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Author responses to:

Interactive comment on “Modeling anaerobic soil organic carbon decomposition in Arctic
polygon tundra: insights into soil geochemical influences on carbon mineralization” by
Jianqiu Zheng et al.

We appreciate comments from both reviewers and the editor, and have used these to extensively revise our
manuscript. This document includes responses to the Associate Editor's comments and reproduces our responses to
both reviewers’ comments that were previously uploaded. Finally, this document includes a comparison of the revised
manuscript with the originally submitted version. These changes were extensive and substantially improved the
manuscript’s readability. Note that figures were renumbered in the revised version.

Editorial comments

Both reviewers appreciate the modelling efforts conducted and indicate its importance. At the same time though,
both indicate to have had major problems with the flow of the story line and with the lack of details on some
crucial points of the modelling. Both need to be significantly improved to become acceptable.

My suggestion would be to:

- eliminate the extensive descriptions of the sites and the performed incubation experiments. These experiments
certainly do not constitute the novel part of this manuscript (numerous similar results from similar experiments
are available in literature) and it is now distracting (e.g. why extensively discussing Q10 while - | hope- it would
be an emergent property from a mechanistic model?). essentials can be moved to suppl. info.

We moved essential elements of the data synthesis to supplemental text. Our re-analysis of these incubation
experiment results required a significant effort, and we hope the product will be useful to future investigators through
the dataset that will be available as a DOI.

- start the methods with a proper model description, possibly using and extended version of fig 2 to guide the
flow, then model validation and then model sensitivity. The results section can start with what is now 3.3.

The revised manuscript includes an extensive description of the model, with the model-data integration illustrated in a
new process diagram in Supplementary Figure S2.

| also have a number of additional comments:

- To me, model validation while using a number of initial state var. is quite fine (and is less confusing to me than
model initiation), but | don't understand why measured pH was used as parameter in that analysis after the
extensive discussion of the authors in the introduction that pH estimates should be based on mechanisms. If you
use pH to initialize the model, it does not seem based on mechanisms. Or, to put it more generally: how
mechanistic is your model and what is your scientific advance on this topic.? That does nowhere become clear
and is also related to my next two comments:

While geochemical speciation calculations could theoretically estimate pH based on complete measurements of
dissolved charged species, this is not practical (or accurate) for Arctic soil water. In our experience, charge balance is
usually very poor in these calculations due to the significant contribution of anionic dissolved organic matter, creating
large errors in initial pH estimates. This illustrates the importance of the aqueous phase model that we introduce in this
work. We recommend usually readily available pH measurements to initialize this model, and our mechanistic pH
response function to simulate pH changes from that initial parameter over time.

- | (and one of the reviewers too) have problems with some claims on the lack of anaerobic decomposition in
ESMs. The authors are well aware, | believe, of the ensemble of ESMs developed to model global methane

emissions, each of which take anaerobic decomposition processes into account (incl. a model from the CLM
family if | am not mistaken). So, how should we see the advance made by this model in this respect?

The revised manuscript better distinguishes the present explicit representation of anaerobic carbon decomposition
cascades and redox processes from previous models that treat processes implicitly. We refer readers to our previous
review in this journal by Xu et al. 2016, which provides a more comprehensive description of methane cycle models
and a detailed comparison of model structures.

- The authors next argue that mechanisms should be included and indicate that Eh and pH of models should be
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based on (thermodynamic) mechanisms. Such models are available and extensively used (e.g. in modelling the
dynamics in anaerobic sludge reactors, but also for anoxic soil systems) and some of those models are explicitly
based on humic acids and/or iron reduction. Moreover, from the current description it does not seem that pH or
Eh are prognostic variables in the presented model either. So again: how does the model advance our
understanding compared to existing models?

We substantially revised the Introduction and Methods sections to provide more details about this new model. We
agree that foundational thermodynamic modeling of anaerobic digestors and batch reactors has benefitted our work,
for example by informing the thermodynamic models of Istok, Roden, Bethke et al. cited here. However, most of these
models were developed to simulate specific redox processes including relatively defined carbon substrates. We are
not aware of other models that have attempted to couple a thermodynamically based microbial growth model, a
substrate pool-based model, and a humic ion-binding model, to create a generic, process-rich carbon decomposition
model for anoxic soils that allows simultaneous thermodynamic and pH calculations. Highly parameterized models
often perform poorly when used to simulate a wide range of environmental conditions, so the present model is
remarkable for its fidelity in simulating CO2 and CH4 production from gradient of soil moisture and SOM conditions.

Referee #1

The manuscript proposes a new model to study organic matter decomposition under anaerobic conditions from arctic
soil with a focus on implementing the effects of temperature and pH. The research direction is of a great importance
and the authors attempt to formulate such effects on carbon decomposition from arctic is also interesting. However |
believe the representation of the manuscript could be significantly improved. My major concern is that the current
form of presenting the manuscript is not self-standing and a lot of refers has been done to authors previous
publications that makes it difficult to follow and evaluate the content efficiently.

One of the main goals in this paper (anaerobic model development) is to develop mechanistic representation of
methanogenesis, iron reduction and associated pH feedbacks. This goal required data on soil geochemical
properties, Fe(lll) and Fe(Il) concentrations and pH changes during incubations to be synthesized from previous
publications. It is not feasible or appropriate to reproduce the high level of detail in those coordinated soil
geochemistry measurements, which are described in the cited material. We have moved the synthesis discussion to
Supplemental Materials.

Similarly, model description is not complete and no clear hierarchy of the model development and formulation is
provided. | understand that the main model has been developed previously but this should not lead to a
discontinuous representation that will be non-informative for audience with different background. | strongly suggest
improving the model representation and at minimum including a clear schematic with explicit steps that should be
taken in formulating such model.

This is a good suggestion regarding better model documentation and archiving. To clarify the workflow in the
manuscript, we are reorganizing the section that introduces the model and adding a new flow chart in the
Supplementary Figure 2 explaining how the synthesized data product is used to inform model development. We are
also including a detailed model description in the Supplementary material, supplementing Figure 2 that demonstrates
the main structure of the new model. Detailed descriptions of the carbon pool cascade adopted from CLM-CN model,
thermodynamically-based growth equations for methanogenesis and iron reduction, and the WHAM model
implementation to represent pH buffering will be included in the Supplementary material. Detailed instructions to run
the model with our database (redox.dat) under PHREEQC framework will also be included with an example input file.
A permanent DOI is reserved for code and additional details on model implementation.

Other comments:
- Introduction was well-written and provided important and necessary information. However | would still encourage
authors to try shortening it that would be focused on the main message of the paper.

We condensed the introduction section to be more focused on introducing explicit processes that are missing from
current Earth System Models (ESMs).

- While authors acknowledge the key role of hydrolysis to convert SOM (particulate organic matter) to DOC, they
have simply ignored this step and no discussion is provided on how the step 1 (Figure 2, conversion of SOM to DOC)
is modelled and if hydrolysis is taken into account in the current model.
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Hydrolysis is generally recognized as the rate-limiting step during anaerobic carbon decomposition. As stated in the
second paragraph in section 2.3, hydrolysis and fermentation include multiple reactions steps, and we combined
hydrolysis and fermentation together in one step using an empirical approach. This is a practical assumption for three
reasons: (1) Microorganisms that degrade cellulose anaerobically usually also ferment sugars following hydrolysis;
(2) Current characterization of SOM in Arctic soils is insufficient to differentiate multiple hydrolysis and fermentation
steps: the few reports on Arctic soil exoenzyme activities do not survey the full range of hydrolytic reactions required
for biomass decomposition such as endoglycosidases. Thus, data are not available to support multiple hydrolysis
and fermentation steps in the model; (3) The lumped hydrolysis and fermentation step still allows us to use this
reaction as the rate-limiting step in the model, which fits the observations presented in Figure 3. We will clarify this
representation of hydrolysis in the revised manuscript’s introduction.

Step 1 (Figure 2, conversion of SOM to DOC) is calculated using the indirect fraction of the original respiration factor
from CLM-CN carbon decomposition cascade. The detailed description is included in the commented code file (can

be accessed at https://dx.doi.org/10.5440/1430703, once the manuscript revision is finalized). We are also including
detailed description in the Supplementary material.

- How the model deals with large discharge rate of DOC that is common in permafrost soil due to lateral flow?

The Barrow Environmental Observatory is located on the flat Arctic coastal plain, where lateral flow is minimal after
snowmelt. Precipitation roughly balances evapotranspiration in most areas during the thaw season. Dealing with
lateral flow requires transport processes, which are beyond the scope of current manuscript. However, it is a good
target for future research to model different sites, and we are actively working towards coupling PHREEQC
capabilities (chemical equilibrium and kinetics) with thermal hydrology models to address transport.

- More explanation on how fermentation step is formulated in the model would be helpful.
- More explanation on how parameterization has been done and how it has been used in the current model would be
nice.

Additional model details have been added to the Methods section. The fermentation step is parameterized as a
single reaction following first order kinetics.

CeHy,0 + 4H,0 — 2CH,CO0™ + 2HCO3 + 4H* + 4H,

As stated in the second paragraph in section 2.3 and first paragraph in section 2.4, the above stoichiometry of
fermentation reaction is a lumped process representing production of low molecular weight organic acids (in this
case, acetate), CO2 and Hz from labile carbon (we used a constant molecular formula CsH120s, representing
monosaccharides.

Methanogenesis and iron reduction are parameterized using individual growth equations of acetoclastic
methanogens, hydrogenotrophic methanogens and iron reducers utilizing acetate or H. In the revised manuscript,
we will include more detailed description on growth equations, and a summary of kinetic rate constants and half
saturation constants in the Supplementary material.

- Q10 values are represented as soil layer combinations. Was there no effect of soil layer? Or there is a correlation
with soil depth? More explanation would be helpful.

The initial production rates of CO2 and CH4 used for Q10 calculations showed strong depth effects, as demonstrated
in Table S5. Thus we reported the temperature effect (Q10) using grouped soil layers. We further conducted a t-test
on the estimated Q10 values for CO2 and CH4 production, respectively (Table S6). These analyses were mentioned
in section 3.2. We will add an additional line for clarification in this section.

- In schematic Figure 2, it is shown that conversion of SOM to DOC produces CO2-? What is the process for this
production? Is it general?

In the original CLM-CN carbon decomposition cascade, each carbon pool is associated with a respiration factor
representing carbon loss as CO2. Now in our new model, this factor is split into a direct fraction that is respired to
COg2, and an indirect fraction that goes to DOC pool. We kept the direct fraction to represent microbial respiration.
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CO2 production is also required in anaerobic systems for microbial biomass formation: forming reduced cellular
components such as lipids must be offset by CO2 production to balance electrons in the system. In the revised
manuscript we will address this briefly in the discussion of Figure 2 and add more detailed explanations in the
Supplementary material.

- Representation of Table 1 should be improved. Is table 1 and Table S4 representing different system? Please be
clear in the captions of the Tables.

Gas production data used in the statistical analysis in Table 1 are converted to per gram carbon basis, while in Table
S4, data are reported on per gram dry soil basis. The reason we decided to report two tables is due to the high
correlations of WEOC, TOAC and soil moisture in respect to SOC. Such correlations conceal the relationships
between gas production and other soil geochemical properties. Though it was briefly mentioned in the first paragraph
of section 3.2, we will clarify the differences in the revised manuscript and highlight the differences between two
tables.

- In the text, it is mentioned that “The maximal production of COZ2 is about 2/3 of the initial carbon.” Where this
number came from?

This calculation is based on the stoichiometries of equation A1, A2 and A4. When starting with 1 mol of labile carbon
(CsH1206), 1/3 of the carbon is released as CO2 during fermentation, and 2/3 of the carbon forms acetate, which can
be further respired as CO2 via methanogenesis (1/3 of initial carbon) or iron reduction (2/3 of initial carbon). We will
replace this sentence with a more general statement: For complete mineralization, the fraction of initial carbon
respired as COz is in the range of 2/3-1.

- What "process rich carbon decomposition model" mean?

That statement means that we explicitly included mechanistic representations of chemical equilibrium processes to
allow simultaneous thermodynamic and pH calculations. We will clarify this in the revised manuscript.

- In Figure 8, could you also show the data at 8C which other data points are normalized with? Is only two data points
enough to make a conclusion? How do you illustrate huge variations in observation data? What are the actual values
for CO2 and CH4 production rates at 8C? is it for observations? Is absolute data are comparable? Where is the
Shaded area mentioned in the caption?

Data at -2 and 4 °C in this figure are normalized to rates measured at 8 °C from corresponding soil samples. i.e. the
value for each point at 8 °C is set to 1 in respect to the y-axis scale in the figure. There were 14 averaged observed
values for each temperature (each representing a unique soil microtopographic feature x soil layer combination). The
absolute values of CO2 and CH4 production rates are plotted in Figure 4 for each temperature. There are huge
variations in observations among different soil microtopographic feature x soil layer combinations. We will clarify this
interpretation in the revised manuscript.

The shaded areas are plotted around each colored line representing model simulations using different temperature
response functions. They are quite small, indicating stronger model uncertainties generated from different functions
rather then the designated time scale used to run model simulations.

- In Figure 3, notations for Figure 3a are not clear. For example LCP-C1-0?

The notations of treatment (soil microtopographic feature x soil layer combination) are summarized in Table S1. For
example, LCP-C1-O means Low Centered Polygon-Center (the first soil core)- Organic layer. LCP-C2-M means Low
Centered Polygon-Center (the second soil core)- Mineral layer. With these notations one can easily identify the
microtopographic feature from the figure. We will add an additional line referencing Table S1 for clarity in the revised
manuscript.

- In general, | found it difficult to follow the model results in the form that are represented in Figures 3, 6 and 7, 9. Is
there a simpler way of showing the model results that one could extract the trends?

4
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Figure 3 is a bar graph showing changes in WEOC and TOAC pool after incubation. Factors we here include
different soil microtopographic feature x soil layer combinations, three different incubation temperatures, and
variations among triplicate incubations. All these are essential to demonstrate why we made the model assumption
that the DOC pool is in equilibrium state, and the rate-limiting step is the fermentation of DOC into organic acids
(Figure 2, process 2).

Figure 6, 7 and 9 are model sensitivity analyses. Variations of +25% and +50% were applied to tested parameters (x-
axis), the resulting output changes were plotted in bars (y-axis). For example, in Figure 6, when the initial pH is
decrease by 8% and 17%, CH4 production decreased by 40% and 80%, respectively. We will provide such an
example in the revised text to clarify interpretation.

Referee#2

This paper examines aerobic and anaerobic soil organic matter decomposition in the context of iron, and pH. This is
an important contribution to the understanding of soil carbon dynamics in permafrost regions which hold vast
reservoirs of carbon that could potentially be released under future climate change. Unfortunately, this manuscript
has flow problems with substantial logical gaps between a traditional correlative analysis and the process rich model.
More concerning is a lack of documentation on how the process rich model was developed, making the simulation
results of this study unreproducible as is. This paper tries to do both a traditional regression/correlation style analysis
and a nonlinear process rich simulation. From what | can tell the traditional analysis is solid, although the lack
analysis scripts make it difficult to evaluate. However, the connection to the process rich simulation is tenuous at
best. In addition, I'm not clear how the data was incorporated into the simulation and how the simulations were
validated with the data. | would consider splitting this into two papers, one with the traditional analysis and a second
with the model development, parameterization, and validation. While this is not required it would make the
manuscripts easier to write. As is there remains work needed on the flow and connection between these two
components.

We appreciate the positive feedback on the synthesis data analysis and the constructive suggestions on making the
connections between data synthesis and model development. We moved the data synthesis discussion to the
Suplemental materials. To clarify the workflow in the manuscript, we are revising the model introduction (section 2.3)
and adding a new flow chart explaining how the synthesized data product is used to inform model development. For
example, the bar graph showing changes in WEOC and TOAC pool after incubation (Figure 3) is the motivation to
make the model assumption that DOC pool is in equilibrium state, and the rate-limiting step is the fermentation of
DOC into organic acids (Figure 2, process 2).

We are also including a detailed model description in the Supplementary material. While Figure 2 demonstrated the
main structure of the new model, a revised version of Figure 2 will include the complete CLM-CN carbon
decomposition cascade (including the litter pools that currently we are not using in our model) to demonstrate how
the carbon pools are adopted from CLM-CN model and modified for our modeling purpose. The new modeling
components developed in this work, including thermodynamically-based parameterization for methanogenesis and
iron reduction, and WHAM model implementation to represent soil pH buffering, are discussed in great detail in the
Supplementary material.

| would like to see some discussion of scaling of these microscale processes to macroscale models.
We expanded our current discussion in section 4.4.

This study needs a lot more detail to make model development reproducible. The link to github code is a start but
documentation is completely inadequate and lack of permanent DOI on the repository means that the codebase
might not be there for future studies. The code needs to be commented with major algorithms summarized in
functions. README needs instructions on running codebase with a summary of the content of each file. Alternatively
this could be submitted as a markdown file with input-function-output format with inline comments explaining
approach. Include version number for PHREEQC. Right now, | would not consider this study to be reproducible and it
is difficult to evaluate the model results without this context.



20

25

30

35

40

45

50

55

60

We appreciate these suggestions to improve model documentation. Currently the commented model is in the
writephrq.py file. To make the model easier to follow, we have added step-by-step instructions on the github site,
including PHREEQC installation, how to run the model with our database (redox.dat), and how to create PHREEQC
exacutable .phrq files using the python script we have provided. A permanent DOI is reserved for model code and
additional details on model implementation is included. We will include example input and output files with detailed
comments. It will be publicly accessible once we finalize the manuscript.

I’'m concerned that the authors both use a simple correlation analysis to argue for inclusion of various dependent
variables in the proposed highly complex non-linear model. In particular, | would not have expected a strong
correlation between moisture and SOC given the typical non-linear sensitivity function used to describe respiration
response to moisture (though this is possibly explained by the range of moisture conditions considered). In addition,
low correlations could be explained by non-linear responses. At the risk of adding yet another analysis to an already
confusing study, | would suggest that instead the authors use a paired scatter plot to visually show the relationships
between these variables. This will demonstrate that there is no strong non-linear relationship and that the correlation
coefficients are sulfficient to describe the relationship.

The correlation between soil moisture and SOC is indeed an interesting result. Measurements of total soil carbon are
highly correlated with gravimetric water content in BEO soils (Pearson r = 0.80, P < 0.0001). We will include a paired
scatter plot in the revised version. We suggest several alternative explanations. First, high water content in saturated
areas preserves organic matter by limiting oxygen diffusion, as the reviewer notes below. Second, undecomposed
organic matter binds water tightly, even at low matric potential. Third, high organic matter composition creates large
pore volumes that fill with water in saturated soils.

Line by line reactions:

P1L23 While anaerobic decomposition certainly is missing from many ESMs, I'm not sure | would claim that it is the
main driver for model uncertainty. There are several processes which could improve model performance that are
currently being investigated and this tripped me up reading through the abstract.

We agree that the statement is oversimplified. We will change that to “one of the reasons” driving model uncertainty
in saturated soils.

P3L5 Models traditionally do however consider O2 limitation with increasing moisture saturation. I'm almost certain
that the authors are aware that traditional moisture sensitivity functions are typically rationalized to have decreasing
decomposition under high moisture due to limited O2 diffusion (Orchard and Cook 1983). What this typically does not
extend to CH4 emissions, it does implicitly include anaerobic decomposition. A review of implicit vs explicit process
representation in decomposition models may be more appropriate here then an outright claim that anaerobic
decomposition is not included in ESMs.

Yes, we are aware of the use of moisture functions as a proxy of decomposition level. The suggested term of “
implicit vs explicit “ is a very nice summary of the problem we were trying to identify in current ESMs. We will
summarize implicit vs explicit approaches used in current ESMs to simulate carbon decomposition under anaerobic
conditions.

P4L28 60days is a short incubation to try to fit a full soils model to. | want to see concerns about time scale
addressed somehow here.

The length of incubation time was selected because the thaw season in Barrow is about 60-90 days. We have briefly
mentioned this in the model development section, as the short incubation is the main reason we adopted the CLM-
CN carbon decomposition cascade, since we have no data to fit a full carbon model. We will add additional
discussions in both section 4.3 and 4.4 to talk about the limitations of model validation from current datasets and
some future considerations.

P41 38 Why was the 4C dropped form the Q10 calculation??

Originally, we fitted the data from 3 different incubation temperatures. There was no significant difference between
the Q10 values estimated by two approaches. We added an additional line to clarify.
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P5L2 These package citations are less useful without the associated analysis script. Could this please be included in
either the Sl or as a separate DOI citation?

We believe the statistical analysis packages listed here are well documented and applied in this project using
standard methods. We will clarify this sentence and provide scripts that are essential for model development through
online distribution (see below).

P5L12 Please be go into more detail on the adaptation of CLM here. Figure 2 is extremely useful but this could use
more detail here or in the SI. | would urge the authors to restate the model formulation (even when explicitly drawing
on previous work) since frequently it is not clear what portions were modified for the current model. Please include a
set of full mathematical equations, descriptions appropriate algorithms, and a fully commented code base used to run
the models.

In the revised manuscript, all these will be included in the Supplementary material. A DOI citation will be available for
both model code and synthesized data product (can be accessed at https://dx.doi.org/10.5440/1430703, once the
manuscript is finalized). A fully commented code base and step-by-step instruction will be provided with example
input and output files. Readers will be able to run our scripts from their own computers.

P6L5 Well that is certainly creative model initialization.
Thank you!

P6L22 ‘further adjusted’ Could the authors clarify? Right now it reads as an ‘expert tuned’ model which is not current
best practices given the range of parameter fitting tools that exist.

This is a good suggestion. We do not have valid data to verify the biomass of specific functional groups. This lack of
data is due to the technical challenges we are facing while doing DNA and gPCR based quantifications. That's the
main reason we used thermodynamically-based growth equations to build microbial biomass directly into reaction
kinetics. However, we still need a starting point of gross microbial biomass estimations, so the values were selected
from previous modeling work done in the Arctic regions. We will add additional explanations in the revised
manuscript.

P6L25 This feels like a very limited sensitivity analysis. An a priori 50% uncertainty seems to be a relatively tight
bound for a soil model, especially given the 3 orders of magnitude that was mentioned previously.

The main purpose of sensitivity analysis is to demonstrate the direction and magnitude of changes. We agree that
additional sensitivity analysis on these parameters would be helpful. In the revised manuscript, we added additional
sensitivity analysis in Figure 7.

P8L7 How was the model calibrated?

The model was calibrated by fitting both CO2 and CH4 production data in two separate steps. We are adding a flow
chart explaining how the synthesized data were incorporated into model development and validation.

PIL 18 Was this perturbation analysis done independently of the previous perturbations?

Yes, the perturbation analysis was done independently of previous perturbations.
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Abstract. Rapid warming of Arctic ecosystems exposes soil organic matter (SOM) to accelerated microbial decomposition,
potentially leading to increased emissions of carbon dioxide (COz) and methane (CH4) that have a positive feedback on global

warming. Current estimates of the magnitude and form of carbon emissions from Earth system models include significant

uncertainties, partially due tq the oversimplified representation of geochemical constraints on microbial, decomposition, Here we

coupled modeling principles developed in different disciplines, including a thermodynamically based microbial growth model for
methanogenesis and iron reduction, a pool-based model to represent upstream carbon transformations, and a humic ion-binding
model for dynamic pH simulation to build a more versatile carbon decomposition model framework that can be applied to soils
under varying redox conditions. This new model framework was parameterized and validated using synthesized anaerobic
incubation data from permafrost affected soils along a gradient of fine-scale thermal and hydrological variabilities across Arctic
polygonal tundra. The model accurately simulated anaerobic COz production and its temperature sensitivity using data on labile

carbon pools and fermentation, rates as model constraints. CHs production is strongly influenced by water content, pH, methanogen

biomass, and presence of competing electron acceptors, resulting in high variability in its temperature sensitivity. [This work
provides new insights into the interactions of SOM pools, temperature increase, soil geochemical feedbacks, and resulting CO2

and CHa production. The proposed anaerobic carbon decomposition framework builds a mechanistic link between soil

geochemistry and carbon mineralization, making it applicable over a wide range of soils under different environmental settings.

v

1 Introduction

The northern permafrost region contains 1400-1800 Pg soil carbon (C), which is more than twice as much C as is currently

contained in the atmosphere (Tarnocai et al., 2009; McGuire et al., 2012). Persistent cold and saturated soil conditions have limited
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C decomposition in this reservoir. However, rapid warming and permafrost thaw exposes previously frozen organic carbon to
accelerated microbial decomposition, potentially leading to emissions of carbon dioxide (CO:) and methane (CHa4) that have a
positive feedback on global warming (Zimov et al., 2006; Schuur et al., 2015; Schuur et al., 2009). How quickly frozen soil organic
matter (SOM) will be mineralized, and how much permafrost C will be released to the atmosphere following thaw is highly
uncertain. Earth system models project 27 -508 Pg carbon release from the permafrost zone by 2100 under current climate forcing
(Zhuangetal., 2006; Koven et al., 2015; MacDougall et al., 2012; Schaefer et al., 2014), varying by a factor of thirty. Understanding
environmental dependencies of soil organic matter (SOM) decomposition is therefore essential for reducing model uncertainties

and improving predictions of future climate change.

Disagreement in model projections for the northern permafrost region could be due to differences in model structure, model

initialization, or parameters used in simulations. Despite increasingly detailed process representations in many models that simulate

terrestrial CO» and CHs fluxes, important geochemical and metabolic constraints might still be poorly represented, oversimplified

or missing in current biogeochemical models (Xu et al., 2016). The northern permafrost region is rapidly changing in response to

the changing climate. Rising temperatures not only release more labile carbon from permafrost for decomposition, but also create

thermal and hydrological heterogeneity that further affects biogeochemical processes. Here we examine two mechanisms that

substantially affect SOM turnover in permafrost-affected soils. First, rising temperature alters the kinetics of biogeochemical

reactions (Segers, 1998). This effect is more pronounced at subzero temperature (Bore et al., 2017), and the process rate increase

is higher at lower temperature ranges (Davidson and Janssens, 2006). Microbial communities also change with temperature,

compounding effects on process rates (Karhu et al., 2014). Models address this temperature effect using empirical functions and

parameters (Schidel et al., 2016), which might be highly biased depending on model assumptions, and original curve fitting

) {Deleted: . Saturated conditions limit O, diffusion from the

techniques, generating large uncertainties. Second, heterogeneity in permafrost thaw and related hydrological responses creates

geochemical gradients in soils,Models use different levels of detail to simulate effects of water saturation (Meng et al., 2012; Xu
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et al., 2016). Soil moisture limits gas transport, and it is often used as an implicit control on heterotrophic respiration and

methanogenesis. However, the explicit processes resulting from with soil oxygen depletion (e.g,soil redox status and pH dynamics)

are not widely represented, (Riley et al., 2011; Meng et al., 2012).

The extent of SOM decomposition and gas emissions depends upon soil geochemical characteristics, beyond temperature and O

availability. Among the wide range of environmental variables, pH emerges,as a primary control on decomposition by regulating

both microbial communities and microbial metabolic activities (Zhalnina et al., 2015; Jin and Kirk, 2018). pH affects microbial

metabolism by modulating the thermodynamics and kinetics of redox reactions. Redox reactions produce or consume protons, and

thus, their free energy vields vary with pH (Bethke et al., 2011; Jin and Bethke, 2007), The Gibbs free energy available to anaerobic

microorganisms that degrade simple organic molecules generally increases (becomes less favorable) with increasing pH (Bethke
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considering proton production and consumption during the processes. Traditional decomposition models use landscape position,

soil moisture content, or other proxy of Oz concentration to determine the form of C release. Scalars on aerobic respiration (Riley

etal., 2011; Lawrence et al., 2015) or empirical ratios of CO2 and CHa4 (Koven ct al., 2015) are often used to inform the extent of

C decomposition and partitioning of CO2 and CHa production. Reactions that produce or consume protons and the resulting pH

changes or ion exchange reactions, are not considered in_these empirical models. Some process rich models_explicitly include _

details of methanogen populations and their interactions with substrates and other environmental factors, but these models still

lack the capability to simulate pH changes during long-term carbon decomposition, Instead, constant pH is often assumed within
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bell-shaped pH response functions (Meng et al., 2012: Tian et al., 2010; Xu et al., 2015), Without underlying proton exchange and

pH buffering mechanisms, a significant error may occur when rate calculations depend heavily upon the initial choice of a single

optimal pH value, for various reactions.,,

In this study we developed a new anaerobic carbon decomposition model framework with explicit representation of aqueous phase

geochemistry to allow pH and thermodynamic calculations, By coupling three different models, including a thermodynamically

based microbial growth model, a substrate pool-based model, and a humic ion-binding model, we built a process rich carbon
decomposition model that allows simultaneous thermodynamic and pH calculations. Results from anoxic incubations of permafrost
affected soils along a gradient of soil were synthesized to parameterize and validate this new model framework. The main
objectives of this study were to (i) examine the role of soil geochemical variables in controlling anaerobic carbon decomposition
and carbon release (as both CO2 and CHa); (ii) develop a common set of parameters in the new anaerobic carbon decomposition
framework to capture variabilities in CO2 and CH4 production; and (iii) evaluate model uncertainties in responses to both soil

heterogeneity and model parameterization, emphasizing effects of soil saturation, pH and temperature response.

2 Materials and methods

2.1 Site description and soil incubations

The Barrow Environmental Observatory (BEO) in Utqiagvik (Barrow) Alaska, USA consists of thaw lakes, drained thaw lake

basins and interstitial tundra with a polygonal landscape of microtopographic features created by ice wedges. As part of the Next

Generation Ecosystem Experiments Arctic project (http://ngee-arctic.ornl.gov/), frozen soil cores were collected from different

microtopographic positions of Low-centered, Flat-centered, and High-centered polygons (LCP, FCP, HCP) in the wet tundra. LCPs

are characterized by narrow, saturated troughs, raised rims, and wet, sometimes saturated centers (Figure 1) (French, 2007;

Liljedahl et al., 2016). We previously performed short-term incubations of LCP soils under anoxic, environmentally relevant

conditions to measure rates and temperature sensitivities of CO> and CH4 production (Roy Chowdhury et al., 2015). FCPs represent

transitional polygons with melting ice wedges, minimal rims, moderately dry centers, and disconnected troughs. Incubations of

FCP soils demonstrated both methanogenesis and methane oxidation potential, with high levels of activity at the transition zone

(Zheng et al., 2018). Finally, HCPs have well drained centers and low, saturated troughs. Incubations of HCP soils showed

significant fermentation, methanogenesis and anaerobic respiration in the saturated troughs (Yang et al., 2016)., contrasted with

aerobic respiration and minimal methanogenesis in the centers (Roy Chowdhury et al, in preparation). These controlled incubations

provided critical information on anaerobic SOM decomposition processes across a gradient of soil with fine-scale variability in

thermal and hydrological regimes. The results facilitate benchmarking and parameterization for fine-scale anaerobic SOM

decomposition models.
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Incubation datasets from 8 soil cores, divided in 126 soil microcosms associated with 14 treatments (soil microtopographic features

x soil layer) were included in this synthesis to represent the microtopographic heterogeneity of polygonal tundra. Soil cores were

previously sectioned into organic, mineral, cryoturbated transition zone (if identified) and permafrost for microcosm incubations.

The period of anoxic incubation in these studies ranged from 45 to 90 days with an average of approximately 60 days at field-

relevant temperatures of -2, +4 and +8 °C. Cumulative CO» and CH4 production data were collected at different time intervals

during incubations. More details on the microcosm construction, headspace CO» and CHa4 sampling, and rate calculations can be

found in the corresponding publications (Roy Chowdhury et al., 2015; Herndon et al., 2015) and datasets (Zheng and Graham,
2017; Zheng et al., 2016). Changes in exchangeable Fe(Il), water extractable organic carbon (WEOC), low molecular weight

organic acids, and pH of soil microcosms during anoxic incubation were summarized previously in publications (Herndon et al.

2015) and datasets (Zheng and Graham, 2017; Herndon et al., 2016).

2.2 Data processing and statistics

In order to compare the cumulative carbon loss (as both CO> and CHa) from different polygonal and microtopographic features

and different soil layers, measurements from triplicate microcosms were pooled together and fitted with hyperbolic, sigmoidal,

exponential or linear functions that best describe the dynamic. The cumulative CO» and CHa4 production within 60 days of anaerobic

incubation was directly calculated from each fitted curve and used for descriptive statistical analyses.

Individual curve fitting for each microcosm was used to best represent the rate changes of CO» and CHs production. CO; production

followed hyperbolic curves with immediate CO» release for all LCP, FCP and HCP trough samples. CO» production from HCP

center samples experienced time lags for approximately 10 days for the mineral layer, and 45 days for the permafrost. CH4

production was also associated with varying time lags before reaching maximum rates, and the lag is most profound in HCP

samples, between 6 to 20 days. The rate of gas production estimated from hyperbolic curve fitting predicts a continuously

decreasing rate, while sigmoidal curve fitting with an initial delay predicts a maximum rate after the lag time. Here, we used the

derivatives of nonlinear curve fitting to calculate initial rates of gas production. For hyperbolic fittings, the maximum rate is

calculated at day 0. For sigmoidal fittings, the maximum rate is calculated by setting the third derivative to zero. The temperature
dependence was calculated using conventional Q1o by taking the ratio of maximum production rates at 8 and -2°C based on triplicate

measurements. Data fitting and statistical analyses were conducted and validated using R 3.4.0 (The R Foundation for Statistical

Computing) and Python 3.6.0 (Python Software Foundation) computing environments. A complete list of packages and libraries
used here can be found in the following references (Venables and Ripley, 2002; Hunter, 2007; Oliphant, 2007; Sarkar, 2008; Walt
etal., 2011; Wickham, 2009; Wickham et al., 2017).

2.3 Anaerobic carbon decomposition model

L he anaerobic carbon decomposition framework was developed with explicit representation of fermentation, methanogenesis and

iron reduction, which were identified as key mechanisms for anaerobic CO> and CHa production (Roy Chowdhury et al., 2015;

Yang et al., 2016; Zheng et al., 2018). The main structure of this framework included two major components: a simplified CLM-

CN_decomposition cascade (Converging Trophic Cascade, or CTC) (Thornton and Rosenbloom. 2005) to facilitate

parameterization of the upstream carbon flow entering aqueous phase dissolved organic carbon (DOC) pool (Figure 1, process 1),

and an aqueous phase to facilitate calculations of thermodynamics and redox-reaction associated acid-base chemistry. An empirical
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approach was used to represent non-aqueous phase SOC decomposition, while mechanistic representation of methanogenesis and

iron reduction were developed in this work based on aqueous phase thermodynamic calculations.

The simplified CTC cascade included 4 SOM pools to represent bulk SOC with different levels of complexity. Changes of these

SOM pools followed modified first-order-decay (see Supplymentary Material for details). We modified the original respiration

fraction (Thornton and Rosenbloom, 2005; Koven et al., 2013) into a direct and an indirect fraction. Thus for each SOM pool, the

direction respiration fraction represented CO>_lost as orgnially defined, while the indirection respiration fraction was labile C

produced from bulk C entering the aqueous phase carbon pool (DOC pool, Figure 1).

The large biomolecules in the DOC pool went through multiple hydrolysis and fermentation steps to produce low molecular weight

organic acids that would further respire into CO> and CHs (Kotsyurbenko, 2005; Yang et al., 2016). Under anoxic conditions,

hydrolysis of polysaccharides was considered the rate-limiting step for downstream methanogenesis (Glissmann and Conrad,

2002). Polysaccharide hydrolysis has a favorable free energy, due to increased entropy, but cannot be readily coupled to biological

energy transduction outside of the cell. At low temperature (below 15 °C), the microbial degradation of cellulose was considerably

diminished while other polymers, such as starch or proteins, were degraded much faster at low temperature, resulting in the

accumulation of organic acids, primarily acetic, propionic and butyric acids (Kotsyurbenko, 2005;Yang et al., 2016). These low

molecular weight organic acids further fueled microbial mineralization reactions that lead to production of CHs and CO». Given

that most anaerobic lignocellulose degraders also fermented sugars following hydrolysis (Blumer-Schuette et al., 2014). we

assumed the turnover of DOC into low molecular weight organic acids was a single lumped fermentation process (Figure 1, process

2), in which labile DOC (CsH1206) was fermented into acetate, H» and CO» (Appendix A, reaction Al). This assumption gave a

fixed stoichiometry ratio that 1/3 of the fermented carbon was respired as CO».

Redox reactions including methanogenesis and iron reduction were represented using a thermodynamically-based a

et al., 2010), with unique microbial growth kinetics incorporated into energy yielding redox reactions. In this thermodynamically

based approach, the growth equations of methanogens and iron reducers were derived from paired electron donor (acetate and H»)

and electron acceptor half reactions and a biomass synthesis equation (Istok et al., 2010). Using a constant molecular formula as

biomass (CsH70:N), and ammonium (NH4') as the nitrogen source for biosynthesis, we derived the growth equations for

methanogenesis and iron reduction (Appendix A, equation A2-AS). Rate calculations followed the generalized Monod rate law

(Jin_and Bethke, 2007) with an additional thermodynamic factor representing the thermodynamic driving force. The

thermodynamic factor f{G) is calculated using equation 1 (Jin and Bethke, 2003):

—AG-mAGp
)

F6)=1—exp (-2 (0

where AG [kJ (mol reaction)!] is the free energy change of the redox reaction [AG_depends on the standard Gibbs free energy

change AG®), and the concentrations of chemical species involved in the reaction], and AG;,_, is the phosphorylation potential, i.e.

the energy required to synthesize ATP to ADP and dihydrogen phosphate in cell’s cytoplasm. AG,, is about 45 kJ (mol ATP)!

(Jin and Kirk, 2018). m is the number of ATPs synthesized per redox reaction. y is the average stoichiometric number (Jin and

Kirk, 2018), R is the gas constant (kJ mol”' K™"), and T'is the absolute temperate (K). This factor f{G) ranges from 0 to 1, where

the reaction is thermodynamically favorable when f(G) > 0.

Both methanogenesis and iron reduction contribute to pH change, Reactions such as ferrihydrite reduction substantially increase .

HY
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alkalinity (Appendix A, Reaction A4, A6). Furthermore, the solubility of CO. and the composition of dissolved CO> and
bicarbonate vary significantly over typical soil pH values, affecting all C mineralization processes. In the organic-rich soils

modeled here, SOM rather than minerals provides most buffering capacity. Therefore, we used the humic ion-binding model to

describe pH buffering during carbon decomposition, A simplified parameterization of proton binding is available in the

Windermere Humic Aqueous Model (WHAM, Tipping, 1994; Tipping, 1998), which has been extensively calibrated to represent

the acid-base chemistry of “average” humic and fulvic acids, and benchmarked with heterogeneous natural organic matter (Atalay

et al., 2009). We, adopted the WHAM parameterization to represent proton binding characteristics (pH buffering) provided by
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matter with various proton binding constants (Dudal &
Gérard, 2004).
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SOM (Tang et al., 2016). Using representative binding constants provided by WHAM, the pH buffering capacity can be directly

adjusted by altering the number of proton binding sites, which is assumed to be linearly correlated with total amount of SOM (see

Supplementary Material for details).

2.2 Model implementation and initialization

The above model structure was implemented using the open source geochemical program PHREEQC 3.0 (Charlton & Parkhurst

2011) with a new database describing SOC decomposition cascade, redox reaction kinetics and pH buffering (redox.dat,

available at https://github.com/jianqgiuz/decomposition). The model assumed thermodynamic equilibrium of aqueous chemical

speciation, mineral dissolution/precipitation, and ion sorption/desorption based on the updated PHREEQC thermodynamic

database (phreeqgc.dat, Charlton & Parkhurst, 2011). The database was modified to include WHAM pH buffering and reaction

kinetics for SOM pools decay and reaction kinetics for fermentation, methanogenesis and iron reduction. The kinetic rate

constants and microbial biomass growth and decay rates were adopted from former thermodynamically based studies (Istok et

al., 2010) and pre-tested with low-center polygon Arctic soils (Tang et al., 2016).

The model initialization was based on both the incubation conditions and soil geochemical characterizations (Figure S2). The

initial partitioning of SOM pools was assumed to be at fixed ratios due to the limitation of short-term incubation data. Under the

experimental conditions, we assumed SOMland SOM2 pools with relatively shorter turnover rate (t =14 days and 70 days,

respectively) were most relevant in the model, while SOM3 and SOM4 (t > 2 years for both pools) pools were relatively inert. We

started with the relative fraction of SOM pools at approximately 10%, 40%, 10% and 40% of SOC in organic and mineral soils for

SOM1-4 pools and further assessed the bias of this assumption with sensitivity analysis. Sizes of SOM1 and SOM2 pools were

reduced by 90% for permafrost to better account for the overall low levels of carbon degradation in soils at such depth.

All other variables required were initialized using measurements based upon 10 to 15 g of wet soil incubated in 60 to 70-mL sealed

bottles. Total soil organic carbon (SOC), total water (TOTW), total organic acid carbon (TOAC), pH and initial concentration of

Fe(Il) were specified in the model based on measurements (Table S1). The DOC pool in the model was initialized using the

measured WEOC expressed as a fraction of SOC (faoc). On average, WEOC accounts for approximately 2% of SOC based on our

synthesized data (see section 3.1), consistent with previous long term incubations, which suggested less than 5% of SOC were fast

decomposing carbon in permafrost affected soils at a standardized temperature of 4-5 °G, (Knoblauch et al., 2013; Schédel et al.,

2014). The starting biomass of methanogens and iron reducers was assumed to be within the range of 10~ to 10 gC/gSOC for

organic soils, 10* to 10 gC/gSOC for mineral soils, and 1077 to 10° gC/gSOC for permafrost (Table S1). This stratified microbial

biomass distribution were used to represent the vertical gradient in the relative abundance of microbial communities (Treat et al.

2014; Waldrop et al., 2010; Yang et al., 2017).
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The lumped fermentation process was the rate-limiting step in the model and was fitted individually with data from each soil

microcosm. Based upon reaction stoichiometry, the fermentative conversion of each mole of labile C led to 2/3 mole of organic

acids and 1/3 mole of CO,. Organic acids were mineralized via methanogenesis or iron reduction to convert approximately 49%

to 88% of C in organic acids into CO,. This estimation was based on reaction stoichiometry of A2 and A4, and a fraction of the C

was incorporated into microbial biomass, so the percentage of respired C would be less than 100% even if all organic acids were

respired as CO». If we assume all fermentation products were mineralized into CH4 and CO», we could estimate the fermentation

rate (Rrr) from measured CO> production. Thus, R were estimated using the initial CO> production rate in the incubation data

and further optimized by fitting with observed CO» production.

Temperature and pH response functions were used to further constrain model simulations (Figure S2).

parameterized using the CLM-CN temperature response function (Appendix B, equation B1). Additional temperature response

functions were evaluated by sensitivity analysis (see section 2.4). The effect of pH on biological reaction rates is modulated by

bellshaped pH response functions(Tang et al., 2016; Xu et al., 2016). Here we used the, Dynamic Land Ecosystem Model (DLEM)
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2.3 Incubation data synthesis for model validation

Incubation data from Utgiagvik (Barrow) Alaska soil cores that represent the microtopographic heterogeneity of polygona tundra

were synthesized to validate the new anaerobic carbon decomposition model. The selected datasets represent fine scale variabilities

in thermal and hydrological regimes across the gradient of soil microtopographic positions (Herndon et al., 2015). The synthesized

data contains complete sets of soil geochemical descriptions for organic, mineral, transition zone (if identified) and permafrost

layers from each microtopographic feature (see Supplementary Material for details). Levels of total soil organic carbon, water

extractable organic carbon (WEOC) and total organic acid carbon (TOAC) were available before and after soil incubation. Besides

CHa_and CO> production during low temperature soil decomposition, data on Fe(Il) concentrations and pH changes were also

available for model initialization and validation.

2014,

2.4 Model, par ter uncertainty

This model is designed as a generic framework to simulate anaerobic carbon decomposition across a range of soil physiochemical

conditions. Two types of sensitivity analysis were conducted to evaluate model performance. First, possible bias and variations
associated with model initialization variables (soil geochemical attributes) were assessed using perturbation simulations. Variations

of £25% and £50% (+100% and 200% for some variables) were applied to these variables, and the resulting changes in cumulative

CO:2 and CH4 production were evaluated by comparing with reference simulations. This evaluation helps to identify critical
measurements needed for initializing the model. Second, parameters specifically benchmarked in this study and parameters adopted
from empirical relationships were also evaluated with perturbation simulations. This test helps to apportion the model prediction

uncertainties into different sources, including model input, parameters, or model structure.

3 Results
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3.1 Meta-analysis to validate model assumptions

Incubation data,used in this study were generated from soils representing different microtopographic features with.a wide range of

moisture and SOC contents and reported elsewhere (Roy Chowdhury et al., 2015; Zheng et al., 2018). Correlation analysis revealed

a close relationship between soil moisture and,organic carbon pools (measured as SOC, WEOC and TOAC) among examined soil

microtopographic features and across soil depth (p < 0.01, Table S2). All these soil properties showed significant correlation with

cumulative CO» and CHa production (p <0.05), suggesting the important role of initial soil geochemical properties in controlling

carbon degradation.

Although various levels of carbon mineralization were measured as CO» and CH4 production during incubations, changes in WEOC

and TOAC were consistent among treatments with distinct patterns, WEOC represents 0.3% to 2.6% of total SOC among all test

soils, and this ratio remained constant before and after anoxic incubations (Figure S3), On the other hand, TOAC showed much

more dynamic changes among different soils and different incubation temperatures. TOAC generally increased jn soils from

organic layer. fransition zone and permafrost. In contrast, TOAC drastically decreased by up to 90% in mineral soils, These results

indicate that WEOC was,in a steady state among examined soils, while TOAC varied substantially due to microbial mineralization i

processes, supporting the model assumptions of lumped fermentation (the conversion of WEOC to TOAC) as rate limiting step,

Both, CO2 and CH4 production rates responded strongly to rising incubation, temperature (p;=0.02 and p =0.04, respectively, Figure

S4, Table S3). The estimated, Qio values of CO» production showed a relatively, narrow range while methanogenesis, had much
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Deleted: 3.1 Synthesized soil geochemical ‘
Soil samples

(Deleted: represent

Deleted: content, from 2% to 39%, with the highest SOC
found in surface

o (Deleted: layers. In correlation analysis )

strong correlation with SOC content among examined soil
cores and across soil depth (Table 1). Decomposition
generated limited

CDeIeted: . )
(Deleted: 26 )
[Deleted: 3a). Higher incubation temperatures showed j
)
)
)

Deleted: characteristics, both WEOC and TOAC showed

minimal effect on the WEOC/SOC quotient, anda | [2

( Deleted: by 5% to 175%
( Deleted: soils, and 2% to 60% in the

(Deleted: from LCP and HCP centers (Figure 3b). In mofsg]

(Deleted: %, partially contributing to the depletion of ___ [4])
(Deleted: usually

(Deleted: activity )
(Deleted: Good correlations between soil organic carb_(_)_rl[sD

CFormatted: Font: Not Bold, (Intl) Arial Unicode MS )

larger variations in estimated Qio values ranging from 1.6 to 48.1, Using Qio values to simulate the temperature dependence of

processes might work for CO: production, but could generate significant errors in predicting CH4 production,

3.2, Modeled CO: and CH4 production using observed parameters <

The model performed well in simulating CO> and CH4 dynamics across a range of moisture and SOC gradients and among different
soil types (Figure S5, S6). Variations in gas production among different conditions, including microtopographic features, soil layer,
and different incubation temperatures were well captured (Figure S7). The comparisons between modeled and observed CO2 and

CHa production are shown in Figure 2, The model slightly underestimates COz production towards the end of the incubations, but

still maintaing, a good agreement between modeled and observed CO: production (R?=0.89). The underestimation of CO:

production is likely due to substrate limitations caused by the initial distribution of different carbon pools. Model-predicted CHa
production also showed good agreement with observations (R?=0.79). More variation between modeled and observed CHa

production suggests a systematic pattern in the model parameterization of methanogenesis: the, model underestimates CHa
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production at 4 and 8°C, and overestimates CH4 production at -2°C,,

To assess the model sensitivity to initial model inputs, we compared model predictions in response to varying initial model inputs

via perturbation simulations. First, we examined the influence of the partitioning of different carbon pools. Significant changes in

model predictions of CO, and CH4 were observed in response to perturbations of initial input of SOC, WEOC, but not TOAC,

(Figure 3). SOC determines the size of different carbon pools in the model, and it further influences the predictions of WEOC,

: CDeIeted: The
“(Deleted:

TOAC, CO: and CHa. For example, predicted CO> and CHa production increased by about 200% when +200% changes were

applied to initial SOC input. This trend, is consistent with correlation analysis of incubation, results, described above (Table S2).

16

[Formatted [13])
(Deleted: q [14])
[Formatted [15])
(Deleted: 3

(Deleted: 5
(Deleted: maintain

(Deleted: and moisture
[Deleted: 6
(Deleted: , which
(Deleted: our synthesis
(Deleted:

AN AN A AN

—_




20

25

30

35

Perturbations in initial WEOC strongly altered, the predictions of TOAC and COa, consistent with, the model assumption of, the

conversion of WEOC to TOAC (fermentation process) as, the rate-limiting step. The model also predicted jncreases in CHs and

Fe(II) accumulation in response to lower WEOC. Lower WEOC significantly reduced organic acid accumulation, and thus,

(Deleted: influence

(Deleted: WEOC,

(Deleted: as one of the major assumptions of

increased system pH and accelerated rates of both methanogenesis and iron reduction. The starting level of TOAC showed minimal

influence on model predictions of CO» and CHa, suggesting other factors rather than substrate availability were limiting carbon

mineralization. The initial sizes of SOM1 and SOM?2 pools showed very slight changes in model predictions of WEOC and CO»,

and minimal influence on CHa4 prediction, further justifying downstream fermentation process as rate-limiting step in the model.

Additional soil geochemical factors, including soil moisture, Fe(I) and pH also significantly influence model output. In particular.

initial soil pH showed a dramatic effect on predicted CO» and CHa production. With initial soil pH increased from 5 (reference

simulation) to 6, the model predicted 160% and 308% increase in CO> and CHa production, respectively. Perturbations, in initial

‘ CDeIeted:

soil pH had the strongest effect on the prediction of CHa4 by assigning different values in f,# that were directly proportional to the

methanogenesis rates. The above results of perturbation simulations demonstrated high sensitivity of this model in response to

varying soil geochemical properties.

3.3, Model sensitivity to parameterization uncertainties

To further validate the model, we performed additional sensitivity analysis to justify model assumptions and estimate the

uncertainties generated from model parameterizations. One major assumption, of this modeling framework is to lump multiple

fermentation processes into one reaction stoichiometry, controlled by one reaction rate constant. It is critical to evaluate how this
simplified structure influences model performance and contributes to model output uncertainties. The model parameter sensitivity
analysis indicated the TOAC pool was most sensitive to changes in the fermentation rate (Rzr) and reaction stoichiometry (Figure

4). Downstream reactions were less affected by the uncertainties of the two tested parameters. These results supported our

assumption of lumped fermentation with fixed stoichiometry, indicating the robustness of the model structure presented here.

The selection of temperature response functions represents one of the major sources of model uncertainties. A sensitivity analysis

was performed by comparing, four different temperature response functions (Appendix B). In our simulations, the quadratic

temperature response function proposed by Ratkowsky et al. predicted much higher CO2 and CHs production rates at higher
temperature, and the lowest rate of both CO> and CHa at temperatures below 0 °C, giving the highest temperature response among

tested response functions (Figure 5). In contrast, the Arrhenius equation predicted much lower temperature response for both CO2

and CH4. Empirical functions used in CLM-CN and CENTURY gave similar temperature response for both CO2 and CHa.
Variations in low temperature CO2 production is well constrained by established temperature response functions, while CHa4
production at -2 °C showed a much wider range of temperature response, and the median value is best simulated using Ratkowsky
function. This sensitivity analysis is consistent with model output of CO> and CH4 production, where CO is well constrained by
the model, but CHs is significantly overestimated at -2°C using CLM-CN temperature response function. A unified temperature
response function for all reactions under different biotic or abiotic constraints substantially contributes to the disagreement between

model output and observations.

Redox reactions contribute to proton production or consumption, and the resulting pH alters the value of the pH response function
(fprr) that directly controls reaction kinetic functions, creating a feedback loop. pH buffering capacity (BC) provided by SOM with

proton binding sites and /,7 represent two major sources of uncertainties in this feedback loop. Thus, we performed perturbation
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simulations to characterize the sensitivity of model output to variations in BC,and f,n (Figure 6). Higher B, stabilized system pH

during prolonged incubations, while lower B(, permitted a pH increase by up to 0.71 pH unit compared to the reference simulation.

This 14% pH increase led to a 123% increase in fyu, accelerating both methanogenesis and Fe(IlI) reduction rates substantially.
Perturbations on pH response function were directly reflected in the slopes of pH response curves (Figure S8). We found up to
372% change in the value of f,» during a 60-day simulation, as steeper increase in f,u accelerated both methanogenesis and iron
reduction (equation A2-AS5), which contributed to pH rise in the loop, further accelerating f,nincrease. Correspondingly, both CHs

and Fe(II) increased by more than 100% after the simulation. While BC, is an important factor controlling both redox reactions and

pH fluctuations, a unified /. for all reactions may impose significant variations in model output.

BC,is an intrinsic soil property simulated with a simplified linear relationship to soil SOM. However, it generates strong nonlinear

response in the simulations of methanogenesis and Fe(IIl) reduction (Figure 7a). Simulations with varying soil BC, revealed

dynamic pH change at lower BC (Figures 8 and 9, with BC=1 as reference simulation), and stabilized pH at higher BC. At constant

temperature, rates of both methanogenesis and Fe(III) reduction increased significantly at lower BC due to pH control. At lower
BC when pH change is not well buffered, higher pH accelerated CH4 and Fe(II) production rates (Figure 7), giving much higher
apparent temperature responses, while at higher BC with stabilized pH in the system, apparent temperature responses of these
redox processes were significantly lower than the reference simulation (BC=1). Variations in pH buffering capacity generated

large variations in apparent temperature responses of methanogenesis and Fe(III) reduction due to the pH feedback loop.

4 Discussion

4.1 Synthesized soil geochemistry and model validation

Soil geochemical characteristics represent important abiotic controls on anaerobic carbon decomposition and subsequent CO2 and
CHa production. SOC content, soil pH, water table position, C:N ratio, and landscape position were all suggested to contribute to
the variability in anaerobic CO2 and CHs production (Lee et al., 2012; Schddel et al., 2014; Treat et al., 2015). We synthesized
incubation data for gelisol soils from different pedons and soil moisture regimes representing heterogeneity across the BEO. This

coordinated data set allowed us to focus on individual factors and their roles in relation to anaerobic CO2 and CH4 production.

Carbon released as CO> and CHas during anoxic incubations decreased with depth. Permafrost was associated with low levels of

CO: production and very low CHa production, consistent with a previous synthesis (Treat et al., 2015), Nevertheless, permafrost

TOAC, WEOC, and SOC concentrations were all comparable to organic soils, suggesting high substrate availability but low

microbial activity. This trend is consistent with previous studies (Walz et al., 2017, Treat et al., 2015), where highest microbial

abundance and diversity were observed in surface soil and permafrost contained low microbial abundance (Treat et al., 2014,

Waldrop et al., 2010). Among surface soils, higher moisture in low-centered polygon, soils significantly promoted CO2 and CHs4

production and the accumulation of fermentation products (measured as TOAC,), emphasizing the importance of soil SOC content

and moisture as strong environmental drivers for carbon decomposition, Given the bias in correlation analysis created by the

skewed distribution of CO2 and CH4 production in our dataset, additional cluster analysis was performed based on data similarity
rather than correlations. High similarity of soil attributes (depth, moisture, pH, C:N ratio, SOC, TOAC) with CH4 production

(Figure 8a) was found, suggesting methanogenesis is potentially controlled by a set of soil geochemical characteristics in the local

microenvironment.
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These synthesized observations support the major assumptions of our model development: (1) the coupled hydrolysis and

fermentation processes, converting macromolecular SOM into low molecular weight organic acids is the rate limiting step; (2)

different rates of CO2 and CH4 production from different soil layers can be attributed to variations in microbial activity manifested
as differences in initial microbial biomass or growth rates. Additional observations of substantial Fe(III) reduction and associated
pH increases during anaerobic decomposition (Figure S9) confirmed the need to simulate pH variations associated with redox
reactions and corresponding microbial responses. This anaerobic carbon decomposition framework adequately modulated the
involved biotic and abiotic interactions by splitting the carbon flow to different redox reactions and simulating pH buffering

capacity to mediate associated changes in acidity or alkalinity.

The model presented here identified fermentation, acetotrophic methanogenesis and acetotrophic iron reduction as key mechanisms
for anaerobic CO2 and CHa4 production (Vaughn et al., 2016; Lipson et al., 2010). Although denitrification, ammonification and
sulfate reduction are all thermodynamically more favorable, low nitrate and sulfate concentrations in BEO soils limit flux through

these pathways (Newman et al., 2015), We performed another cluster analysis on the model output (Figure 8h), where we not only

simulated fermentation, methanogenesis and iron reduction rates and associated pH changes, but also tracked the biomass of
methanogens (M_Meb) and iron reducers (M_Feb). A dendrogram depicting data similarity showed four distinct clusters
comprising of WEOC, CO: (CO: prediction), Ferrous (Fe(II) prediction), and CH4 (CH4 prediction) that closely associated with
soil geochemical properties and incubation temperature. This result is similar to the cluster analysis of synthesized data, further
validating the proposed model structure in capturing major relationships between carbon mineralization and soil geochemical
attributes. Predicted CH4 production is strongly influenced by incubation temperature, soil pH, and soil moisture and depth that
determines the size of methanogen population. This model prediction is consistent with previous studies on the vertical distribution

of methanogen population (Waldrop et al., 2010), Environmental factors, such as labile organic matter, water table depth, and soil

redox status, soil alkalinity and salinity (Wachinger et al., 2000; Rivkina et al., 2007; Hegj et al., 2006; Yang et al., 2017) are all
likely to contribute to the variabilities in the distribution and abundance of methanogens and subsequent methane production.
4.2 Temperature and pH response of anaerobic carbon decomposition

Rising temperature promotes anaerobic carbon decomposition, resulting in increased rates of anaerobic CO2 and CH4 production

(Treat et al., 2014; Lupascu et al., 2012). It is widely recognized that methanogenesis is more sensitive to temperature than

respiration (Yvon-Durocher et al., 2014; Yvon-Durocher et al., 2012), and it is usually associated with large variations. Segers

estimated the Q10 value of methanogenesis ranged from 1.5 to 28 among 1043 incubation experiments using wetland soils (Segers,

1998), Our data synthesis revealed even higher temperature sensitivity than other reported values. High estimated temperature

sensitivity across the freezing point of water has previously been documented (Waldrop et al., 2010), and further attributed to

limited water availability for microbial activities at sub-zero temperature (Tilston et al., 2010), Ratkowsky et al. proposed a

quadratic relationship for the temperature dependence of microbial growth rates that modeled low-temperature growth better than

the Arrhenius Law (Ratkowsky et al., 1982), Our simulations suggest better prediction of methanogenesis with this temperature

response function, possibly due to a more suitable representation of growth limitation of methanogens at sub-zero temperature.
Methanogenesis rates are also influenced by the availability of alternative electron acceptors and carbon source. Processes
contributing to the accumulation or consumption of carbon substrates and competing electron acceptors may respond differently
to temperature change, which could further complicate the temperature sensitivity of methanogenesis. Current modeling

approaches heavily depend upon empirical temperature response functions, which may be associated with large uncertainties due
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to variations in the selection of data and curve fitting methods. Extrapolation of carbon decomposition rates, particularly
methanogenesis rates, into a future warmer climate remains uncertain. More accurate simulations will require additional

information on geochemical properties that contribute to the variations of methanogens distribution and methanogenesis activity.

pH values impose fundamental physiological restrictions on microbial activities. Soil pH ranges from acidic to circumneutral (pH

4-7.5) in northern Alaska,and varies substantially through the soil profile and along the microtopographic gradient. Accumulation

of organic acids in anoxic soils leads to pH decline (Jones et al., 2003), while consumption of organic acids by methanogenesis

and iron reduction increases the alkalinity of the system via the production of HCOs and OH" (Drake et al., 2015; Roy Chowdhury
et al., 2015; Howell et al., 1998). The interplay of these processes leads to strong nonlinear pH feedbacks in the system, and
previous studies have observed up to 1-2 pH unit changes during short-term anoxic incubations (Xu et al., 2015; Drake et al., 2015;
Roy Chowdhury et al., 2015). These relationships between pH and organic carbon decomposition can vary in sign and magnitude.
Our model simulations with mechanistic pH evolution indicate that constant pH assumed in previous models may cause significant
errors in simulating long-term anaerobic CO2 and CHa4 production. The intrinsic soil pH buffering capacity plays a large role in

stabilizing soil pH and may vary,depending upon solution acidity or alkalinity, cation exchange capacity, SOM content and mineral

composition and/or dissolution. These properties derive from SOM characteristics, moisture, mineral content, and additional
geochemical properties, leading to complex correlations between soil pH and SOC decomposition rate that require future

investigation.

4.3 Fast-decomposing carbon pool

Substrate availability is a primary determinant of potential CO2 and CHa4 production (Lee et al., 2012; Schuur et al., 2015; Tarnocai
et al., 2009). Total SOC is composed of heterogeneous C pools characterized by different turnover times. Carbon release during
short term incubation originates from the C pool with relatively rapid turnover. The size and turnover time of this quickly-
metabolized carbon pool is usually estimated by two-pool or three-pool conceptual models with a maximum likelihood solution

using time series of CO2data (Schidel et al., 2013), A previous study on Siberian permafrost soils using a two-pool model estimated

a turnover time of 0.26 years for the fastest-responding pool (Knoblauch et al.. 2013), A three-pool model was applied using more

extensive incubation datasets collected from 23 high-latitude ecosystems, yielding an estimate of 0.35 years mean turnover time

for the fastest-responding carbon pool (Schidel et al., 2014),

In our synthesis study, we directly quantified WEOC and assumed it represented the fast-decomposing labile carbon pool. The size

of the labile carbon pool is constant,during anaerobic decomposition, while total CO2 and CHs release represent up to 194% of the

labile carbon pool, indicating continuous replenishment of labile carbon pool from non-labile carbon pools within the hierarchy.
The replenishment of labile carbon pool can be attributed mostly to decomposition of SOM1 and SOM2 pools with relatively faster

turnover (Koven etal.. 2013),Overall, we estimated the fast-decomposed carbon pool is approximately 2-4% of total SOC, similar

to previous estimates. The turnover time calculated from the fermentation rate was comparable to estimates of the turnover time

of the fastest-responding carbon pool in previous studies (Figure 9), suggesting these quantifications and parameterization in the

anaerobic carbon decomposition framework apply broadly.

4.4 Key features of the anaerobic model framework and future considerations

Here we present an anaerobic carbon decomposition framework by combining three well-known modeling approaches developed
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in different disciplines. A pool-based model to represent upstream carbon transformations and replenishment of DOC pool, a
thermodynamically-based model to calculate rate kinetics and biomass growth for methanogenesis and Fe(III) reduction, and a
humic ion-binding model for aqueous phase speciation and pH calculation are implemented into the open source geochemical
model PHREEQC (Charlton & Parkhurst, 2011). The model framework presented here has several unique features. First, this
model is built upon a thermodynamically-based approach, which allows consistent parameterization of individual reactions along
the redox ladder. Such a model structure is particularly useful in circumstances when function-specific microbial growth is difficult
to quantify and parameterize. Second, calculations of free energy changes of redox couples are used to modulate redox reaction
hierarchy. Considering the difficulty in obtaining growth-associated parameters for every functional group, a thermodynamically-
based approach significantly decreases the number of parameters that are difficult to measure. In addition, proton production and
consumption during redox reactions are incorporated into a dynamic pH calculation, allowing various simulations on aqueous
solubility and reactivity of different elements. The anaerobic carbon decomposition framework presented here holds a significant

advantage over traditional models in simulating carbon decomposition process within a wide range of environmental settings.

In permafrost affected regions, studies consistently identify iron, reduction, denitrification and sulfate reduction (Lipson et al.,

2010; Lipson et al., 2013; Ernakovich et al., 2017; Hansen et al., 2007) as alternative anaerobic pathways, which are recognized
as energetically more favorable processes than methanogenesis. The new model framework presented here provide a reasonable
basis for a deeper understanding of carbon decomposition under oxygen-limited conditions where the importance of accounting
for alternative election acceptors becomes more pronounced. Future fine-scale experiments on carbon decomposition using
alternative electron acceptors would be beneficial for more comprehensive parameterization of this model framework. Additional
observations on temperature and pH sensitivity of specific redox reactions would also be quite useful in reducing large uncertainties

generated by the current representation of temperature and pH responses. Application of such modeling framework at field scale

requires close coupling with hydrology models to facilitate estimations on aqueous phase concentrations. Additional assumptions

on vertical mixing and gas diffusion in the soil column should also be considered.

5. Conclusion

Microbial processes are the driving forces for biogeochemical cycling of soil carbon,and are subjected to environmental constraints

beyond temperature and organic substrate availability. The present study incorporated microbial redox reactions and mechanistic
pH evolution to simulate anaerobic carbon decomposition in Arctic soils with depth and across soil moisture gradients. Our data
synthesis and modeling results quantify direct effects of temperature on anaerobic carbon decomposition, as well as indirect effects
of soil geochemistry that cause strong redox reaction-pH feedback. We identified substantial pH feedbacks on the predictions on
CO: and CHa production. The anaerobic carbon decomposition framework presented in this study provided the essential model
structure to incorporate redox reactions of alternative electron acceptors for accurate simulation of CO2 and CHa production. Soil
geochemistry impose critical constraints on SOM decomposition, and further regulates permafrost carbon feedback in response to

changing climate.

Code and data availability

PHREEQC (Version 3) is publicly available at http://wwwbrr.cr.usgs.gov/projects/ GWC_coupled/phreeqce/
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The model is archived at https://dx.doi.org/10.5440/1430703, with detailed description of model implementation, input files and

various sensitivity analysis described in this paper.

Data sets used in this work can be found at
https://dx.doi.org/10.5440/1168992
https://dx.doi.org/10.5440/1393836
https://dx.doi.org/10.5440/1288688

A synthesis of the the incubation data is available at

https://doi.org/10.5440/1440029
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Appendix A: Anaerobic carbon decomposition model

JThis section lists reactions used in the anaerobic carbon decomposition model. Under anaerobic conditions, dissolved organic

carbon is converted to low molecular weight organic acids via fermentation. One simplified fermentation reaction is used to
represent this lumped fermentation process, where 1/3 of the fermented organic carbon is converted to COz (Tang et al., 2016;Xu
etal., 2015):

CoHyz06 + 4H,0 — 2CH,CO0~ + 2HCO5 + 4H* + 4H, (AD) «

This fermentation reaction generates protons and decreases pH in the system. Fermentation products acetate and H» are further

consumed via methanogenesis and iron reduction, The growth equations, of methanogenesis and iron reduction were derived for ;

each group using thermodynamically-based approach, in which biomass synthesis is included in paired,electron donor and electron, ;
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Appendix B: Temperature and pH response functions

We used the CLM_CN temperature response function (B1) in our simulations (Thornton and Rosenbloom, 2005). Additional tested

\| 8Fe?* +110.8H* + 13H,0 (A52HC . [19]

temperature response functions included B2 used by CENTURY model (Parton et al., 2001), Arrhenius equation B3 used in ecosys

\
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25 (Grant, 1998), and the quadratic equation B4 (Ratkowsky et al., 1983). Ty.ris set at 25 °C, E, is the activation energy (J mol™), R [DEEtEd: )
is the universal gas constant (J K'' mol™"). 7,, used in Ratkowsky’s model represents the conceptual temperature of no metabolic

significant and is set at -8 °C in this study,
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Figure 1, Conceptual diagram showing key processes in the anaerobic carbon decomposition framework. The numbers

indicate different processes: 1. SOM degradation from soil organic carbon pools with increasing turnover time produces
dissolved organic carbon (DOC) and COz; 2. Fermentation of DOC into organic acids, H2 and CO:z; 3. Methanogenesis

from organic acids or Hz; 4. Fe(III) reduction from organic acids or Hz. 5. Fe(OH); dissolution.
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triplicate microcosms at each time point from each incubation temperature were calculated as observed values.
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Figure 3, Perturbations of initial soil geochemical conditions differentially affected model predictions (including CHs, CO:,

Fe(Il), TOAC, WEOC, and pH) during anaerobic carbon decomposition. For example, when the initial pH decreased by

8% and 17%, CH4 production decreased by 40% and 80%., respectively. Normalized changes in model output were

calculated as the ratio of perturbation simulation output to reference simulation output after 60 days of anaerobic
decomposition at 8 °C. To test model sensitivity in response to initial pH, the reference run started with pH 6, and up to 1

pH unit changes was applied in perturbation simulations to represent a realistic pH range for soils. Reference simulations
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were based on soils with 30% SOC (water content=2 g g dwt, and pH=5).
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Figure 4, Simulated changes in model predictions (including CH4, CO2, Fe(II), TOAC, WEOC, and pH) during anaerobic

carbon decomposition in response to perturbations of (a) fermentation rate and (b) fermentation stoichiometry
(Acetate:CO2=1:1 for reference simulation). Normalized changes in model output were calculated as the ratio of

perturbation simulation output to reference simulation output after 60 days of anaerobic decomposition at 8 °C. Reference

simulations were based on soils with 30% SOC (water content=2 g g dwt, and pH=5).
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Normalized changes in model output were calculated as the ratio of perturbation simulation output to reference simulation

output after 60 days of anaerobic decomposition at 8 °C. Reference simulations were based on soils with 30% SOC (water

content=2 g g"! dwt, and pH=5).
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Figure 8, Cluster analysis of soil geochemical properties related to CO: and CH4 production using Ward’s linkage method.

(a) cluster analysis of measured soil geochemical characteristics and observed CO: and CH4production (n=42); (b) cluster
analysis of modeled results (n=42). Model simulated CO2, CHs, and Fe(II) production and final pH are labeled as M_CO2,
M_CH4, M_Fe, and M_pH, respectively. Biomass of methanogens and iron reducers were tracked in the model and labeled

as M_Meb and M_Feb, respectively.
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represent estimations from our model simulations (rates, estimated at 4 °C). Schadel data represent turnover rates

estimated via a three-pool model from pooled anaerobic incubations with normalized incubation temperature of 5 °C (tag
1, 2, and 3 represent pool estimation from different soil types: 1. Organic, 2, Mineral <lm, 3. Mineral >1m) .
Knoblauch_data are rate estimates (at 4 °C) made via a two-pool model (Schiidel et al., 2014;Knoblauch et al., 2013). Open

symbols represent the average values, and the vertical lines represent the estimated range.
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The fate of permafrost C is determined in large part by soil moisture, particularly water saturation caused by ice

melting, precipitation, infiltration and runoff (Riley et al., 2011; Elberling et al., 2013; Schédel etal., 2016). Permafrost
thaw frequently creates large areas of soil inundation due to abrupt surface collapse and subsidence (Painter et al.,
2013; Walvoord and Kurylyk, 2016), resulting in higher levels of CHa production via anaerobic decomposition
pathways. Although total carbon release under oxic conditions is much higher than under anoxic conditions (Schidel
etal., 2016), emissions of high global warming potential CH4 may offset reduced lower CO: emissions in the absence

of oxygen (Lee et al., 2012).
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3a). Higher incubation temperatures showed minimal effect on the WEOC/SOC quotient, and a temperature response

trend remained insignificant.
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from LCP and HCP centers (Figure 3b). In most mineral soils
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%, partially contributing to the depletion of WEOC after the anoxic incubations.
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Good correlations between soil organic carbon (SOC, WEOC and TOAC) and soil moisture were found, indicating

the importance of soil moisture in controlling carbon substrate availability (Table 1). High organic carbon content and
high soil moisture are associated with organic and permafrost soil, while mineral soils are much drier with lower
organic carbon content (Figure S2). Fe(Il) concentration is measured as a proxy of soil redox potential, and it is most
closely related to soil pH (Table 1).

3.2
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response and soil layer effects

Cumulative production of both CO2 and CH4 showed close correlation with soil carbon content (represented as SOC,
WEOC and TOAC) on a dry soil mass basis, as well as soil moisture (Table S4). Given the high inter-correlation
among these soil attributes (Table 1), we evaluated the relationship between gas production and soil geochemical
characteristics on per gram C basis to avoid inter-correlation caused by SOC content (Lee et al., 2012). The maximum
values of cumulative CO2 production were 756 and 534 pmol g! C at 8 and -2°C, exceeding the median values at
corresponding temperature by 5 and 8 times, respectively. The maximum cumulative CH4 production was 198 pmol
¢! C from the organic layer of LCP center at 8 °C, approximately 123 times the median value among the rest of the
samples. Cumulative CHs production from the same soil was 9.2 umol g! C when incubated at -2 °C, 9 times the
median rate among the remaining samples. Cumulative CO:z production showed strong positive correlation with initial

soil moisture at both 8 and -2 °C, while cumulative CH4 production only correlated with initial soil moisture at 8 °C



(Table 1). Noticeably, significant correlation between production of CO2 and CH4 was found at 8 °C, but not at -2 °C
(Table 1), suggesting CO2 and CH4 production were controlled by different factors at 8 and -2 °C, respectively. Given
that cumulative CO2 and CH4 production both had skewed distributions among samples (Figure S3), the significance
in the correlation between gas production and moisture would be substantially weaker with exclusion of measurements

from the wet organic layer of LCP center.

Initial production rates of CO2 and CHa4 varied significantly across organic, mineral and permafrost soil layers

| Page 16: [7] Deleted Revised 6/8/18 5:25:00 PM |
<0.001 and p<0.001, respectively, Figure 4). Temperature showed a substantial positive effect on CO2> and CH4

production rates (p
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). A significant temperature x soil layer interaction effect was found on COz production rate, but not on CHs production

rate (Table S5), suggesting CH4 production might be more sensitive to constraints from additional environmental

conditions.
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value was calculated for each condition to further assess the temperature dependency of CO2 and CH4 production

(Figure S4). The calculated Q1o values of COz production from organic soil were within a

' Page 16: [11] Deleted Revised 6/8/18 5:25:00 PM |
between 4.6 and 5.0. Mineral soils with lower SOC content showed a wider range of Q1o values (from 3.6 to 7.3).

Permafrost showed significantly lower Q1o than both organic and mineral layers (Table S6). Methanogenesis
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, while in mineral soils and permafrost, the average Q1o values were 7.1 and 1.6, respectively.
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We used the CLM_CN temperature response function (B1) in our simulations (Thornton and Rosenbloom, 2005).
Additional temperature response functions tested here including B2 used by CENTURY model (Parton et al., 2001),
Arrhenius equation B3 used in ecosys (Grant, 1998), and the quadratic equation B4 (Ratkowsky et al., 1983). Tier is
set at 25 °C, Eq is the activation energy (J mol™), R is the universal gas constant (J K! mol"). 7, used in Ratkowsky
model represents the conceptual temperature of no metabolic significant, and is set at -8 °C in this study.
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Table 1. Descriptive statistics and correlation matrix for soil geochemical characteristics, labile carbon pool (in

pmol g C) and estimated 60 days max production of COz and CH4 (in pmol g! C) at 8 and -2°C.

1 2 3 4 5 6 7 8a/8b
1. SOC
2. WEOC 0.80?
3. TOAC 0.62° 0.69?
4. Moisture 0.69? 0.82? 0.78?
5.pH -0.30 -0.15 -0.14 -0.11
6. C/N ratio 0.07 0.06 0.17 0.05 -0.64°
7. Fe(1l) 0.06 0.09 0.15 0.04 -0.35 -0.03
8a. Max_8_CO: 0.38 0.39 0.33 0.63° -0.09 -0.13 -0.33
8b. Max_2 CO: 0.40 0.54° 0.67* 0.79* 0.07 -0.14 -0.30
9a. Max_8 CHas 0.31 0.41 0.50 0.74? -0.24 0.18 -0.29 0.88?
9b. Max_2 CHas -0.33 -0.24 -0.08 0.06 0.19 -0.31 -0.32 0.35

Note: ? correlation is significant at the 0.01 level (two-tailed); ® correlation is significant at the 0.05 level (two-tailed)
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Figure 1. Schematic diagrams of different polygon types and features. The cross section represents the relative

landscape positions of soil profile, including organic, mineral, transition zone and permafrost.
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Figure 3. Changes in (a) WEOC/SOC (quotient of water extractable organic carbon to total soil organic carbon)
and (b) TOAC (calculated as (TOAC.fter - TOAChefore)/ TOAChefore) after anaerobic incubations at -2, 4 and 8
°C. Bars framed with black lines in panel (a) represent the TOAC/WEQC levels before incubation, and blue
bars represent levels after the incubation at corresponding temperatures. Error bars represent standard

deviations among triplicate measurements.



