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Author responses to:  
 
Interactive comment on “Modeling anaerobic soil organic carbon decomposition in Arctic 
polygon tundra: insights into soil geochemical influences on carbon mineralization” by 
Jianqiu Zheng et al. 5 
 
We appreciate comments from both reviewers and the editor, and have used these to extensively revise our 
manuscript. This document includes responses to the Associate Editor’s comments and reproduces our responses to 
both reviewers’ comments that were previously uploaded. Finally, this document includes a comparison of the revised 
manuscript with the originally submitted version. These changes were extensive and substantially improved the 10 
manuscript’s readability. Note that figures were renumbered in the revised version. 
 
Editorial comments 
 
Both reviewers appreciate the modelling efforts conducted and indicate its importance. At the same time though, 15 
both indicate to have had major problems with the flow of the story line and with the lack of details on some 
crucial points of the modelling. Both need to be significantly improved to become acceptable. 
My suggestion would be to: 
- eliminate the extensive descriptions of the sites and the performed incubation experiments. These experiments 
certainly do not constitute the novel part of this manuscript (numerous similar results from similar experiments 20 
are available in literature) and it is now distracting (e.g. why extensively discussing Q10 while - I hope- it would 
be an emergent property from a mechanistic model?). essentials can be moved to suppl. info. 
 
We moved essential elements of the data synthesis to supplemental text. Our re-analysis of these incubation 
experiment results required a significant effort, and we hope the product will be useful to future investigators through 25 
the dataset that will be available as a DOI.  
 
- start the methods with a proper model description, possibly using and extended version of fig 2 to guide the 
flow, then model validation and then model sensitivity. The results section can start with what is now 3.3. 
 30 
The revised manuscript includes an extensive description of the model, with the model-data integration illustrated in a 
new process diagram in Supplementary Figure S2. 
 
I also have a number of additional comments: 
- To me, model validation while using a number of initial state var. is quite fine (and is less confusing to me than 35 
model initiation), but I don't understand why measured pH was used as parameter in that analysis after the 
extensive discussion of the authors in the introduction that pH estimates should be based on mechanisms. If you 
use pH to initialize the model, it does not seem based on mechanisms. Or, to put it more generally: how 
mechanistic is your model and what is your scientific advance on this topic.? That does nowhere become clear 
and is also related to my next two comments: 40 
 
While geochemical speciation calculations could theoretically estimate pH based on complete measurements of 
dissolved charged species, this is not practical (or accurate) for Arctic soil water. In our experience, charge balance is 
usually very poor in these calculations due to the significant contribution of anionic dissolved organic matter, creating 
large errors in initial pH estimates. This illustrates the importance of the aqueous phase model that we introduce in this 45 
work. We recommend usually readily available pH measurements to initialize this model, and our mechanistic pH 
response function to simulate pH changes from that initial parameter over time.  
 
- I (and one of the reviewers too) have problems with some claims on the lack of anaerobic decomposition in 
ESMs. The authors are well aware, I believe, of the ensemble of ESMs developed to model global methane 50 
emissions, each of which take anaerobic decomposition processes into account (incl. a model from the CLM 
family if I am not mistaken). So, how should we see the advance made by this model in this respect? 
 
The revised manuscript better distinguishes the present explicit representation of anaerobic carbon decomposition 
cascades and redox processes from previous models that treat processes implicitly. We refer readers to our previous 55 
review in this journal by Xu et al. 2016, which provides a more comprehensive description of methane cycle models 
and a detailed comparison of model structures. 
 
- The authors next argue that mechanisms should be included and indicate that Eh and pH of models should be 
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based on (thermodynamic) mechanisms. Such models are available and extensively used (e.g. in modelling the 
dynamics in anaerobic sludge reactors, but also for anoxic soil systems) and some of those models are explicitly 
based on humic acids and/or iron reduction. Moreover, from the current description it does not seem that pH or 
Eh are prognostic variables in the presented model either. So again: how does the model advance our 
understanding compared to existing models? 5 
 
We substantially revised the Introduction and Methods sections to provide more details about this new model. We 
agree that foundational thermodynamic modeling of anaerobic digestors and batch reactors has benefitted our work, 
for example by informing the thermodynamic models of Istok, Roden, Bethke et al. cited here.  However, most of these 
models were developed to simulate specific redox processes including relatively defined carbon substrates. We are 10 
not aware of other models that have attempted to couple a thermodynamically based microbial growth model, a 
substrate pool-based model, and a humic ion-binding model, to create a generic, process-rich carbon decomposition 
model for anoxic soils that allows simultaneous thermodynamic and pH calculations. Highly parameterized models 
often perform poorly when used to simulate a wide range of environmental conditions, so the present model is 
remarkable for its fidelity in simulating CO2 and CH4 production from gradient of soil moisture and SOM conditions. 15 
 
Referee #1 
 
The manuscript proposes a new model to study organic matter decomposition under anaerobic conditions from arctic 
soil with a focus on implementing the effects of temperature and pH. The research direction is of a great importance 20 
and the authors attempt to formulate such effects on carbon decomposition from arctic is also interesting. However I 
believe the representation of the manuscript could be significantly improved. My major concern is that the current 
form of presenting the manuscript is not self-standing and a lot of refers has been done to authors previous 
publications that makes it difficult to follow and evaluate the content efficiently.  
 25 
One of the main goals in this paper (anaerobic model development) is to develop mechanistic representation of 
methanogenesis, iron reduction and associated pH feedbacks. This goal required data on soil geochemical 
properties, Fe(III) and Fe(II) concentrations and pH changes during incubations to be synthesized from previous 
publications. It is not feasible or appropriate to reproduce the high level of detail in those coordinated soil 
geochemistry measurements, which are described in the cited material. We have moved the synthesis discussion to 30 
Supplemental Materials. 
 
 
Similarly, model description is not complete and no clear hierarchy of the model development and formulation is 
provided. I understand that the main model has been developed previously but this should not lead to a 35 
discontinuous representation that will be non-informative for audience with different background. I strongly suggest 
improving the model representation and at minimum including a clear schematic with explicit steps that should be 
taken in formulating such model.  
 
This is a good suggestion regarding better model documentation and archiving. To clarify the workflow in the 40 
manuscript, we are reorganizing the section that introduces the model and adding a new flow chart in the 
Supplementary Figure 2 explaining how the synthesized data product is used to inform model development. We are 
also including a detailed model description in the Supplementary material, supplementing Figure 2 that demonstrates 
the main structure of the new model. Detailed descriptions of the carbon pool cascade adopted from CLM-CN model, 
thermodynamically-based growth equations for methanogenesis and iron reduction, and the WHAM model 45 
implementation to represent pH buffering will be included in the Supplementary material. Detailed instructions to run 
the model with our database (redox.dat) under PHREEQC framework will also be included with an example input file. 
A permanent DOI is reserved for code and additional details on model implementation.  
 
Other comments:  50 
- Introduction was well-written and provided important and necessary information. However I would still encourage 
authors to try shortening it that would be focused on the main message of the paper.  
 
We condensed the introduction section to be more focused on introducing explicit processes that are missing from 
current Earth System Models (ESMs). 55 
 
- While authors acknowledge the key role of hydrolysis to convert SOM (particulate organic matter) to DOC, they 
have simply ignored this step and no discussion is provided on how the step 1 (Figure 2, conversion of SOM to DOC) 
is modelled and if hydrolysis is taken into account in the current model.  
 60 
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Hydrolysis is generally recognized as the rate-limiting step during anaerobic carbon decomposition. As stated in the 
second paragraph in section 2.3, hydrolysis and fermentation include multiple reactions steps, and we combined 
hydrolysis and fermentation together in one step using an empirical approach. This is a practical assumption for three 
reasons: (1) Microorganisms that degrade cellulose anaerobically usually also ferment sugars following hydrolysis; 
(2) Current characterization of SOM in Arctic soils is insufficient to differentiate multiple hydrolysis and fermentation 5 
steps: the few reports on Arctic soil exoenzyme activities do not survey the full range of hydrolytic reactions required 
for biomass decomposition such as endoglycosidases. Thus, data are not available to support multiple hydrolysis 
and fermentation steps in the model; (3) The lumped hydrolysis and fermentation step still allows us to use this 
reaction as the rate-limiting step in the model, which fits the observations presented in Figure 3. We will clarify this 
representation of hydrolysis in the revised manuscript’s introduction. 10 
 
Step 1 (Figure 2, conversion of SOM to DOC) is calculated using the indirect fraction of the original respiration factor 
from CLM-CN carbon decomposition cascade. The detailed description is included in the commented code file (can 
be accessed at https://dx.doi.org/10.5440/1430703, once the manuscript revision is finalized). We are also including 
detailed description in the Supplementary material. 15 
 
 
- How the model deals with large discharge rate of DOC that is common in permafrost soil due to lateral flow?  
 
The Barrow Environmental Observatory is located on the flat Arctic coastal plain, where lateral flow is minimal after 20 
snowmelt. Precipitation roughly balances evapotranspiration in most areas during the thaw season. Dealing with 
lateral flow requires transport processes, which are beyond the scope of current manuscript. However, it is a good 
target for future research to model different sites, and we are actively working towards coupling PHREEQC 
capabilities (chemical equilibrium and kinetics) with thermal hydrology models to address transport.  
 25 
- More explanation on how fermentation step is formulated in the model would be helpful.  
- More explanation on how parameterization has been done and how it has been used in the current model would be 
nice.  
 
Additional model details have been added to the Methods section. The fermentation step is parameterized as a 30 
single reaction following first order kinetics. 
 
	C#H%&O# + 4H&O	 → 2CH,COO- 	+ 2HCO,- + 4H. + 4H&  
 
As stated in the second paragraph in section 2.3 and first paragraph in section 2.4, the above stoichiometry of 35 
fermentation reaction is a lumped process representing production of low molecular weight organic acids (in this 
case, acetate), CO2 and H2 from labile carbon (we used a constant molecular formula C6H12O6, representing 
monosaccharides. 
 
Methanogenesis and iron reduction are parameterized using individual growth equations of acetoclastic 40 
methanogens, hydrogenotrophic methanogens and iron reducers utilizing acetate or H2. In the revised manuscript, 
we will include more detailed description on growth equations, and a summary of kinetic rate constants and half 
saturation constants in the Supplementary material. 
 
 45 
- Q10 values are represented as soil layer combinations. Was there no effect of soil layer? Or there is a correlation 
with soil depth? More explanation would be helpful. 
 
The initial production rates of CO2 and CH4 used for Q10 calculations showed strong depth effects, as demonstrated 
in Table S5. Thus we reported the temperature effect (Q10) using grouped soil layers. We further conducted a t-test 50 
on the estimated Q10 values for CO2 and CH4 production, respectively (Table S6). These analyses were mentioned 
in section 3.2. We will add an additional line for clarification in this section. 
 
 
- In schematic Figure 2, it is shown that conversion of SOM to DOC produces CO2-? What is the process for this 55 
production? Is it general?  
 
In the original CLM-CN carbon decomposition cascade, each carbon pool is associated with a respiration factor 
representing carbon loss as CO2. Now in our new model, this factor is split into a direct fraction that is respired to 
CO2, and an indirect fraction that goes to DOC pool. We kept the direct fraction to represent microbial respiration. 60 
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CO2 production is also required in anaerobic systems for microbial biomass formation: forming reduced cellular 
components such as lipids must be offset by CO2 production to balance electrons in the system. In the revised 
manuscript we will address this briefly in the discussion of Figure 2 and add more detailed explanations in the 
Supplementary material. 
 5 
 
- Representation of Table 1 should be improved. Is table 1 and Table S4 representing different system? Please be 
clear in the captions of the Tables.  
 
Gas production data used in the statistical analysis in Table 1 are converted to per gram carbon basis, while in Table 10 
S4, data are reported on per gram dry soil basis. The reason we decided to report two tables is due to the high 
correlations of WEOC, TOAC and soil moisture in respect to SOC. Such correlations conceal the relationships 
between gas production and other soil geochemical properties. Though it was briefly mentioned in the first paragraph 
of section 3.2, we will clarify the differences in the revised manuscript and highlight the differences between two 
tables. 15 
 
 
- In the text, it is mentioned that “The maximal production of CO2 is about 2/3 of the initial carbon.” Where this 
number came from?  
 20 
This calculation is based on the stoichiometries of equation A1, A2 and A4.  When starting with 1 mol of labile carbon 
(C6H12O6), 1/3 of the carbon is released as CO2 during fermentation, and 2/3 of the carbon forms acetate, which can 
be further respired as CO2 via methanogenesis (1/3 of initial carbon) or iron reduction (2/3 of initial carbon). We will 
replace this sentence with a more general statement: For complete mineralization, the fraction of initial carbon 
respired as CO2 is in the range of 2/3-1. 25 
 
 
- What "process rich carbon decomposition model" mean? 
 
That statement means that we explicitly included mechanistic representations of chemical equilibrium processes to 30 
allow simultaneous thermodynamic and pH calculations. We will clarify this in the revised manuscript. 
 
- In Figure 8, could you also show the data at 8C which other data points are normalized with? Is only two data points 
enough to make a conclusion? How do you illustrate huge variations in observation data? What are the actual values 
for CO2 and CH4 production rates at 8C? is it for observations? Is absolute data are comparable? Where is the 35 
Shaded area mentioned in the caption?  
 
 
Data at -2 and 4 °C in this figure are normalized to rates measured at 8 °C from corresponding soil samples. i.e. the 
value for each point at 8 °C is set to 1 in respect to the y-axis scale in the figure. There were 14 averaged observed 40 
values for each temperature (each representing a unique soil microtopographic feature × soil layer combination). The 
absolute values of CO2 and CH4 production rates are plotted in Figure 4 for each temperature. There are huge 
variations in observations among different soil microtopographic feature × soil layer combinations. We will clarify this 
interpretation in the revised manuscript. 
 45 
The shaded areas are plotted around each colored line representing model simulations using different temperature 
response functions. They are quite small, indicating stronger model uncertainties generated from different functions 
rather then the designated time scale used to run model simulations. 
 
 50 
- In Figure 3, notations for Figure 3a are not clear. For example LCP-C1-0?  
 
The notations of treatment (soil microtopographic feature × soil layer combination) are summarized in Table S1. For 
example, LCP-C1-O means Low Centered Polygon-Center (the first soil core)- Organic layer. LCP-C2-M means Low 
Centered Polygon-Center (the second soil core)- Mineral layer. With these notations one can easily identify the 55 
microtopographic feature from the figure. We will add an additional line referencing Table S1 for clarity in the revised 
manuscript. 
 
- In general, I found it difficult to follow the model results in the form that are represented in Figures 3, 6 and 7, 9. Is 
there a simpler way of showing the model results that one could extract the trends? 60 
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Figure 3 is a bar graph showing changes in WEOC and TOAC pool after incubation. Factors we here include 
different soil microtopographic feature × soil layer combinations, three different incubation temperatures, and 
variations among triplicate incubations. All these are essential to demonstrate why we made the model assumption 
that the DOC pool is in equilibrium state, and the rate-limiting step is the fermentation of DOC into organic acids 5 
(Figure 2, process 2). 
 
Figure 6, 7 and 9 are model sensitivity analyses. Variations of ±25% and ±50% were applied to tested parameters (x-
axis), the resulting output changes were plotted in bars (y-axis).  For example, in Figure 6, when the initial pH is 
decrease by 8% and 17%, CH4 production decreased by 40% and 80%, respectively. We will provide such an 10 
example in the revised text to clarify interpretation. 
 
 
 
 15 
Referee#2 
 
This paper examines aerobic and anaerobic soil organic matter decomposition in the context of iron, and pH. This is 
an important contribution to the understanding of soil carbon dynamics in permafrost regions which hold vast 
reservoirs of carbon that could potentially be released under future climate change. Unfortunately, this manuscript 20 
has flow problems with substantial logical gaps between a traditional correlative analysis and the process rich model. 
More concerning is a lack of documentation on how the process rich model was developed, making the simulation 
results of this study unreproducible as is. This paper tries to do both a traditional regression/correlation style analysis 
and a nonlinear process rich simulation. From what I can tell the traditional analysis is solid, although the lack 
analysis scripts make it difficult to evaluate. However, the connection to the process rich simulation is tenuous at 25 
best. In addition, I’m not clear how the data was incorporated into the simulation and how the simulations were 
validated with the data. I would consider splitting this into two papers, one with the traditional analysis and a second 
with the model development, parameterization, and validation. While this is not required it would make the 
manuscripts easier to write. As is there remains work needed on the flow and connection between these two 
components. 30 
 
We appreciate the positive feedback on the synthesis data analysis and the constructive suggestions on making the 
connections between data synthesis and model development. We moved the data synthesis discussion to the 
Suplemental materials. To clarify the workflow in the manuscript, we are revising the model introduction (section 2.3) 
and adding a new flow chart explaining how the synthesized data product is used to inform model development. For 35 
example, the bar graph showing changes in WEOC and TOAC pool after incubation (Figure 3) is the motivation to 
make the model assumption that DOC pool is in equilibrium state, and the rate-limiting step is the fermentation of 
DOC into organic acids (Figure 2, process 2). 
 
We are also including a detailed model description in the Supplementary material. While Figure 2 demonstrated the 40 
main structure of the new model, a revised version of Figure 2 will include the complete CLM-CN carbon 
decomposition cascade (including the litter pools that currently we are not using in our model) to demonstrate how 
the carbon pools are adopted from CLM-CN model and modified for our modeling purpose. The new modeling 
components developed in this work, including thermodynamically-based parameterization for methanogenesis and 
iron reduction, and WHAM model implementation to represent soil pH buffering, are discussed in great detail in the 45 
Supplementary material. 
 
I would like to see some discussion of scaling of these microscale processes to macroscale models. 
 
We expanded our current discussion in section 4.4. 50 
 
This study needs a lot more detail to make model development reproducible. The link to github code is a start but 
documentation is completely inadequate and lack of permanent DOI on the repository means that the codebase 
might not be there for future studies. The code needs to be commented with major algorithms summarized in 
functions. README needs instructions on running codebase with a summary of the content of each file. Alternatively 55 
this could be submitted as a markdown file with input-function-output format with inline comments explaining 
approach. Include version number for PHREEQC. Right now, I would not consider this study to be reproducible and it 
is difficult to evaluate the model results without this context.  
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We appreciate these suggestions to improve model documentation. Currently the commented model is in the 
writephrq.py file. To make the model easier to follow, we have added step-by-step instructions on the github site, 
including PHREEQC installation, how to run the model with our database (redox.dat), and how to create PHREEQC 
exacutable .phrq files using the python script we have provided. A permanent DOI is reserved for model code and 
additional details on model implementation is included. We will include example input and output files with detailed 5 
comments.  It will be publicly accessible once we finalize the manuscript. 
 
 
I’m concerned that the authors both use a simple correlation analysis to argue for inclusion of various dependent 
variables in the proposed highly complex non-linear model. In particular, I would not have expected a strong 10 
correlation between moisture and SOC given the typical non-linear sensitivity function used to describe respiration 
response to moisture (though this is possibly explained by the range of moisture conditions considered). In addition, 
low correlations could be explained by non-linear responses. At the risk of adding yet another analysis to an already 
confusing study, I would suggest that instead the authors use a paired scatter plot to visually show the relationships 
between these variables. This will demonstrate that there is no strong non-linear relationship and that the correlation 15 
coefficients are sufficient to describe the relationship.  
 
 
The correlation between soil moisture and SOC is indeed an interesting result. Measurements of total soil carbon are 
highly correlated with gravimetric water content in BEO soils (Pearson r = 0.80, P < 0.0001). We will include a paired 20 
scatter plot in the revised version. We suggest several alternative explanations. First, high water content in saturated 
areas preserves organic matter by limiting oxygen diffusion, as the reviewer notes below. Second, undecomposed 
organic matter binds water tightly, even at low matric potential. Third, high organic matter composition creates large 
pore volumes that fill with water in saturated soils. 
 25 
 
Line by line reactions:  
P1L23 While anaerobic decomposition certainly is missing from many ESMs, I’m not sure I would claim that it is the 
main driver for model uncertainty. There are several processes which could improve model performance that are 
currently being investigated and this tripped me up reading through the abstract.  30 
 
We agree that the statement is oversimplified. We will change that to “one of the reasons” driving model uncertainty 
in saturated soils. 
 
P3L5 Models traditionally do however consider O2 limitation with increasing moisture saturation. I’m almost certain 35 
that the authors are aware that traditional moisture sensitivity functions are typically rationalized to have decreasing 
decomposition under high moisture due to limited O2 diffusion (Orchard and Cook 1983). What this typically does not 
extend to CH4 emissions, it does implicitly include anaerobic decomposition. A review of implicit vs explicit process 
representation in decomposition models may be more appropriate here then an outright claim that anaerobic 
decomposition is not included in ESMs.  40 
 
Yes, we are aware of the use of moisture functions as a proxy of decomposition level. The suggested term of “ 
implicit vs explicit “ is a very nice summary of the problem we were trying to identify in current ESMs. We will 
summarize implicit vs explicit approaches used in current ESMs to simulate carbon decomposition under anaerobic 
conditions. 45 
 
P4L28 60days is a short incubation to try to fit a full soils model to. I want to see concerns about time scale 
addressed somehow here.  
 
The length of incubation time was selected because the thaw season in Barrow is about 60-90 days. We have briefly 50 
mentioned this in the model development section, as the short incubation is the main reason we adopted the CLM-
CN carbon decomposition cascade, since we have no data to fit a full carbon model. We will add additional 
discussions in both section 4.3 and 4.4 to talk about the limitations of model validation from current datasets and 
some future considerations. 
 55 
P4L38 Why was the 4C dropped form the Q10 calculation??  
 
Originally, we fitted the data from 3 different incubation temperatures. There was no significant difference between 
the Q10 values estimated by two approaches. We added an additional line to clarify. 
 60 
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P5L2 These package citations are less useful without the associated analysis script. Could this please be included in 
either the SI or as a separate DOI citation?  
 
We believe the statistical analysis packages listed here are well documented and applied in this project using 
standard methods. We will clarify this sentence and provide scripts that are essential for model development through 5 
online distribution (see below).   
 
P5L12 Please be go into more detail on the adaptation of CLM here. Figure 2 is extremely useful but this could use 
more detail here or in the SI. I would urge the authors to restate the model formulation (even when explicitly drawing 
on previous work) since frequently it is not clear what portions were modified for the current model. Please include a 10 
set of full mathematical equations, descriptions appropriate algorithms, and a fully commented code base used to run 
the models.  
 
In the revised manuscript, all these will be included in the Supplementary material. A DOI citation will be available for 
both model code and synthesized data product (can be accessed at https://dx.doi.org/10.5440/1430703, once the 15 
manuscript is finalized). A fully commented code base and step-by-step instruction will be provided with example 
input and output files. Readers will be able to run our scripts from their own computers. 
 
P6L5 Well that is certainly creative model initialization.  
 20 
Thank you! 
 
P6L22 ‘further adjusted’ Could the authors clarify? Right now it reads as an ‘expert tuned’ model which is not current 
best practices given the range of parameter fitting tools that exist.  
 25 
This is a good suggestion. We do not have valid data to verify the biomass of specific functional groups. This lack of 
data is due to the technical challenges we are facing while doing DNA and qPCR based quantifications. That’s the 
main reason we used thermodynamically-based growth equations to build microbial biomass directly into reaction 
kinetics. However, we still need a starting point of gross microbial biomass estimations, so the values were selected 
from previous modeling work done in the Arctic regions. We will add additional explanations in the revised 30 
manuscript.  
 
 
P6L25 This feels like a very limited sensitivity analysis. An a priori 50% uncertainty seems to be a relatively tight 
bound for a soil model, especially given the 3 orders of magnitude that was mentioned previously.  35 
 
The main purpose of sensitivity analysis is to demonstrate the direction and magnitude of changes. We agree that 
additional sensitivity analysis on these parameters would be helpful. In the revised manuscript, we added additional 
sensitivity analysis in Figure 7. 
 40 
 
P8L7 How was the model calibrated?  
 
The model was calibrated by fitting both CO2 and CH4 production data in two separate steps. We are adding a flow 
chart explaining how the synthesized data were incorporated into model development and validation. 45 
 
P9L18 Was this perturbation analysis done independently of the previous perturbations? 
 
Yes, the perturbation analysis was done independently of previous perturbations. 

 50 
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Abstract. Rapid warming of Arctic ecosystems exposes soil organic matter (SOM) to accelerated microbial decomposition, 

potentially leading to increased emissions of carbon dioxide (CO2) and methane (CH4) that have a positive feedback on global 20 

warming. Current estimates of the magnitude and form of carbon emissions from Earth system models include significant 

uncertainties, partially due to the oversimplified representation of geochemical constraints on microbial decomposition.	Here we 

coupled modeling principles developed in different disciplines, including a thermodynamically based microbial growth model for 

methanogenesis and iron reduction, a pool-based model to represent upstream carbon transformations, and a humic ion-binding 

model for dynamic pH simulation to build a more versatile carbon decomposition model framework that can be applied to soils 25 

under varying redox conditions. This new model framework was parameterized and validated using synthesized anaerobic 

incubation data from permafrost affected soils along a gradient of fine-scale thermal and hydrological variabilities across Arctic 

polygonal tundra. The model accurately simulated anaerobic CO2 production and its temperature sensitivity using data on labile 

carbon pools and fermentation rates as model constraints. CH4 production is strongly influenced by water content, pH, methanogen 

biomass, and presence of competing electron acceptors, resulting in high variability in its temperature sensitivity. This work 30 

provides new insights into the interactions of SOM pools, temperature increase, soil geochemical feedbacks, and resulting CO2 

and CH4 production. The proposed anaerobic carbon decomposition framework builds a mechanistic link between soil 

geochemistry and carbon mineralization, making it applicable over a wide range of soils under different environmental settings. 

 

1 Introduction 35 

The northern permafrost region contains 1400-1800 Pg soil carbon (C), which is more than twice as much C as is currently 

contained in the atmosphere (Tarnocai et al., 2009; McGuire et al., 2012). Persistent cold and saturated soil conditions have limited 
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C decomposition in this reservoir. However, rapid warming and permafrost thaw exposes previously frozen organic carbon to 

accelerated microbial decomposition, potentially leading to emissions of carbon dioxide (CO2) and methane (CH4) that have a 

positive feedback on global warming (Zimov et al., 2006; Schuur et al., 2015; Schuur et al., 2009). How quickly frozen soil organic 

matter (SOM) will be mineralized, and how much permafrost C will be released to the atmosphere following thaw is highly 

uncertain. Earth system models project 27 -508 Pg carbon release from the permafrost zone by 2100 under current climate forcing 5 

(Zhuang et al., 2006; Koven et al., 2015; MacDougall et al., 2012; Schaefer et al., 2014), varying by a factor of thirty. Understanding 

environmental dependencies of soil organic matter (SOM) decomposition is therefore essential for reducing model uncertainties 

and improving predictions of future climate change. 

 

Disagreement in model projections for the northern permafrost region could be due to differences in model structure, model 10 

initialization, or parameters used in simulations. Despite increasingly detailed process representations in many models that simulate 

terrestrial CO2 and CH4 fluxes, important geochemical and metabolic constraints might still be poorly represented, oversimplified 

or missing in current biogeochemical models (Xu et al., 2016). The northern permafrost region is rapidly changing in response to 

the changing climate. Rising temperatures not only release more labile carbon from permafrost for decomposition, but also create 

thermal and hydrological heterogeneity that further affects biogeochemical processes. Here we examine two mechanisms that 15 

substantially affect SOM turnover in permafrost-affected soils. First, rising temperature alters the kinetics of biogeochemical 

reactions (Segers, 1998). This effect is more pronounced at subzero temperature (Bore et al., 2017), and the process rate increase 

is higher at lower temperature ranges (Davidson and Janssens, 2006). Microbial communities also change with temperature, 

compounding effects on process rates (Karhu et al., 2014). Models address this temperature effect using empirical functions and 

parameters (Schädel et al., 2016), which might be highly biased depending on model assumptions and original curve fitting 20 

techniques, generating large uncertainties. Second, heterogeneity in permafrost thaw and related hydrological responses creates 

geochemical gradients in soils. Models use different levels of detail to simulate effects of water saturation (Meng et al., 2012; Xu 

et al., 2016). Soil moisture limits gas transport, and it is often used as an implicit control on heterotrophic respiration and 

methanogenesis. However, the explicit processes resulting from with soil oxygen depletion (e.g. soil redox status and pH dynamics) 

are not widely represented (Riley et al., 2011; Meng et al., 2012). 25 

 

The extent of SOM decomposition and gas emissions depends upon soil geochemical characteristics beyond temperature and O2 

availability. Among the wide range of environmental variables, pH emerges as a primary control on decomposition by regulating 

both microbial communities and microbial metabolic activities (Zhalnina et al., 2015; Jin and Kirk, 2018). pH affects microbial 

metabolism by modulating the thermodynamics and kinetics of redox reactions. Redox reactions produce or consume protons, and 30 

thus, their free energy yields vary with pH (Bethke et al., 2011; Jin and Bethke, 2007). The Gibbs free energy available to anaerobic 

microorganisms that degrade simple organic molecules generally increases (becomes less favorable) with increasing pH (Bethke 

et al., 2011). Notably, iron [Fe(III)] reduction is highly proton consuming and becomes less favorable at higher pH (Figure S1). 

Previous studies identified iron reduction as a major process in anoxic Arctic soils (Lipson et al., 2010; Lipson et al., 2013), which 

increase local pH and might favor co-occurring methanogenesis (Tang et al., 2016; Wagner et al., 2017). However, the influence 35 

of iron reduction on methanogenesis rates in different soils is rarely investigated. The reactivity of iron and its pH-feedback impose 

additional complexity on the controls of SOM decomposition and associated CH4 production. 

 

Despite the importance of pH in controlling redox reactions and resulting C emissions, pH change is not explicitly represented in 

biogeochemical models. Most of the current biogeochemical models apply a single initial pH value for redox reactions without 40 

Deleted: Disagreement in projections of the magnitude and 
timing of carbon release upon permafrost thaw could be due 
to differences in model structure, model initialization, or 
parameters used in simulations. Important geochemical and 
metabolic constraints might be poorly represented, 45 
oversimplified or missing in current biogeochemical models. 
To assess the impacts of geochemical constraints on 
projections of C emissions, we examine two mechanisms 
that substantially affect SOM turnover in permafrost-affected 
soils. First, rising temperature alters the kinetics of 50 
biogeochemical reactions (Segers, 1998). While temperature 
acts as an implicit control over permafrost SOM 
decomposition, the response to temperature rise is an 
empirical function that can vary for different processes 
(Treat et al., 2015; Koven et al., 2017). Microbial 55 
communities also change with temperature, compounding 
effects on process rates (Karhu et al., 2014). Models address 
this temperature effect using simplified response functions 
and parameters (Tuomi et al., 2008; Xu et al., 2016), which 
might be highly biased dependent upon model assumptions 60 
and original curve fitting techniques. Second, heterogeneity 
in permafrost thaw and related hydrological responses 
modulates decomposition rates and partitioning of CO2 and 
CH4 production 

Deleted: . Saturated conditions limit O2 diffusion from the 65 
surface, favoring anaerobic respiration, fermentation,

Deleted: methanogenesis over aerobic respiration.

Deleted: , however,

Deleted:  associated with oxygen depletion 

Deleted: considered70 
Deleted: The fate of permafrost C is determined in large 100 
part by soil moisture, particularly water saturation caused by 
ice melting, precipitation, infiltration and runoff (Riley et al., 
2011; Elberling et al., 2013; Schädel et al., 2016). Permafrost 
thaw frequently creates large areas of soil inundation due to 
abrupt surface collapse and subsidence (Painter et al., 2013; 105 
Walvoord and Kurylyk, 2016), resulting in higher levels of 
CH4 production via anaerobic decomposition pathways. 
Although total carbon release under oxic conditions is much 
higher than under anoxic conditions (Schädel et al., 2016), 
emissions of high global warming potential CH4 may offset 110 ... [1]
Deleted: redox potential,85 
Deleted: simply considering 

Deleted: concentrations. Thermodynamics predict that 
alternative electron acceptors such

Deleted: SO4
-, Fe(III) and NO3

- could be favored over 
methanogenesis and drive C mineralization.90 
Deleted: (Bethke et al., 2011)

Deleted: )
Deleted: Fe(III)

Deleted: can 

Deleted: interaction with local soil geochemistry95 
Deleted: methanogenesis

Deleted: anaerobic SOM decomposition for predicting 
future climate change, it

Deleted: most 



 

 11 

considering proton production and consumption during the processes. Traditional decomposition models use landscape position, 

soil moisture content, or other proxy of O2 concentration to determine the form of C release. Scalars on aerobic respiration (Riley 

et al., 2011; Lawrence et al., 2015) or empirical ratios of CO2 and CH4 (Koven et al., 2015) are often used to inform the extent of 

C decomposition and partitioning of CO2 and CH4 production. Reactions that produce or consume protons and the resulting pH 

changes or ion exchange reactions are not considered in these empirical models. Some process rich models explicitly include 5 

details of methanogen populations and their interactions with substrates and other environmental factors, but these models still 

lack the capability to simulate pH changes during long-term carbon decomposition. Instead, constant pH is often assumed within 

bell-shaped pH response functions (Meng et al., 2012; Tian et al., 2010; Xu et al., 2015). Without underlying proton exchange and 

pH buffering mechanisms, a significant error may occur when rate calculations depend heavily upon the initial choice of a single 

optimal pH value for various reactions. 10 

 

In this study we developed a new anaerobic carbon decomposition model framework with explicit representation of aqueous phase 

geochemistry to allow pH and thermodynamic calculations. By coupling three different models, including a thermodynamically 

based microbial growth model, a substrate pool-based model, and a humic ion-binding model, we built a process rich carbon 

decomposition model that allows simultaneous thermodynamic and pH calculations. Results from anoxic incubations of permafrost 15 

affected soils along a gradient of soil were synthesized to parameterize and validate this new model framework. The main 

objectives of this study were to (i) examine the role of soil geochemical variables in controlling anaerobic carbon decomposition 

and carbon release (as both CO2 and CH4); (ii) develop a common set of parameters in the new anaerobic carbon decomposition 

framework to capture variabilities in CO2 and CH4 production; and (iii) evaluate model uncertainties in responses to both soil 

heterogeneity and model parameterization, emphasizing effects of soil saturation, pH and temperature response.  20 

2 Materials and methods 

2.1 Site description and soil incubations 

The Barrow Environmental Observatory (BEO) in Utqiaġvik (Barrow) Alaska, USA consists of thaw lakes, drained thaw lake 

basins and interstitial tundra with a polygonal landscape of microtopographic features created by ice wedges. As part of the Next 

Generation Ecosystem Experiments Arctic project (http://ngee-arctic.ornl.gov/), frozen soil cores were collected from different 25 

microtopographic positions of Low-centered, Flat-centered, and High-centered polygons (LCP, FCP, HCP) in the wet tundra. LCPs 

are characterized by narrow, saturated troughs, raised rims, and wet, sometimes saturated centers (Figure 1) (French, 2007; 

Liljedahl et al., 2016). We previously performed short-term incubations of LCP soils under anoxic, environmentally relevant 

conditions to measure rates and temperature sensitivities of CO2 and CH4 production (Roy Chowdhury et al., 2015). FCPs represent 

transitional polygons with melting ice wedges, minimal rims, moderately dry centers, and disconnected troughs. Incubations of 30 

FCP soils demonstrated both methanogenesis and methane oxidation potential, with high levels of activity at the transition zone 

(Zheng et al., 2018). Finally, HCPs have well drained centers and low, saturated troughs. Incubations of HCP soils showed 

significant fermentation, methanogenesis and anaerobic respiration in the saturated troughs (Yang et al., 2016), contrasted with 

aerobic respiration and minimal methanogenesis in the centers (Roy Chowdhury et al, in preparation). These controlled incubations 

provided critical information on anaerobic SOM decomposition processes across a gradient of soil with fine-scale variability in 35 

thermal and hydrological regimes. The results facilitate benchmarking and parameterization for fine-scale anaerobic SOM 

decomposition models. 
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Incubation datasets from 8 soil cores, divided in 126 soil microcosms associated with 14 treatments (soil microtopographic features 

× soil layer) were included in this synthesis to represent the microtopographic heterogeneity of polygonal tundra. Soil cores were 

previously sectioned into organic, mineral, cryoturbated transition zone (if identified) and permafrost for microcosm incubations. 

The period of anoxic incubation in these studies ranged from 45 to 90 days with an average of approximately 60 days at field-5 

relevant temperatures of -2, +4 and +8 °C. Cumulative CO2 and CH4 production data were collected at different time intervals 

during incubations. More details on the microcosm construction, headspace CO2 and CH4 sampling, and rate calculations can be 

found in the corresponding publications (Roy Chowdhury et al., 2015; Herndon et al., 2015) and datasets (Zheng and Graham, 

2017; Zheng et al., 2016). Changes in exchangeable Fe(II), water extractable organic carbon (WEOC), low molecular weight 

organic acids, and pH of soil microcosms during anoxic incubation were summarized previously in publications (Herndon et al., 10 

2015) and datasets (Zheng and Graham, 2017; Herndon et al., 2016). 

 

2.2 Data processing and statistics  

In order to compare the cumulative carbon loss (as both CO2 and CH4) from different polygonal and microtopographic features 

and different soil layers, measurements from triplicate microcosms were pooled together and fitted with hyperbolic, sigmoidal, 15 

exponential or linear functions that best describe the dynamic. The cumulative CO2 and CH4 production within 60 days of anaerobic 

incubation was directly calculated from each fitted curve and used for descriptive statistical analyses. 

 

Individual curve fitting for each microcosm was used to best represent the rate changes of CO2 and CH4 production. CO2 production 

followed hyperbolic curves with immediate CO2 release for all LCP, FCP and HCP trough samples. CO2 production from HCP 20 

center samples experienced time lags for approximately 10 days for the mineral layer, and 45 days for the permafrost. CH4 

production was also associated with varying time lags before reaching maximum rates, and the lag is most profound in HCP 

samples, between 6 to 20 days. The rate of gas production estimated from hyperbolic curve fitting predicts a continuously 

decreasing rate, while sigmoidal curve fitting with an initial delay predicts a maximum rate after the lag time. Here, we used the 

derivatives of nonlinear curve fitting to calculate initial rates of gas production. For hyperbolic fittings, the maximum rate is 25 

calculated at day 0. For sigmoidal fittings, the maximum rate is calculated by setting the third derivative to zero. The temperature 

dependence was calculated using conventional Q10 by taking the ratio of maximum production rates at 8 and -2°C based on triplicate 

measurements. Data fitting and statistical analyses were conducted and validated using R 3.4.0 (The R Foundation for Statistical 

Computing) and Python 3.6.0 (Python Software Foundation) computing environments. A complete list of packages and libraries 

used here can be found in the following references (Venables and Ripley, 2002; Hunter, 2007; Oliphant, 2007; Sarkar, 2008; Walt 30 

et al., 2011; Wickham, 2009; Wickham et al., 2017). 

2.3 Anaerobic carbon decomposition model 

The anaerobic carbon decomposition framework was developed with explicit representation of fermentation, methanogenesis and 

iron reduction, which were identified as key mechanisms for anaerobic CO2 and CH4 production (Roy Chowdhury et al., 2015; 

Yang et al., 2016; Zheng et al., 2018). The main structure of this framework included two major components: a simplified CLM-35 

CN decomposition cascade (Converging Trophic Cascade, or CTC) (Thornton and Rosenbloom, 2005) to facilitate 

parameterization of the upstream carbon flow entering aqueous phase dissolved organic carbon (DOC) pool (Figure 1, process 1), 

and an aqueous phase to facilitate calculations of thermodynamics and redox-reaction associated acid-base chemistry. An empirical 
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approach was used to represent non-aqueous phase SOC decomposition, while mechanistic representation of methanogenesis and 

iron reduction were developed in this work based on aqueous phase thermodynamic calculations. 

 

The simplified CTC cascade included 4 SOM pools to represent bulk SOC with different levels of complexity. Changes of these 

SOM pools followed modified first-order-decay (see Supplymentary Material for details). We modified the original respiration 5 

fraction (Thornton and Rosenbloom, 2005; Koven et al., 2013) into a direct and an indirect fraction. Thus for each SOM pool, the 

direction respiration fraction represented CO2 lost as orgnially defined, while the indirection respiration fraction was labile C 

produced from bulk C entering the aqueous phase carbon pool (DOC pool, Figure 1). 

 

The large biomolecules in the DOC pool went through multiple hydrolysis and fermentation steps to produce low molecular weight 10 

organic acids that would further respire into CO2 and CH4 (Kotsyurbenko, 2005; Yang et al., 2016). Under anoxic conditions, 

hydrolysis of polysaccharides was considered the rate-limiting step for downstream methanogenesis (Glissmann and Conrad, 

2002). Polysaccharide hydrolysis has a favorable free energy, due to increased entropy, but cannot be readily coupled to biological 

energy transduction outside of the cell.  At low temperature (below 15 °C), the microbial degradation of cellulose was considerably 

diminished while other polymers, such as starch or proteins, were degraded much faster at low temperature, resulting in the 15 

accumulation of organic acids, primarily acetic, propionic and butyric acids (Kotsyurbenko, 2005;Yang et al., 2016). These low 

molecular weight organic acids further fueled microbial mineralization reactions that lead to production of CH4 and CO2. Given 

that most anaerobic lignocellulose degraders also fermented sugars following hydrolysis (Blumer-Schuette et al., 2014), we 

assumed the turnover of DOC into low molecular weight organic acids was a single lumped fermentation process (Figure 1, process 

2), in which labile DOC (C6H12O6) was fermented into acetate, H2 and CO2 (Appendix A, reaction A1). This assumption gave a 20 

fixed stoichiometry ratio that 1/3 of the fermented carbon was respired as CO2. 

 

Redox reactions including methanogenesis and iron reduction were represented using a thermodynamically-based approach (Istok 

et al., 2010), with unique microbial growth kinetics incorporated into energy yielding redox reactions. In this thermodynamically 

based approach, the growth equations of methanogens and iron reducers were derived from paired electron donor (acetate and H2) 25 

and electron acceptor half reactions and a biomass synthesis equation (Istok et al., 2010). Using a constant molecular formula as 

biomass (C5H7O2N), and ammonium (NH4+) as the nitrogen source for biosynthesis, we derived the growth equations for 

methanogenesis and iron reduction (Appendix A, equation A2-A5). Rate calculations followed the generalized Monod rate law 

(Jin and Bethke, 2007) with an additional thermodynamic factor representing the thermodynamic driving force. The 

thermodynamic factor f(G) is calculated using equation 1 (Jin and Bethke, 2003): 30 

 

 𝑓(𝐺) = 1 − exp	(−-∆:-;∆:<
=>?

)   (1) 

where ∆𝐺 [kJ (mol reaction)-1] is the free energy change of the redox reaction [∆𝐺 depends on the standard Gibbs free energy 

change (∆𝐺@), and the concentrations of chemical species involved in the reaction], and ∆𝐺A is the phosphorylation potential, i.e., 

the energy required to synthesize ATP to ADP and dihydrogen phosphate in cell’s cytoplasm. ∆𝐺A is about 45 kJ (mol ATP)-1 35 

(Jin and Kirk, 2018). m is the number of ATPs synthesized per redox reaction. 𝜒 is the average stoichiometric number (Jin and 

Kirk, 2018), R is the gas constant (kJ mol-1 K-1), and T is the absolute temperate (K). This factor f(G) ranges from 0 to 1, where 

the reaction is thermodynamically favorable when f(G) > 0. 

 

Both methanogenesis and iron reduction contribute to pH change. Reactions such as ferrihydrite reduction substantially increase 40 
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alkalinity (Appendix A, Reaction A4, A6). Furthermore, the solubility of CO2 and the composition of dissolved CO2 and 

bicarbonate vary significantly over typical soil pH values, affecting all C mineralization processes. In the organic-rich soils 

modeled here, SOM rather than minerals provides most buffering capacity. Therefore, we used the humic ion-binding model to 

describe pH buffering during carbon decomposition. A simplified parameterization of proton binding is available in the 

Windermere Humic Aqueous Model (WHAM, Tipping, 1994; Tipping, 1998), which has been extensively calibrated to represent 5 

the acid-base chemistry of “average” humic and fulvic acids, and benchmarked with heterogeneous natural organic matter (Atalay 

et al., 2009). We adopted the WHAM parameterization to represent proton binding characteristics (pH buffering) provided by 

SOM (Tang et al., 2016). Using representative binding constants provided by WHAM, the pH buffering capacity can be directly 

adjusted by altering the number of proton binding sites, which is assumed to be linearly correlated with total amount of SOM (see 

Supplementary Material for details). 10 

 

2.2 Model implementation and initialization  

 

The above model structure was implemented using the open source geochemical program PHREEQC 3.0 (Charlton & Parkhurst, 

2011) with a new database describing SOC decomposition cascade, redox reaction kinetics and pH buffering (redox.dat, 15 

available at https://github.com/jianqiuz/decomposition). The model assumed thermodynamic equilibrium of aqueous chemical 

speciation, mineral dissolution/precipitation, and ion sorption/desorption based on the updated PHREEQC thermodynamic 

database (phreeqc.dat, Charlton & Parkhurst, 2011). The database was modified to include WHAM pH buffering and reaction 

kinetics for SOM pools decay and reaction kinetics for fermentation, methanogenesis and iron reduction. The kinetic rate 

constants and microbial biomass growth and decay rates were adopted from former thermodynamically based studies (Istok et 20 

al., 2010) and pre-tested with low-center polygon Arctic soils (Tang et al., 2016). 

 

The model initialization was based on both the incubation conditions and soil geochemical characterizations (Figure S2). The 

initial partitioning of SOM pools was assumed to be at fixed ratios due to the limitation of short-term incubation data. Under the 

experimental conditions, we assumed SOM1and SOM2 pools with relatively shorter turnover rate (τ =14 days and 70 days, 25 

respectively) were most relevant in the model, while SOM3 and SOM4 (τ > 2 years for both pools) pools were relatively inert. We 

started with the relative fraction of SOM pools at approximately 10%, 40%, 10% and 40% of SOC in organic and mineral soils for 

SOM1-4 pools and further assessed the bias of this assumption with sensitivity analysis. Sizes of SOM1 and SOM2 pools were 

reduced by 90% for permafrost to better account for the overall low levels of carbon degradation in soils at such depth. 

 30 

All other variables required were initialized using measurements based upon 10 to 15 g of wet soil incubated in 60 to 70-mL sealed 

bottles. Total soil organic carbon (SOC), total water (TOTW), total organic acid carbon (TOAC), pH and initial concentration of 

Fe(II) were specified in the model based on measurements (Table S1). The DOC pool in the model was initialized using the 

measured WEOC expressed as a fraction of SOC (fdoc). On average, WEOC accounts for approximately 2% of SOC based on our 

synthesized data (see section 3.1), consistent with previous long term incubations, which suggested less than 5% of SOC were fast 35 

decomposing carbon in permafrost affected soils at a standardized temperature of 4-5 °C (Knoblauch et al., 2013; Schädel et al., 

2014). The starting biomass of methanogens and iron reducers was assumed to be within the range of 10-3 to 10-5 gC/gSOC for 

organic soils, 10-4 to 10-6 gC/gSOC for mineral soils, and 10-7 to 10-9 gC/gSOC for permafrost (Table S1). This stratified microbial 

biomass distribution were used to represent the vertical gradient in the relative abundance of microbial communities (Treat et al., 

2014; Waldrop et al., 2010; Yang et al., 2017).  40 
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The lumped fermentation process was the rate-limiting step in the model and was fitted individually with data from each soil 

microcosm. Based upon reaction stoichiometry, the fermentative conversion of each mole of labile C led to 2/3 mole of organic 

acids and 1/3 mole of CO2. Organic acids were mineralized via methanogenesis or iron reduction to convert approximately 49% 

to 88% of C in organic acids into CO2. This estimation was based on reaction stoichiometry of A2 and A4, and a fraction of the C 5 

was incorporated into microbial biomass, so the percentage of respired C would be less than 100% even if all organic acids were 

respired as CO2. If we assume all fermentation products were mineralized into CH4 and CO2, we could estimate the fermentation 

rate (Rfer) from measured CO2 production. Thus, Rfer were estimated using the initial CO2 production rate in the incubation data, 

and further optimized by fitting with observed CO2 production. 
 10 

Temperature and pH response functions were used to further constrain model simulations (Figure S2). A temperature effect was 

parameterized using the CLM-CN temperature response function (Appendix B, equation B1). Additional temperature response 

functions were evaluated by sensitivity analysis (see section 2.4). The effect of pH on biological reaction rates is modulated by 

bell-shaped pH response functions (Tang et al., 2016; Xu et al., 2016). Here we used the Dynamic Land Ecosystem Model (DLEM) 

pH response function (Appendix B, equation B5), since it generates the least variation in parameter perturbation tests (Tang et al., 15 

2016). 

 

2.3 Incubation data synthesis for model validation 

Incubation data from Utqiaġvik (Barrow) Alaska soil cores that represent the microtopographic heterogeneity of polygona tundra 

were synthesized to validate the new anaerobic carbon decomposition model. The selected datasets represent fine scale variabilities 20 

in thermal and hydrological regimes across the gradient of soil microtopographic positions (Herndon et al., 2015). The synthesized 

data contains complete sets of soil geochemical descriptions for organic, mineral, transition zone (if identified) and permafrost 

layers from each microtopographic feature (see Supplementary Material for details). Levels of total soil organic carbon, water 

extractable organic carbon (WEOC) and total organic acid carbon (TOAC) were available before and after soil incubation. Besides 

CH4 and CO2 production during low temperature soil decomposition, data on Fe(II) concentrations and pH changes were also 25 

available for model initialization and validation. 

2.4 Model parameter uncertainty 

This model is designed as a generic framework to simulate anaerobic carbon decomposition across a range of soil physiochemical 

conditions. Two types of sensitivity analysis were conducted to evaluate model performance. First, possible bias and variations 

associated with model initialization variables (soil geochemical attributes) were assessed using perturbation simulations. Variations 30 

of ±25% and ±50% (+100% and 200% for some variables) were applied to these variables, and the resulting changes in cumulative 

CO2 and CH4 production were evaluated by comparing with reference simulations. This evaluation helps to identify critical 

measurements needed for initializing the model. Second, parameters specifically benchmarked in this study and parameters adopted 

from empirical relationships were also evaluated with perturbation simulations. This test helps to apportion the model prediction 

uncertainties into different sources, including model input, parameters, or model structure. 35 

3 Results 
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3.1 Meta-analysis to validate model assumptions 

Incubation data used in this study were generated from soils representing different microtopographic features with a wide range of 

moisture and SOC contents and reported elsewhere (Roy Chowdhury et al., 2015; Zheng et al., 2018). Correlation analysis revealed 

a close relationship between soil moisture and organic carbon pools (measured as SOC, WEOC and TOAC) among examined soil 

microtopographic features and across soil depth (p < 0.01, Table S2). All these soil properties showed significant correlation with 5 

cumulative CO2 and CH4 production (p <0.05), suggesting the important role of initial soil geochemical properties in controlling 

carbon degradation. 

 

Although various levels of carbon mineralization were measured as CO2 and CH4 production during incubations, changes in WEOC 

and TOAC were consistent among treatments with distinct patterns. WEOC represents 0.3% to 2.6% of total SOC among all test 10 

soils, and this ratio remained constant before and after anoxic incubations (Figure S3). On the other hand, TOAC showed much 

more dynamic changes among different soils and different incubation temperatures. TOAC generally increased in soils from 

organic layer, transition zone and permafrost. In contrast, TOAC drastically decreased by up to 90% in mineral soils. These results 

indicate that WEOC was in a steady state among examined soils, while TOAC varied substantially due to microbial mineralization 

processes, supporting the model assumptions of lumped fermentation (the conversion of WEOC to TOAC) as rate limiting step. 15 

 

Both CO2 and CH4 production rates responded strongly to rising incubation temperature (p =0.02 and p =0.04, respectively, Figure 

S4, Table S3). The estimated Q10 values of CO2 production showed a relatively narrow range while methanogenesis had much 

larger variations in estimated Q10 values ranging from 1.6 to 48.1. Using Q10 values to simulate the temperature dependence of 

processes might work for CO2 production, but could generate significant errors in predicting CH4 production. 20 

3.2 Modeled CO2 and CH4 production using observed parameters 

The model performed well in simulating CO2 and CH4 dynamics across a range of moisture and SOC gradients and among different 

soil types (Figure S5, S6). Variations in gas production among different conditions, including microtopographic features, soil layer, 

and different incubation temperatures were well captured (Figure S7). The comparisons between modeled and observed CO2 and 

CH4 production are shown in Figure 2. The model slightly underestimates CO2 production towards the end of the incubations, but 25 

still maintains a good agreement between modeled and observed CO2 production (R2=0.89). The underestimation of CO2 

production is likely due to substrate limitations caused by the initial distribution of different carbon pools. Model-predicted CH4 

production also showed good agreement with observations (R2=0.79). More variation between modeled and observed CH4 

production suggests a systematic pattern in the model parameterization of methanogenesis: the model underestimates CH4 

production at 4 and 8°C, and overestimates CH4 production at -2°C. 30 

 

To assess the model sensitivity to initial model inputs, we compared model predictions in response to varying initial model inputs 

via perturbation simulations. First, we examined the influence of the partitioning of different carbon pools. Significant changes in 

model predictions of CO2 and CH4 were observed in response to perturbations of initial input of SOC, WEOC, but not TOAC 

(Figure 3). SOC determines the size of different carbon pools in the model, and it further influences the predictions of WEOC, 35 

TOAC, CO2 and CH4. For example, predicted CO2 and CH4 production increased by about 200% when +200% changes were 

applied to initial SOC input. This trend is consistent with correlation analysis of incubation results, described above (Table S2). 
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Perturbations in initial WEOC strongly altered the predictions of TOAC and CO2, consistent with the model assumption of the 

conversion of WEOC to TOAC (fermentation process) as the rate-limiting step. The model also predicted increases in CH4 and 

Fe(II) accumulation in response to lower WEOC. Lower WEOC significantly reduced organic acid accumulation, and thus 

increased system pH and accelerated rates of both methanogenesis and iron reduction. The starting level of TOAC showed minimal 

influence on model predictions of CO2 and CH4, suggesting other factors rather than substrate availability were limiting carbon 5 

mineralization. The initial sizes of SOM1 and SOM2 pools showed very slight changes in model predictions of WEOC and CO2, 

and minimal influence on CH4 prediction, further justifying downstream fermentation process as rate-limiting step in the model. 

Additional soil geochemical factors, including soil moisture, Fe(II) and pH also significantly influence model output. In particular, 

initial soil pH showed a dramatic effect on predicted CO2 and CH4 production. With initial soil pH increased from 5 (reference 

simulation) to 6, the model predicted 160% and 308% increase in CO2 and CH4 production, respectively. Perturbations in initial 10 

soil pH had the strongest effect on the prediction of CH4 by assigning different values in fpH that were directly proportional to the 

methanogenesis rates. The above results of perturbation simulations demonstrated high sensitivity of this model in response to 

varying soil geochemical properties.  

 

3.3 Model sensitivity to parameterization uncertainties 15 

To further validate the model, we performed additional sensitivity analysis to justify model assumptions and estimate the 

uncertainties generated from model parameterizations. One major assumption of this modeling framework is to lump multiple 

fermentation processes into one reaction stoichiometry, controlled by one reaction rate constant. It is critical to evaluate how this 

simplified structure influences model performance and contributes to model output uncertainties. The model parameter sensitivity 

analysis indicated the TOAC pool was most sensitive to changes in the fermentation rate (Rfer) and reaction stoichiometry (Figure 20 

4). Downstream reactions were less affected by the uncertainties of the two tested parameters. These results supported our 

assumption of lumped fermentation with fixed stoichiometry, indicating the robustness of the model structure presented here. 

 

The selection of temperature response functions represents one of the major sources of model uncertainties. A sensitivity analysis 

was performed by comparing four different temperature response functions (Appendix B). In our simulations, the quadratic 25 

temperature response function proposed by Ratkowsky et al. predicted much higher CO2 and CH4 production rates at higher 

temperature, and the lowest rate of both CO2 and CH4 at temperatures below 0 °C, giving the highest temperature response among 

tested response functions (Figure 5). In contrast, the Arrhenius equation predicted much lower temperature response for both CO2 

and CH4. Empirical functions used in CLM-CN and CENTURY gave similar temperature response for both CO2 and CH4. 

Variations in low temperature CO2 production is well constrained by established temperature response functions, while CH4 30 

production at -2 °C showed a much wider range of temperature response, and the median value is best simulated using Ratkowsky 

function. This sensitivity analysis is consistent with model output of CO2 and CH4 production, where CO2 is well constrained by 

the model, but CH4 is significantly overestimated at -2°C using CLM-CN temperature response function. A unified temperature 

response function for all reactions under different biotic or abiotic constraints substantially contributes to the disagreement between 

model output and observations. 35 

 

Redox reactions contribute to proton production or consumption, and the resulting pH alters the value of the pH response function 

(fpH) that directly controls reaction kinetic functions, creating a feedback loop. pH buffering capacity (BC) provided by SOM with 

proton binding sites and fpH represent two major sources of uncertainties in this feedback loop. Thus, we performed perturbation 
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simulations to characterize the sensitivity of model output to variations in BC and fpH (Figure 6). Higher BC stabilized system pH 

during prolonged incubations, while lower BC permitted a pH increase by up to 0.71 pH unit compared to the reference simulation. 

This 14% pH increase led to a 123% increase in fpH, accelerating both methanogenesis and Fe(III) reduction rates substantially. 

Perturbations on pH response function were directly reflected in the slopes of pH response curves (Figure S8). We found up to 

372% change in the value of fpH during a 60-day simulation, as steeper increase in fpH accelerated both methanogenesis and iron 5 

reduction (equation A2-A5), which contributed to pH rise in the loop, further accelerating fpH increase. Correspondingly, both CH4 

and Fe(II) increased by more than 100% after the simulation. While BC is an important factor controlling both redox reactions and 

pH fluctuations, a unified fpH for all reactions may impose significant variations in model output. 

 

BC is an intrinsic soil property simulated with a simplified linear relationship to soil SOM. However, it generates strong nonlinear 10 

response in the simulations of methanogenesis and Fe(III) reduction (Figure 7a). Simulations with varying soil BC revealed 

dynamic pH change at lower BC (Figures 8 and 9, with BC=1 as reference simulation), and stabilized pH at higher BC. At constant 

temperature, rates of both methanogenesis and Fe(III) reduction increased significantly at lower BC due to pH control. At lower 

BC when pH change is not well buffered, higher pH accelerated CH4 and Fe(II) production rates (Figure 7), giving much higher 

apparent temperature responses, while at higher BC with stabilized pH in the system, apparent temperature responses of these 15 

redox processes were significantly lower than the reference simulation (BC=1). Variations in pH buffering capacity generated 

large variations in apparent temperature responses of methanogenesis and Fe(III) reduction due to the pH feedback loop. 

4 Discussion  

4.1 Synthesized soil geochemistry and model validation 

Soil geochemical characteristics represent important abiotic controls on anaerobic carbon decomposition and subsequent CO2 and 20 

CH4 production. SOC content, soil pH, water table position, C:N ratio, and landscape position were all suggested to contribute to 

the variability in anaerobic CO2 and CH4 production (Lee et al., 2012; Schädel et al., 2014; Treat et al., 2015). We synthesized 

incubation data for gelisol soils from different pedons and soil moisture regimes representing heterogeneity across the BEO. This 

coordinated data set allowed us to focus on individual factors and their roles in relation to anaerobic CO2 and CH4 production.  

 25 

Carbon released as CO2 and CH4 during anoxic incubations decreased with depth. Permafrost was associated with low levels of 

CO2 production and very low CH4 production, consistent with a previous synthesis (Treat et al., 2015). Nevertheless, permafrost 

TOAC, WEOC, and SOC concentrations were all comparable to organic soils, suggesting high substrate availability but low 

microbial activity. This trend is consistent with previous studies (Walz et al., 2017; Treat et al., 2015), where highest microbial 

abundance and diversity were observed in surface soil and permafrost contained low microbial abundance (Treat et al., 2014; 30 

Waldrop et al., 2010). Among surface soils, higher moisture in low-centered polygon soils significantly promoted CO2 and CH4 

production and the accumulation of fermentation products (measured as TOAC), emphasizing the importance of soil SOC content 

and moisture as strong environmental drivers for carbon decomposition. Given the bias in correlation analysis created by the 

skewed distribution of CO2 and CH4 production in our dataset, additional cluster analysis was performed based on data similarity 

rather than correlations. High similarity of soil attributes (depth, moisture, pH, C:N ratio, SOC, TOAC) with CH4 production 35 

(Figure 8a) was found, suggesting methanogenesis is potentially controlled by a set of soil geochemical characteristics in the local 

microenvironment. 
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These synthesized observations support the major assumptions of our model development: (1) the coupled hydrolysis and 

fermentation processes converting macromolecular SOM into low molecular weight organic acids is the rate limiting step; (2) 

different rates of CO2 and CH4 production from different soil layers can be attributed to variations in microbial activity manifested 

as differences in initial microbial biomass or growth rates. Additional observations of substantial Fe(III) reduction and associated 5 

pH increases during anaerobic decomposition (Figure S9) confirmed the need to simulate pH variations associated with redox 

reactions and corresponding microbial responses. This anaerobic carbon decomposition framework adequately modulated the 

involved biotic and abiotic interactions by splitting the carbon flow to different redox reactions and simulating pH buffering 

capacity to mediate associated changes in acidity or alkalinity. 

 10 

The model presented here identified fermentation, acetotrophic methanogenesis and acetotrophic iron reduction as key mechanisms 

for anaerobic CO2 and CH4 production (Vaughn et al., 2016; Lipson et al., 2010). Although denitrification, ammonification and 

sulfate reduction are all thermodynamically more favorable, low nitrate and sulfate concentrations in BEO soils limit flux through 

these pathways (Newman et al., 2015). We performed another cluster analysis on the model output (Figure 8b), where we not only 

simulated fermentation, methanogenesis and iron reduction rates and associated pH changes, but also tracked the biomass of 15 

methanogens (M_Meb) and iron reducers (M_Feb). A dendrogram depicting data similarity showed four distinct clusters 

comprising of WEOC, CO2 (CO2 prediction), Ferrous (Fe(II) prediction), and CH4 (CH4 prediction) that closely associated with 

soil geochemical properties and incubation temperature. This result is similar to the cluster analysis of synthesized data, further 

validating the proposed model structure in capturing major relationships between carbon mineralization and soil geochemical 

attributes. Predicted CH4 production is strongly influenced by incubation temperature, soil pH, and soil moisture and depth that 20 

determines the size of methanogen population. This model prediction is consistent with previous studies on the vertical distribution 

of methanogen population (Waldrop et al., 2010). Environmental factors, such as labile organic matter, water table depth, and soil 

redox status, soil alkalinity and salinity (Wachinger et al., 2000; Rivkina et al., 2007; Høj et al., 2006; Yang et al., 2017) are all 

likely to contribute to the variabilities in the distribution and abundance of methanogens and subsequent methane production. 

4.2 Temperature and pH response of anaerobic carbon decomposition 25 

Rising temperature promotes anaerobic carbon decomposition, resulting in increased rates of anaerobic CO2 and CH4 production 

(Treat et al., 2014; Lupascu et al., 2012). It is widely recognized that methanogenesis is more sensitive to temperature than 

respiration (Yvon-Durocher et al., 2014; Yvon-Durocher et al., 2012), and it is usually associated with large variations. Segers 

estimated the Q10 value of methanogenesis ranged from 1.5 to 28 among 1043 incubation experiments using wetland soils (Segers, 

1998). Our data synthesis revealed even higher temperature sensitivity than other reported values. High estimated temperature 30 

sensitivity across the freezing point of water has previously been documented (Waldrop et al., 2010) and further attributed to 

limited water availability for microbial activities at sub-zero temperature (Tilston et al., 2010). Ratkowsky et al. proposed a 

quadratic relationship for the temperature dependence of microbial growth rates that modeled low-temperature growth better than 

the Arrhenius Law (Ratkowsky et al., 1982). Our simulations suggest better prediction of methanogenesis with this temperature 

response function, possibly due to a more suitable representation of growth limitation of methanogens at sub-zero temperature. 35 

Methanogenesis rates are also influenced by the availability of alternative electron acceptors and carbon source. Processes 

contributing to the accumulation or consumption of carbon substrates and competing electron acceptors may respond differently 

to temperature change, which could further complicate the temperature sensitivity of methanogenesis. Current modeling 

approaches heavily depend upon empirical temperature response functions, which may be associated with large uncertainties due 
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to variations in the selection of data and curve fitting methods. Extrapolation of carbon decomposition rates, particularly 

methanogenesis rates, into a future warmer climate remains uncertain. More accurate simulations will require additional 

information on geochemical properties that contribute to the variations of methanogens distribution and methanogenesis activity. 

 

pH values impose fundamental physiological restrictions on microbial activities. Soil pH ranges from acidic to circumneutral (pH 5 

4-7.5) in northern Alaska and varies substantially through the soil profile and along the microtopographic gradient. Accumulation 

of organic acids in anoxic soils leads to pH decline (Jones et al., 2003), while consumption of organic acids by methanogenesis 

and iron reduction increases the alkalinity of the system via the production of HCO3- and OH- (Drake et al., 2015; Roy Chowdhury 

et al., 2015; Howell et al., 1998). The interplay of these processes leads to strong nonlinear pH feedbacks in the system, and 

previous studies have observed up to 1-2 pH unit changes during short-term anoxic incubations (Xu et al., 2015; Drake et al., 2015; 10 

Roy Chowdhury et al., 2015). These relationships between pH and organic carbon decomposition can vary in sign and magnitude. 

Our model simulations with mechanistic pH evolution indicate that constant pH assumed in previous models may cause significant 

errors in simulating long-term anaerobic CO2 and CH4 production. The intrinsic soil pH buffering capacity plays a large role in 

stabilizing soil pH and may vary depending upon solution acidity or alkalinity, cation exchange capacity, SOM content and mineral 

composition and/or dissolution. These properties derive from SOM characteristics, moisture, mineral content, and additional 15 

geochemical properties, leading to complex correlations between soil pH and SOC decomposition rate that require future 

investigation.  

 

4.3 Fast-decomposing carbon pool 

 20 

Substrate availability is a primary determinant of potential CO2 and CH4 production (Lee et al., 2012; Schuur et al., 2015; Tarnocai 

et al., 2009). Total SOC is composed of heterogeneous C pools characterized by different turnover times. Carbon release during 

short term incubation originates from the C pool with relatively rapid turnover. The size and turnover time of this quickly-

metabolized carbon pool is usually estimated by two-pool or three-pool conceptual models with a maximum likelihood solution 

using time series of CO2 data (Schädel et al., 2013). A previous study on Siberian permafrost soils using a two-pool model estimated 25 

a turnover time of 0.26 years for the fastest-responding pool (Knoblauch et al., 2013). A three-pool model was applied using more 

extensive incubation datasets collected from 23 high-latitude ecosystems, yielding an estimate of 0.35 years mean turnover time 

for the fastest-responding carbon pool (Schädel et al., 2014). 

 

In our synthesis study, we directly quantified WEOC and assumed it represented the fast-decomposing labile carbon pool. The size 30 

of the labile carbon pool is constant during anaerobic decomposition, while total CO2 and CH4 release represent up to 194% of the 

labile carbon pool, indicating continuous replenishment of labile carbon pool from non-labile carbon pools within the hierarchy. 

The replenishment of labile carbon pool can be attributed mostly to decomposition of SOM1 and SOM2 pools with relatively faster 

turnover (Koven et al., 2013). Overall, we estimated the fast-decomposed carbon pool is approximately 2-4% of total SOC, similar 

to previous estimates. The turnover time calculated from the fermentation rate was comparable to estimates of the turnover time 35 

of the fastest-responding carbon pool in previous studies (Figure 9), suggesting these quantifications and parameterization in the 

anaerobic carbon decomposition framework apply broadly. 

4.4 Key features of the anaerobic model framework and future considerations 

Here we present an anaerobic carbon decomposition framework by combining three well-known modeling approaches developed 
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in different disciplines. A pool-based model to represent upstream carbon transformations and replenishment of DOC pool, a 

thermodynamically-based model to calculate rate kinetics and biomass growth for methanogenesis and Fe(III) reduction, and a 

humic ion-binding model for aqueous phase speciation and pH calculation are implemented into the open source geochemical 

model PHREEQC (Charlton & Parkhurst, 2011). The model framework presented here has several unique features. First, this 

model is built upon a thermodynamically-based approach, which allows consistent parameterization of individual reactions along 5 

the redox ladder. Such a model structure is particularly useful in circumstances when function-specific microbial growth is difficult 

to quantify and parameterize. Second, calculations of free energy changes of redox couples are used to modulate redox reaction 

hierarchy. Considering the difficulty in obtaining growth-associated parameters for every functional group, a thermodynamically-

based approach significantly decreases the number of parameters that are difficult to measure. In addition, proton production and 

consumption during redox reactions are incorporated into a dynamic pH calculation, allowing various simulations on aqueous 10 

solubility and reactivity of different elements. The anaerobic carbon decomposition framework presented here holds a significant 

advantage over traditional models in simulating carbon decomposition process within a wide range of environmental settings. 

 

In permafrost affected regions, studies consistently identify iron reduction, denitrification and sulfate reduction (Lipson et al., 

2010; Lipson et al., 2013; Ernakovich et al., 2017; Hansen et al., 2007) as alternative anaerobic pathways, which are recognized 15 

as energetically more favorable processes than methanogenesis. The new model framework presented here provide a reasonable 

basis for a deeper understanding of carbon decomposition under oxygen-limited conditions where the importance of accounting 

for alternative election acceptors becomes more pronounced. Future fine-scale experiments on carbon decomposition using 

alternative electron acceptors would be beneficial for more comprehensive parameterization of this model framework. Additional 

observations on temperature and pH sensitivity of specific redox reactions would also be quite useful in reducing large uncertainties 20 

generated by the current representation of temperature and pH responses. Application of such modeling framework at field scale 

requires close coupling with hydrology models to facilitate estimations on aqueous phase concentrations. Additional assumptions 

on vertical mixing and gas diffusion in the soil column should also be considered. 

 

5. Conclusion 25 

Microbial processes are the driving forces for biogeochemical cycling of soil carbon and are subjected to environmental constraints 

beyond temperature and organic substrate availability. The present study incorporated microbial redox reactions and mechanistic 

pH evolution to simulate anaerobic carbon decomposition in Arctic soils with depth and across soil moisture gradients. Our data 

synthesis and modeling results quantify direct effects of temperature on anaerobic carbon decomposition, as well as indirect effects 

of soil geochemistry that cause strong redox reaction-pH feedback. We identified substantial pH feedbacks on the predictions on 30 

CO2 and CH4 production. The anaerobic carbon decomposition framework presented in this study provided the essential model 

structure to incorporate redox reactions of alternative electron acceptors for accurate simulation of CO2 and CH4 production. Soil 

geochemistry impose critical constraints on SOM decomposition, and further regulates permafrost carbon feedback in response to 

changing climate. 

Code and data availability 35 

PHREEQC (Version 3) is publicly available at http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/ 
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The model is archived at https://dx.doi.org/10.5440/1430703, with detailed description of model implementation, input files and 

various sensitivity analysis described in this paper. 

 

Data sets used in this work can be found at 

https://dx.doi.org/10.5440/1168992 5 

https://dx.doi.org/10.5440/1393836 

https://dx.doi.org/10.5440/1288688 

 

A synthesis of the the incubation data is available at 

https://doi.org/10.5440/1440029 10 
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Appendix A: Anaerobic carbon decomposition model 

This section lists reactions used in the anaerobic carbon decomposition model. Under anaerobic conditions, dissolved organic 25 
carbon is converted to low molecular weight organic acids via fermentation. One simplified fermentation reaction is used to 
represent this lumped fermentation process, where 1/3 of the fermented organic carbon is converted to CO2 (Tang et al., 2016;Xu 
et al., 2015): 
 

 30 
 𝐶#𝐻%&𝑂# + 4𝐻&𝑂	 → 2𝐶𝐻,𝐶𝑂𝑂- 	+ 2𝐻𝐶𝑂,- + 4𝐻. + 4𝐻& (A1) 
 
This fermentation reaction generates protons and decreases pH in the system. Fermentation products acetate and H2 are further 
consumed via methanogenesis and iron reduction. The growth equations of methanogenesis and iron reduction were derived for 
each group using thermodynamically-based approach, in which biomass synthesis is included in paired electron donor and electron 35 
acceptor half-reactions. A general molecular formula C5H7O2N is used for microbial biomass and the growth equations are written 
as (Istok et al., 2010) 
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1.5𝐻. + 98.2𝐻&𝑂 + 𝑁𝐻K. + 103.7𝐶𝐻,𝐶𝑂𝑂- → 𝐶O𝐻P𝑂&𝑁 + 101.2𝐻𝐶𝐻&𝐻K𝑂,- + 𝐶𝐻K

𝐻,𝐶𝑂𝑂- → 𝐶O𝐻P𝑂&𝑁 + 101.2𝐻𝐶𝐻&𝐻K𝑂,- + 𝐶𝐻K (A2) 
 
 84.9𝐻. +𝑁𝐻K. + 85.9𝐻𝐶𝑂,- + 333.5𝐻& → 𝐶O𝐻P𝑂&𝑁 + 255.6𝐻&𝑂 + 80.9𝐶4𝐻&𝐻.𝐻K  3𝐻&(A3) 5 
  
 72.1𝐻&𝑂 +𝑁𝐻K. + 150.2𝐹𝑒,. + 21.3𝐶𝐻,𝐶𝑂𝑂- → 𝐶O𝐻P𝑂&𝑁 + 150.2𝐹𝑒&. + 167.4𝐻. + 37.5𝐻𝐶𝑂,-   (A4)  
 
 5𝐻𝐶𝑂,- + 𝑁𝐻K. + 114. 8𝐹𝑒,. + 57.4𝐻& → 𝐶O𝐻P𝑂&𝑁 + 114.𝐻&8𝐹𝑒&. + 110.8𝐻. + 13𝐻&𝑂  (A5𝑂,-9𝐻.) 

 10 
2𝐹𝑒,. + 𝐻& → 	2𝐹𝑒&. + 2𝐻.                                                               (A5) 

 
In addition, Fe(III) was calculated based on the dissolution of representative amorphous ferric hydroxides (A6), which contributed 
to pH increase. 
 15 

 
 𝐹𝑒(𝑂𝐻),(T) ↔ 	𝐹𝑒,. + 3𝑂𝐻- (A6) 
 
 
 20 
Appendix B: Temperature and pH response functions 
 
We used the CLM_CN temperature response function (B1) in our simulations (Thornton and Rosenbloom, 2005). Additional tested 
temperature response functions included B2 used by CENTURY model (Parton et al., 2001), Arrhenius equation B3 used in ecosys 
(Grant, 1998), and the quadratic equation B4 (Ratkowsky et al., 1983). Tref is set at 25 °C, Ea is the activation energy (J mol-1), R 25 
is the universal gas constant (J K-1 mol-1). Tm used in Ratkowsky’s model represents the conceptual temperature of no metabolic 
significant and is set at -8 °C in this study. 
 
 
 ln 𝑓(𝑇) = 308.56 × ( %

P%.@&
− %

?-&&P.%,
)  (B1) 30 

 
 
 𝑓(𝑇) = 0.56 + 0.465	arctan	[0.097(𝑇 − 15.7)] (B2) 
 
 35 

 𝑓(𝑇) = 	 𝑒
`ab
c d

e
f-

e
fghi

j
 (B3) 

 
 

 𝑓(𝑇) = k
?-?l

?ghi-?l
m
&
		

 (B4)(𝑇) k
?-?l

?ghi-?l
m
&
 40 

 
 
 
The discontinuous bell-shaped pH response function from DLEM model was used here (equation B5, Tian et al., 2010)  
  45 
 𝑓(𝑝𝐻) = %.@&

%.@&.%@opqr	(-&.OAs)
  (0<pH<7)  (B5) 

 
 

  𝑓(𝑝𝐻) = %.@&
%.@&.%@opqr	(-&.O(%K-As))	

%.@&
%.@&.%@opqr	(-&.O(%K-As))	

 (7<pH<14)  
 50 
 
 

 
References 

Formatted: Left, Indent: Left:  0.5", Tab stops: 
3.19", Centered +  6.5", Left

Deleted: ↵
𝐶

Deleted: +𝐻&𝑂 → 	𝐶𝐻K +𝐻𝐶105 ... [16]
Deleted: +𝐻&𝑂 → 	𝐶𝐻K +𝐻𝐶𝑂,- + 𝐶𝐻K➝                                                     ... [17]

Formatted: Left, Tab stops:  3.56", Centered + 
6.5", Left
Formatted: Left, Tab stops:  3", Centered +  6.5",
Left
Deleted: 𝐻𝐶𝑂,- + 333.5𝐻& → 𝐶O𝐻P𝑂&𝑁 + 255.6𝐻&𝑂 +
80.9𝐶4𝐻& + 𝐻. → 	𝐶𝐻K ➝+ ... [18]
Deleted: 𝑂                                                    

Deleted: ¶110 
𝐶

Formatted: Left, Tab stops:  3.31", Centered + 
6.5", Left

Deleted: +8𝐹𝑒,. + 57.4𝐻& → 𝐶O𝐻P𝑂&𝑁+ 114.4𝐻&𝑂 →
	8𝐹𝑒&. + 110.8𝐻. + 13𝐻&𝑂 ➝(A52𝐻𝐶 ... [19]
Deleted: +9𝐻.                  (A4 ... [20]
Deleted: ¶115 
¶

Formatted: Left

Formatted: Left, Tab stops:  3.25", Centered + 
6.5", Left

Deleted:                                                               

Deleted: We used the CLM_CN temperature response 140 
function (B1) in our simulations (Thornton and Rosenbloom, 
2005). Additional temperature response functions tested here 
including B2 used by CENTURY model (Parton et al., 
2001), Arrhenius equation B3 used in ecosys (Grant, 1998), 
and the quadratic equation B4 (Ratkowsky et al., 1983).  Tref  145 
is set at 25 °C, Ea is the activation energy (J mol-1), R is the 
universal gas constant (J K-1 mol-1). Tm used in Ratkowsky ... [21]
Formatted ... [22]
Deleted:                                                
Deleted:                              
Formatted ... [23]
Deleted: ➝                                               130 
Formatted ... [24]
Deleted: 𝑓

Deleted: = k
?-?l

?ghi-?l
m
&
						                                                                     

... [25]
Formatted ... [26]
Deleted:  …0<pH<7) ➝                                     ... [27]
Formatted ... [28]
Deleted:                                               135 
Deleted:  
Deleted: ¶
Deleted: Reference



 

 24 

 
Atalay, Y. B., Carbonaro, R. F., and Di Toro, D. M.: Distribution of Proton Dissociation Constants for Model Humic and Fulvic 

Acid Molecules, Environmental Science & Technology, 43, 3626-3631, 10.1021/es803057r, 2009. 
Bethke, C. M., Sanford, R. A., Kirk, M. F., Jin, Q., and Flynn, T. M.: The thermodynamic ladder in geomicrobiology, American 

Journal of Science, 311, 183-210, 10.2475/03.2011.01, 2011. 5 
Blumer-Schuette, S. E., Brown, S. D., Sander, K. B., Bayer, E. A., Kataeva, I., Zurawski, J. V., Conway, J. M., Adams, M. W. 

W., and Kelly, R. M.: Thermophilic lignocellulose deconstruction, FEMS Microbiol. Rev., 38, 393-448, 10.1111/1574-
6976.12044, 2014. 

Charlton, S., and Parkhurst, D.: Modules based on the geochemical model PHREEQC for use in scripting and programming 
languages, Computers & Geosciences, 37(10), 1653-1663, https://doi.org/10.1016/j.cageo.2011.02.005, 2011. 10 

Drake, T. W., Wickland, K. P., Spencer, R. G. M., McKnight, D. M., and Striegl, R. G.: Ancient low–molecular-weight organic 
acids in permafrost fuel rapid carbon dioxide production upon thaw, Proceedings of the National Academy of Sciences, 112, 
13946-13951, 10.1073/pnas.1511705112, 2015. 

Dudal Y., Férard, F.: Accounting for natural organic matter in aqueous chemical equilibrium models: a review of the theories 
and applications, Earth-Science Reviews, 66, 199-216, https://doi.org/10.1016/j.earscirev.2004.01.002, 2004. 15 

Elberling, B., Michelsen, A., Schadel, C., Schuur, E. A. G., Christiansen, H. H., Berg, L., Tamstorf, M. P., and Sigsgaard, C.: 
Long-term CO2 production following permafrost thaw, Nature Clim. Change, 3, 890-894, 10.1038/nclimate1955, 2013. 

Ernakovich, J. G., Lynch, L. M., Brewer, P. E., Calderon, F. J., and Wallenstein, M. D.: Redox and temperature-sensitive 
changes in microbial communities and soil chemistry dictate greenhouse gas loss from thawed permafrost, Biogeochemistry, 
134, 183-200, 10.1007/s10533-017-0354-5, 2017. 20 

French, H. M.: The Periglacial Environment, 3rd ed., John Wiley & Sons, Chichester, 2007. 
Glissmann, K., and Conrad, R.: Saccharolytic activity and its role as a limiting step in methane formation during the anaerobic 

degradation of rice straw in rice paddy soil, Biology and Fertility of Soils, 35, 62-67, 10.1007/s00374-002-0442-z, 2002. 
Grant, R. F.: Simulation of methanogenesis in the mathematical model ecosys, Soil Biology and Biochemistry, 30, 883-896, 

http://dx.doi.org/10.1016/S0038-0717(97)00218-6, 1998. 25 
Grant, R. F.: Simulation of methanotrophy in the mathematical model ecosys, Soil Biology and Biochemistry, 31, 287-297, 

http://dx.doi.org/10.1016/S0038-0717(98)00119-9, 1999. 
Hansen, A. A., Herbert, R. A., Mikkelsen, K., Jensen, L. L., Kristoffersen, T., Tiedje, J. M., Lomstein, B. A., and Finster, K. W.: 

Viability, diversity and composition of the bacterial community in a high Arctic permafrost soil from Spitsbergen, Northern 
Norway, Environmental Microbiology, 9, 2870-2884, 10.1111/j.1462-2920.2007.01403.x, 2007. 30 

Herndon, E. M., Mann, B. F., Roy Chowdhury, T., Yang, Z., Wullschleger, S. D., Graham, D., Liang, L., and Gu, B.: Pathways 
of anaerobic organic matter decomposition in tundra soils from Barrow, Alaska, Journal of Geophysical Research: 
Biogeosciences, 120, 2345-2359, 10.1002/2015JG003147, 2015. 

Herndon, E. M., Yang, Z., and B., G.: Soil Organic Carbon Degradation during Incubation, Barrow, Alaska, 2012. Next 
Generation Ecosystem Experiments Arctic Data Collection, Carbon Dioxide Information Analysis Center, Oak Ridge 35 
National Laboratory, Oak Ridge, Tennessee, USA. Data set accessed at http://dx.doi.org/10.5440/1168992 2016. 

Høj, L., Rusten, M., Haugen, L. E., Olsen, R. A., and Torsvik, V. L.: Effects of water regime on archaeal community 
composition in Arctic soils, Environmental Microbiology, 8, 984-996, 10.1111/j.1462-2920.2006.00982.x, 2006. 

Howell, J., Donahoe, R., Roden, E., and Ferris, F.: Effects of microbial iron oxide reduction on pH and alkalinity in anaerobic 
bicarbonate-buffered media: implications for metal mobility, Mineralogical Magazine, 62A:657-658, 1998. 40 

Hunter, J. D.: Matplotlib: A 2D Graphics Environment, Computing in Science & Engineering, 9, 90-95, 10.1109/MCSE.2007.55, 
2007. 

Istok, J. D., Park, M., Michalsen, M., Spain, A. M., Krumholz, L. R., Liu, C., McKinley, J., Long, P., Roden, E., Peacock, A. D., 
and Baldwin, B.: A thermodynamically-based model for predicting microbial growth and community composition coupled to 
system geochemistry: Application to uranium bioreduction, Journal of Contaminant Hydrology, 112, 1-14, 45 
https://doi.org/10.1016/j.jconhyd.2009.07.004, 2010. 

Jones, D. L., Dennis, P. G., Owen, A. G., and van Hees, P. A. W.: Organic acid behavior in soils – misconceptions and 
knowledge gaps, Plant and Soil, 248, 31-41, 10.1023/a:1022304332313, 2003. 

Karhu, K., Auffret, M. D., Dungait, J. A. J., Hopkins, D. W., Prosser, J. I., Singh, B. K., Subke, J.-A., Wookey, P. A., Agren, G. 
I., Sebastia, M.-T., Gouriveau, F., Bergkvist, G., Meir, P., Nottingham, A. T., Salinas, N., and Hartley, I. P.: Temperature 50 
sensitivity of soil respiration rates enhanced by microbial community response, Nature, 513, 81-84, 10.1038/nature13604, 
2014. 

Knoblauch, C., Beer, C., Sosnin, A., Wagner, D., and Pfeiffer, E.-M.: Predicting long-term carbon mineralization and trace gas 
production from thawing permafrost of Northeast Siberia, Global Change Biology, 19, 1160-1172, 10.1111/gcb.12116, 2013. 

Kotsyurbenko, O. R.: Trophic interactions in the methanogenic microbial community of low-temperature terrestrial ecosystems, 55 
FEMS Microbiology Ecology, 53, 3-13, http://dx.doi.org/10.1016/j.femsec.2004.12.009, 2005. 

Koven, C. D., Lawrence, D. M., and Riley, W. J.: Permafrost carbon−climate feedback is sensitive to deep soil carbon 
decomposability but not deep soil nitrogen dynamics, Proceedings of the National Academy of Sciences, 112, 3752-3757, 
10.1073/pnas.1415123112, 2015. 

Formatted: Level 1
Formatted: Font: Bold



 

 25 

Koven, C. D., Hugelius, G., Lawrence, D. M., and Wieder, W. R.: Higher climatological temperature sensitivity of soil carbon in 
cold than warm climates, Nature Clim. Change, 7, 817, 10.1038/nclimate3421, 2017. 

Lawrence, D. M., Koven, C. D., Swenson, S. C., Riley, W. J., and Slater, A. G.: Permafrost thaw and resulting soil moisture 
changes regulate projected high-latitude CO 2 and CH 4 emissions, Environmental Research Letters, 10, 094011, 2015. 

Lee, H., Schuur, E. A. G., Inglett, K. S., Lavoie, M., and Chanton, J. P.: The rate of permafrost carbon release under aerobic and 5 
anaerobic conditions and its potential effects on climate, Global Change Biology, 18, 515-527, 10.1111/j.1365-
2486.2011.02519.x, 2012. 

Liljedahl, A. K., Boike, J., Daanen, R. P., Fedorov, A. N., Frost, G. V., Grosse, G., Hinzman, L. D., Iijma, Y., Jorgenson, J. C., 
Matveyeva, N., Necsoiu, M., Raynolds, M. K., Romanovsky, V. E., Schulla, J., Tape, K. D., Walker, D. A., Wilson, C. J., 
Yabuki, H., and Zona, D.: Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology, 10 
Nature Geosci, 9, 312-318, 10.1038/ngeo2674, 2016. 

Lipson, D. A., Jha, M., Raab, T. K., and Oechel, W. C.: Reduction of iron (III) and humic substances plays a major role in 
anaerobic respiration in an Arctic peat soil, J. Geophys. Res., 115, G00I06, 10.1029/2009jg001147, 2010. 

Lipson, D. A., Raab, T. K., Goria, D., and Zlamal, J.: The contribution of Fe(III) and humic acid reduction to ecosystem 
respiration in drained thaw lake basins of the Arctic Coastal Plain, Global Biogeochemical Cycles, 27, 399-409, 15 
10.1002/gbc.20038, 2013. 

Lupascu, M., Wadham, J. L., Hornibrook, E. R. C., and Pancost, R. D.: Temperature Sensitivity of Methane Production in the 
Permafrost Active Layer at Stordalen, Sweden: A Comparison with Non-permafrost Northern Wetlands, Arctic, Antarctic, 
and Alpine Research, 44, 469-482, 10.1657/1938-4246-44.4.469, 2012. 

MacDougall, A. H., Avis, C. A., and Weaver, A. J.: Significant contribution to climate warming from the permafrost carbon 20 
feedback, Nature Geosci, 5, 719-721, 2012. 

Manzoni, S., and Porporato, A.: Soil carbon and nitrogen mineralization: Theory and models across scales, Soil Biology and 
Biochemistry, 41, 1355-1379, http://dx.doi.org/10.1016/j.soilbio.2009.02.031, 2009. 

McGuire, A. D., Christensen, T. R., Hayes, D., Heroult, A., Euskirchen, E., Kimball, J. S., Koven, C., Lafleur, P., Miller, P. A., 
Oechel, W., Peylin, P., Williams, M., and Yi, Y.: An assessment of the carbon balance of Arctic tundra: comparisons among 25 
observations, process models, and atmospheric inversions, Biogeosciences, 9, 3185-3204, 10.5194/bg-9-3185-2012, 2012. 

Meng, L., Hess, P. G. M., Mahowald, N. M., Yavitt, J. B., Riley, W. J., Subin, Z. M., Lawrence, D. M., Swenson, S. C., 
Jauhiainen, J., and Fuka, D. R.: Sensitivity of wetland methane emissions to model assumptions: application and model 
testing against site observations, Biogeosciences, 9, 2793-2819, 10.5194/bg-9-2793-2012, 2012. 

Newman, B. D., Throckmorton, H. M., Graham, D. E., Gu, B., Hubbard, S. S., Liang, L., Wu, Y., Heikoop, J. M., Herndon, E. 30 
M., Phelps, T. J., Wilson, C. J., and Wullschleger, S. D.: Microtopographic and depth controls on active layer chemistry in 
Arctic polygonal ground, Geophys. Res. Lett., 42, 1808-1817, 10.1002/2014GL062804, 2015. 

Oliphant, T. E.: Python for Scientific Computing, Computing in Science & Engineering, 9, 10-20, 10.1109/MCSE.2007.58, 
2007. 

Painter, S. L., Moulton, J. D., and Wilson, C. J.: Modeling challenges for predicting hydrologic response to degrading 35 
permafrost, Hydrogeology Journal, 21, 221-224, 10.1007/s10040-012-0917-4, 2013. 

Parton B., Ojima D., Del Grosso S., Keough C. : CENTURY Tutorial. Supplement to CENTURY User’s Manual. NREC Pub. 
Natural Resource Ecology Laboratory, Colorado State University; Fort Collins, CO, USA. Great Plain System. Research Unit 
Technical Report No. 4, 2001. 

Ratkowsky, D. A., Olley, J., McMeekin, T. A., and Ball, A.: Relationship between temperature and growth rate of bacterial 40 
cultures, J. Bacteriol., 149, 1-5, 1982. 

Ratkowsky, D. A., Lowry, R. K., McMeekin, T. A., Stokes, A. N., and Chandler, R. E.: Model for bacterial culture growth rate 
throughout the entire biokinetic temperature range, Journal of Bacteriology, 154, 1222-1226, 1983. 

Riley, W. J., Subin, Z. M., Lawrence, D. M., Swenson, S. C., Torn, M. S., Meng, L., Mahowald, N. M., and Hess, P.: Barriers to 
predicting changes in global terrestrial methane fluxes: analyses using CLM4Me, a methane biogeochemistry model 45 
integrated in CESM, Biogeosciences, 8, 1925-1953, 10.5194/bg-8-1925-2011, 2011. 

Rivkina, E., Shcherbakova, V., Laurinavichius, K., Petrovskaya, L., Krivushin, K., Kraev, G., Pecheritsina, S., and Gilichinsky, 
D.: Biogeochemistry of methane and methanogenic archaea in permafrost, FEMS Microbiology Ecology, 61, 1-15, 
10.1111/j.1574-6941.2007.00315.x, 2007. 

Roy Chowdhury, T., Herndon, E. M., Phelps, T. J., Elias, D. A., Gu, B., Liang, L., Wullschleger, S. D., and Graham, D. E.: 50 
Stoichiometry and temperature sensitivity of methanogenesis and CO2 production from saturated polygonal tundra in 
Barrow, Alaska, Global Change Biology, 21, 722-737, 10.1111/gcb.12762, 2015. 

Sarkar, D.: Lattice: Multivariate Data Visualization with R. Springer, New York. ISBN 978-0-387-75968-5, 2008. 
Schädel, C., Bader, M. K. F., Schuur, E. A. G., Biasi, C., Bracho, R., Capek, P., De Baets, S., Diakova, K., Ernakovich, J., Estop-

Aragones, C., Graham, D. E., Hartley, I. P., Iversen, C. M., Kane, E., Knoblauch, C., Lupascu, M., Martikainen, P. J., Natali, 55 
S. M., Norby, R. J., O/'Donnell, J. A., Chowdhury, T. R., Santruckova, H., Shaver, G., Sloan, V. L., Treat, C. C., Turetsky, 
M. R., Waldrop, M. P., and Wickland, K. P.: Potential carbon emissions dominated by carbon dioxide from thawed 
permafrost soils, Nature Clim. Change, 6, 950-953, 10.1038/nclimate3054, 2016. 

Schädel, C., Luo, Y., David Evans, R., Fei, S., and Schaeffer, S. M.: Separating soil CO2 efflux into C-pool-specific decay rates 
via inverse analysis of soil incubation data, Oecologia, 171, 721-732, 10.1007/s00442-012-2577-4, 2013. 60 



 

 26 

Schädel, C., Schuur, E. A. G., Bracho, R., Elberling, B., Knoblauch, C., Lee, H., Luo, Y., Shaver, G. R., and Turetsky, M. R.: 
Circumpolar assessment of permafrost C quality and its vulnerability over time using long-term incubation data, Global 
Change Biology, 20, 641-652, 10.1111/gcb.12417, 2014. 

Schaefer, K., Hugues, L., Vladimir, E. R., Edward, A. G. S., and Ronald, W.: The impact of the permafrost carbon feedback on 
global climate, Environmental Research Letters, 9, 085003, 2014. 5 

Schuur, E. A. G., Vogel, J. G., Crummer, K. G., Lee, H., Sickman, J. O., and Osterkamp, T. E.: The effect of permafrost thaw on 
old carbon release and net carbon exchange from tundra, Nature, 459, 556-559, 2009. 

Schuur, E. A. G., McGuire, A. D., Schädel, C., Grosse, G., Harden, J. W., Hayes, D. J., Hugelius, G., Koven, C. D., Kuhry, P., 
Lawrence, D. M., Natali, S. M., Olefeldt, D., Romanovsky, V. E., Schaefer, K., Turetsky, M. R., Treat, C. C., and Vonk, J. 
E.: Climate change and the permafrost carbon feedback, Nature, 520, 171-179, 10.1038/nature14338, 2015. 10 

Segers, R.: Methane production and methane consumption: a review of processes underlying wetland methane fluxes, 
Biogeochemistry, 41, 23-51, 10.1023/a:1005929032764, 1998. 

Segers, R., and Leffelaar, P. A.: Modeling methane fluxes in wetlands with gas-transporting plants: 3. Plot scale, Journal of 
Geophysical Research: Atmospheres, 106, 3541-3558, 10.1029/2000JD900482, 2001a. 

Segers, R., and Leffelaar, P. A.: Modeling methane fluxes in wetlands with gas-transporting plants: 1. Single-root scale, Journal 15 
of Geophysical Research: Atmospheres, 106, 3511-3528, 10.1029/2000JD900484, 2001b. 

Segers, R., Rappoldt, C., and Leffelaar, P. A.: Modeling methane fluxes in wetlands with gas-transporting plants: 2. Soil layer 
scale, Journal of Geophysical Research: Atmospheres, 106, 3529-3540, 10.1029/2000JD900483, 2001. 

Tang, G., Zheng, J., Xu, X., Yang, Z., Graham, D. E., Gu, B., Painter, S. L., and Thornton, P. E.: Biogeochemical modeling of 
CO2 and CH4 production in anoxic Arctic soil microcosms, Biogeosciences, 13, 5021-5041, 10.5194/bg-13-5021-2016, 2016. 20 

Tarnocai, C., Canadell, J. G., Schuur, E. A. G., Kuhry, P., Mazhitova, G., and Zimov, S.: Soil organic carbon pools in the 
northern circumpolar permafrost region, Global Biogeochemical Cycles, 23, GB2023, 10.1029/2008GB003327, 2009. 

Thornton, P. E., and Rosenbloom, N. A.: Ecosystem model spin-up: Estimating steady state conditions in a coupled terrestrial 
carbon and nitrogen cycle model, Ecological Modelling, 189, 25-48, https://doi.org/10.1016/j.ecolmodel.2005.04.008, 2005. 

Tian, H., Xu, X., Liu, M., Ren, W., Zhang, C., Chen, G., and Lu, C.: Spatial and temporal patterns of CH4 and N2O fluxes in 25 
terrestrial ecosystems of North America during 1979–2008: application of a global biogeochemistry model, Biogeosciences, 
7, 2673-2694, https://doi.org/10.5194/bg-7-2673-2010, 2010. 

Tilston, E. L., Sparrman, T., and Öquist, M. G.: Unfrozen water content moderates temperature dependence of sub-zero 
microbial respiration, Soil Biology and Biochemistry, 42, 1396-1407, https://doi.org/10.1016/j.soilbio.2010.04.018, 2010. 

Tipping, E.: WHAM; a chemical equilibrium model and computer code for waters, sediments, and soils incorporating a discrete 30 
site/electrostatic model of ion-binding by humic substances, Comput. Geosci., 20, 973-1023, 10.1016/0098-3004(94)90038-
8, 1994. 

Tipping, E.: Humic Ion-Binding Model VI: An Improved Description of the Interactions of Protons and Metal Ions with Humic 
Substances, Aquatic Geochemistry, 4, 3-47, 10.1023/a:1009627214459, 1998. 

Treat, C. C., Wollheim, W. M., Varner, R. K., Grandy, A. S., Talbot, J., and Frolking, S.: Temperature and peat type control 35 
CO2 and CH4 production in Alaskan permafrost peats, Global Change Biology, 20, 2674-2686, 10.1111/gcb.12572, 2014. 

Treat, C. C., Natali, S. M., Ernakovich, J., Iversen, C. M., Lupascu, M., McGuire, A. D., Norby, R. J., Roy Chowdhury, T., 
Richter, A., Šantrůčková, H., Schädel, C., Schuur, E. A. G., Sloan, V. L., Turetsky, M. R., and Waldrop, M. P.: A pan-Arctic 
synthesis of CH4 and CO2 production from anoxic soil incubations, Global Change Biology, 21, 2787-2803, 
10.1111/gcb.12875, 2015. 40 

Tuomi, M., Vanhala, P., Karhu, K., Fritze, H., and Liski, J.: Heterotrophic soil respiration—Comparison of different models 
describing its temperature dependence, Ecol. Model., 211, 182-190, https://doi.org/10.1016/j.ecolmodel.2007.09.003, 2008. 

Vaughn, L. J. S., Conrad, M. E., Bill, M., and Torn, M. S.: Isotopic insights into methane production, oxidation, and emissions in 
Arctic polygon tundra, Glob. Change Biol., 22, 3487-3502, 10.1111/gcb.13281, 2016. 

Venables, W. N., and Ripley, B. D.: MASS: Modern Applied Statistics with S. Fourth Edition.Springer, New York. ISBN 0-387-45 
95457-0, 2002. 

Wachinger, G., Fiedler, S., Zepp, K., Gattinger, A., Sommer, M., and Roth, K.: Variability of soil methane production on the 
micro-scale: spatial association with hot spots of organic material and Archaeal populations, Soil Biology and Biochemistry, 
32, 1121-1130, https://doi.org/10.1016/S0038-0717(00)00024-9, 2000. 

Wagner, R., Zona, D., Oechel, W., and Lipson, D.: Microbial community structure and soil pH correspond to methane 50 
production in Arctic Alaska soils, Environ. Microbiol., 19, 3398-3410, 10.1111/1462-2920.13854, 2017. 

Waldrop, M. P., Wickland, K. P., White Iii, R., Berhe, A. A., Harden, J. W., and Romanovsky, V. E.: Molecular investigations 
into a globally important carbon pool: permafrost-protected carbon in Alaskan soils, Global Change Biology, 16, 2543-2554, 
10.1111/j.1365-2486.2009.02141.x, 2010. 

Walt, S. v. d., Colbert, S. C., and Varoquaux, G.: The NumPy Array: A Structure for Efficient Numerical Computation, 55 
Computing in Science & Engineering, 13, 22-30, 10.1109/mcse.2011.37, 2011. 

Walz J., Knoblauch C., Böhme L., Pfeiffer E.M.: Regulation of soil organic matter decomposition in permafrost-affected 
Siberian tundra soils - Impact of oxygen availability, freezing and thawing, temperature, and labile organic matter. Soil 
Biology and Biochemistry 110: 34-43.2017. 



 

 27 

Walvoord, M. A., and Kurylyk, B. L.: Hydrologic Impacts of Thawing Permafrost—A Review, Vadose Zone Journal, 15, 
10.2136/vzj2016.01.0010, 2016. 

Wickham, H.: ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2009, 2009. 
Wickham, H., Francois, R., Henry, L., and Müller, K.: dplyr: A Grammar of Data Manipulation. R package version 0.7.3. 

https://CRAN.R-project.org/package=dplyr, 2017. 5 
Xu, X., Elias, D. A., Graham, D. E., Phelps, T. J., Carroll, S. L., Wullschleger, S. D., and Thornton, P. E.: A microbial functional 

group-based module for simulating methane production and consumption: Application to an incubated permafrost soil, 
Journal of Geophysical Research: Biogeosciences, 120, 1315-1333, 10.1002/2015JG002935, 2015. 

Xu, X., Yuan, F., Hanson, P. J., Wullschleger, S. D., Thornton, P. E., Riley, W. J., Song, X., Graham, D. E., Song, C., and Tian, 
H.: Reviews and syntheses: Four decades of modeling methane cycling in terrestrial ecosystems, Biogeosciences, 13, 3735-10 
3755, 10.5194/bg-13-3735-2016, 2016. 

Yang, S., Liebner, S., Winkel, M., Alawi, M., Horn, F., Dörfer, C., Ollivier, J., He, J.-s., Jin, H., Kühn, P., Schloter, M., 
Scholten, T., and Wagner, D.: In-depth analysis of core methanogenic communities from high elevation permafrost-affected 
wetlands, Soil Biology and Biochemistry, 111, 66-77, https://doi.org/10.1016/j.soilbio.2017.03.007, 2017. 

Yang, Z., Wullschleger, S. D., Liang, L., Graham, D. E., and Gu, B.: Effects of warming on the degradation and production of 15 
low-molecular-weight labile organic carbon in an Arctic tundra soil, Soil Biol. Biochem., 95, 202-211, 
http://dx.doi.org/10.1016/j.soilbio.2015.12.022, 2016. 

Yvon-Durocher, G., Caffrey, J. M., Cescatti, A., Dossena, M., Giorgio, P. d., Gasol, J. M., Montoya, J. M., Pumpanen, J., Staehr, 
P. A., Trimmer, M., Woodward, G., and Allen, A. P.: Reconciling the temperature dependence of respiration across 
timescales and ecosystem types, Nature, 487, 472-476, 20 
http://www.nature.com/nature/journal/v487/n7408/abs/nature11205.html#supplementary-information, 2012. 

Yvon-Durocher, G., Allen, A. P., Bastviken, D., Conrad, R., Gudasz, C., St-Pierre, A., Thanh-Duc, N., and del Giorgio, P. A.: 
Methane fluxes show consistent temperature dependence across microbial to ecosystem scales, Nature, 507, 488-491, 
10.1038/nature13164, 2014. 

Zheng, J., Roy Chowdhury, T., and Graham, D.: CO2 and CH4 Production and CH4 Oxidation in Low Temperature Soil 25 
Incubations from Flat- and High-Centered Polygons, Barrow, Alaska, 2012. Next Generation Ecosystem Experiments Arctic 
Data Collection, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, USA. Dataset accessed 
at http://dx.doi.org/10.5440/1288688, 2016. 

Zheng, J., and Graham, D.: Soil Organic Carbon Degradation in Low Temperature Soil Incubations from Flat- and High-
Centered Polygons, Barrow, Alaska, 2012-2013. Next Generation Ecosystem Experiments Arctic Data Collection, Oak Ridge 30 
National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, USA. Dataset accessed at 
http://dx.doi.org/10.5440/1393836., 2017. 

Zheng, J., Roy Chowdhury,T., Yang, Z., Gu, B., Wullschleger, S., Graham, D., : Impacts of temperature and soil characteristics 
on methane production and oxidation in Arctic polygon tundra, Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-
566, in review, 2018. 35 

Zhuang, Q., Melillo, J. M., Sarofim, M. C., Kicklighter, D. W., McGuire, A. D., Felzer, B. S., Sokolov, A., Prinn, R. G., 
Steudler, P. A., and Hu, S.: CO2 and CH4 exchanges between land ecosystems and the atmosphere in northern high latitudes 
over the 21st century, Geophysical Research Letters, 33, n/a-n/a, 10.1029/2006GL026972, 2006. 

Zimov, S. A., Schuur, E. A. G., and Chapin, F. S.: Permafrost and the Global Carbon Budget, Science, 312, 1612-1613, 
10.1126/science.1128908, 2006. 40 

 
 
 
 

 
  

Formatted: Authors, Indent: Left:  -0.5", Hanging:
 0.5", No widow/orphan control, Don't swap
indents on facing pages, Tab stops:  0.39", Left + 
0.78", Left +  1.17", Left +  1.56", Left +  1.94",
Left +  2.33", Left +  2.72", Left +  3.11", Left + 
3.5", Left +  3.89", Left +  4.28", Left +  4.67",
Left

Formatted: Font: Font color: Black, Border: : (No
border), Pattern: Clear

Deleted: ¶
Formatted: Indent: Hanging:  0.5", Don't swap
indents on facing pages
Deleted: ¶
Table 1. Descriptive statistics and correlation matrix for 50 
soil geochemical characteristics, labile carbon pool (in 
µmol g-1 C) and estimated 60 days max production of 
CO2 and CH4 (in µmol g-1 C) at 8 and -2°C.¶
¶ ... [29]
Formatted: Indent: Hanging:  0.5", Line spacing: 
single, Don't swap indents on facing pages
Formatted: Font: Bold, (Intl) Arial Unicode MS



 

 28 

 

 

 

 

 5 

Figure 1. Conceptual diagram showing key processes in the anaerobic carbon decomposition framework. The numbers 

indicate different processes: 1. SOM degradation from soil organic carbon pools with increasing turnover time produces 

dissolved organic carbon (DOC) and CO2; 2. Fermentation of DOC into organic acids, H2 and CO2; 3. Methanogenesis 

from organic acids or H2; 4. Fe(III) reduction from organic acids or H2. 5. Fe(OH)3 dissolution. 
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Figure 2. Comparison between modeled and observed production of CO2 (a) and CH4 (b). Averaged measurements of 

triplicate microcosms at each time point from each incubation temperature were calculated as observed values. 10 
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Figure 4. Box plots show temperature effects on (a) CO2 
and (b) CH4 production rates grouped by soil layer. 15 
Samples in the transition zone from FCP were pooled 
with other mineral soils. The two ends of the box 
represent the 25th and 75th percentile and the lines 
extending from the box are the 10th and 90th percentile. 
Please note rates are plotted on log scales.¶20 
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Figure 3. Perturbations of initial soil geochemical conditions differentially affected model predictions (including CH4, CO2, 

Fe(II), TOAC, WEOC, and pH) during anaerobic carbon decomposition. For example, when the initial pH decreased by 5 

8% and 17%, CH4 production decreased by 40% and 80%, respectively. Normalized changes in model output were 

calculated as the ratio of perturbation simulation output to reference simulation output after 60 days of anaerobic 

decomposition at 8 °C. To test model sensitivity in response to initial pH, the reference run started with pH 6, and up to 1 

pH unit changes was applied in perturbation simulations to represent a realistic pH range for soils. Reference simulations 
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were based on soils with 30% SOC (water content=2 g g-1 dwt, and pH=5). 
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Figure 4. Simulated changes in model predictions (including CH4, CO2, Fe(II), TOAC, WEOC, and pH) during anaerobic 

carbon decomposition in response to perturbations of (a) fermentation rate and (b) fermentation stoichiometry 

(Acetate:CO2=1:1 for reference simulation). Normalized changes in model output were calculated as the ratio of 10 

perturbation simulation output to reference simulation output after 60 days of anaerobic decomposition at 8 °C. Reference 

simulations were based on soils with 30% SOC (water content=2 g g-1 dwt, and pH=5). 
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Figure 5. Comparison of simulated and observed temperature response for the production of CO2 (a) and CH4 (b). Results 5 

were all normalized to CO2 or CH4 production rates at 8 °C for direct comparison. Observations at -2°C and 4 °C were 

plotted in black dots and the median value were marked in red. The shaded area represents output uncertainties generated 

from rate estimations within 60±5 days. Reference simulations were based on soils with 30% SOC (water content=2 g g-1 

dwt, and pH=5). 
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Figure 6. Simulated changes in model predictions (including CH4, CO2, Fe(II), TOAC, WEOC, pH and fpH) during 5 

anaerobic carbon decomposition in response to perturbations of (a) pH buffering capacity, and (b) pH response function. 

Normalized changes in model output were calculated as the ratio of perturbation simulation output to reference simulation 

output after 60 days of anaerobic decomposition at 8 °C. Reference simulations were based on soils with 30% SOC (water 

content=2 g g-1 dwt, and pH=5). 
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Figure 7. Temperature response of CH4 and Fe(II) production rates at varying soil pH buffering capacities (BC). Varying 

BCs with respect to reference simulation (BC=1) creates strong feedback to rates of methanogenesis and iron reduction. 5 

Reference simulations were based on soils with 30% SOC (water content=2 g g-1 dwt, and pH=5). 
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 5 

Figure 8. Cluster analysis of soil geochemical properties related to CO2 and CH4 production using Ward’s linkage method. 

(a) cluster analysis of measured soil geochemical characteristics and observed CO2 and CH4 production (n=42); (b) cluster 

analysis of modeled results (n=42). Model simulated CO2, CH4, and Fe(II) production and final pH are labeled as M_CO2, 

M_CH4, M_Fe, and M_pH, respectively. Biomass of methanogens and iron reducers were tracked in the model and labeled 

as M_Meb and M_Feb, respectively. 10 
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Figure 9. Model estimated turnover rates of the fastest-decomposing carbon pool. Organic, Mineral, and Permafrost labels 5 

represent estimations from our model simulations (rates estimated at 4 °C). Schadel_data represent turnover rates 

estimated via a three-pool model from pooled anaerobic incubations with normalized incubation temperature of 5 °C (tag 

1, 2, and 3 represent pool estimation from different soil types: 1. Organic, 2, Mineral <1m, 3. Mineral >1m) . 

Knoblauch_data are rate estimates (at 4 °C) made via a two-pool model (Schädel et al., 2014;Knoblauch et al., 2013). Open 

symbols represent the average values, and the vertical lines represent the estimated range. 10 
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The fate of permafrost C is determined in large part by soil moisture, particularly water saturation caused by ice 

melting, precipitation, infiltration and runoff (Riley et al., 2011; Elberling et al., 2013; Schädel et al., 2016). Permafrost 

thaw frequently creates large areas of soil inundation due to abrupt surface collapse and subsidence (Painter et al., 

2013; Walvoord and Kurylyk, 2016), resulting in higher levels of CH4 production via anaerobic decomposition 

pathways. Although total carbon release under oxic conditions is much higher than under anoxic conditions (Schädel 

et al., 2016), emissions of high global warming potential CH4 may offset reduced lower CO2 emissions in the absence 

of oxygen (Lee et al., 2012).  
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3a). Higher incubation temperatures showed minimal effect on the WEOC/SOC quotient, and a temperature response 

trend remained insignificant. 
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 from LCP and HCP centers (Figure 3b). In most mineral soils 
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%, partially contributing to the depletion of WEOC after the anoxic incubations. 
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Good correlations between soil organic carbon (SOC, WEOC and TOAC) and soil moisture were found, indicating 

the importance of soil moisture in controlling carbon substrate availability (Table 1). High organic carbon content and 

high soil moisture are associated with organic and permafrost soil, while mineral soils are much drier with lower 

organic carbon content (Figure S2). Fe(II) concentration is measured as a proxy of soil redox potential, and it is most 

closely related to soil pH (Table 1). 

3.2 
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response and soil layer effects 

Cumulative production of both CO2 and CH4 showed close correlation with soil carbon content (represented as SOC, 

WEOC and TOAC) on a dry soil mass basis, as well as soil moisture (Table S4). Given the high inter-correlation 

among these soil attributes (Table 1), we evaluated the relationship between gas production and soil geochemical 

characteristics on per gram C basis to avoid inter-correlation caused by SOC content (Lee et al., 2012). The maximum 

values of cumulative CO2 production were 756 and 534 µmol g-1 C at 8 and -2°C, exceeding the median values at 

corresponding temperature by 5 and 8 times, respectively. The maximum cumulative CH4 production was 198 µmol 

g-1 C from the organic layer of LCP center at 8 °C, approximately 123 times the median value among the rest of the 

samples. Cumulative CH4 production from the same soil was 9.2 µmol g-1 C when incubated at -2 °C, 9 times the 

median rate among the remaining samples. Cumulative CO2 production showed strong positive correlation with initial 

soil moisture at both 8 and -2 °C, while cumulative CH4 production only correlated with initial soil moisture at 8 °C 



(Table 1). Noticeably, significant correlation between production of CO2 and CH4 was found at 8 °C, but not at -2 °C 

(Table 1), suggesting CO2 and CH4 production were controlled by different factors at 8 and -2 °C, respectively. Given 

that cumulative CO2 and CH4 production both had skewed distributions among samples (Figure S3), the significance 

in the correlation between gas production and moisture would be substantially weaker with exclusion of measurements 

from the wet organic layer of LCP center. 

 

Initial production rates of CO2 and CH4 varied significantly across organic, mineral and permafrost soil layers  
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<0.001 and p<0.001, respectively, Figure 4). Temperature showed a substantial positive effect on CO2 and CH4 

production rates (p 
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). A significant temperature ´ soil layer interaction effect was found on CO2 production rate, but not on CH4 production 

rate (Table S5), suggesting CH4 production might be more sensitive to constraints from additional environmental 

conditions. 
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value was calculated for each condition to further assess the temperature dependency of CO2 and CH4 production 

(Figure S4). The calculated Q10 values of CO2 production from organic soil were within a 
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between 4.6 and 5.0. Mineral soils with lower SOC content showed a wider range of Q10 values (from 3.6 to 7.3). 

Permafrost showed significantly lower Q10 than both organic and mineral layers (Table S6). Methanogenesis 
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, while in mineral soils and permafrost, the average Q10 values were 7.1 and 1.6, respectively. 
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We used the CLM_CN temperature response function (B1) in our simulations (Thornton and Rosenbloom, 2005). 
Additional temperature response functions tested here including B2 used by CENTURY model (Parton et al., 2001), 
Arrhenius equation B3 used in ecosys (Grant, 1998), and the quadratic equation B4 (Ratkowsky et al., 1983).  Tref  is 
set at 25 °C, Ea is the activation energy (J mol-1), R is the universal gas constant (J K-1 mol-1). Tm used in Ratkowsky 
model represents the conceptual temperature of no metabolic significant, and is set at -8 °C in this study. 
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Table 1. Descriptive statistics and correlation matrix for soil geochemical characteristics, labile carbon pool (in 

µmol g-1 C) and estimated 60 days max production of CO2 and CH4 (in µmol g-1 C) at 8 and -2°C. 

 

 1 2 3 4 5 6 7 8a/8b 

1. SOC         

2. WEOC 0.80a        

3. TOAC 0.62b 0.69a       

4. Moisture 0.69a 0.82a 0.78a      

5. pH -0.30 -0.15 -0.14 -0.11     

6. C/N ratio 0.07 0.06 0.17 0.05 -0.64b    

7. Fe(II) 0.06 0.09 0.15 0.04 -0.35 -0.03   

8a. Max_8_CO2 0.38 0.39 0.33 0.63b -0.09 -0.13 -0.33  

8b. Max_2_CO2 0.40 0.54b 0.67a 0.79a 0.07 -0.14 -0.30  

9a. Max_8_CH4 0.31 0.41 0.50 0.74a -0.24 0.18 -0.29 0.88a 

9b. Max_2_CH4 -0.33 -0.24 -0.08 0.06 0.19 -0.31 -0.32 0.35 

 

Note: a correlation is significant at the 0.01 level (two-tailed); b correlation is significant at the 0.05 level (two-tailed) 
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Figure 1. Schematic diagrams of different polygon types and features. The cross section represents the relative 

landscape positions of soil profile, including organic, mineral, transition zone and permafrost. 
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Figure 3. Changes in (a) WEOC/SOC (quotient of water extractable organic carbon to total soil organic carbon) 

and (b) TOAC (calculated as (TOACafter - TOACbefore)/TOACbefore) after anaerobic incubations at -2, 4 and 8 

°C. Bars framed with black lines in panel (a) represent the TOAC/WEOC levels before incubation, and blue 

bars represent levels after the incubation at corresponding temperatures. Error bars represent standard 

deviations among triplicate measurements. 
 

 


