluated with
a diverse set of global and spatio-temporaly resolved observational constraints. We discuss the performance of the constrained
ensemble and use it to formulate a new best-guess version of the model (LPX-Bern v1.4). The observationally constrained
ensemble is used to investigate historical emissions due to LULCC (ELyc) and their sensitivity to model parametrization.
We find a global Epyc estimate of 158 (108, 211) PgC (median and 90% confidence interval) between 1800 and 2016. We
compare Epyc to other estimates both globally and regionally. Spatial patterns are investigated and estimates of Ey,yc of the
ten countries with the largest contribution to the flux over the historical period are reported. We consider model versions with
and without additional land-use processes (shifting cultivation and wood harvest) and find that the difference in global Fr,yc
is on the same order of magnitude as parameter induced uncertainty and in some cases could potentially even be offset with

appropriate parameter choice.

1 Introduction

Due to constraining atmospheric CO5 concentrations and the relatively well known COs sink in the ocean it follows that about
a fifth of anthropogenic CO, emissions is assimilated-by-stored in the terrestrial biosphere (Ciais et al., 2013). However, the
partitioning of this land-atmosphere flux to effects from human-induced land-use and land-cover change (LULCC) and the
transient change of the residual terrestrial sink remains highly debated (Schimel et al., 2015). It is estimated that approximately
a third of the cumulative anthropogenic CO5 emissions in the industrial period stem from the effects of LULCC (Arneth et al.,
2017; Brovkin et al., 2013; Gerber et al., 2013; Houghton and Nassikas, 2017; McGuire et al., 2001; Mahowald et al., 2017;
Pongratz and Caldeira, 2012; Sitch et al., 2015; Strassmann et al., 2008; Stocker et al., 2017, 2014; Peng et al., 2017). A better

understanding of the mechanisms of the historical terrestrial carbon cycle is vital for more accurate future projections of the
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global carbon cycle and climate. In addition,a better understanding of the residual terrestrial sink can also help to improve our
understanding of the terrestrial carbon cycle of the past, unperturbed by human influence.

Amongst others, Dynamic Global Vegetation Models (DGVMs) ean-be-used-to-assess-are used to quantify the contribution
of LULCC to the terrestrial carbon budget (Le Quéré et al., 2016). The assessment of the performance of a given model using
observational benchmarks is actively discussed in the literature (Hoffman et al., 2017; Peng et al., 2014; Kelley et al., 2013; Luo et al., 201

different frameworks have been proposed. In addition to uneertain-uncertainties in the prescribed LULCC forcings and the

representation of LULCC and other processes in DGVMs, the parametrization-of-those-processes-is—subject-to-further-values
of the applied parameters are subject to substantial uncertainties. We use a Monte-Carlo-like data assimilation approach
sample 15 key model parameters and construct a 1000-member model ensemble to investigate this parameter related uncer-

tainty in the DGVM LPX-Bern —Furthermeores-we-and establish a new reference version of the model. 14 data products are used

as observational constraints. These range from global inventories of carbon (Ciais et al., 2013) to spatially resolved satellite
estimates of photosynthetically absorbed radiation (Gobron et al., 2006). The goal of the data set selection process is to have
observations capturing the magnitudes of fluxes and inventories in the carbon cycle, as well as its transient response to the

anthropogenic perturbation,
The assimilation of observations is-should be an integral part of model development. Various approaches to incorporate con-

straining data exist, such as variational approaches minimizing a cost function using the adjoint of the model (Heuwelng-et-al;1+999; Kato

the use of ensemble Kalman filters (Houwelinget-al-1999: Lorene; 2003+-Gerberand Joos; 2043 tet-als 20 Maet-al520

014 Kellay e
v,

differentframeworks-have-beenproposed(Lorenc, 2003; Gerber and Joos, 2013; Stockli et al., 2011; Ma et al., 2017). A drawback
of these methods is that the sampling process is dependent on the choice of the cost function, the design of which is not
trivial when assimilating multiple observations simultaneously. Other approaches have also been investigated, such as usin

eneralized likelihood function for model calibration and uncertainty estimation (Beven and Binley, 1992). Here we employ the
Latin Hypercube Sampling (LHS) (McKay et al., 1979) approach, as used successfully in previous studies (Steinacher-et-al- 2043 Battaglia

It allows simultaneous stratified sampling of a range of parameters, given an appropriate prior parameter distribution, while of-

fering the opportunity to change evaluation metrics a posteriori, thus enabling a sensible incorporation of multiple observational
constraints. By improving the prior distribution iteratively it is possible to reasonably capture observations while considering
trade-offs between the different targets. Additionally, this approach not only yields a best-guess of parameter values but also
contains information about the associated uncertainties. A drawback of this technique is that it is not possible to increase the
size of the ensemble after the initial sampling and if the range of the prior distribution is too large the algorithm has decreased

computational efficiency.
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While the land-atmosphere carbon flux can to some extent be constrained by the other components of the global carbon

cycle, the contribution of LULCC, and in turn the implied residual terrestrial carbon sink, are highly uncertain. Efforts to fill
this knowledge gap have been made using bookkeeping approaches (Houghton et al., 2012; Hansis et al., 2015; Houghton and
Nassikas, 2017) and bottom-up modeling approaches using DGVMs (McGuire et al., 2001; Stocker et al., 2014; Wilkenskjeld
et al., 2014; Sitch et al., 2015). Bookkeeping models can offer valuable information on the magnitude of regional and global
LULCC emissions (E1,uc), but they typically rely on time-invariant estimates of carbon densities and thus neglect the direct
impact of climate change on vegetation. Observational data on carbon densities and response of the vegetation to LULCC
effects can be directly incorporated in bookkeeping models. In contrast, DGVM model studies are able to produce highly
resolved spatial results and consider changes to vegetation structure due to anthropogenic perturbance, but DGVMs have large
uncertainties due to differences in process modeling and parametrization. Additionally, a number of LULCC processes are
often neglected, such as the effect of gross land-cover transitions (shifting cultivation), management (wood harvest) or erosion.
Studies investigating these processes generally have found that the inclusion of those processes leads to an increase in Er,yc
(Arneth et al., 2017; Wilkenskjeld et al., 2014; Stocker et al., 2014). On the other hand, neglected processes such as human-
induced erosion can have the opposite effect and reduce net Er,iy¢c (Kosmas et al., 2007; Billings et al., 2010; Hoffmann et al.,
2013; Wang et al., 2017). The effect of parameter uncertainty on these estimates is often only considered indirectly in the
intercomparison of models. Here we investigate a parameter ensemble of a single DGVM, constrained by observation and
provide direct estimates of parameter induced uncertainties in LULCC estimates. These uncertainties are put into context by
investigating the effect of additional LULCC processes, such as shifting cultivation and wood harvest, as already investigated
in previous studies (Stocker et al., 2014; Wilkenskjeld et al., 2014; Shevliakova et al., 2009). We rely here on the LUH2 v2h
(Hurtt et al., 2018) land-cover data to force the DGVM LPX-Bern v1.4.

2 Methods
2.1 LPX-Bern

The Land Surface Processes and eXchanges (LPX-Bern) model (Spahni et al., 2013; Stocker et al., 2013; Keller et al., 2017)
is a Dynamic Global Vegetation Model (DGVM) based on the Lund-Potsdam-Jena (LPJ) model (Sitch et al., 2003). It features
coupled nitrogen, water and carbon cycles and distinguishes between different types of prescribed land-use classes: natural
vegetation, peatland, cropland, pasture and urban land. The vegetation composition for a given land-use class is determined

dynamically. Different plant functional types (PFTs), with given bioclimatic limits, compete for resources. Here 9-8 tree PFT's
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and 2 herbaceous PFTs are used to describe natural vegetation, the same two generic herbaceous PFTs grow on pasture and
cropland, and two moss PFTs, two flood tolerant tropical PFTs, and a flood-tolerant herbaceous PFT grow on peatlands.

Two different configurations are used to treat the transition between different classes of land-use. The simpler implemen-
tation adjusts the fractional land-use cover at the end of each year such that the prescribed area fractions are achieved, this
computationally efficient configuration is referred to as net land-use. The more advanced gross land-use implementation also
includes effects of shifting cultivation and wood management by prescribing all the transitions between different land-use
classes and harvested wood (Stocker et al., 2014; Strassmann et al., 2008). Furthermore, it includes an additional land-use
class, the so-called secondary forest, natural vegetation growing on abandoned pasture or cropland. A major drawback of this
scheme is the significantly increased computational cost. Additionally, the implementation of gross land-use in LPX-Bern in
the current version does not allow for the simultaneous simulation of peatlands. For both schemes a fraction ocy,.q. of the
crops above-ground biomass is directly oxidized to the atmosphere, simulating crop harvest. 75% of heartwood and sapwood
biomass production from forest conversion is assigned to decaying product pools, the remaining 25% are respired directly to
the atmosphere as assumed harvest losses. Associated root and leaf mass are transferred to an below and above ground litter
pool respectively. The biomass in the product pools is evenly split in a long-lived (mean lifetime 20 years) and a short-lived
(mean lifetime 2 years) pool. In the gross LULCC setup biomass is harvested according to the prescribed forcing and the

resulting heartwood is assigned to product pools using the same allocation rules as before.
2.2 Model setup and spinup

The model is run on a 1° x 1° global grid and forced with CRU TS3-23-.25 climate data (Harris et al., 2014) and global
atmospheric CO» concentration from ice core reconstructions (Meure et al., 2006; Joos and Spahni, 2007) and direct atmo-
spheric measurements after 1958 (Tans and Keeling). The Land-Use Harmonization LUH2 v2h (Hurtt et al., 2018) estimates
for land-use patterns and transitions are prescribed to the model. Additionally nitrogen deposition (Lamarque et al., 2013)
and fertilization (Zaehle et al., 2011) and the extent of northern hemisphere peatlands (Tarnocai et al., 2009) are prescribed.
As described in section 2.3 we use an ensemble approach featuring 1000 simulations with different parameters. All ensemble
members share a 1500 year spin-up run to pre-industrial conditions, using the median parameter values. To ensure the equili-
bration of each member an additional 300 year individual spin-up run, featuring an analytical equilibration of the soil carbon
pools after 100 years, is performed. The model is then run transiently from 1800 to 2644-2016 with recycled climate data (years
1901-1930) in the 19" century.

2.3 Sampling and Constraining

The model parameter space is sampled using Latin Hypercube Sampling (LHS) (McKay et al., 1979) to create an ensemble
of model configurations and assess model uncertainty. LHS is a stratified sampling method using chosen prior parameter
distribution to generate a-an uncorrelated parameter ensemble of a given size. In contrast to most Monte Carlo sampling-data
assimilation techniques, the sampling is independent of the modelmetries-metrics used to assess model performance, allowing

to modify the metrics witheutlarge-after the sampling without substantial computational effort. A drawback of this sampling
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Table 1. Description of sampling parameters with values for LPX v1.2 and the new best guess version v1.4. If not otherwise indicated
parameters are unitless.

Parameter  Description LPXvl2 LPXvl4
Qa Fraction of PAR assimilitated at ecosystem level relative to leaflevel 0.5 06175
ags Intrinsic quantum efficiency of CO_2 uptake in C3 plants. 007, 0.07660
9. Co-limitation shape parameter 07 0.6937.
. Canopy conductance scaling parameter for water demand calculation  3.24 3120
Qm Priestley-Taylor coefficient in water demand calculation 1394 1786,
Kigisa. Allometric scaling parameter: leaf area to sapwood area 10 1310
MOTtmge  Asymptotic maximum in mortality equation [yr'] 001 0.01016
Lo, Temperature sensitivity of heterotrophic respiration [K] 308.56 190.16
Lelow Fraction of litter entering slow soil pool 0015 0.009512
Limepson.  Nitrogen imobilization in soil 00, 0.2639
L= 0%erop  Fraction of direct oxidation of leaf turnover on cropland. 0.1 0.09920

strategy is that it is not possible to increase the size of the ensemble after the initial sampling. Kernel-density-estimations-of

The-The generated ensemble is then constrained using an hierarchical weighting scheme of deviations to observational data
sets to obtain a global skill score, rating each model member.

2.3.1 Description of the sampling parameters

Table 1 lists the selected sampling parameters and-thetrassumed prior-distribution-are-giveninTabletas well as their old values

in LPX v1.2 and new best guess values (LPX v1.4). The parameters were selected for their importance in various aspects of
the model, 10 of the 15 parameters were also used by (Stemacher et al., 2013). The pdmmefeﬁe}eeﬁeﬁ%#uﬁlwuded%y

he-fraction

of photosynthetically active radiation assimilated at ecosystem level relative to leaf level, a,, the intrinsic quantum efficiency
of CO; uptake in C3 plants, a3 and 6§ the rubisco co-limitation shape parameter are of primary importance for the photosyn-
thetic carbon assimilation. g,, and «,,, are parameters in the empiric water demand calculation and have a direct impact on the

hydrological cycle and consequently also the carbon assimilation. The sapwood-heartwood turnover time, Tsqpwood, the maxi-
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mum mortality parameter, mort,,q,, and the ratio between leaf area and sapwood area, k;,.54, are vital for the allocation of the
carbon to the different vegetation pools and thus also the overall vegetation carbon pool size. The fraction of the flux leaving
the litter pools that is respired to the atmosphere directly and entering the slow soil pool, fut,, and fg0, influence soil and
litter carbon inventories. These pools are further controlled by the temperature sensitivity of heterotrophic respiration Ey p,,
which is of special significance under changing climate, and a scaling factor for soil decomposition ks tune, affecting the
residence time of both the fast and the slow soil carbon pool. By using factorial simulations two important parameters for the
nitrogen cycle were identified, the maximum nitrification rate, nitr, 4., and the fraction governing immobilization of mineral
nitrogen in the soil, fimob,s0i- Finally, the oxidation rate of crops oxrop, representing the harvest of biomass on croplands, is

directly linked to emissions from human land-use.

E . tribution lod £ ” ]
2.3.2 Selection of the prior distribution

The prior distribution used for LHS was derived in multiple steps following partly an explorative approach. An initial version of
the ensemble with 1000 members was run using the 10 LPX parameters and distribution used by (Steinacher et al., 2013) and
four additional parameters relating to the nitrogen cycle and oxidation rates in areas with anthropogenic land-use. The ensemble
is sampled using normal and log-normal distributions with distribution parameters chosen such that the median matches the
R@WWM@W@WWW
%mmmm% -normal distri 5 '

parameter ranges and parameters with values close to zero. This initial ensemble was evaluated against a subset of the
observational constraints presented in section 2.4 and it was found that ensemble performance is poor, especially with respect
to_global atmosphere-land fluxes. Sensitivity of model outcomes to indvidual parameter values was explored by 76 factorial
simulations where aditional parameters were varied. The information from these sensitivitly simulations together with results
on parameter sensitivity of an earlier sudy Zachle et al. (2005) are used to identify key model parameters. In addition six
ensembles of reduced size (four 200 members and two 300 members), featuring slightly different parameter combinations,
were used to refine the median parameter values and their ranges. By evaluating these simulations the final set of parameter
presented in section 2.3.1 was selected. The final iteration included the segential computation of three observation-constrained
ensembles with 1000 members each. The first of these three ensemble was calculated with priors based on the refined median
E@W%% confidence tﬂfewa%ef—%h&eefrs&aﬂieekpeswﬂe%p&ﬁmete%dﬂfﬂbﬂ&mfof an—earlier

terative-procedureleads-to-a-posterior distribution after observation assimilation as described in section 2.3.1 is then used as the
rior of a new 1000 member parameter ensemble. This procedure is repeated one more time to arrive at the prior distributions
used in the final ensemble and displayed in Figure 1. No formal convergence criterion is employed, since the computation and
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Figure 1. Kernel density estimations of the

constrained ensemble with net land-use (M, ¢t net). The prior distribution was improved iteratively, resulting in near convergence of prior

and posterior distribution. Vertical black bars indicate the parameter values used in LPX-Bern v1.2.

evaluation of a single ensemble represents a considerable computational and analytical effort. The near convergence of the

prior-and-the-posterior-parameter-distribution-for-posterior (Section 2.3.1) and prior distribution of the final ensemble (Fig—H—

<)

parameters-are unitless: Paramter Deseription-EPX-Figure 1) indicates a near optimal solution for the parameter distribution in
the context of the observational constraints and the associated skill score metric (section 2.3.1). In addition, this convergence
of prior and posterior distribution also indicates that the final prior distribution is suited to adequatly sample the parameter
space for our selection of observational constraints. The differences between the parameter value used in the older LPX-Bern

vl.2
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on-eropland-0-1-0:09920-and the best guess parameter values of the final ensemble (Figure 1; see also Table 1) provide a
measure by how much individual parameters were revised during our iterative data assimilation. For completeness, we report
that individual forcing data sets, such as the land use data, were updated and the set of observational constraints expanded
during the course of the work.

2.4 Skill scores

2.3.1 SKill scores and the posterior distribution

The performance of the final 1000 member model ensemble is evaluated using a-the set of observational constraints as-listed
in Table 2. The model-data discrepancy for a given observational data set ¢+ and model run is estimated by the relative Mean
Squared Error (MSEieZ)

‘ Xmod,i _X(_)bs,i 2
MSE;el:ij< J ! ) . (1)
J

g

w; are the normalized weights of the data points j, which in the case of gridded data sets correspond to the grid cell area.
X;-md’i and X;im’i correspond to the modeled-modelled and observed data points for constraint 7 respectively. In accordance
with (Schmittner et al., 2009) and (Steinacher et al., 2013) the combined error o2 is approximated by the model-data variance
of the model member with the smallest MSE!. ; of the ensemble. As a consequence, the smallest possible MSE’. ; using this
approximation is one. If the observational error is known and larger than the variance, it is instead used as an estimate for the

combined error, allowing a theoretiealminimum MSE! ; of zero.

tot

»27 with a hierarchical weighting

The MSE-.; of all individual observational constraints is aggregated to a total error MSE
scheme shown in Fig. 2 and translated to a skill score .S,,, for each ensemble member m. We require that MSE,..; is smaller
than five for each of the individual observational data sets; otherwise .S,,, is set to 0.

0 Ji:MSEL,, >5
exp(—3IMSELY) else

rel

The size of the ensemble is further reduced by excluding runs with low skill scores, such that the remaining 667 runs have 99 %
of the cumulative skill score ) °, S, of all runs, which we term the constrained ensemble. The maximum achievable skill score
is not 1 for spatially resolved data since it would correspond to a MSE!?! of 0, which is not achievable due to the approximation
for the combined error, used in seme-of-the-observational-the spatially resolved constraints. We did not renormalize skill score

to a scale between 0 and 1.
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Total score Individual constraints
aggregated to total skill
score with hierarchical
weighting:

0 3i:MSEi, >5
Sm=

exp(—IMSEL) else
Fluxes Inventory Transient
Seasonal atmospheric [~Global soil carbon Growth of seasonal Model-data discrepancy
CO2 cycle Global vegetation atm. CO, amplitude ¢ o7 observation
Seasonal FAPAR map | Net land carbon calculated as:
NPP uptake (Deconv.) (o _ xobsiy2
VDI —Totalcarbon 2D map Net land carbon MSE}, = Y w2t —
FLUXNET Soilcarbon 2D map uptake (IPCC) '
Evapotranspiration E545° Latitude 1980-1989
>45° Latitude 1990-1999
Biomass 2000-2009
! 2002-2011
EKe'th 1750-2012

Luyssaert

Figure 2. Hierarchical weighting scheme to aggregate the relative mean squared error of individual observational constraints to a total error

which is then mapped to a total skill score.

The skill-seore-weighted-normalized-histogram-of-a-so-called posterior distribution of a parameter or quantity of interest is

obtained by using the skill score weighted normalized histogram, which can be interpreted as a probability density function,
of the constrained ensemble. The skill weighted median and confidence interval of a given quantity is then determined by

transforming the histogram to a discrete cumulative density function using a cumulative sum and approximating the desired

quantiles by a first-order interpolation. Throughout this paper we report the skill weighted median of numerical results alon
with the 5% and 95% quantiles, corresponding to the 90% confidence interval, in parentheses.

2.4 Observational constraints

The calculation of the MSE,.; requires the model and observational data to conform to the same structure. In the following, the
required pre-processing will be outlined briefly. The seasonality of the fraction of absorbed photosynthetically active radiation
(FAPAR) as simulated in the model is compared to a satellite-derived product (Gobron et al., 2006) which was regridded to the
model grid and the MSE is calculated from the averaged monthly fields in the measurement period.

The modeled total and soil carbon distribution between 1982 and 2005 are compared to a data set based on observations
(Carvalhais et al., 2014), regridded to the model resolution. The soil carbon map is divided into low and high latitudes regions
in order to avoid potential biases from peat areas with very high soil carbon content.

For site level observed NPP (Multi-Biome NPP (Olson et al., 2013) and FLUXNET v3.1 (Luyssaert et al., 2009, 2007)),
the site measurements are compared to the averaged modeled NPP of natural vegetation between 1931 and 1997 of the corre-
sponding model grid cell. If multiple measurements are contained in the same grid cell they are averaged. Similarly, the site

level measurements of biomass carbon (Keith et al., 2009; Luyssaert et al., 2009, 2007) are compared to the modeled natural
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Table 2. Observations used to constrain the model ensemble

Category  Variable Description Reference

Fluxes Seasonal atm. CO4 Seasonal cycle at nine sites (GLOBALVIEW-CO2, 2013)

Fluxes NPP Estimates of the 81 Multi-Biome Class A field (Olson et al., 2013)
measurements

Fluxes NPP Estimates of NPP at ~140 FLUXNET sites (Luyssaert et al., 2009, 2007)

Fluxes fAPAR SeaWiFS satelite product, regridded to model  (Gobron et al., 2006)
resolution

Fluxes Evapotranspiration Merged evapotranspiration synthesis product (Mueller et al., 2013)
from the LandFlux-EVAL

Inventory  Total Carbon Global distribution of total ecosystem carbon (Carvalhais et al., 2014)

Inventory  Soil Carbon Global distribution of total soil carbon (Carvalhais et al., 2014)

Inventory  Vegetation Carbon Biomass estimates at ~140 FLUXNET sites (Luyssaert et al., 2009, 2007)

Inventory ~ Vegetation Carbon Biomass estimates at 136 sites (Keith et al., 2009)

Inventory  Global Soil Carbon Global inventory 1950 4= 450 Gt€-PgC (Ciais et al., 2013)

Inventory  Global Vegetation Carbon Global inventory 550 4= 100 Gt€PgC (Ciais et al., 2013)

Transient ~ Growth of CO2 amplitude Growth of seasonal atmospheric CO2 amplitude (GLOBALVIEW-CO2, 2013)
at four sites

Transient ~ Land uptake (faversionDeconvolution)  Global land uptake from atmospheric inversion

Transient Land uptake (IPCC) Global land uptake in five periods (Ciais et al., 2013)

vegetation carbon, averaged between the periods 1950-2000 and 1931-1997 respectively. The biomass carbon of Luyssaert
et al. (2009) is obtained by using a carbon to organic matter conversion factor of 0.475.

The TM2 (Kaminski et al., 1999), a global atmospheric tracer model was used to translate the gridded land-atmosphere flux
to local anomalies in atmospheric CO-. This method does not include the interannual variability of the transport. 9 sites from
the GLOBALVIEW-CO2 database (GLOBALVIEW-CO2, 2013) were selected and the annual offset corrected seasonality of
COx, in the period of 1980-2013 was compared. The influence of sea-air carbon exchange on the seasonal cycle and trend in at-
mospheric CO4 are taken into account. This is done by prescribing net sea-to-air fluxes as simulated by the Bern3D model (stan-
dard setup) (Battaglia- and Joos. 2017: Roth et ak- 2014: Ritz et al- 204 1)(Battaglia and Joos, 2018; Roth et al., 2014; Ritz et al,, 2011).
The growth of the seasonal amplitude at a subset of four sites with high seasonality was used as a further constraint.

The modeled mean annual evapotranspiration between 1989-2005 was compared to the LandFLUX-EVAL evapotranspira-
tion data product (Mueller et al., 2013).

The global terrestrial carbon flux is constrained by an-inversiona deconvolution, for which the global atmospheric CO» con-

centration, the median of an ensemble of simulated ocean-atmosphere fluxes (Battagla-andJoos; 2047 (Battaglia and Joos, 2018),

10
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consistent with other estimates (Khatiwala et al., 2013; DeVries, 2014), and an inventory of anthropogenic COs emissions
(Boden et al., 2017) were used. The combined error in Equation 1 is estimated by propagating the 90% confidence interval of
ocean-atmosphere fluxes and assuming a 5% uncertainty for the anthropogenic emissions (Ballantyne et al., 2015).

The estimates of global soil and vegetation carbon as given by IPCC (Ciais et al., 2013) are used as a global constraint.
The observation-based estimates are compared to the average soil and vegetation carbon over the whole industrial period.
Additionally, the estimates for the global land-atmosphere flux in the periods 1970-1979, 1980-1989, 1990-1999, 2000-2009
and 2002-2011, are compared to the simulated land-atmosphere fluxes over the same period. Since the model simulation starts
only in the year 1800, the estimated land-atmosphere flux over the industrial period from 1750-2011 is compared with the
model by approximating the flux of the period 1750-1800 with 1801-1850. For all global constraints, the uncertainties reported

by IPCC are used as an estimate for the combined error in Equation 1.
2.5 Definition of Land-Use emissions and the setup of three the model ensembles

To quantify emissions from LULCC a second simulation featuring a time-invariant pre-industrial land-cover distribution and
nitrogen fertilization is run for every ensemble member. In accordance with the TRENDY model intercomparison ((Sitch
et al., 2015)), we define the emissions from LULCC as the difference of the change in carbon in the reference and fixed
LULCC simulation. The change of carbon in the land system is calculated from the cumulative net biome production (NBP)
including emissions from product pools. Since the additional simulations with fixed LULCC feature transient CO5 and climate
forcing, the direct impact of climate change and increasing CO, on Ey,yyc are considered, however unlike in coupled models
(Strassmann et al., 2008) physical and biogeochemical feedbacks of LULCC on the climate are neglected. We refer to the
literature (Strassmann et al., 2008; Pongratz et al., 2014; Stocker and Joos, 2015) for further discussion of differences in the
definition of land-use fluxes.

For each of the parameter sets 4 transient simulations over the industrial period are performed: (i) a simulation with

rescribed net transitions (M and M i) a simulation with prescribed gross transitions (M and M

ii) a run with landuse area fixed at preindustrial levels and (iv) a run with landuse including shifting cultivation held at
preindustrial levels. The last two simulations are used purely diagnostic to determine Erc. Fr.uc is investigated using three
different ensemble configurations. My,¢; ne+ labels the standard model version featuring only net EBEUE-LULCC transitions.
Mgross,net and Mgross gross f€ature modules for shifting cultivation and wood harvest (gross land-use) but lack northern peat-
lands due to technical limitations. My,oss net reuses the skill scores calculated for Myt net and Mgross,gross features skill
scores calculated on the basis of the gross land-use configuration.

For the M,,¢¢ c¢ €ensemble and the My,.o55,ne¢ €nsemble, the priors of the model parameters were improved iteratively during
the development of our benchmark system. Consequently, the solutions for the model parameters and associated model out-
comes converge. For example, the prior and the posterior probability distribution of the sampled parameters are nearly identical
(Fig. 1). This provides strong support that an optimal solution for the sampled parameters has been found for the applied model
structure and observational constraints. In contrast, the parameters of the M,.45,gr0ss €nsemble were not improved iteratively,

given the computational cost, and prior and posterior solutions do not converge.

11
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3 Results

3.1 Land-Use Emissions

The use of an-the ensemble framework allows us to quantify both the magnitude and the uncertainty of land-use emissions in a

model due to parameter spread. Following the procedure outlined in the method section, E1,yy¢ is computed for every ensemble
member. In this section, we first present Er,i¢, total land-atmosphere fluxes and the residual land carbon sink on a global scale

for the three ensemble configurations and then further analyze spatial patterns and regionally aggregated estimates.
3.1.1 Global Fluxes

Global aggregates of skill weighted median NBP, Er,yc, residual terrestrial sink and their respective cumulative fluxes, in-
cluding a 90% confidence interval as an estimate for model parameter uncertainty, are shown in Fig. 3. For the standard model
configuration My,c¢ net, featuring net land-use, the total change in land carbon (i.e. cumulative NBP) is a release of 24:2-24.4
(4.5, 44.0) PgC from 1860 to 1960 and an uptake of 25:5-25.4 (8.4, 47.0) PgC from 1961 to 2016. The standard deviation of
NBP increases from 6-8-0.82 (0.65, 0.97) PgC/yr between 1860 and 1960 to +-2-1.18 (0.97, 1.38) PgC/yr in the latter period.
The change in total carbon is discussed in more detail in section 3.3. Er,yc is positive throughout the whole industrial period,
i.e. a source of carbon to the atmosphere. A temporary maximum of emissions is reached in the 1950s followed by relatively
constant emissions until the 2000s where the emissions increase with enhanced variability. The cumulative emissions from
1860 to 2016 amount to 98:0-96.9 (59, 138) PgC. The residual terrestrial sink, computed as the difference between NBP and
FE1uc, shows a similar pattern of variability as NBP. While the residual terrestrial sink flux is negative in some years, the
cumulative residual terrestrial sink generally increases steadily and amounts to 98-9-98.1 (71.0, 132.3) PgC between 1860 and
2016.

In addition to the standard model configuration a second ensemble of a model configuration Mg;.ss.net featuring modules
for shifting cultivation and wood harvest (gross land-use) is employed. By using the skill scores Myt net, the parametrization
remains identical allowing to compare the pure mechanistic difference between the two versions. The difference in median
F1,uc between the net and gross land-use configuration is most pronounced in the second half of the 20th century and amounts
to 43:7-44.5 PgC between 1860 and 2016. The gross land-use ensemble simulates on average 6:4+Gt€-0.40 PgC yr~! more
emissions due to EUEUELULCC between 1950 and 2016. This result is compatible with the earlier study by (Stocker et al.,
2014), which investigated land-use-change using an earlier version of LPX-Bern with a single parameter configuration. The
residual terrestrial sink shows as expected a near identical behavior in the two versions. The resulting total change in land
carbon is negative, with a slight uptake of carbon after1+986—at the end of the century, amounting to 9.3 (-0.9,22.2) PgC

A third model configuration My, gross 1S Obtained by recalculating the skill scores from the gross land-use results. As de-

scribed in section 2.5, the priors of the Mg,ss,gross Were not improved iteratively to yield convergence between prior and pos-
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Figure 3. Skill weighted median Net Biome Production (NBP) (a), emissions due to EHEUE-LULCC Epuyc (c) and the residual terrestrial
sink flux (e) and their respective cumulative fluxes (b,d,f) for the constrained ensemble with net land-use My et net (blue), additional gross
land-use processes Mgross,net (ted) and gross land-use with skill scores recalculated Mg,oss,gross (green). The shading corresponds to the

90% confidence interval.

terior solutions. This leaves only 200 runs in Mg,.oss,gross in contrast to the 667 runs in My,et ne¢ and consequently My,oss net-
In addition, several important benchmarks such as vegetation carbon density are not simulated as well in Mg;.o55,gr0ss cOmpared
t0 Myet met and My,oss net. Since NBP is constrained by observations, median cumulative NBP from 1860 to 2016 is only +7-5
18.6 PgC smaller in the My;.55,gross than in the My, ¢ e €nsemble. Surprisingly Ey,yc is only 21.4 Gt€-PgC higher over the
period from 1860 to 2016 for Mg,oss,gross than for the standard version My,c¢ net. Why are Er,yc emissions so similar be-
tween these two ensemble versions with net and gross transitions? The residual sink is relatively insensitive to parameterization
parametrization in LPX and the version with gross skill scores only has a moderately larger residual sink uptake of 7.8 PgC in
the considered period, largely caused by a downward adjustment of the parameter Ey j,- governing the temperature dependency
in heterotrophic respiration to a median value of 151 K (190 K in My,¢t net; Table 1). In Mgros5,gross, global vegetation carbon

inventory is only 417 (341, 506) PgC (average over the industrial period) compared to 468 Gt€-(358, 590) PgC in the Myt net
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Table 3. Comparison of the skill weighted median emissions due to Land-use-change of the two constrained LPX parameter ensembles (90%
confidence intervals in brakets) to the bookkeeping method and DGVM model ensemble of (Le Quéré et al., 2016). The uncertainty in the
DGVM multi-model ensemble is given by the standard deviation across model members, for the bookkeeping method a best value judgement

on the uncertainty of +-0.5 PgC yr~ " is provided.

Mean Eruc [PgC yrfl]
1960-1969 1970-1979 1980-1989 1990-1999 2000-2009

LPX-Bern Myt net 0.70 (0.33,1.04)  0.69 (0.30, 1.06)  0.75(0.40, 1.07)  0.55(0.22,0.83) 0.52 (0.21, 0.78)
LPX-Bern Mgross et 1.22(0.78,1.64)  1.25(0.77,1.71)  1.19(0.77, 1.57)  0.93(0.54,1.28)  0.74 (0.41, 1.05)
LPX-Bern Myross gross  1.02 (0.65,1.32)  1.04 (0.65, 1.37)  0.99 (0.66, 1.27)  0.74(0.37,1.05)  0.59 (0.26, 0.87)
GCP2016 Bookkeeping 1.5 + 0.5 13405 14+05 1.6 +£0.5 1.0+£0.5
GCP2016 DGVMs 12403 12403 12402 1.1+02 13403

ensemble. The observational constraints for the net land carbon sink (Fig. 2, Table 2) are apparently better approximated for
a smaller vegetation carbon stock in My,oss,gross. Vegetation carbon inventory is underestimated by about 20% compared to
the observational benchmarks. The smaller vegetation carbon stock in Mg;oss,gross 1€ads to smaller Eryc anything else kept
equal. In addition, the amount of carbon harvested (02 ;.op) is reduced from 90% in the standard M,,¢; ,,; ensemble to 83% in
the My, oss,gross €nsemble. As a result of these two adjustments, Er,yc is smaller in the Mg;.o55,gross than in the Mg,.o5 net
ensemble. If the relative importance of the land-atmosphere observational constraints is increased, the difference in Er,yc of
Mgross,gross and Myt net 1s decreased even further.

Eruc as simulated by LPX-Bern is compared in Table 3 to a bookkeeping method and a DGVM model ensemble average
from the Global Carbon Project (GCP, Le Quéré et al. (2016)). Er,yc in the net land-use configuration M, ¢; ne: is considerably
smaller than the estimates of the GCP with an average annual emissions of 0.64 (0.29, 0.95) PgC yr—! between 1960 and 2009,
compared to the 1.4 PgC yr—! of the bookkeeping approach and the 1.2 PgC yr~! of the multi-model DGVM approach. The
emissions of the gross land-use configuration with gross skill scores are higher but still fairly low with 0.88 (0.51, 1.17) PgC
yr~1. The version featuring gross land-use with net skill scores yields higher land-use emissions with 1.07 (0.66, 1.46) PgC
yr—!, which is within the uncertainties of both estimates. The largest discrepancy between LPX and GCP is found in the 1990s
and 2000s. The uncertainty in the parameter ensembles is comparable to the uncertainty in the multi-model ensemble of the
GCP. The tendency to low emissions is a consequence of the ensemble favoring low emissions to match the observational total
land-atmosphere flux, combined with a relatively weak residual terrestrial sink in LPX-Bern.

In the following the ensemble version with gross land-use and skill scores from the net land-use ensemble Mg,.o55 net 15
used to investigate the spatial structure of Fryc. This is motivated by the much better representation of the vegetation carbon
benchmark in the My, net €nsemble than in the Mg;.o45, 91055 and a higher confidence in the overall benchmark performance

of the My,¢¢ net €nsemble. A caveat of this choice is that the net land-atmosphere flux is underestimated —However,-thisshould
not-influence-our-conelusions-onrin My, ss ner because the residual land sink only responds to the lower Er,uc of Myes per.
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Figure 4. Skill weighted median annual net biome production (NBP) (a), atmesphere-tand-flux-emissions due to land-use change Eruc (b)
and the residual terrestrial sink flux (c) from 1901-2016 for the ensemble Mg oss,net. Areas, where the lower and upper limit of the 90%

confidence interval have different signs, are hatched.

However if only considering £ we expect the magnitude of the residual land-sink and net land-atmosphere flux to be less

important than model performance with respect to vegetation carbon (Li et al., 2017) and other benchmarks.

3.1.2 Spatial Patterns and Regional Aggregates

The land-atmosphere fluxes show large regional differences (Fig. 4). The most pronounced feature of net atmosphere-land
fluxes is the release of carbon due to deforestation in the Amazon rainforest and the regions close to the equator and a tendency

to a net uptake of carbon at higher latitudes, such as central Europe. The calculated land-use ehange-flux-isnegative-emissions
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Figure 5. Epuc as simulated by the ensemble Mg,.055,net compared to the Houghton and Nassikas (2017) estimates. The Eryc of the
ensemble was calculated for individual countries and then aggregated to 10 regions defined in Houghton and Nassikas (2017). The top panel
shows the estimates for the emissions over the industrial period; for LPX gridded output is only available after 1901. The bottom panel shows
the annual mean emissions from 2005 to 2015. The Houghton and Nassikas (2017) estimates include the reported uncertainties based on the

standard deviation of five quasi-independent studies; for East Asia and Oceania no uncertainty is reported.

FEruc are positive everywhere except central Europe and the west coast of Northern America, resulting in the expected overall
emission of carbon due to land-use change. The residual carbon uptake, that is the total atmosphere-land flux minus the
contribution of land-use change, shows a consistent uptake of carbon between 1901-2016, with the exception of some areas
with high ensemble uncertainty. There are large regions where the 90% confidence interval in the ensemble does not agree on
the sign, however, most of these areas feature low NBP.

The Er,yc of Mgross,net are aggregated to regions and compared to estimates of Houghton and Nassikas (2017) (Fig. 5).
Since spatial output in LPX is only available after 1901 in LPX, the period 1850 to 2015 in Houghton and Nassikas (2017) is
approximated by the interval 1901 to 2015. The global skill weighted median Er,yc from 1850 to 1900 amounts to 24.5 (16.9,
33.6) PgC. Overall the global median emissions between 1850 and 2015 in LPX amount to 144.5 (97.5, 192.7) PgC very close
to the estimate Houghton and Nassikas (2017) of 145.5 £ 16.0 PgC. The largest discrepancy in the individual regions is found
in South and Southeast Asia, where LPX yields lower emission estimates, which might be a consequence of the lack of tropical
peatlands in the ensemble. In the recent decade from 2005 to 2015, the agreement is less pronounced. While the global annual
flux simulated by LPX of 866 (552, 1181) TgC yr~! is within the uncertainty of the independent estimate of 1113 =+ 345 TgC
yr—1, the distribution of this flux to the regions shows some divergence. In LPX the tropical regions yield lower emissions,
which is somewhat offset by a weaker sink effect in the temperate regions of North America, Europe, China and the former

Soviet Union.
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Figure 6. Overview of 10 countries with the highest overall contribution to emissions due to land-use change from 1901-2016 in the model
ensemble My;oss,net. The three columns of the bar plot of each country show the total land-use change flux from 1900-2016, 1960-2016
and 2000-2016 respectively. The color of the bar plot corresponds to the land-use change flux per unit area from the respective country and

period.

By using the NaturalEarthData administrative borders the Eryc of Mgross net are aggregated to individual countries. The
FE1uc of the ten countries with the largest contribution to total Fy,yc from 1901-2016 are shown in Fig. 6. Brazil emitted the
most carbon due to land-use change, because of the size of the country combined with the high emissions per unit area. The
United States of America, China and Russia have moderate per unit area emissions but are a large contributor due to their sheer
size. These 3 countries show a decrease of emissions in the 21st century, with the USA and Russia having negative emissions
in the 2000s. Indonesia shows the largest per area emissions of the considered countries and emissions increase in the 2000s.

The emissions in Indonesia are likely underestimated due to a lack of tropical peatlands in the ensemble.
3.2 Evaluation of ensemble performance with respect to observational targets

In this section, the performance of the net land-use ensemble members (My,¢t net; Mgross,net performance is nearly identical)
in the different observational metrics are discussed. In Fig. 7 a mapping of the MSE,..; to an individual skill score is displayed

for the observational data-sets with a spatial structure, to demonstrate how well the median of the ensemble and the new version

LPX v1.4 are able to simulate individual observations. The figure also demonstrates the success of the assimilation process:

the skill scores for many individual targets are improved in the ensemble median and LPX v1.4 compared to LPX v1.2, the

starting point of our work. As a consequence of our iterative prior selection (section 2.3.2) the median skill for an individual

constraint is similar in the constrained ensemble compared to the unconstrained ensemble. In all but the fAPAR benchmark the
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Figure 7. A mapping of the MSE,..; of observational targets with spatial structure to an individual skill s =e™ 2 MSEret for the Myet,net
ensemble. The range of the unconstrained ensemble is shaded in green. The range and median of the constrained ensemble is outlined in red.

The skill of the new model reference version 1.4 (blue) is compared to the skill of the older model version 1.2 (red). The minimum MSE,..;

criterion is shown in black. The theoretically maximum achievable skill is 0.61 for the targets shown (section 2.3.1).

skill is consistently higher than the minimum skill criterion. With the exception of the biomass measurements by (Keith et al.,
2009) and the fAPAR benchmark, the maximum skill in the constrained ensemble is identical to the full ensemble. The reduced
maximum skill in those benchmarks is due to an exclusion of singular runs excelling at this benchmark but performing badly in

others.

the-minimum-skill-eriterion—LPX v1.4, indicative of the M,,¢¢ »; ensemble performance, is compared to the observational

targets in more detail in the supplementary Figures S1-S14.

As an illustration of the observational constraints, we consider the seasonal cycle of atmospheric CO, and the growth in the
amplitude of the seasonal cycle of atmospheric CO. In Fig. 8 the median simulated values, as well as the 90% confidence
interval, of the M,,¢; e ensemble are compared to the atmospheric measurements (GLOBALVIEW-CO2, 2013) for a subset of
2 measurement sites, Alert (Nunavut, Canada) and Terceira Island (Azores, Portugal). The model ensemble is able to reproduce

the seasonality pattern, as well as the increase in seasonal amplitude. As expected, the interannual variability in seasonal
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Figure 8. Panels (a) and (b): Seasonal cycle averaged from 1980 to 2013 at 2 measurement sites (GLOBALVIEW-CO?2, 2013) (blue)
compared to the median values of the Myt ner €nsemble, with 90% confidence interval shaded in red. The standard deviations of the
seasonal average are indicated with error bars for the measurements and green shading for the simulations. In panels (c) and (d) the growth in
the amplitude of atmospheric CO2 for the same 2 measurement sites (GLOBALVIEW-CO2, 2013) (blue) are compared to the median of the
model ensemble, with the 90% confidence interval shaded in red. A linear fit indicated by dashed lines is included. The CO2 concentration at

a given site and time is computed with the TM2 transport model using simulated net land-atmosphere fluxes for each ensemble member and

ocean-atmosphere fluxes from the Bern3D ocean model (Battagha-andJoos;: 2047 (Battaglia and Joos, 2018). The seasonal cycle of CO3 is

dominated by fluxes from the land, in particular, the northern hemisphere.

amplitude of CO5 is not captured as the atmospheric transport model TM2 does not represent interannual variability in mass
transport.

For the scalar targets, the median values and range of the full and constrained ensemble are compared in Fig. 9. The con-
strained ensemble shows a consistently improved performance for the uptake targets. In general, the targets are matched well
for the 20th century but net land carbon uptake is underestimated in the model ensemble compared to the observational esti-
mates in the beginning of the 21st century. Soil carbon and vegetation carbon inventory are matched well in the model, with a
considerable decrease of model spread in the constrained ensemble. The median vegetation carbon of the constrained ensemble
is lower than the full ensemble. This is due to a trade-off in the skill of land carbon uptake, increased vegetation carbon leads
to a higher release of carbon due to deforestation.

Vegetation carbon inventory and spatial distribution are highly significantrelevant for Er,yc estimates (Li et al., 2017). The
sum of the vegetation carbon estimate and soil carbon estimate by Carvalhais et al. (2014) is used as a constraint for the total
carbon, however, the individual vegetation carbon data is not used as a constraint. Nevertheless, the global vegetation carbon

inventories of the two products are compatible with 422 (328,523) PgC for the vegetation carbon as simulated by LPX and 449
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Figure 9. The value and uncertainty of the scalar targets (red) compared to an unweighted histogram of the full (blue) and constrained (green)
ensemble My,c¢ nes. Panel (a) shows the net biome production in 5 periods, panels (b) and (c) show the global soil and vegetation carbon

inventories respectively.

PgC for the Carvalhais et al. (2014) estimate. The spatial patterns (Fig. 10) between simulated vegetation and the Carvalhais
et al. (2014) estimates are fairly consistent with a correlation between the two products of r? = 0.83. LPX simulates somewhat
more carbon in vegetation in the high latitude. The extent of areas with high vegetation density in tropical Africa is larger in
LPX, but peak vegetation density in this area is lower than in the observational product. The vegetation carbon density in the

model is somewhat lower in south-east Asia.

We compare the total land-atmosphere exchange flux to an+

the results of the atmospheric CO,
deconyolution in Fig. 11. The model ensemble shows lower emissions in the early 20th-century and slightly underestimates
NBP in the latter half of the 20th-century compared to the inversiondeconvolution. The overall exchange of carbon over the

industrial period is within the uncertainty of the estimate.

We investigate the dependency of the constrained ensemble on the choice of the observational constraints by reevaluating.
the ensemble for a subset of observations. We created 19 weighting schemes, each missing one of the individual observational
constraints (Figure 2 and table 2) and otherwise identical to the default scheme. Then the median skill weighted parameter
values of these ensembles are compared to the best-guess values of My ner (section 3.3). The relative change in parametrization
is less than 1% for 15 out of the 19 considered alternative weighting schemes. Leaving away the global vegetation and soil
carbon constraints lead to moderate changes, notably to a change in the parameter for mortality (1107t 10s) Of 4% and 2%
respectively. Not including the soil carbon distribution in high latitudes lead to an increase of the parameter for the dependency
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Figure 10. The skill weighted median My,c¢ ne: vegetation carbon distribution averaged between 1982 and 2005 (a), compared to the Car-
valhais et al. (2014) vegetation carbon estimate (b). The correlation of the estimates is r2 = 0.83. The absolute difference is shown in panel

(c).

of soil respiration on temperature (Fq ;) of 2%. The largest changes in parametrization were observed when not considerin

the atmospheric deconvolution, most notably the sapwood-heartwood turnover time T, oogq decreased by 5%. When omittin

entire categories in the benchmarking scheme, the changes in parametrization are larger than for omitting individual constraints
with parameter changes of up to 1% for the fluxes, 5% for the inventory and 6% for the transient category. This shows that the
final parametrization is not overly sensitive to the inclusion or omission of a single observational product,
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Figure 11. Cumultative net biome production (NBP) of the unconstrained (blue) and constrained (green) ensemble with 90% confidence
interval shaded, LPX Version 1.2 (orange) and the new reference model version 1.4 (red). The result of a so-called "single deconvolution"
is shown by the black line and grey range. In this inverstondeconvolution, the change in the land inventory is inferred from the records
of atmospheric CO2 and anthropogenic emissions from fossil fuel (and cement production) and ocean carbon uptake as estimated from an

ensemble of simulations with the Bern3D model.

The unweighted kernel density estimates of the prior (full ensemble) and posterior (constrained ensemble) parameter dis-
tributions are shown in Fig. 1. The iterative procedure discussed in 2:3-2.3.2 results in only slight changes of the posterior
distribution with respect to the prior distribution. The median of the distributions is however substantially different from the

initial parameter value used in LPX v1.2, the version used as a starting point for this study.
3.3 Parameters of the new reference model version

We use the constrained ensemble to establish a new reference model version, featuring a set of optimized parameters. The
reference version will be used for model simulations where the use of an ensemble is not appropriate or required.

The skill weighted median parameter values of the constrained ensemble are used as a reference model and its parameter
values are shown in Table 1. In Fig. 11 cumulative NBP is displayed for an older model version, the mean values of constrained
and unconstrained model ensemble as well as a run with the new best guess parameters. The best guess version is similar to
the mean behavior of the constrained ensemble, showing a net uptake of carbon in the latter half of the 20" century, consistent
with observations (Ciais et al., 2013). We note that the intermediate version v1.3 used in Keller et al. 2017 features similar
parameter settings as determined here. This version simulated 20th century changes in carbon isotope discrimination and
intrinsic water use efficiency in good agreement with tree-ring data. The severe underestimation of the land-carbon sink in

older versions of LPX-Bern was a consequence of the introduction of new features and improvements in the code of LPX-
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Bern, without subsequent retuning of the parametrization. The parameter changes are most pronounced in the temperature
dependence of heterotrophic respiration Ey 5, and ¢, a parameter associated with plant water demand. Both of these changes
are not unexpected, as they increase the land carbon sink. In the case of heterotrophic respiration less carbon is lost due to
increasing surface temperature and the increased water demand amplifies the COs, fertilization effect.

Overall the updated parametrization shows a well-balanced performance in the spatial benchmarks shown in Fig. 7. The older
LPX version excels at singular metrics, namely the amplitude growth of CO- and the FLUXNET measurements, but breaks
down at others, such as the spatial distribution of carbon and evapotranspiration. Furthermore, it also performs considerably
worse in the scalar and inversion-deconvolution targets.

The choice of using the skill weighted median parameters of the constrained ensemble instead of simply using the best
performing parameter set for the reference version is motivated by its robustness and representativeness of the ensemble.
While the best performing model member certainly possesses a higher skill score, its parameter values can depend strongly on

the choice and weighting of the observational targets, whereas the median parameter values depend less on individual metrics.

4 Discussion
4.1 Land-atmosphere fluxes and Ey,yc

The simultaneous assimilation of multiple observational constraints yields soil and vegetation stocks and distributions which
are consistent with observations. The total land-atmosphere carbon flux is reproduced relatively well in the model configura-
tion using net land-use My,¢¢ ner. Comparing the land-atmosphere carbon flux to the independent flux estimates by Schimel
et al. (2015) in the period 1990-2007, the tropical and southern fluxes are in good agreement to the atmospheric inversion
deconyolution results with airborne constraint with a flux of 0.24 (-0.02,0.57) in LPX-Bern. The flux in the northern extratrop-
ical areas of 0.50 (0.37,0.63) is on the lower end but easily fulfills the mass balance.

The observed uncertainties of Er,yc due to parameter uncertainty in the DGVM LPX is on the same order of magnitude as
structural uncertainties, such as including or not including modules for shifting cultivation and wood harvest. The effect of the
inclusion of additional land-use processes can even be compensated by a change of parametrization, while still conforming to
the observational benchmarks, indicating that it might be possible to capture the magnitude of E¥ ¢, while neglecting second
order processes. The compensation of Fr,yc occurs because the residual sink is less sensitive to parametrization changes than
the Fpyc in LPX-Bern. This behavior has also lead to an Ep ¢ that is on the lower end of independent estimates (Le Quéré
et al., 2016). A lack of large difference in Fryc from model setups featuring gross and net land-use might seem in contrast
with the result of other studies investigating these processes (Arneth et al., 2017; Wilkenskjeld et al., 2014; Stocker et al., 2014;
Shevliakova et al., 2009), however, if we keep parametrization constant (Mg;.oss,net) We find the expected lower Ep ¢ for net
land-use.

We investigated the magnitude and spatial distribution of Epyc in the model configuration using the skill scores and

parametrization from the standard net land-use configuration with additional processes of shifting cultivation and wood harvest
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(Mgross,net)- This choice is motivated by the good performance of the net land-use ensemble in the observational benchmarks
(Section 3.2 and Figures S1-S14).

A good correspondence between simulated fluxes and the estimates of Houghton and Nassikas (2017) in 10 regions during
the industrial period is found. When comparing recent decades, LPX-Bern generally seems to simulate lower Ey ¢ than both
the bookkeeping approach based estimate and the aggregated estimates in the GCP. The biggest disparity is comparatively low
fluxes in the South and Southeast Asian regions in LPX-Bern, which are at least partially explained by the lack of tropical
peatlands in this model configuration. The burning and draining of tropical peatlands is an important contribution to Fy,uyc
in tropical regions (Maria Roman-Cuesta et al., 2016; Koh et al., 2011; Hooijer et al., 2010). The annual emissions estimate
from draining peatlands used in Houghton and Nassikas (2017), increase from almost no emissions in 1980 to roughly 0.2
PgC yr~! in 2015. The lack of tropical peatlands is also consistent with the underestimated soil carbon density in these regions
when compared to Carvalhais et al. (2014). Other studies suggest higher historical Ey,iyc, such as the bookkeeping approach
by Hansis et al. (2015), including shifting cultivation, with an estimate of 261 PgC between 1850-2005. Some of the difference
between DGVM model results and bookkeeping approaches can be attributed to different definitions of LULCC emission
(Pongratz et al., 2014; Stocker and Joos, 2015).

A recent study by Li et al. (2017) constrained Ey,iyc by using biomass observations. They derived a relationship between
E'1yc and biomass in nine regions using the nine DGVMs in the TRENDY-v2 model intercomparison (Sitch et al., 2015) and
applied empirical estimates for biomass carbon to arrive at a constrained Er1,uyc of 155 £ 50 PgC between 1901 and 2012.
The result of 116 (77, 156) PgC as in this study is compatible, albeit somewhat lower. By neglecting all other constraints and
exclusively using the global vegetation carbon by IPCC (Ciais et al., 2013) and the biomass map by (Carvalhais et al., 2014)
(Also used as one of the constraints in Li et al. (2017)) as constraints, we arrive at a higher Ey,yc of 130 (87, 179) PgC. This
illustrates the importance of the biomass inventory for the magnitude of Ex,ic.

Er,yc is not only influenced by uncertain model processes and parametrizations but also the underlying EUEUE-LULCC
forcings (Goll et al., 2015). Peng et al. (2017) have shown that the choice of transition rules, governing how new land-use areas
are allocated from previous areas, has a considerable effect on Ey,yc. The effects of these uncertainties are not accounted for
in this study since we only use one land-cover forcing product and one set of transition rules is used.

Overall the ensemble approach produces Epyc estimates consistent with other independent estimates, albeit somewhat on
the lower end of the range of estimates. This is a consequence of the constraining process favoring parametrization with low

FE1,uc over a high residual sink, which is discussed further in the next section.
4.2 Benchmark performance and best guess version

A hierarchical weighting scheme to compare a diverse set of constraints was employed, following earlier work (Steinacher
et al., 2013). A set of 14 data sets (Fig. 2, Table 2) was selected to constrain the model’s performance with regard to steady
state carbon and water fluxes and carbon inventories as well as with regard to transient changes. Globally aggregated as well as
spatially resolved information is used to constrain simulated spatial patterns and to robustly model global mean properties. The

temporal focus is on the decadal-to-century time scales most relevant for projections of anthropogenic climate-carbon cycle
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changes and on the seasonal cycle of photosynthesis and the decadal amplification of the seasonal cycle in land-atmosphere
fluxes (McGuire et al., 2001; Graven et al., 2013) which provide information on underlying processes. The iterative procedure
for choosing the prior parameter distribution yielded an ensemble which performs well with respect to the selected metrics.

In addition to the weighting of model results with the global skill score, we employed a minimum skill criterion, discarding
runs with very bad performance in a singular metric. This approach is somewhat comparable to pre-calibration methods, where
implausible parameter spaces are also ruled out (Williamson et al., 2017; Holden et al., 2010; Edwards et al., 2011), and aims
to sensibly reduce the size of the parameter space.

While the uptake of carbon by the terrestrial biosphere in the model ensemble is significantly larger than earlier versions of
LPX, it is still in the lower range of estimates. A direct way of increasing the magnitude of change in land carbon is to change
pool sizes, which is here restricted by other observational constraints. The inclusion of more processes, such as natural and
human-induced erosion (Wang et al., 2017) could also increase the strength of the terrestrial sink, however other processes such
as shifting cultivation lead to a decrease of the land carbon sink. A further possibility is the revising of established processes
in the model. The climatic dependence of the auto- and heterotrophic respiration is an important component, mitigating the
COy, fertilization effect. The implementation of a more refined module might decrease this negative feedback, thus increasing
carbon storage and sink sensitivity.

The sink strength could potentially also be enhanced by including so far not included parameters and including additional

constraints that discriminate between the different components of the land sink.

Fossil carbon emissions and thus the net biome production and the carbon sink inferred from the deconvolution may be
biased high for the most recent decades. The fossil emissions are estimated from fossil-fuel production data, which include the
fraction used for non-combustion purposes such as the production of plastics and asphalt. Boden et al. (2017) assume non-fuel
uses equal to zero (Andres et al., 2012) since the products will eventually be oxidized as well. Geyer et al. (2017) estimate that
8.3 Pg of plastics were produced between 1950 and 2015 of which 2.6 Pg were in use in 2015, 0.8 Gt incinerated and 4.9 Gt
discarded. This implies that between 2.6 and 7.5 Pg plastic may still be left unoxidized. This is relatively small compared to
the residual terrestrial sink, estimated to be around 69 (31, 93) PgC for the period from 1950 to 2015 (Myes,pee in Figure 3).
However, about half of the plastic was produced since 2000 and estimated production is about 0.4 Pg/yr in 2015, In addition,
about 0.1 Pg of bitumen asphalt is produced annually. Considering that most of the molecular weight of plastics is from carbon,
fossil CO, emissions and in turn the terrestrial sink are biased high by up to 0.5 PeC/yr in 2015, This potential bias may be
compared to the residual terrestrial sink flux of 1.2 (0.8.1.7) PgC/yr during 2005 to 2015, Interestingly the deconvolution of
the atmospheric and fossil CO; records suggest a recent acceleration in the trend of the net biome production (Figure 11); this
acceleration may also be biased high. In conclusion, considering plastic and asphalt products brings the most recent trends
in the net biome production from the deconvolution versus the LPX model in better agreement, while estimates of net biome
production and the terrestrial sinks are hardly affected before 2000 CE.

The release of both spatially and temporally resolved carbon flux observations by using remote sensing, such as the Carbon
Monitoring System Flux Pilot (CMS) project, featuring not only net fluxes but also gross production and respiration, is a very

promising candidate for constraining the parameter space further. The spatial structure might restrict the apparent degree of
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freedom in partitioning the terrestrial sink in Er,yc and residual land carbon sink. §'3C isotope measurements in vegetation
also have the potential to be a useful additional constraint in land biosphere models (Keller et al., 2017).

An other avenue of increasing model performance is to introduce spatially explicit parametrization, as used in multi-model
i 2018; Schwalm et al., 2015). A caveat of using this a

studies (Exbrayat et al. roach with a single model is a

2

otential overfitting of the parameters.
The simultaneous assimilation of multiple observational constraints allowed to formulate a well rounded best guess version

of the model. While this parameter version doesn’t necessarily excel at every single benchmark, it shows a consistent perfor-
mance amongst all different targets. This behavior leads us to believe that the best-guess version is well suited for simulations
spanning long time spans, both for paleo and future research questions, where the use of a full parameter ensemble is not
feasible. Furthermore, it can also be used in model intercomparison studies, where single realizations of different models are

compared.

5 Conclusions

We successfully applied a multi-purpose model benchmark to a perturbed parameter ensemble -ebtained-with-a-Meonte-Carlo
like-samplingtechnique;—of a dynamic global vegetation model (DGVM). Specifically, we developed a “best-guess” model
version and constrained the residual carbon sink flux and carbon emissions from anthropogenic land-use (FEy,iyc) over the
industrial period. The general characteristics of the framework are as follow. (i) The framework permits a standardized model
benchmarking (Hoffman et al., 2017; Kelley et al., 2013; Luo et al., 2012; Blyth et al., 2011) by comparing different models
or model versions graphically and using statistical metrics (Stow et al., 2009) to a broad and diverse range of observations.
(i1) The efficient Latin Hypercube sampling method (McKay et al., 1979) is used to explore the model parameter space and
to set up and run perturbed parameter ensembles for a large set of model parameters. The advantage of the Latin Hypercube
sampling is the representative sampling of different parameter combinations, whereas a shortcoming is that the sampling size
has to be determined in advance. (iii) A hierarchical model weighting scheme is used to assimilate diverse observations. These
may differ with respect to spatial and temporal resolution and quality and include observations from the local scale, such as
data from individual biomass measurements or the seasonal CO5 cycle at individual atmospheric sampling sites, up to global
scale gridded data products such as satellite measurements of absorbed radiation by plants. A major advantage of this scheme
compared to sequential assimilation techniques such as Ensemble Kalman Filters is that the influence of necessarily subjective
choices (Rougier, 2007) on the results can be investigated a posteriori; in other words without performing costly additional
simulations. The subjective choices may be of scientific nature such as whether an observational data set is considered or not
or of more technical nature such as whether gridded data values are weighted by grid cell area or not. (iv) The applied modular
framework is easily extendable to incorporate different or more observational constraints and to different mechanistic models
including other DGVMs, ocean models (Battaglia et al., 2016) or Earth System Models (Steinacher et al., 2013; Steinacher
and Joos, 2016)). (v) The Bayesian, skill-score weighted ensemble is able to constrain the median and uncertainty ranges

of unknown or uncertain quantities such as carbon emissions from anthropogenic land-use, marine nitrous oxide production
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{BattaghaandJoes; 2047 (Battaglia and Joos, 2018), or climate sensitivity metrics (Steinacher and Joos, 2016) (vi) Finally, the

skill-score weighted ensemble is suitable for probabilistic projections including both likely and less likely model configurations
and assumptions.

A new reference version of the LPX-Bern (v1.4) DGVM was established. We were able to show that the constrained en-
semble, as well as a resulting best guess version, perform consistently well under a range of benchmarks (Table 2) while

satisfying a minimum skill criterion in every single benchmark. The

new model version LPX-Bern v1.4 successfully simulates observation-based estimates of the cumulative net land uptake and

release over the industrial period.

Many previous studies have investigated inherent uncertainties in ELUC estimates (Houghton et al., 2012; Goll et al., 2015;
Peng et al., 2017). Our study aims to contribute to this ongoing discussion by providing DGVM E7 yc uncertainty estimates
purely due to parameter uncertainty in an observationally constrained model ensemble using the LUH2 v2h (Hurtt et al., 2018)
product. Overall the benchmarking scheme favors runs with low emissions due to a relatively low residual sink sensitivity in
the model and constraining total land-atmosphere fluxes. We consider model ensembles with and without additional land-use
processes (shifting cultivation and wood harvest) and find that the difference in global Er ¢ is on the same order of magnitude
as parameter induced uncertainty. The inclusion of shifting cultivation and wood harvesting increases emissions similar in
magnitude to earlier studies (Stocker et al., 2014; Shevliakova et al., 2009) when applying the same model parameters, while
in some cases these additional emissions could potentially even be offset with appropriate parameter choice. We attributed the
fluxes to different countries and closer investigated the ten countries with the most emissions in the industrial period due to
land-use and land-use change. Our land-use carbon emission estimates are similar to those of Houghton and Nassikas (2017)
on the country level and overall consistent with other independent estimates on regional to global levels (Li et al., 2017; Le
Quéré et al., 2016).

The observation-constrained DGVM ensemble and best guess version established in this work are ready for use in model
intercomparison studies (Tian et al., 2018; Sitch et al., 2015) and longer time span paleo simulations. It may also be applied to
quantify future terrestrial carbon fluxes and E't,yc for different shared socio-economic pathways. Additional new observational

data streams may be implemented in our modular framework to further refine results.

Data availability. Model output is available upon request to the corresponding author (lienert@climate.unibe.ch).
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