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Abstract. Rapid warming of Arctic ecosystems exposes soil organic matter (SOM) to accelerated microbial decomposition, 

potentially leading to increased emissions of carbon dioxide (CO2) and methane (CH4) that have a positive feedback on global 

warming. Current estimates of the magnitude and form of carbon emissions from Earth system models include significant 20 

uncertainties, partially due to the oversimplified representation of geochemical constraints on microbial decomposition.	Here we 

coupled modeling principles developed in different disciplines, including a thermodynamically based microbial growth model for 

methanogenesis and iron reduction, a pool-based model to represent upstream carbon transformations, and a humic ion-binding 

model for dynamic pH simulation to build a more versatile carbon decomposition model framework that can be applied to soils 

under varying redox conditions. This new model framework was parameterized and validated using synthesized anaerobic 25 

incubation data from permafrost affected soils along a gradient of fine-scale thermal and hydrological variabilities across Arctic 

polygonal tundra. The model accurately simulated anaerobic CO2 production and its temperature sensitivity using data on labile 

carbon pools and fermentation rates as model constraints. CH4 production is strongly influenced by water content, pH, methanogen 

biomass, and presence of competing electron acceptors, resulting in high variability in its temperature sensitivity. This work 

provides new insights into the interactions of SOM pools, temperature increase, soil geochemical feedbacks, and resulting CO2 30 

and CH4 production. The proposed anaerobic carbon decomposition framework builds a mechanistic link between soil 

geochemistry and carbon mineralization, making it applicable over a wide range of soils under different environmental settings. 

 

1 Introduction 

The northern permafrost region contains 1400-1800 Pg soil carbon (C), which is more than twice as much C as is currently 35 

contained in the atmosphere (Tarnocai et al., 2009; McGuire et al., 2012). Persistent cold and saturated soil conditions have limited 

C decomposition in this reservoir. However, rapid warming and permafrost thaw exposes previously frozen organic carbon to 
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accelerated microbial decomposition, potentially leading to emissions of carbon dioxide (CO2) and methane (CH4) that have a 

positive feedback on global warming (Zimov et al., 2006; Schuur et al., 2015; Schuur et al., 2009). How quickly frozen soil organic 

matter (SOM) will be mineralized, and how much permafrost C will be released to the atmosphere following thaw is highly 

uncertain. Earth system models project 27 -508 Pg carbon release from the permafrost zone by 2100 under current climate forcing 

(Zhuang et al., 2006; Koven et al., 2015; MacDougall et al., 2012; Schaefer et al., 2014), varying by a factor of thirty. Understanding 5 

environmental dependencies of soil organic matter (SOM) decomposition is therefore essential for reducing model uncertainties 

and improving predictions of future climate change. 

 

Disagreement in model projections for the northern permafrost region could be due to differences in model structure, model 

initialization, or parameters used in simulations. Despite increasingly detailed process representations in many models that simulate 10 

terrestrial CO2 and CH4 fluxes, important geochemical and metabolic constraints might still be poorly represented, oversimplified 

or missing in current biogeochemical models (Xu et al., 2016). The northern permafrost region is rapidly changing in response to 

the changing climate. Rising temperatures not only release more labile carbon from permafrost for decomposition, but also create 

thermal and hydrological heterogeneity that further affects biogeochemical processes. Here we examine two mechanisms that 

substantially affect SOM turnover in permafrost-affected soils. First, rising temperature alters the kinetics of biogeochemical 15 

reactions (Segers, 1998). This effect is more pronounced at subzero temperature (Bore et al., 2017), and the process rate increase 

is higher at lower temperature ranges (Davidson and Janssens, 2006). Microbial communities also change with temperature, 

compounding effects on process rates (Karhu et al., 2014). Models address this temperature effect using empirical functions and 

parameters (Tuomi et al., 2008; Xu et al., 2016), which might be highly biased depending on model assumptions and original curve 

fitting techniques, generating large uncertainties. Second, heterogeneity in permafrost thaw and related hydrological responses 20 

creates geochemical gradients in soils. Models use different levels of detail to simulate effects of water saturation (Meng et al., 

2012; Xu et al., 2016). Soil moisture limits gas transport, and it is often used as an implicit control on heterotrophic respiration and 

methanogenesis. However, the explicit processes resulting from with soil oxygen depletion (e.g. soil redox status and pH dynamics) 

are not widely represented (Riley et al., 2011; Meng et al., 2012;Xu et al., 2015). 

 25 

The extent of SOM decomposition and gas emissions depends upon soil geochemical characteristics beyond temperature and O2 

availability. Among the wide range of environmental variables, pH emerges as a primary control on decomposition by regulating 

both microbial communities and microbial metabolic activities (Zhalnina et al., 2015; Jin and Kirk, 2018). pH affects microbial 

metabolism by modulating the thermodynamics and kinetics of redox reactions. Redox reactions produce or consume protons, and 

thus, their free energy yields vary with pH (Bethke et al., 2011; Jin and Bethke, 2007). The Gibbs free energy available to anaerobic 30 

microorganisms that degrade simple organic molecules generally increases (becomes less favorable) with increasing pH (Bethke 

et al., 2011). Notably, iron [Fe(III)] reduction is highly proton consuming and becomes less favorable at higher pH (Figure S1). 

Previous studies identified iron reduction as a major process in anoxic Arctic soils (Lipson et al., 2010; Lipson et al., 2013), which 

increase local pH and might favor co-occurring methanogenesis (Tang et al., 2016; Wagner et al., 2017). However, the influence 

of iron reduction on methanogenesis rates in different soils is rarely investigated. The reactivity of iron and its pH-feedback impose 35 

additional complexity on the controls of SOM decomposition and associated CH4 production. 

 

Despite the importance of pH in controlling redox reactions and resulting C emissions, pH change is not explicitly represented in 

biogeochemical models. Most of the current biogeochemical models apply a single initial pH value for redox reactions without 

considering proton production and consumption during the processes. Traditional decomposition models use landscape position, 40 



 

 3 

soil moisture content, or other proxy of O2 concentration to determine the form of C release. Scalars on aerobic respiration (Riley 

et al., 2011; Lawrence et al., 2015) or empirical ratios of CO2 and CH4 (Koven et al., 2015) are often used to inform the extent of 

C decomposition and partitioning of CO2 and CH4 production. Reactions that produce or consume protons and the resulting pH 

changes or ion exchange reactions are not considered in these empirical models. Some process rich models explicitly include 

details of methanogen populations and their interactions with substrates and other environmental factors, but these models still 5 

lack the capability to simulate pH changes during long-term carbon decomposition. Instead, constant pH is often assumed within 

bell-shaped pH response functions (Meng et al., 2012; Tian et al., 2010; Xu et al., 2015). Without underlying proton exchange and 

pH buffering mechanisms, a significant error may occur when rate calculations depend heavily upon the initial choice of a single 

optimal pH value for various reactions. 

 10 

In this study we developed a new anaerobic carbon decomposition model framework with explicit representation of aqueous phase 

geochemistry to allow pH and thermodynamic calculations. By coupling three different models, including a thermodynamically 

based microbial growth model, a substrate pool-based model, and a humic ion-binding model, we built a process rich carbon 

decomposition model that allows simultaneous thermodynamic and pH calculations. Results from anoxic incubations of permafrost 

affected soils along a gradient of soil were synthesized to parameterize and validate this new model framework. The main 15 

objectives of this study were to (i) examine the role of soil geochemical variables in controlling anaerobic carbon decomposition 

and carbon release (as both CO2 and CH4); (ii) develop a common set of parameters in the new anaerobic carbon decomposition 

framework to capture variabilities in CO2 and CH4 production; and (iii) evaluate model uncertainties in responses to both soil 

heterogeneity and model parameterization, emphasizing effects of soil saturation, pH and temperature response.  

2 Materials and methods 20 

2.1 Anaerobic carbon decomposition model 

The anaerobic carbon decomposition framework was developed with explicit representation of fermentation, methanogenesis and 

iron reduction, which were identified as key mechanisms for anaerobic CO2 and CH4 production (Roy Chowdhury et al., 2015; 

Yang et al., 2016; Zheng et al., 2018). The main structure of this framework included two major components: a simplified CLM-

CN decomposition cascade (Converging Trophic Cascade, or CTC) (Thornton and Rosenbloom, 2005) to facilitate 25 

parameterization of the upstream carbon flow entering aqueous phase dissolved organic carbon (DOC) pool (Figure 1, process 1), 

and an aqueous phase to facilitate calculations of thermodynamics and redox-reaction associated acid-base chemistry. An empirical 

approach was used to represent non-aqueous phase SOC decomposition, while mechanistic representation of methanogenesis and 

iron reduction were developed in this work based on aqueous phase thermodynamic calculations. 

 30 

The simplified CTC cascade included 4 SOM pools to represent bulk SOC with different levels of complexity. Changes of these 

SOM pools followed modified first-order-decay (see Supplymentary Material for details). We modified the original respiration 

fraction (Thornton and Rosenbloom, 2005; Koven et al., 2013) into a direct and an indirect fraction. Thus for each SOM pool, the 

direction respiration fraction represented CO2 lost as orgnially defined, while the indirection respiration fraction was labile C 

produced from bulk C entering the aqueous phase carbon pool (DOC pool, Figure 1). 35 

 

The large biomolecules in the DOC pool went through multiple hydrolysis and fermentation steps to produce low molecular weight 
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organic acids that would further respire into CO2 and CH4 (Boye et al., 2017; Zheng and Graham, 2017; Roy Chowdhury et al., 

2015; Yang et al., 2016). Under anoxic conditions, hydrolysis of polysaccharides was considered the rate-limiting step for 

downstream methanogenesis (Glissmann and Conrad, 2002). Polysaccharide hydrolysis has a favorable free energy, due to 

increased entropy, but cannot be readily coupled to biological energy transduction outside of the cell.  At low temperature (below 

15 °C), the microbial degradation of cellulose was considerably diminished while other polymers, such as starch or proteins, were 5 

degraded much faster at low temperature, resulting in the accumulation of organic acids, primarily acetic, propionic and butyric 

acids (Kotsyurbenko, 2005;Yang et al., 2016). These low molecular weight organic acids further fueled microbial mineralization 

reactions that lead to production of CH4 and CO2. Given that most anaerobic lignocellulose degraders also fermented sugars 

following hydrolysis (Blumer-Schuette et al., 2014), we assumed the turnover of DOC into low molecular weight organic acids 

was a single lumped fermentation process (Figure 1, process 2), in which labile DOC (C6H12O6) was fermented into acetate, H2 10 

and CO2 (Appendix A, reaction A1). This assumption gave a fixed stoichiometry ratio that 1/3 of the fermented carbon was respired 

as CO2. 

 

Redox reactions including methanogenesis and iron reduction were represented using a thermodynamically-based approach (Istok 

et al., 2010), with unique microbial growth kinetics incorporated into energy yielding redox reactions. In this thermodynamically 15 

based approach, the growth equations of methanogens and iron reducers were derived from paired electron donor (acetate and H2) 

and electron acceptor half reactions and a biomass synthesis equation (Istok et al., 2010). Using a constant molecular formula as 

biomass (C5H7O2N), and ammonium (NH4+) as the nitrogen source for biosynthesis, we derived the growth equations for 

methanogenesis and iron reduction (Appendix A, equation A2-A5). Rate calculations followed the generalized Monod rate law 

(Jin and Bethke, 2007) with an additional thermodynamic factor representing the thermodynamic driving force. The 20 

thermodynamic factor f(G) is calculated using equation 1 (Jin and Bethke, 2003): 

 

 𝑓(𝐺) = 1 − exp	(−,∆.,/∆.0
123

)   (1) 

where ∆𝐺 [kJ (mol reaction)-1] is the free energy change of the redox reaction [∆𝐺 depends on the standard Gibbs free energy 

change (∆𝐺4), and the concentrations of chemical species involved in the reaction], and ∆𝐺5 is the phosphorylation potential, i.e., 25 

the energy required to synthesize ATP to ADP and dihydrogen phosphate in cell’s cytoplasm. ∆𝐺5 is about 45 kJ (mol ATP)-1 

(Jin and Kirk, 2018). m is the number of ATPs synthesized per redox reaction. 𝜒 is the average stoichiometric number (Jin and 

Kirk, 2018), R is the gas constant (kJ mol-1 K-1), and T is the absolute temperate (K). This factor f(G) ranges from 0 to 1, where 

the reaction is thermodynamically favorable when f(G) > 0. 

 30 

Both methanogenesis and iron reduction contribute to pH change. Reactions such as ferrihydrite reduction substantially increase 

alkalinity (Appendix A, Reaction A4, A6). Furthermore, the solubility of CO2 and the composition of dissolved CO2 and 

bicarbonate vary significantly over typical soil pH values, affecting all C mineralization processes. In the organic-rich soils 

modeled here, SOM rather than minerals provides most buffering capacity. Therefore, we used the humic ion-binding model to 

describe pH buffering during carbon decomposition. A simplified parameterization of proton binding is available in the 35 

Windermere Humic Aqueous Model (WHAM, Tipping, 1994; Tipping, 1998), which has been extensively calibrated to represent 

the acid-base chemistry of “average” humic and fulvic acids, and benchmarked with heterogeneous natural organic matter (Atalay 

et al., 2009). We adopted the WHAM parameterization to represent proton binding characteristics (pH buffering) provided by 

SOM (Tang et al., 2016). Using representative binding constants provided by WHAM, the pH buffering capacity can be directly 

adjusted by altering the number of proton binding sites, which is assumed to be linearly correlated with total amount of SOM (see 40 
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Supplementary Material for details). 

 

2.2 Model implementation and initialization  

 

The above model structure was implemented using the open source geochemical program PHREEQC 3.0 (Charlton & Parkhurst, 5 

2011) with a new database describing SOC decomposition cascade, redox reaction kinetics and pH buffering (redox.dat, 

available at https://github.com/jianqiuz/decomposition). The model assumed thermodynamic equilibrium of aqueous chemical 

speciation, mineral dissolution/precipitation, and ion sorption/desorption based on the updated PHREEQC thermodynamic 

database (phreeqc.dat, Charlton & Parkhurst, 2011). The database was modified to include WHAM pH buffering and reaction 

kinetics for SOM pools decay and reaction kinetics for fermentation, methanogenesis and iron reduction. The kinetic rate 10 

constants and microbial biomass growth and decay rates were adopted from former thermodynamically based studies (Istok et 

al., 2010) and pre-tested with low-center polygon Arctic soils (Tang et al., 2016). 

 

The model initialization was based on both the incubation conditions and soil geochemical characterizations (Figure S2). The 

initial partitioning of SOM pools was assumed to be at fixed ratios due to the limitation of short-term incubation data. Under the 15 

experimental conditions, we assumed SOM1and SOM2 pools with relatively shorter turnover rate (τ =14 days and 70 days, 

respectively) were most relevant in the model, while SOM3 and SOM4 (τ > 2 years for both pools) pools were relatively inert. We 

started with the relative fraction of SOM pools at approximately 10%, 40%, 10% and 40% of SOC in organic and mineral soils for 

SOM1-4 pools and further assessed the bias of this assumption with sensitivity analysis. Sizes of SOM1 and SOM2 pools were 

reduced by 90% for permafrost to better account for the overall low levels of carbon degradation in soils at such depth. 20 

 

All other variables required were initialized using measurements based upon 10 to 15 g of wet soil incubated in 60 to 70-mL sealed 

bottles. Total soil organic carbon (SOC), total water (TOTW), total organic acid carbon (TOAC), pH and initial concentration of 

Fe(II) were specified in the model based on measurements (Table S1). The DOC pool in the model was initialized using the 

measured WEOC expressed as a fraction of SOC (fdoc). On average, WEOC accounts for approximately 2% of SOC based on our 25 

synthesized data (see section 3.1), consistent with previous long term incubations, which suggested less than 5% of SOC were fast 

decomposing carbon in permafrost affected soils at a standardized temperature of 4-5 °C (Knoblauch et al., 2013; Schädel et al., 

2014). The starting biomass of methanogens and iron reducers was assumed to be within the range of 10-3 to 10-5 gC/gSOC for 

organic soils, 10-4 to 10-6 gC/gSOC for mineral soils, and 10-7 to 10-9 gC/gSOC for permafrost (Table S1). This stratified microbial 

biomass distribution were used to represent the vertical gradient in the relative abundance of microbial communities (Treat et al., 30 

2014; Waldrop et al., 2010; Yang et al., 2017).  

 

The lumped fermentation process was the rate-limiting step in the model and was fitted individually with data from each soil 

microcosm. Based upon reaction stoichiometry, the fermentative conversion of each mole of labile C led to 2/3 mole of organic 

acids and 1/3 mole of CO2. Organic acids were mineralized via methanogenesis or iron reduction to convert approximately 49% 35 

to 88% of C in organic acids into CO2. This estimation was based on reaction stoichiometry of A2 and A4, and a fraction of the C 

was incorporated into microbial biomass, so the percentage of respired C would be less than 100% even if all organic acids were 

respired as CO2. If we assume all fermentation products were mineralized into CH4 and CO2, we could estimate the fermentation 

rate (Rfer) from measured CO2 production. Thus, Rfer were estimated using the initial CO2 production rate in the incubation data, 

and further optimized by fitting with observed CO2 production. 40 
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Temperature and pH response functions were used to further constrain model simulations (Figure S2). A temperature effect was 

parameterized using the CLM-CN temperature response function (Appendix B, equation B1). Additional temperature response 

functions were evaluated by sensitivity analysis (see section 2.4). The effect of pH on biological reaction rates is modulated by 

bell-shaped pH response functions (Tang et al., 2016; Xu et al., 2016). Here we used the Dynamic Land Ecosystem Model (DLEM) 5 

pH response function (Appendix B, equation B5), since it generates the least variation in parameter perturbation tests (Tang et al., 

2016). 

 

2.3 Incubation data synthesis for model validation 

Incubation data from Utqiaġvik (Barrow) Alaska soil cores that represent the microtopographic heterogeneity of polygona tundra 10 

were synthesized to validate the new anaerobic carbon decomposition model. The selected datasets represent fine scale variabilities 

in thermal and hydrological regimes across the gradient of soil microtopographic positions (Herndon et al., 2015). The synthesized 

data contains complete sets of soil geochemical descriptions for organic, mineral, transition zone (if identified) and permafrost 

layers from each microtopographic feature (see Supplementary Material for details). Levels of total soil organic carbon, water 

extractable organic carbon (WEOC) and total organic acid carbon (TOAC) were available before and after soil incubation. Besides 15 

CH4 and CO2 production during low temperature soil decomposition, data on Fe(II) concentrations and pH changes were also 

available for model initialization and validation. 

2.4 Model parameter uncertainty 

This model is designed as a generic framework to simulate anaerobic carbon decomposition across a range of soil physiochemical 

conditions. Two types of sensitivity analysis were conducted to evaluate model performance. First, possible bias and variations 20 

associated with model initialization variables (soil geochemical attributes) were assessed using perturbation simulations. Variations 

of ±25% and ±50% (+100% and 200% for some variables) were applied to these variables, and the resulting changes in cumulative 

CO2 and CH4 production were evaluated by comparing with reference simulations. This evaluation helps to identify critical 

measurements needed for initializing the model. Second, parameters specifically benchmarked in this study and parameters adopted 

from empirical relationships were also evaluated with perturbation simulations. This test helps to apportion the model prediction 25 

uncertainties into different sources, including model input, parameters, or model structure. 

3 Results 

3.1 Meta-analysis to validate model assumptions 

Incubation data used in this study were generated from soils representing different microtopographic features with a wide range of 

moisture and SOC contents and reported elsewhere (Roy Chowdhury et al., 2015; Zheng et al., 2018). Correlation analysis revealed 30 

a close relationship between soil moisture and organic carbon pools (measured as SOC, WEOC and TOAC) among examined soil 

microtopographic features and across soil depth (p < 0.01, Table S2). All these soil properties showed significant correlation with 

cumulative CO2 and CH4 production (p <0.05), suggesting the important role of initial soil geochemical properties in controlling 

carbon degradation. 

 35 
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Although various levels of carbon mineralization were measured as CO2 and CH4 production during incubations, changes in WEOC 

and TOAC were consistent among treatments with distinct patterns. WEOC represents 0.3% to 2.6% of total SOC among all test 

soils, and this ratio remained constant before and after anoxic incubations (Figure S3). On the other hand, TOAC showed much 

more dynamic changes among different soils and different incubation temperatures. TOAC generally increased in soils from 

organic layer, transition zone and permafrost. In contrast, TOAC drastically decreased by up to 90% in mineral soils. These results 5 

indicate that WEOC was in a steady state among examined soils, while TOAC varied substantially due to microbial mineralization 

processes, supporting the model assumptions of lumped fermentation (the conversion of WEOC to TOAC) as rate limiting step. 

 

Both CO2 and CH4 production rates responded strongly to rising incubation temperature (p =0.02 and p =0.04, respectively, Figure 

S4, Table S3). The estimated Q10 values of CO2 production showed a relatively narrow range while methanogenesis had much 10 

larger variations in estimated Q10 values ranging from 1.6 to 48.1. Using Q10 values to simulate the temperature dependence of 

processes might work for CO2 production, but could generate significant errors in predicting CH4 production. 

3.2 Modeled CO2 and CH4 production using observed parameters 

The model performed well in simulating CO2 and CH4 dynamics across a range of moisture and SOC gradients and among different 

soil types (Figure S5, S6). Variations in gas production among different conditions, including microtopographic features, soil layer, 15 

and different incubation temperatures were well captured (Figure S7). The comparisons between modeled and observed CO2 and 

CH4 production are shown in Figure 2. The model slightly underestimates CO2 production towards the end of the incubations, but 

still maintains a good agreement between modeled and observed CO2 production (R2=0.89). The underestimation of CO2 

production is likely due to substrate limitations caused by the initial distribution of different carbon pools. Model-predicted CH4 

production also showed good agreement with observations (R2=0.79). More variation between modeled and observed CH4 20 

production suggests a systematic pattern in the model parameterization of methanogenesis: the model underestimates CH4 

production at 4 and 8°C, and overestimates CH4 production at -2°C. 

 

To assess the model sensitivity to initial model inputs, we compared model predictions in response to varying initial model inputs 

via perturbation simulations. First, we examined the influence of the partitioning of different carbon pools. Significant changes in 25 

model predictions of CO2 and CH4 were observed in response to perturbations of initial input of SOC, WEOC, but not TOAC 

(Figure 3). SOC determines the size of different carbon pools in the model, and it further influences the predictions of WEOC, 

TOAC, CO2 and CH4. For example, predicted CO2 and CH4 production increased by about 200% when +200% changes were 

applied to initial SOC input. This trend is consistent with correlation analysis of incubation results, described above (Table S2). 

Perturbations in initial WEOC strongly altered the predictions of TOAC and CO2, consistent with the model assumption of the 30 

conversion of WEOC to TOAC (fermentation process) as the rate-limiting step. The model also predicted increases in CH4 and 

Fe(II) accumulation in response to lower WEOC. Lower WEOC significantly reduced organic acid accumulation, and thus 

increased system pH and accelerated rates of both methanogenesis and iron reduction. The starting level of TOAC showed minimal 

influence on model predictions of CO2 and CH4, suggesting other factors rather than substrate availability were limiting carbon 

mineralization. The initial sizes of SOM1 and SOM2 pools showed very slight changes in model predictions of WEOC and CO2, 35 

and minimal influence on CH4 prediction, further justifying downstream fermentation process as rate-limiting step in the model. 

Additional soil geochemical factors, including soil moisture, Fe(II) and pH also significantly influence model output. In particular, 

initial soil pH showed a dramatic effect on predicted CO2 and CH4 production. With initial soil pH increased from 5 (reference 
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simulation) to 6, the model predicted 160% and 308% increase in CO2 and CH4 production, respectively. Perturbations in initial 

soil pH had the strongest effect on the prediction of CH4 by assigning different values in fpH that were directly proportional to the 

methanogenesis rates. The above results of perturbation simulations demonstrated high sensitivity of this model in response to 

varying soil geochemical properties.  

 5 

3.3 Model sensitivity to parameterization uncertainties 

To further validate the model, we performed additional sensitivity analysis to justify model assumptions and estimate the 

uncertainties generated from model parameterizations. One major assumption of this modeling framework is to lump multiple 

fermentation processes into one reaction stoichiometry, controlled by one reaction rate constant. It is critical to evaluate how this 

simplified structure influences model performance and contributes to model output uncertainties. The model parameter sensitivity 10 

analysis indicated the TOAC pool was most sensitive to changes in the fermentation rate (Rfer) and reaction stoichiometry (Figure 

4). Downstream reactions were less affected by the uncertainties of the two tested parameters. These results supported our 

assumption of lumped fermentation with fixed stoichiometry, indicating the robustness of the model structure presented here. 

 

The selection of temperature response functions represents one of the major sources of model uncertainties. A sensitivity analysis 15 

was performed by comparing four different temperature response functions (Appendix B). In our simulations, the quadratic 

temperature response function proposed by Ratkowsky et al. predicted much higher CO2 and CH4 production rates at higher 

temperature, and the lowest rate of both CO2 and CH4 at temperatures below 0 °C, giving the highest temperature response among 

tested response functions (Figure 5). In contrast, the Arrhenius equation predicted much lower temperature response for both CO2 

and CH4. Empirical functions used in CLM-CN and CENTURY gave similar temperature response for both CO2 and CH4. 20 

Variations in low temperature CO2 production is well constrained by established temperature response functions, while CH4 

production at -2 °C showed a much wider range of temperature response, and the median value is best simulated using Ratkowsky 

function. This sensitivity analysis is consistent with model output of CO2 and CH4 production, where CO2 is well constrained by 

the model, but CH4 is significantly overestimated at -2°C using CLM-CN temperature response function. A unified temperature 

response function for all reactions under different biotic or abiotic constraints substantially contributes to the disagreement between 25 

model output and observations. 

 

Redox reactions contribute to proton production or consumption, and the resulting pH alters the value of the pH response function 

(fpH) that directly controls reaction kinetic functions, creating a feedback loop. pH buffering capacity (BC) provided by SOM with 

proton binding sites and fpH represent two major sources of uncertainties in this feedback loop. Thus, we performed perturbation 30 

simulations to characterize the sensitivity of model output to variations in BC and fpH (Figure 6). Higher BC stabilized system pH 

during prolonged incubations, while lower BC permitted a pH increase by up to 0.71 pH unit compared to the reference simulation. 

This 14% pH increase led to a 123% increase in fpH, accelerating both methanogenesis and Fe(III) reduction rates substantially. 

Perturbations on pH response function were directly reflected in the slopes of pH response curves (Figure S8). We found up to 

372% change in the value of fpH during a 60-day simulation, as steeper increase in fpH accelerated both methanogenesis and iron 35 

reduction (equation A2-A5), which contributed to pH rise in the loop, further accelerating fpH increase. Correspondingly, both CH4 

and Fe(II) increased by more than 100% after the simulation. While BC is an important factor controlling both redox reactions and 

pH fluctuations, a unified fpH for all reactions may impose significant variations in model output. 
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BC is an intrinsic soil property simulated with a simplified linear relationship to soil SOM. However, it generates strong nonlinear 

response in the simulations of methanogenesis and Fe(III) reduction (Figure 7a). Simulations with varying soil BC revealed 

dynamic pH change at lower BC (Figures 8 and 9, with BC=1 as reference simulation), and stabilized pH at higher BC. At constant 

temperature, rates of both methanogenesis and Fe(III) reduction increased significantly at lower BC due to pH control. At lower 

BC when pH change is not well buffered, higher pH accelerated CH4 and Fe(II) production rates (Figure 7), giving much higher 5 

apparent temperature responses, while at higher BC with stabilized pH in the system, apparent temperature responses of these 

redox processes were significantly lower than the reference simulation (BC=1). Variations in pH buffering capacity generated 

large variations in apparent temperature responses of methanogenesis and Fe(III) reduction due to the pH feedback loop. 

4 Discussion  

4.1 Synthesized soil geochemistry and model validation 10 

Soil geochemical characteristics represent important abiotic controls on anaerobic carbon decomposition and subsequent CO2 and 

CH4 production. SOC content, soil pH, water table position, C:N ratio, and landscape position were all suggested to contribute to 

the variability in anaerobic CO2 and CH4 production (Lee et al., 2012; Schädel et al., 2014; Treat et al., 2015). We synthesized 

incubation data for gelisol soils from different pedons and soil moisture regimes representing heterogeneity across the BEO. This 

coordinated data set allowed us to focus on individual factors and their roles in relation to anaerobic CO2 and CH4 production.  15 

 

Carbon released as CO2 and CH4 during anoxic incubations decreased with depth. Permafrost was associated with low levels of 

CO2 production and very low CH4 production, consistent with a previous synthesis (Treat et al., 2015). Nevertheless, permafrost 

TOAC, WEOC, and SOC concentrations were all comparable to organic soils, suggesting high substrate availability but low 

microbial activity. This trend is consistent with previous studies (Walz et al., 2017; Treat et al., 2015), where highest microbial 20 

abundance and diversity were observed in surface soil and permafrost contained low microbial abundance (Treat et al., 2014; 

Waldrop et al., 2010). Among surface soils, higher moisture in low-centered polygon soils significantly promoted CO2 and CH4 

production and the accumulation of fermentation products (measured as TOAC), emphasizing the importance of soil SOC content 

and moisture as strong environmental drivers for carbon decomposition. Given the bias in correlation analysis created by the 

skewed distribution of CO2 and CH4 production in our dataset, additional cluster analysis was performed based on data similarity 25 

rather than correlations. High similarity of soil attributes (depth, moisture, pH, C:N ratio, SOC, TOAC) with CH4 production 

(Figure 8a) was found, suggesting methanogenesis is potentially controlled by a set of soil geochemical characteristics in the local 

microenvironment. 

 

These synthesized observations support the major assumptions of our model development: (1) the coupled hydrolysis and 30 

fermentation processes converting macromolecular SOM into low molecular weight organic acids is the rate limiting step; (2) 

different rates of CO2 and CH4 production from different soil layers can be attributed to variations in microbial activity manifested 

as differences in initial microbial biomass or growth rates. Additional observations of substantial Fe(III) reduction and associated 

pH increases during anaerobic decomposition (Figure S9) confirmed the need to simulate pH variations associated with redox 

reactions and corresponding microbial responses. This anaerobic carbon decomposition framework adequately modulated the 35 

involved biotic and abiotic interactions by splitting the carbon flow to different redox reactions and simulating pH buffering 

capacity to mediate associated changes in acidity or alkalinity. 
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The model presented here identified fermentation, acetotrophic methanogenesis and acetotrophic iron reduction as key mechanisms 

for anaerobic CO2 and CH4 production (Vaughn et al., 2016; Lipson et al., 2010). Although denitrification, ammonification and 

sulfate reduction are all thermodynamically more favorable, low nitrate and sulfate concentrations in BEO soils limit flux through 

these pathways (Newman et al., 2015). We performed another cluster analysis on the model output (Figure 8b), where we not only 5 

simulated fermentation, methanogenesis and iron reduction rates and associated pH changes, but also tracked the biomass of 

methanogens (M_Meb) and iron reducers (M_Feb). A dendrogram depicting data similarity showed four distinct clusters 

comprising of WEOC, CO2 (CO2 prediction), Ferrous (Fe(II) prediction), and CH4 (CH4 prediction) that closely associated with 

soil geochemical properties and incubation temperature. This result is similar to the cluster analysis of synthesized data, further 

validating the proposed model structure in capturing major relationships between carbon mineralization and soil geochemical 10 

attributes. Predicted CH4 production is strongly influenced by incubation temperature, soil pH, and soil moisture and depth that 

determines the size of methanogen population. This model prediction is consistent with previous studies on the vertical distribution 

of methanogen population (Waldrop et al., 2010). Environmental factors, such as labile organic matter, water table depth, and soil 

redox status, soil alkalinity and salinity (Wachinger et al., 2000; Rivkina et al., 2007; Høj et al., 2006; Yang et al., 2017) are all 

likely to contribute to the variabilities in the distribution and abundance of methanogens and subsequent methane production. 15 

4.2 Temperature and pH response of anaerobic carbon decomposition 

Rising temperature promotes anaerobic carbon decomposition, resulting in increased rates of anaerobic CO2 and CH4 production 

(Treat et al., 2014; Lupascu et al., 2012). It is widely recognized that methanogenesis is more sensitive to temperature than 

respiration (Yvon-Durocher et al., 2014; Yvon-Durocher et al., 2012), and it is usually associated with large variations. Segers 

estimated the Q10 value of methanogenesis ranged from 1.5 to 28 among 1043 incubation experiments using wetland soils (Segers, 20 

1998). Our data synthesis revealed even higher temperature sensitivity than other reported values. High estimated temperature 

sensitivity across the freezing point of water has previously been documented (Waldrop et al., 2010) and further attributed to 

limited water availability for microbial activities at sub-zero temperature (Tilston et al., 2010). Ratkowsky et al. proposed a 

quadratic relationship for the temperature dependence of microbial growth rates that modeled low-temperature growth better than 

the Arrhenius Law (Ratkowsky et al., 1982). Our simulations suggest better prediction of methanogenesis with this temperature 25 

response function, possibly due to a more suitable representation of growth limitation of methanogens at sub-zero temperature. 

Methanogenesis rates are also influenced by the availability of alternative electron acceptors and carbon source. Processes 

contributing to the accumulation or consumption of carbon substrates and competing electron acceptors may respond differently 

to temperature change, which could further complicate the temperature sensitivity of methanogenesis. Current modeling 

approaches heavily depend upon empirical temperature response functions, which may be associated with large uncertainties due 30 

to variations in the selection of data and curve fitting methods. Extrapolation of carbon decomposition rates, particularly 

methanogenesis rates, into a future warmer climate remains uncertain. More accurate simulations will require additional 

information on geochemical properties that contribute to the variations of methanogens distribution and methanogenesis activity. 

 

pH values impose fundamental physiological restrictions on microbial activities. Soil pH ranges from acidic to circumneutral (pH 35 

4-7.5) in northern Alaska and varies substantially through the soil profile and along the microtopographic gradient. Accumulation 

of organic acids in anoxic soils leads to pH decline (Jones et al., 2003), while consumption of organic acids by methanogenesis 

and iron reduction increases the alkalinity of the system via the production of HCO3- and OH- (Drake et al., 2015; Roy Chowdhury 

et al., 2015; Howell et al.). The interplay of these processes leads to strong nonlinear pH feedbacks in the system, and previous 



 

 11 

studies have observed up to 1-2 pH unit changes during short-term anoxic incubations (Xu et al., 2015; Drake et al., 2015; Roy 

Chowdhury et al., 2015). These relationships between pH and organic carbon decomposition can vary in sign and magnitude. Our 

model simulations with mechanistic pH evolution indicate that constant pH assumed in previous models may cause significant 

errors in simulating long-term anaerobic CO2 and CH4 production. The intrinsic soil pH buffering capacity plays a large role in 

stabilizing soil pH and may vary depending upon solution acidity or alkalinity, cation exchange capacity, SOM content and mineral 5 

composition and/or dissolution. These properties derive from SOM characteristics, moisture, mineral content, and additional 

geochemical properties, leading to complex correlations between soil pH and SOC decomposition rate that require future 

investigation.  

 

4.3 Fast-decomposing carbon pool 10 

 

Substrate availability is a primary determinant of potential CO2 and CH4 production (Lee et al., 2012; Schuur et al., 2015; Tarnocai 

et al., 2009). Total SOC is composed of heterogeneous C pools characterized by different turnover times. Carbon release during 

short term incubation originates from the C pool with relatively rapid turnover. The size and turnover time of this quickly-

metabolized carbon pool is usually estimated by two-pool or three-pool conceptual models with a maximum likelihood solution 15 

using time series of CO2 data (Schädel et al., 2013). A previous study on Siberian permafrost soils using a two-pool model estimated 

a turnover time of 0.26 years for the fastest-responding pool (Knoblauch et al., 2013). A three-pool model was applied using more 

extensive incubation datasets collected from 23 high-latitude ecosystems, yielding an estimate of 0.35 years mean turnover time 

for the fastest-responding carbon pool (Schädel et al., 2014). 

 20 

In our synthesis study, we directly quantified WEOC and assumed it represented the fast-decomposing labile carbon pool. The size 

of the labile carbon pool is constant during anaerobic decomposition, while total CO2 and CH4 release represent up to 194% of the 

labile carbon pool, indicating continuous replenishment of labile carbon pool from non-labile carbon pools within the hierarchy. 

The replenishment of labile carbon pool can be attributed mostly to decomposition of SOM1 and SOM2 pools with relatively faster 

turnover (Koven et al., 2013). Overall, we estimated the fast-decomposed carbon pool is approximately 2-4% of total SOC, similar 25 

to previous estimates. The turnover time calculated from the fermentation rate was comparable to estimates of the turnover time 

of the fastest-responding carbon pool in previous studies (Figure 9), suggesting these quantifications and parameterization in the 

anaerobic carbon decomposition framework apply broadly. 

4.4 Key features of the anaerobic model framework and future considerations 

Here we present an anaerobic carbon decomposition framework by combining three well-known modeling approaches developed 30 

in different disciplines. A pool-based model to represent upstream carbon transformations and replenishment of DOC pool, a 

thermodynamically-based model to calculate rate kinetics and biomass growth for methanogenesis and Fe(III) reduction, and a 

humic ion-binding model for aqueous phase speciation and pH calculation are implemented into the open source geochemical 

model PHREEQC (Charlton & Parkhurst, 2011). The model framework presented here has several unique features. First, this 

model is built upon a thermodynamically-based approach, which allows consistent parameterization of individual reactions along 35 

the redox ladder. Such a model structure is particularly useful in circumstances when function-specific microbial growth is difficult 

to quantify and parameterize. Second, calculations of free energy changes of redox couples are used to modulate redox reaction 

hierarchy. Considering the difficulty in obtaining growth-associated parameters for every functional group, a thermodynamically-

based approach significantly decreases the number of parameters that are difficult to measure. In addition, proton production and 
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consumption during redox reactions are incorporated into a dynamic pH calculation, allowing various simulations on aqueous 

solubility and reactivity of different elements. The anaerobic carbon decomposition framework presented here holds a significant 

advantage over traditional models in simulating carbon decomposition process within a wide range of environmental settings. 

 

In permafrost affected regions, studies consistently identify iron reduction, denitrification and sulfate reduction (Lipson et al., 5 

2010; Lipson et al., 2013; Ernakovich et al., 2017; Hansen et al., 2007) as alternative anaerobic pathways, which are recognized 

as energetically more favorable processes than methanogenesis. The new model framework presented here provide a reasonable 

basis for a deeper understanding of carbon decomposition under oxygen-limited conditions where the importance of accounting 

for alternative election acceptors becomes more pronounced. Future fine-scale experiments on carbon decomposition using 

alternative electron acceptors would be beneficial for more comprehensive parameterization of this model framework. Additional 10 

observations on temperature and pH sensitivity of specific redox reactions would also be quite useful in reducing large uncertainties 

generated by the current representation of temperature and pH responses. Application of such modeling framework at field scale 

requires close coupling with hydrology models to facilitate estimations on aqueous phase concentrations. Additional assumptions 

on vertical mixing and gas diffusion in the soil column should also be considered. 

 15 

5. Conclusion 

Microbial processes are the driving forces for biogeochemical cycling of soil carbon and are subjected to environmental constraints 

beyond temperature and organic substrate availability. The present study incorporated microbial redox reactions and mechanistic 

pH evolution to simulate anaerobic carbon decomposition in Arctic soils with depth and across soil moisture gradients. Our data 

synthesis and modeling results quantify direct effects of temperature on anaerobic carbon decomposition, as well as indirect effects 20 

of soil geochemistry that cause strong redox reaction-pH feedback. We identified substantial pH feedbacks on the predictions on 

CO2 and CH4 production. The anaerobic carbon decomposition framework presented in this study provided the essential model 

structure to incorporate redox reactions of alternative electron acceptors for accurate simulation of CO2 and CH4 production. Soil 

geochemistry impose critical constraints on SOM decomposition, and further regulates permafrost carbon feedback in response to 

changing climate. 25 

Code and data availability 

PHREEQC (Version 3) is publicly available at http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/ 

 

The model is archived at https://dx.doi.org/10.5440/1430703, with detailed description of model implementation, input files and 

various sensitivity analysis described in this paper. 30 

 

Data sets used in this work can be found at 

https://dx.doi.org/10.5440/1168992 

https://dx.doi.org/10.5440/1393836 

https://dx.doi.org/10.5440/1288688 35 

 

A synthesis of the the incubation data is available at 
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Appendix A: Anaerobic carbon decomposition model 15 

This section lists reactions used in the anaerobic carbon decomposition model. Under anaerobic conditions, dissolved organic 
carbon is converted to low molecular weight organic acids via fermentation. One simplified fermentation reaction is used to 
represent this lumped fermentation process, where 1/3 of the fermented organic carbon is converted to CO2 (Tang et al., 2016; Xu 
et al., 2015): 
 20 

 
 𝐶8𝐻:;𝑂8 + 4𝐻;𝑂	 → 2𝐶𝐻A𝐶𝑂𝑂, 	+ 2𝐻𝐶𝑂A, + 4𝐻B + 4𝐻; (A1) 
 
This fermentation reaction generates protons and decreases pH in the system. Fermentation products acetate and H2 are further 
consumed via methanogenesis and iron reduction. The growth equations of methanogenesis and iron reduction were derived for 25 
each group using thermodynamically-based approach, in which biomass synthesis is included in paired electron donor and electron 
acceptor half-reactions. A general molecular formula C5H7O2N is used for microbial biomass and the growth equations are written 
as (Istok et al., 2010) 
 

	
1.5𝐻B + 98.2𝐻;𝑂 +𝑁𝐻HB + 103.7𝐶𝐻A𝐶𝑂𝑂, → 𝐶L𝐻M𝑂;𝑁 + 101.2𝐻𝐶𝑂A, + 𝐶𝐻H (A2) 30 

 
 84.9𝐻B +𝑁𝐻HB + 85.9𝐻𝐶𝑂A, + 333.5𝐻; → 𝐶L𝐻M𝑂;𝑁 + 255.6𝐻;𝑂 + 80.9𝐶𝐻H  (A3) 
  
 72.1𝐻;𝑂 +𝑁𝐻HB + 150.2𝐹𝑒AB + 21.3𝐶𝐻A𝐶𝑂𝑂, → 𝐶L𝐻M𝑂;𝑁 + 150.2𝐹𝑒;B + 167.4𝐻B + 37.5𝐻𝐶𝑂A,   (A4)  35 
 
 5𝐻𝐶𝑂A, + 𝑁𝐻HB + 114.8𝐹𝑒AB + 57.4𝐻; → 𝐶L𝐻M𝑂;𝑁 + 114.8𝐹𝑒;B + 110.8𝐻B + 13𝐻;𝑂  (A5) 
 
In addition, Fe(III) was calculated based on the dissolution of representative amorphous ferric hydroxides (A6), which contributed 
to pH increase. 40 
 

 
 𝐹𝑒(𝑂𝐻)A(Q) ↔ 	𝐹𝑒AB + 3𝑂𝐻, (A6) 
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Appendix B: Temperature and pH response functions 
 5 
We used the CLM_CN temperature response function (B1) in our simulations (Thornton and Rosenbloom, 2005). Additional tested 
temperature response functions included B2 used by CENTURY model (Parton et al., 2001), Arrhenius equation B3 used in ecosys 
(Grant, 1998), and the quadratic equation B4 (Ratkowsky et al., 1983). Tref is set at 25 °C, Ea is the activation energy (J mol-1), R 
is the universal gas constant (J K-1 mol-1). Tm used in Ratkowsky’s model represents the conceptual temperature of no metabolic 
significant and is set at -8 °C in this study. 10 
 
 
 ln 𝑓(𝑇) = 308.56 × ( :

M:.4;
− :

3,;;M.:A
)  (B1) 

 
 15 
 𝑓(𝑇) = 0.56 + 0.465	arctan	[0.097(𝑇 − 15.7)] (B2) 
 
 

 𝑓(𝑇) = 	 𝑒
]^_
` abc,

b
cdef

g
 (B3) 

 20 
 

 𝑓(𝑇) = h 3,3i
3def,3i

j
;
		 (B4) 

 
 
 25 
The discontinuous bell-shaped pH response function from DLEM model was used here (equation B5, Tian et al., 2010)  
  
 𝑓(𝑝𝐻) = :.4;

:.4;B:4lmno	(,;.L5p)
  (0<pH<7)  (B5) 

 
 30 

  𝑓(𝑝𝐻) = :.4;
:.4;B:4lmno	(,;.L(:H,5p))	

 (7<pH<14)  
 
 
 

 35 
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Figure 1. Conceptual diagram showing key processes in the anaerobic carbon decomposition framework. The numbers 

indicate different processes: 1. SOM degradation from soil organic carbon pools with increasing turnover time produces 

dissolved organic carbon (DOC) and CO2; 2. Fermentation of DOC into organic acids, H2 and CO2; 3. Methanogenesis 

from organic acids or H2; 4. Fe(III) reduction from organic acids or H2. 5. Fe(OH)3 dissolution. 
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Figure 2. Comparison between modeled and observed production of CO2 (a) and CH4 (b). Averaged measurements of 

triplicate microcosms at each time point from each incubation temperature were calculated as observed values. 10 
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Figure 3. Perturbations of initial soil geochemical conditions differentially affected model predictions (including CH4, CO2, 

Fe(II), TOAC, WEOC, and pH) during anaerobic carbon decomposition. For example, when the initial pH decreased by 5 

8% and 17%, CH4 production decreased by 40% and 80%, respectively. Normalized changes in model output were 

calculated as the ratio of perturbation simulation output to reference simulation output after 60 days of anaerobic 

decomposition at 8 °C. To test model sensitivity in response to initial pH, the reference run started with pH 6, and up to 1 

pH unit changes was applied in perturbation simulations to represent a realistic pH range for soils. Reference simulations 

were based on soils with 30% SOC (water content=2 g g-1 dwt, and pH=5). 10 
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Figure 4. Simulated changes in model predictions (including CH4, CO2, Fe(II), TOAC, WEOC, and pH) during anaerobic 

carbon decomposition in response to perturbations of (a) fermentation rate and (b) fermentation stoichiometry 

(Acetate:CO2=1:1 for reference simulation). Normalized changes in model output were calculated as the ratio of 

perturbation simulation output to reference simulation output after 60 days of anaerobic decomposition at 8 °C. Reference 10 

simulations were based on soils with 30% SOC (water content=2 g g-1 dwt, and pH=5). 
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Figure 5. Comparison of simulated and observed temperature response for the production of CO2 (a) and CH4 (b). Results 5 

were all normalized to CO2 or CH4 production rates at 8 °C for direct comparison. Observations at -2°C and 4 °C were 

plotted in black dots and the median value were marked in red. The shaded area represents output uncertainties generated 

from rate estimations within 60±5 days. Reference simulations were based on soils with 30% SOC (water content=2 g g-1 

dwt, and pH=5). 
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Figure 6. Simulated changes in model predictions (including CH4, CO2, Fe(II), TOAC, WEOC, pH and fpH) during 5 

anaerobic carbon decomposition in response to perturbations of (a) pH buffering capacity, and (b) pH response function. 

Normalized changes in model output were calculated as the ratio of perturbation simulation output to reference simulation 

output after 60 days of anaerobic decomposition at 8 °C. Reference simulations were based on soils with 30% SOC (water 

content=2 g g-1 dwt, and pH=5). 
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Figure 7. Temperature response of CH4 and Fe(II) production rates at varying soil pH buffering capacities (BC). Varying 

BCs with respect to reference simulation (BC=1) creates strong feedback to rates of methanogenesis and iron reduction. 5 

Reference simulations were based on soils with 30% SOC (water content=2 g g-1 dwt, and pH=5). 
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Figure 8. Cluster analysis of soil geochemical properties related to CO2 and CH4 production using Ward’s linkage method. 

(a) cluster analysis of measured soil geochemical characteristics and observed CO2 and CH4 production (n=42); (b) cluster 

analysis of modeled results (n=42). Model simulated CO2, CH4, and Fe(II) production and final pH are labeled as M_CO2, 

M_CH4, M_Fe, and M_pH, respectively. Biomass of methanogens and iron reducers were tracked in the model and labeled 

as M_Meb and M_Feb, respectively. 10 
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Figure 9. Model estimated turnover rates of the fastest-decomposing carbon pool. Organic, Mineral, and Permafrost labels 5 

represent estimations from our model simulations (rates estimated at 4 °C). Schadel_data represent turnover rates 

estimated via a three-pool model from pooled anaerobic incubations with normalized incubation temperature of 5 °C (tag 

1, 2, and 3 represent pool estimation from different soil types: 1. Organic, 2, Mineral <1m, 3. Mineral >1m) . 

Knoblauch_data are rate estimates (at 4 °C) made via a two-pool model (Schädel et al., 2014;Knoblauch et al., 2013). Open 

symbols represent the average values, and the vertical lines represent the estimated range. 10 

 

 

 

 


