
Dear Dr Weintraub,        29 May 2018 
 
Thank you again for your attention to this manuscript. As instructed the typo has been fixed and 
new version uploaded. We look forward to working through any additional copy-edits in the near 
future. 
 
 
Sincerely, 
Kathe Todd-Brown 
 
 
Dear Dr Weintraub,        27 April 2018 
 
Thank you for your handling of this manuscript. We hope that these revisions address the 
reviewers concerns with the manuscript. 
 
Some of the changes to the manuscript include. The exclusion of coarse woody debris from the 
decomposing carbon pool changed some of the exact global totals in a very minor way which did 
not affect the overall results of the study. Clarification on the boundaries and selection criteria 
for the Q10 parameter in the methods section. Clarification on the effect of soil inputs vs outputs 
(no effect in all but one model) as the driving flux to calculate Q10 in the Earth system model 
study. And finally, a brief expansion of the discussion around alternative mechanisms that need 
to be considered when interoperating the results of this study. 
 
Below you will find a point by point response to the reviews as well as a mark-up draft of the 
changes made to the manuscript. 
 
We thank yourself and the reviewers for their thoughtful comments which greatly improved this 
manuscript and hope that this satisfies the concerns raised. 
 
Sincerely, 
Kathe Todd-Brown 
 
 
  



Reply to reviewers 
 
REVIEWER 1: C.D. Jones (Referee) chris.d.jones@metoffice.gov.uk Received and published: 2 March 2018  
This is an interesting and well written paper addressing a subject area of clear importance and relevance to the 

readership of Biogeosciences.  
The authors clearly articulate the issue of uncertainty in future land-carbon storage, how this responds to 

climate change and the vital role played of soil organic carbon and its sensitivity to temperature. The results lead to a 
change in a central estimate, across multi-model results, of soil carbon changes by 2100, although interestingly the 
data constraint does not reduce the overall uncertainty. This highlights the claim made in the title of "high 
uncertainty" and leave this area as an outstanding issue for modellers and process community alike to address.  

I recommend publication after addressing a few minor concerns as below.  
Chris Jones  
The paper continues the work and analysis of these authors from the Crowther et al. 2016 Nature paper. The 

dataset assembled of soil warming plots and changes in soil carbon is clearly very valuable for understanding this 
key issue of Earth System Modelling. I much prefer the approach here, by comparing with process-based models 
and trying to constrain their simulations, than I do the direct extrapolation to global scale as per Crowther et al. So 
overall I like the approach deployed here and have mainly minor comments. There are clearly assumptions and 
choices made which affect the results - I don’t believe these should prevent publication - the authors appear to have 
been careful to consider these and discuss their implications.  

2 specific examples are:  
- the issue of timescales - the approach to diagnose Q10 relies on pseudo-equilibrium of the system. It could 

therefore be potentially dangerous and misleading to compare the outcomes from a Q10 diagnostic of 2-5 years 
warming with ESM studies of 100 years. I was pleased to see this tested explicitly and the SI shows detailed reasons 
to believe that this is not a large confounding issue.  

- the issue of using a single-pool simple model to recreate and re-scale the responses. Again, the authors appear 
to have taken potential concerns seriously and present good arguments why their approach is OK. I suspect that 
using a two-pool model would give different answers (inevitable for modelling!) - but it’s not clear that this 
simplification is inappropriate. Given that prominent ESMs in the past, and still some at CMIP5, still deploy a single 
soil carbon pool it is reasonable for a simple-model approach to do so (by definition simple models bring clarity at 
the expense of detail - I feel it is well argued here that the choice is appropriate).  
 
Thank you for your contributions to this manuscript in this and previous reviews, as well as your 
supportive comments regarding this revision. 
 

I have one issue with some of your methodological choices  
- you sample q10 values down to 0.1, and in your ESM scaling define "typical" as going down to q10=0.5. It 

seems VERY odd (unphysical even) to take q10 below 1. Given this is not a linear relationship, you are not looking 
at taking gradients down towards 0 which represent being flat. Rather q10=1 is where you hit "flat" - i.e. no 
sensitivity at all to temperature. Once you go below q10=1 then you get an inverse relationship which says that 
respiration increase as you get COLDER. I’m not aware of any way this could be possible. So I would strongly 
suggest you take q10=1 as your lower boundary. 
 
While we agree that a Q10 value as low is 0.1 is unusual we had two reasons for choosing this 
boundary. First given that we do not disentangle moisture effects, it was conceivable that an 
increase in soil temperature could result in a decrease in respiration visa-vi drier soils imposing 
stronger moisture limitations. Secondly from a numerical prospective choosing a boundary 
slightly outside the expected numerical range can demonstrate a robust convergence. We have 
added these justifications to the methods section and hope they satisfy your concerns. 
 

specific minor comments:  



- please be very careful discussing response to "temperature" - it is always important to specify clearly if this means 
air- or soil-temperature. It has long been known that the apparent q10 is much lower when calculated as a response 
to air temp (Raich & Potter (1995, GBC) suggest a Q10 value of 2.0 for soil temperature is roughly equivalent to 1.7 
for air temperature). Please check especially the Bond-Lamberty paper/comparison - they calculate a low Q10, as 
you say - but isn’t this for air-temp? The comparison is then perhaps misleading  

The reviewer is entirely correct and we apologize for letting this slip past us from previous 
reviews. We have add ‘soil’ to each mention of temperature in the manuscript. 
 
- be careful using cCwd - is this a distinct carbon pool? or is it a sub-component of cLitter? I believe that the total 
vegetation system is captured by cVeg+cLitter+cSoil (e.g. see Jones et al., 2013, J.Clim). Then, within this, cLitter 
is split into tier-2 variables of cCwd, cLitterAbove, cLitterBelow - these are intended to allow reporting in greater 
detail, but are not new pools. So I think you should remove any cCwd data from your study. I appreciate this is not 
well explained in the CMIP5 data request - we tried to clarify this for CMIP6 - see figure 5 of Jones et al (C4MIP 
documentation paper, GMD, 2016)  
 
We removed cCwd from the carbon pools and updated the manuscript. There were minor 
changes to the totals in the CCSM, CESM and NorESM1 models but no significant changes to 
the results. 
 
- Although HadGEM2-ES does base it’s soil carbon scheme on RothC it is not identical - in particular we chose to 
keep a uniform q10=2 rather than the RothC temperature function (which we found to be not well behaved at very 
low T). Otherwise your description of HadGEM2 is correct.  
 
Thank you! We have updated the table. 
 
- the discussion correctly discusses the possible role of soil moisture as a rate modifier. Also to consider are 
vegetation cover, soil quality, soil structure and changes in input quality. Some models, like RothC, change their 
decomposition according to overlying vegetation. They also change their allocation (your "b" matrix in equation 1) 
according to vegetation type and lability of litter inputs. I don’t think these are major factors, but worth mentioning 
its not just T and moisture which change the respiration.  

We agree. We have added a sentence at the end of the discussion on how this would affect the 
analysis. 
 

Anonymous Referee #2 Received and published: 12 March 2018  

This is a great study, in which Todd-Brown et al. creatively combined experimental soil warming data with Earth 
system model outputs to illustrate the observation informed uncertainty in future responses of soil organic carbon to 
warming. I’d recommend publication after addressing a few issues outlined below.  

We thank the reviewer for their excitement about this study and the detail with which they have 
treated this review. We hope that the below address the concerns raised here. 
 
1. While it’s hard to move away from steady state assumption (it leads to very convenient mathematical forms), I 
think it is important to at least illustrate the bias that steady state assumption can have on estimated Q10. It would be 
hard to do for observed SOC responses to warming without very crude assumptions about base turnover rate, but 
seems realistic for the ESM output. The term on the left side of equation 1 can be extracted from the ESM output 
and used instead of 0, and baseline k as well as Q10’s can be reverse-engineered. I think the steady state bias could 



be quite substantial, because the 10% (or even 1%) difference between C input and output can have a cumulative 
effect over time. With observation-derived Q10 estimates, I suggest excluding sites that are with high degree of 
certainty are not in steady state. An example is Delta Junction site in Alaska, which experienced stand replacing fire 
in 1999. Even though warming experiment lasted for 10 years it takes many decades for the SOC to recover after a 
stand replacing fire (Fu et al., 2017), so equation 4 would not be appropriate for this site.  

 
Since the reviewer acknowledged the necessity of this assumption in the field data we’ll confine 
our reply to the Earth system model analysis here. We would direct the reviewer to figure S3, 
which shows the ratio between the annual change in soil carbon stock divided by either the 
maximum input or output to the soil at the beginning and end of the 21st century. While there are 
some grid cells in most models with a relatively high imbalance, the vast majority of models 
have a ratio below 10% with over half of the grid cells being below 0.1%. Thus the change in 
soil carbon stock is at least an order of magnitude less than the input/output fluxes, allowing us 
to assume that the inputs approximate the outputs and apply equation 3 as stated. While the 
reviewer is absolutely correct that small imbalances in the input/output fluxes can have a large 
cumulative influence over time, we feel that we have demonstrated that most of the change in the 
grid-by-grid soil carbon stocks is attributed to shifts in the quasi steady state not in the relaxation 
of the system to a quasi-steady state. We have expanded on the implications of this figure in the 
results section. 
 

2. This leads me to equation 4. I would strongly suggest not omitting the ratio of control inputs to warmed inputs. As 
authors rightly pointed out, if ratio is less than 1, Q10’s are going to be underestimated, and if warming leads to 
decrease in NPP, the Q10’s would be overestimated. A meta-analysis study by Wu et al. (2011) illustrated that 
warming increases total NPP on average by 15%, and belowground NPP by 52%, which has very substantial 
implications for Q10 (please see the attached image illustrating the effect of change in productivity on Q10’s for 
Delta Junction, AK). I think looking up changes in NPP estimates for every site would make the observation-based 
Q10 estimates more defendable.  

While we agree with the reviewer that a site by site shift in NPP would be more robust, this is 
beyond the current scope of the study. We would draw the reviewer to the caveats stated in the 
discussion around the shifts in inputs. We hope to revisit this in future studies. 

3. Lastly it wasn’t completely clear to me why authors chose to estimate observation- based Q10’s with the method 
described in section 2.3 instead of directly solving for it using equation 3 or 4. Could you please touch on that in the 
updated version of the manuscript?  

We have expanded on our reasoning in the methods section. Briefly, by selected the parameter 
value based on the model-data fit we have a robust way to describe the uncertainty associated 
with the parameter as well as clearly community the effects of that parameter on the model fit. 
While the reviewer is absolutely correct that we could have instead described the distribution of 
the site specific field-Q10 values, we assert that the method used in this study is equally valid. 

Below, please see a list of minor issues:��

P1L25: “stimulate”?�  



P1L25: We will ‘stimulate’ for simulate. 
P1L27: “(the opposing carbon flux)” can be omitted in my view 
P1L27: We respectfully disagree and have kept this in for clarity. 
P3L20: It seems that the model is not accurately specified: vector C(t) of size n by 1 cannot be multiplied by n by n 
matrix K. The accurate specification of the negative term would be “A*(Q10*K)*C(t)”  

P3L20: Thank you for catching this. We have written the equation to reflect the version in the SI 
where we use the form ‘(Q_10*K*A)*C(t)’. This does not change the results of the analysis. 
P3L27: “scalar”?��

P3L20: We substituted ‘scalar’ for scaler. 
P4L2: “vice-versa”?��

P4L2: We substituted ‘vice-versa’ for vis-versa. 
P6L16: “data-driven”?��

P6L16: We substituted ‘data-driven’ for data-drive 
P6L18: “grid cell”��

P6L18: We substituted cell for cells. 
P8L10-11: Please revise the topic sentence, it’s not very clear.  

P8L10-11: We will replace this topic sentence and rework this paragraph as several reviewers 
found this confusing. 
P8L16: did you mean Figure S3?��

P8L16: The citation for Figure S4 is correct but we have added a reference to S3 as well. �
P8L25: typo: “ESM-Q10” 

P8L25: We fixed this typo. 
P.S. here are the references used in the review: 

Fu Z, Li D, Hararuk O, Schwalm C, Luo Y, Yan L, Niu S (2017) Recovery time and state change of terrestrial 
carbon cycle after disturbance. Environmental Research Letters, 12, 104004. 

Wu Z, Dijkstra P, Koch GW, Peñuelas J, Hungate BA (2011) Responses of terrestrial ecosystems to temperature and 
precipitation change: a meta-analysis of experimental manipulation. Global Change Biology, 17, 927-942. 

 
Anonymous Referee #3 Received and published: 14 March 2018  

This is a well-written and original paper with findings that are relevant to the Biogeosciences 
community. The code documentation is particularly great.  

I have reviewed for an earlier version of this manuscript, and they have successfully addressed 
my previous comments, adding some discussion of how a systematic change in input rates 
(which I understand is not in the dataset but is nevertheless likely) would affect carbon stocks 
and Q10, and justifying the use of a one-pool model. From the other referee comments, these 



points may warrant some additional discussion. Therefore, I recommend publication after minor 
revision.  

We would like to thank the reviewer for this and their previous reviews. We hope that the below 
address the reviewers concerns raised here. 

Two additional thoughts: Most versions of the Century soil model embedded in a number of the 
ESMs listed as ‘cascade’ models (e.g., the CLM family models) are feedback models where 
some soil C is transferred from the slow and passive to the active pool. C1  

These versions of Century may well be simplified to the ‘cascade’ model type, but that 
development is not clear from the descriptions of the ESM soil models.  

We have updated Table 1 and the model descriptions to clarify the models which were modified-
CENTURY (which are generally cascade models) and models which are direct implementations. 
We also added a new model table to the SI which fully documents the nested model references to 
the best of our ability. We’ve removed “CENTURY” from the Temperature column of Table 1 
and replaced it with a generic function with a citation to the CENTURY paper in the caption. We 
apologize for the confusion. 

I know it’s hot of the press, but because the authors base their analysis off of the Crowther et al. 
2016 dataset, they could also mention the potential implications of the expansion on their 
analysis in the Van Gestel et al. comment.  

van Gestel, N., Shi, Z., van Groenigen, K. J., Osenberg, C. W., Andresen, L. C., Dukes, J. S., ... 
& Reich, P. B. (2018). Predicting soil carbon loss with warming. Nature, 554(7693), E4.  

The van Gestel manuscript is a fascinating data set that we look forward to addressing directly in 
future studies. We’ve added a comment to this effect in the discussion and to the section where 
we discuss the statistical power of the dataset.  

RZ Abramoff rose.abramoff@gmail.com�Received and published: 12 March 2018  

 

This is a well-written and original paper with findings that are relevant to the Biogeosciences community. The code 
documentation is particularly great.  

I have reviewed for an earlier version of this manuscript, and they have successfully ad- dressed my previous 
comments, adding some discussion of how a systematic change in input rates (which I understand is not in the 
dataset but is nevertheless likely) would affect carbon stocks and Q10, and justifying the use of a one-pool model. 
From the other referee comments, these points may warrant some additional discussion. There- fore, I recommend 
publication after minor revision.  

Two additional thoughts: Most versions of the Century soil model embedded in a number of the ESMs listed as 
‘cascade’ models (e.g., the CLM family models) are feedback models where some soil C is transferred from the 
slow and passive to the active pool. These versions of Century may well be simplified to the ‘cascade’ model type, 
but that development is not clear from the descriptions of the ESM soil models.  



I know it’s hot of the press, but because the authors base their analysis off of the Crowther et al. 2016 dataset, they 
could also mention the potential implications of the expansion on their analysis in the Van Gestel et al. comment.  

van Gestel, N., Shi, Z., van Groenigen, K. J., Osenberg, C. W., Andresen, L. C., Dukes, J. S., ... & Reich, P. B. 
(2018). Predicting soil carbon loss with warming. Nature, 554(7693), E4.  

Thank you for this and previous reviews of this study. I believe that your concerns are addressed 
in RC4. 

 

M. Mayes (Referee) mayesma@ornl.gov�Received and published: 16 March 2018  

This is a very interesting study in which the newly-derived Q10 values from the Crowther et al. 2016 study are 
incorporated into a post-hoc simulation of 20 CMIP5 Earth system models. Surprisingly, better-constrained data 
does not reduce uncertainty in predicted soil organic carbon (SOC) values. Rather, predicted SOC stocks are 
considerably less in comparison, while retaining very large uncertainties. The study seems very well-done, relies on 
important new findings, uses an important suite of models, and provides important insights into both predicted SOC 
and model uncertainty. This paper is a logical outcome of the Crowther et al. 2016 study and will certainly be of 
interest to the Biogeosciences community.  

The authors provide a clear description of an assumption regarding metastable SOC stocks (Eqns 2-4), and how 
stock differences between two soils, or control and warming, can be used in the model. Authors also completely 
describe the implications of the (necessary) simplifying assumption of a one-pool model. These are both rather 
sticky subjects and the authors do an adequate job of addressing these concerns.  

Thank you for your interest and review of this study. We hope the below response to your 
specific comments adequately addresses the concerns you’ve raised. 

Specific comments P1 L22: unclear meaning  

P1L22 Thank you for pointing this out. We have simplified this sentence to read: “This study 
demonstrates that data integration should strive to capture the variation of the system, as well as 
mean trends.” 

P2 L20: probably could remove statement about a wide range of typical Q10s.  

P2L20 We’ve chosen to keep this in, mostly to introduce the concept of a ‘typical’ Q10 value 
which we come back to later in the manuscript. However, we thank the reviewer for their 
feedback in this matter. 

P4 L3: replace with "an inverse with all positive entries"  

P4L3 Thank you for the rewording. We have made the change. 

P4 L9: "constructed"  

P4L9 This has been corrected. Thank you. 



P6 L8: are these shown?  

P6L8 Yes, we would direct the reviewer to the results section P7L5. However, several reviewers 
have had difficulty with this section and we have rewritten these section to clarify these points. 

P8 L10: some edits needed  

P8L10 Thank you for pointing out this confusing section. Several reviewers had difficulty with 
this section and we will rewrite this paragraph. 

P10 L22: unclear what you mean by "models should increase their variability" 

P10L22 Thank you for pointing this out. We have expanded on this section to attempt to clarify. 

 

Anonymous Referee #5 Received and published: 23 March 2018  

This study was unusual in using a Q10 function derived from changes in soil C pools to model C fluxes. As such, it 
was a novel contrast with- and useful comparison to earlier studies based on respiration metrics. The modeling 
rationale is solid and the simplification of the various model formulations to aggregated responses was reasonable. 
Overall, I’m impressed with the logic and thoroughness of this study.  

This work is important for a several reasons. First, it uses a novel derivation of Q10 to address the important topic of 
soil C dynamics. Second, the reduction in structural complexity of several different models demonstrated how such 
aggregations could be done comparably and generated a range of predictions based on existing ESMs. Finally, it 
suggested that more attention to underlying uncertainties in factors controlling C dynamics might improve outcomes 
– perhaps as a logical alternative to broad data integration projects.  

Regardless of the novelty of this study, the variation associated with the final output is so large that mean estimates 
of soil C are not different from earlier work, considering the 95% CIs. This simple fact shifts the main focus from 
differences between these estimates to their similarities, and as the authors noted, reasons why the variation is so 
large.  

The authors raise several points about their underlying assumptions, some also raised by reviewers, noting that 
uncertainties in soil C stock data, moisture variations, the assumption of steady-state C pool dynamics, uniform 
temperature sensitivity of various C pools, nutrient limitations, etc., likely all contribute to variations in prediction. 
More- over, aggregations across time, space, and structural resolution of both the models and C pools sacrifice fine 
scale dynamics that are often non-linear and cannot be averaged across coarser scales, e.g., moisture responses of 
dry-land systems. So, it’s not surprising that the variation in output was large.  

I recommend publishing this article but given the large uncertainty in final predictions, I also recommend a more 
thorough discussion of the limitations of such broad scale approaches. I’d like to hear more from the authors about 
how different sources of variation could be elucidated and addressed to improve model performance.  

We would like to thank the reviewer for their time and encouraging comments. We agree that 
other processes and variables would likely provide some predictive power in this and other 
studies. We have added a very limited review of mechanisms that are currently being considered 
for model representation in the discussion. 
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Field-warmed soil carbon changes imply high 21st century modeled 
uncertainty 
Katherine Todd-Brown1, Bin Zheng1, Thomas Crowther2 
1Pacific Northwest National Laboratory, Richland, WA, 99354, USA 
2Institute of Integrative Biology, ETH Zürich, Univeritätstrasse 16, 8006, Zürich, Switzerland 5 

Correspondence to: Katherine Todd-Brown (katherine.todd-brown@pnnl.gov) 

Abstract. The feedback between planetary warming and soil carbon loss has been the focus of considerable scientific attention 

in recent decades, due to its potential to accelerate anthropogenic climate change. The soil carbon temperature sensitivity is 

traditionally estimated from short-term respiration measurements -- either from laboratory incubations that are artificially 

manipulated, or field measurements that cannot distinguish between plant and microbial respiration. To address these 10 

limitations of previous approaches, we developed a new method to estimate soil temperature sensitivity (Q10) of soil carbon 

directly from warming-induced changes in soil carbon stocks measured in 36 field experiments across the world. Variations 

in warming magnitude and control organic carbon percentage explained much of field-warmed organic carbon percentage 

(R2=0.96), revealing Q10 across sites of 2.2, [1.6, 2.7] 95% Confidence Interval (CI). When these field-derived Q10 values were 

extrapolated over the 21st century using a post-hoc correction of 20 CMIP5 Earth system model outputs, the multi-model mean 15 

soil carbon stock changes shifted from the previous value of 88 ±153 Pg-carbon (weighted mean ± 1 SD), to 19±155 Pg-carbon 

with a Q10 driven 95% CI of 248±191 to -95±209 Pg-carbon. On average, incorporating the field-derived Q10 values into Earth 

system model simulations led to reductions in the projected amount of carbon sequestered in the soil over the 21st century. 

However, the considerable parameter uncertainty led to extremely high variability in soil carbon stock projections within each 

model; intra-model uncertainty driven by the field-derived Q10 was as great as that between model variation. This study 20 

demonstrates that data integration should capture the variation of the system, as well as mean trends. 

1 Introduction 

The flux of carbon dioxide between the soil and atmosphere is a major control on atmospheric carbon dioxide concentrations. 

Warming temperatures, driven by increases in atmospheric carbon dioxide, have the potential to stimulate carbon 

decomposition, accelerating its release into the atmosphere (Davidson and Janssens, 2006). If this is not counterbalanced by 25 

an equivalent increase in primary productivity (the opposing carbon flux) then it has the potential to drive a land carbon-

climate feedback that will accelerate anthropogenic climate change. Recent global compilations of data from ecosystem 

warming experiments lend support to this idea (Carey et al., 2016), suggesting that warming alone could drive a loss of carbon 

from the upper soil horizons (Crowther et al., 2016). However, these studies addressed the impact of warming in isolation, and 
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it remains unclear how this process will interact with the variety of other global change drivers to affect the global soil carbon 

stock over the rest of this century. Reflective of such uncertainty, soil carbon changes projected for 2100 under business-as-

usual scenario for Coupled Model Intercomparison Project Phase 5 (CMIP5) range from -70 to 250 Pg-carbon across different 

Earth system models (Todd-Brown et al., 2014), making the land-carbon feedback one of the largest sources of uncertainty in 

future climate projections (Friedlingstein et al., 2014). Improving the soil carbon component of the Earth system models is 5 

essential to predicting the future evolution of the Earth system and thus establishing meaningful greenhouse gas emissions 

targets. 

A fundamental parameter describing soil temperature-sensitivity in soil carbon models is the Q10 – the factor of the change in 

decomposition rate associated with 10°C of warming from a reference temperature (Davidson and Janssens, 2006; Lloyd and 

Taylor, 1994). Traditional laboratory incubations have found a wide range of Q10 values, varying from 1.4 (Townsend et al., 10 

1997) to > 3 (Davidson et al., 1998, 2006) with 2 being the most commonly accepted value. Complicating this, theoretical 

analyses based on chemical kinetics suggest Q10 is itself dependent on temperature (Davidson and Janssens, 2006; Lloyd and 

Taylor, 1994), though these values are typically very close to 2 in most environmental temperature ranges (Lloyd and Taylor, 

1994). More recently, large-scale analyses of field respiration converge on Q10 estimates of 1.4 to 1.5 (Bond-Lamberty and 

Thomson, 2010; Hashimoto et al., 2015; Mahecha et al., 2010). Unsurprisingly, this temperature response is also critical in 15 

Earth system models, where the temperature sensitivity parameter is known to be a major driver of variation (Booth et al., 

2012; Jones and Cox, 2001; Jones et al., 2006). However, it is unclear what is driving the lower Q10 estimates in these field-

based syntheses compared to the average lab-based estimates from single-site studies, and there appears to be a relatively wide 

range of ‘typical’ Q10 values in the literature. Nevertheless, most Earth system models use values that range from 1.5 (Oleson 

et al., 2013; Raddatz et al., 2007) to 2 (Bonan, 1996; Cox, 2001).  20 

Traditionally, these Q10 values have been calculated from warming-induced changes in soil respiration rates. However, this 

approach has two main limitations: 1) respiration rates measured under idealized laboratory conditions fail to reflect the 

structure, heterogeneity and variability of natural systems, whereas 2) field measurements cannot directly isolate heterotrophic 

soil respiration from autotrophic root respiration without substantially altering the system. Estimating Q10 directly from 

warming-induced changes in soil carbon stocks could be a valuable approach to address these limitations, but the variability 25 

and relative imprecision of soil carbon stock data necessitates a large sample size to adequately describe variation at the global 

scale (Bradford et al., 2016). Yet, results from a recent Earth system model meta-analysis indirectly suggests that, with enough 

sample coverage it may be possible to infer Q10 directly from changes in soil carbon stocks (Todd-Brown et al., 2014). 

Here we present a new approach to estimate the global Q10 value from net changes in soil carbon stocks under warming, rather 

than soil respiration measurements, and examine the consequences of these estimates –with associated uncertainty– on CMIP5 30 

Earth system model projections of global carbon storage over the rest of the 21st century. To do this, we use a global database 

of soil carbon stock data from 36 field-warming experiments around the world, each of which includes control (ambient) plots, 

and those which have been warmed for extended (years to decades) periods of time (Crowther et al., 2016) (Tables SI1) and 

outputs from 20 CMIP5 (Taylor et al., 2011) Earth system models RCP 8.5 business-as-usual experiment (Tables 1 and SI3). 
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These field data were used previously to derive Earth system model independent estimates of global soil carbon temperature 

sensitivity where the effect of warming was isolated from other global change drivers or the interacting climate system 

(Crowther et al., 2016). In this study we develop a novel approach that enables us to explore these field results in the context 

of the temperature sensitivity function (Q10) used in integrated Earth system model. We then examine the consequences of the 

data-driven Q10 estimates, and the associated uncertainty, for CMIP5 Earth system model projections of global carbon storage 5 

over the rest of the 21st century using a novel post-hoc modification of the CMIP5 simulation outputs. 

2 Materials and Methods 

2.1 Field sites 

The field sites were drawn from a previous analysis (Crowther et al., 2016). From this initial database of 48 paired case-control 

studies, we selected 36 studies that were run longer than 2 years to match the metastable state assumption articulated below. 10 

18 of these sites were temperate grasslands, savannas, and shrublands, 10 temperate broadleaf and mixed forests, 6 tundra, 1 

boreal forests or taiga, and 1 site was in a Mediterranean forest, woodland and scrub. A traditional statistical analysis of the 

sites is provided by Crowther et al. (2016). For this study, we used the increase in soil temperature due to warming, length of 

the study, and the percent of soil organic carbon in paired warmed and control plots (Table SI1). 

2.2 Q10 calculations 15 

We calculated traditional Q10 estimates based on these warming-induced soil carbon losses, enabling us to embed this 

temperature sensitivity information into a soil decomposition model framework. Traditional soil decomposition models follow 

a first order linear decay framework where: 
!"($)

!$
= '()(*)+ − (-./(0, *)23)"(*),         (1) 

where the C is a vector of soil carbon pools with unique turnover times, t time, uin a scaler of soil carbon inputs, b an allocation 20 

vector describing how the inputs are divided between the soil carbon pools, K is a diagonal matrix representing the 

decomposition rates of the pools, Q10 is a diagonal matrix with entries of the form 4(
(5($)657)/9: representing the temperature 

sensitivity factor, T a scalar describing the soil temperature and T0 an arbitrary reference temperature, and A the transfer matrix 

representing movement of carbon between soil carbon pools. 

The temperature sensitivity was assumed to be constant across pools. This allows us to collapse the diagonal Q10 matrix to be 25 

collapsed into a single scalar value of the form ;9:
(5($)657)/9:. This constant temperature sensitivity assumption is discussed 

below and follows the structure of the CMIP5 Earth system models. 

In general, there are three classes of pool structure for traditional models: independent where there was no exchange between 

soil carbon pools making A the identity matrix, cascade where pools with faster turnover times passed carbon to pools with 

slower turnover times making A a lower triangular matrix, and fully feedback models where carbon was exchanged between 30 
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faster and slower pools and vice-versa making A a fully dense matrix. In all cases KA is an M-matrix, implying there exists an 

inverse with all positive entries. For the independent and cascade pools KA is diagonalizable, implying it can be broken down 

into a diagonal matrix D and an invertible matrix P such that KA=P-1DP. 

For most well-developed soils, soil carbon stocks are at a metastable state where soil inputs approximately equal outputs (see 

Results for discussion of Earth system model outputs). Given that KA is an M-matrix and this metastable state approximation, 5 

we can describe the total soil organic carbon as follows: 

< =
=>?

@AB7
(CDC7)/B7

,            (2) 

where C is the total organic carbon stock, u the sum of the soil inputs, and k a bulk decomposition rate that can be constructed 

from the decay matrix KA and allocation vector of the soil inputs b. For details see of this derivation the SI: Mathematical 

Analysis. 10 

We can now describe the soil carbon stock difference between two soils with the same decay rate but different temperatures 

and inputs. This could either be two time points from a simulation where the soil output is close (within 10%) of the soil inputs, 

or a warmed treatment and a control: 

<E = <9 F
=G
=B
;9:
(5B65G)/9:H.           (3) 

For the field sites, we assume that the relative change in inputs due to warming is negligible compared to the effect on the 15 

decomposition rate across sites and that the main driver of differences in decomposition rates between control and treatment 

is the warming treatment. Leading us to:  

<I = <J;9:
6∆5/9:.            (4) 

Finally, we assume that the bulk density of the soil at a given site was unaffected by the warming treatment. This allows us to 

use the mass percent soil organic carbon instead of the soil organic carbon density for Eq. 4. 20 

2.3 Model-data integration: parameter fitting 

Given the relatively small parameter space, we choose a brute-force model-data integration approach where we iteratively 

calculated the predicted change in soil carbon stock given the control soil carbon (Eq. 4) across a range of Q10 values from 0.1 

to 5 in 0.1 increments. We set the lower bound of the Q10 range to 0.1 instead of 1 for two reasons. First, while it is generally 

accepted that warmer soil temperatures will increase soil respiration (constraining Q10 > 1), it is possible that a warmer soil 25 

would result in drier soils and suppress soil respiration. In addition, numerically we wanted to bracket the expected parameter 

range with our prior. Data-model fits were scored using root mean squared error (RMSE) and linear regression (R2, slope and 

intercept). Q10 values were selected on low bias (slopes and intercepts within 2 standard deviations of 1 and 0 respectively) 

due to the relative insensitivity of the R2 and RMSE metrics (see Figure 1). By selecting the parameter based on model-data 

fit instead of deriving a direct Q10 value for each site and using the distribution, we demonstrate the robustness of the model 30 

and have a clear metric to select the parameter range. To test for statistical power, we randomly sampled the data 1000 times 

with sample sizes from 5 to 34 sites and compared this to samples with randomly assigned control vs warming (for each study 
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the percent carbon of control and treatment has a 50% chance of being switched). These random and sample generated Q10 

distributions, were compared using a two-sample Kolmogorov-Smirnov test to test that the distributions were statistical 

distinct. 

2.4 Earth system model analysis 

Earth system model simulations were drawn from CMIP5, the Coupled Model Intercomparison Project to support the 5th IPCC 5 

assessment report (Taylor et al., 2011). We downloaded simulation outputs from the RCP 8.5 scenario, representing the 

‘business as usual’ scenario, including heterotrophic respiration (rh), soil temperature (tsl), and heterotrophic carbon stock 

(cSoil and cLitter,) from the CMIP5 repository on the Earth System Federation Grid. Ten-year means were taken at the 

beginning and end of the 21st century for each variable (corresponding to 2006-2015 and 2090-2099). Soil temperature was 

averaged for the first 10 cm to correspond with experimental soil temperature readings. Soil carbon stock was calculated by 10 

adding all heterotrophic-respiring pools (including soil cSoil and litter cLitter) where multiple pools were reported. Soil carbon 

inputs were calculated from the monthly change in soil carbon stock plus the reported heterotrophic respiration. Model variable 

summaries can be found in Tables SI3 and processing code is documented in SI. 

These 20 Earth system models are built from previous models which contain 10 distinct soil sub-models (Table 1). The number 

of soil carbon pools in these ESMs varied from 1 (INM-CM4) to 8 (BCC-CSM1.1) with most models having 2 to 5 pools. 15 

None of the models reported soil carbon with depth, although GFDL documents a depth dependent model. There were three 

classes of pool structure for these models: independent where there was no exchange between soil carbon pools, cascade where 

pools with faster turnover times passed carbon to pools with slower turnover times, and fully feedback models where carbon 

was exchanged between faster and slower pools and vis-versa. In this set of models; 2 of these soil models were full feedback 

models (HadGEM, ISPL-CM), 6 were cascade pool structure (MRI-ESM1, MIROC-ESM, MPI-ESM, CLM4.0 [CESM1, 20 

CCSM4, NorESM1], CanESM2, BCC-CSM1.1), and 2 were independent pools (GFDL-ESM2, INM-CM4). Only 2 model 

documented an explicit constant Q10 (INM-CM2 and HadGEM2, Q10=2), 1 model documented a soil temperature dependent 

Q10 (CanESM2), 4 models documented a soil temperature sensitivity from Lloyd and Taylor which behaves very similar to 

Q10=2 under moderate temperatures (Lloyd and Taylor, 1994), and the remaining 3 (ISPL-CM5, GFDL-ESM2, BCC-CM1.1) 

all used a variation of the soil temperature sensitivity proposed in CENTURY (Parton et al., 1987, 1988) which also behaves 25 

very similar to Q10=2 under moderate temperatures but declines at high temperatures (Lloyd and Taylor, 1994). The ESMs 

considered had a single global Q10, or Q10-formula dependent on soil temperature, uniformly applied to the decay pools. This 

documented structure should be approached with caution due to frequent lags between model development and documentation, 

actual values and functions may differ. For details with citations see Table 1. 

Soil carbon stocks at the beginning of Earth system model simulations are typically documented to be spun up to close to 30 

steady state, and there is numerical support that this holds throughout the simulation (see Results and Figure S3). Thus Eq. 3 

can be extended to the change in soil carbon stock over the 21st century. This leads to the following explicit calculation for a 

Q10 value at each grid cell. 
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ln	(;9:) = O
9:

5P65Q
R lnO

SQ

SP

=P
=Q
R	,          (5) 

where the Q10 value is related to the modern soil temperature Tm, future soil temperature at the end of the 21st century Tf, 

modern soil inputs um, future soil inputs uf, modern soil carbon stock Cm and the future soil carbon stock Cf. 

For soils that are very close to zero soil carbon stocks, have minimal shifts in soil temperature or have very low soil inputs, 

the estimated Q10 is not finite. Similarly soils which are not well described by their shift in soil temperature (for example, if 5 

there is a significant shift in the moisture regime) may have non-typical Q10 values that are either less than 0.5 or greater than 

5. We examined the amount of shift in soil carbon stocks associated with the four categories of Q10 values (nonfinite, less than 

0.5, greater than 5, or typical), as well as the spatial patterns associated with these categories. 

To support the assertion that the Q10 value can be calculated from relatively short time scales found in the field experiments, 

we examined the distribution typical Q10 values associated with similar soil temperature steps experienced by the field 10 

experiments at 1, 5, 10, 15, 20, 50, 75, and 84 year time-scales using 10-year mean gridded values of soil carbon stocks, soil 

inputs, and soil temperature. It should be noted however that changes in the moisture conditions over the 21st century may 

complicate this analysis of the Earth system model simulations, thus it is not an exact proxy for the field experiments where 

the control and treatment plots experienced similar baseline climate conditions and a more or less constant offset throughout 

the experiment. 15 

Finally, the Q10 distribution was scaled to reflect the best estimate and uncertainty from the field data. This distribution shift 

was done by normalizing the Q10 map to the mean of the distribution and multiplying it by the experimentally derived values. 

The Q10 correction was only applied to grids with typical Q10’s (non-typical Q10’s were considered to have predominately non-

temperature driving variables and their soil carbon stocks were not altered). This normalization shifted the global Q10 

distribution within the models to match the most common (geographically likely) Q10 with the data-driven Q10 value, yet by 20 

preserving the distribution we preserved other factors affecting changes in decomposition rate (i. e. moisture shifts) in the 

model. We then recalculated the change in soil carbon for each grid cell with this modified Q10 according to Eq. 3 and calculated 

the global area-weighted totals. 

The full analysis script and those used to generate the figures are available in the supplemental. 

3 Results 25 

From the changes in soil carbon stocks across field studies, we find a global Q10 of 2.2 (90%CI 1.6, 2.7; R2 > 0.95, root mean 

squared error < 2; Figure 1, Figure S2). The model-data fit was evaluated using a linear regression and root mean squared error 

(Figure 1). While the R2 of the model-data comparison was relatively insensitive to the Q10 value, there was a notable 

improvement in the bias with Q10 (as defined as the slope within 2 standard deviations of 1 and intercept within two standard 

deviations of 0). This bias-driven criteria was used to select Q10 values from a prior range of (0.1, 5), see Methods for details.  30 
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The Q10 distribution was compared with a random null distribution and was significantly distinct (Kolmogorov-Smirnov 

D=0.441, p < 2e-16, See Table S2, Figures 2 and S1). Randomly selecting 5 to 34 sites from the full dataset were compared to 

a null distribution where control vs warmed labels were randomized. The quartiles of the data subsets notably converged at a 

sample size of 25 where the null distribution was relatively invariant across sample size (Figure 2). The distribution of the Q10 

values under null appeared log-normal, centered around 1 demonstrating no temperature effect (Figure S1). The distribution 5 

of the Q10 range for the data subsets converged to around 2.2 (Figure S1).  

The balance between gridded soil inputs and heterotrophic respiration at both the initial and final 10-year mean for the 21st 

century was within 10% for over 93% of the grid cells across all models with half of the grid cells within 0.1%. Most models 

had 95% and two models consistently had 100% of their grid cells within 10% -- the absolute value of the net flux was within 

10% of the highest primary flux (Figure S3). Thus, the soil inputs are on the same order of magnitude as the soil outputs. This 10 

was reflected in very similar Q10 distributions regardless of whether soil inputs or heterotrophic respiration was used to derive 

the Q10 value (Figure S4). A notable exception to this was the MIROC-ESM model which did see differences in inputs and 

heterotrophic respiration drive different Q10 distributions (Figure S4). 

The inferred Q10 values in the Earth system models derived from 10-year mean changes across different time steps (1, 5, 10, 

15, 20, 50, 75, and 84 years) had similar distributions in most of the models (Figure S4). There were minor shifts in the mode 15 

of most models which could be attributable to changes in the moisture conditions or other (non-temperature or input) 

environmental variables in the simulation. Models aggregated across common land models showed marked similarity in their 

Q10 distributions (Figure S5). There was also an extremely high correlation between Q10 values derived from soil inputs 

compared to those derived for heterotrophic respiration across all models (Figure S6). 

The inferred Q10 values in the Earth system models from the decadal average across the 21st century fell into four categories 20 

(nonfinite, less than 0.5, greater than 5, or typical; Figure S7), however most of the change in soil carbon stocks over the 21st 

century occurred in grid cells with typical Q10 values between 0.5 and 5 (Figure S6). A notable exception to this trend was the 

MRI-ESM1 model where roughly half of the change in carbon stocks occurred in grid cells with Q10 values greater than 5 

(Figure S6). Spatially the Q10 categories showed strong geographical patterns (Figure S7). The GFDL-ESM2 models were 

dominated by non-finite values in high northern latitudes (Figure S7). MIROC-ESM, CCSM4, CESM1, and NorESM1 models 25 

were dominated by Q10 values above 5 in the high northern latitudes (Figure S7). Unless otherwise noted, only typical Q10 

values are addressed for the remainder of this study. 

The inferred Q10 values for the decadal average across the 21st century, also showed strong geographic patterns (Figures 3) 

and was typically unimodal (Figure S6). MIROC-ESM and MIROC-ESM-CHEM showed the weakest spatial patterns with 

high grid-to-grid variation (Figure 3). Mean Q10 values fell within the 90% CI of the field data Q10, ranging between 1.8 30 

(CESM1(CAM5), HadGEM2-ES, ISPL-CM5A, and MPI-ESM-MR) and 2.6 (MIROC-ESM-CHEM), with the multi-center 

Q10 values at 2.0 ± 0.2 (Tables 2). 

When the inferred Q10 values were modified to reflect the data-driven Q10 range, resulting variation in the multi-center mean 

was almost as large as the variation across model projections (Figure 4, Table 2). Re-centering the global Q10 distribution to 
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reflect the range of field-driven Q10 values (Figure S8) resulted in changes in soil carbon stocks over the 21st century of between 

-452 Pg-carbon (MPI-ESM-MR) and 525 Pg-carbon (HadGEM2-CC) with a best-estimate Q10 (Q10 = 2.2) resulting in 19 ± 

155 Pg-carbon (multi-center mean ± 1 SD) and field-drive bound (Q10 = 1.6, 2.7) of [248 ± 191, -95 ± 209] Pg-carbon (Figure 

4, Table 2).  

4 Discussion 5 

By capturing information about warming induced changes to relatively undisturbed field soil carbon stocks directly rather than 

inferring this from soil respiration rates, this is the first study to generate field Q10 estimates of soil carbon losses without 

needing to correct for belowground autotrophic respiration. Using a simplified version of a traditional decomposition model 

with a soil temperature sensitivity function, we estimate that the global Q10 value is 2.2 ([1.6, 2.7] 95%CI, Figure 1, S2). This 

Q10 is notably higher than previous global estimates based on field soil respiration data (Q10 = 1.4 to 1.5 (Bond-Lamberty and 10 

Thomson, 2010; Mahecha et al., 2010)), yet well within the range of estimates from laboratory-based studies (Davidson and 

Janssens, 2006) as well as close to documented soil temperature sensitivity parameters (~2) of Earth system models (Table 1). 

This Q10 range is statistically significant. Resampling the 36-study data set demonstrates the need for over 25 sites to 

distinguish the Q10 range from random (Figure 2 and S1). While the Q10 distribution for the 34-study subset is distinct from 

the null (Kolmogorov-Smirnov D=0.441, p < 2e-16), there appears to be some minor drift in the range suggesting that more 15 

study sites could be informative and we hope future studies will include data recently identified (van Gestel et al., 2018).  

Inferring a decadal-scale environmental sensitive from an annual-scale experiment is generally controversial. However, in this 

case, traditional model structures assume a temperature sensitivity function that is invariant across space and time and 

numerical trends in the Earth system model reflect this. In the traditional model structure the soil temperature sensitivity 

function is applied as a single scaler to multi-pool models causing the relative decomposition response in both fast and slow 20 

pools to be the same (for example, (Parton et al., 1987)). Examining the inferred gridded Q10 values from annual means across 

time scales from 1 year to 84 years in Earth system models shows a strong similarity in the distribution most models (Figure 

S4). Similarly using soil inputs as opposed to heterotrophic respiration did not affect the distribution of the gridded Q10 values, 

with the notable exception of MIROC-ESM which is explained by unusual differences in soil inputs and outputs (Figure S3, 

S4). Differences in the Q10 distribution across time scales are likely driven then by interaction with other sensitivity functions 25 

like moisture or in shifts in the allocation of dead vegetation to different pools as the plant type distribution changes over time. 

If soils are more sensitive to warming than previously expected, then how would this affect future soil carbon stocks over the 

21st century? To address this question, we turned to the CMIP5 Earth system models run under RCP 8.5 (Taylor et al., 2011). 

In order to modify the Earth system model output to reflect the data-driven Q10 we applied similar assumptions used in the 

field-data analysis. We first examine the soil temperature sensitivity of CMIP5 Earth system model simulated soil carbon 30 

stocks. In contrast to the field data, we take into account the effect of the change in soil inputs on soil carbon stocks in the 

Earth system models because these coupled simulations include CO2 fertilization and other climate effects known to influence 
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primary production (see Methods, Eq. 5). Though these inferred Q10 values (Q10 = 1.8, 2.6) fall within the uncertainty of the 

field derived Q10 values (Q10 = 1.6, 2.7), most ESM-Q10 means fell under the median data-Q10 value of 2.2 (Table 2) implying 

ESMs were, on average, less sensitive to soil temperature shifts than the field warmed data would imply. It should be noted 

that this inferred Q10 value is not exactly the parameterized Q10 value, and is instead a combination of the soil temperature 

sensitivity and other environmental sensitivities. If there were, on average, an additional constraint on respiration (such as 5 

moisture) we might expect the inferred Q10 parameter to be lower than the model parameterized Q10. 

There were notable regional patterns across all but 2 of the Earth system model inferred Q10 (Figure 3, S7). High northern 

latitudes tended to have either large or non-finite Q10 values suggesting that something other than soil temperature and input 

shifts were driving changes in soil carbon stock. This alternative driver could be a shift in moisture regimes or dynamics driven 

by thaw thresholds which could similarly affect the analysis of the field-data. Additional drivers of soil decomposition 10 

dynamics, beyond temperature and inputs considered here, have the potential for explaining some of the variation in the Q10 

range and new model structures are being explored to take some of these mechanisms into account (Luo et al., 2015; Wieder 

et al., 2015a). This remains an active area of research. 

Propagating this field-Q10 range into the ESM projections resulted in greater carbon losses from the soil by the end of the 21st 

century (multi-center means the of soil carbon change, shifted from 88 to 19 Pg-carbon) with large uncertainties; ESM multi-15 

center standard deviation was initially 152 Pg-carbon which is half of the range in multi-model mean attributed to Q10 95% CI 

[248, -95] Pg-carbon (Figure 4, Table 2). To calculate these modified projections, means of the model specific Q10 distributions 

were re-centered to reflect the best estimate Q10 and associated 95% CI from the field data analysis. By preserving the 

distribution within the model, we attempted to propagate soil moisture sensitivities and other model-specific effects into the 

modified projections. We also did not modify grid cells with non-typical Q10 values (non-finite, below 0.5 or above 5) since 20 

those grids likely governed other non-temperature drivers. The large range of carbon shifts in each ESMs driven by this Q10 

CI confirms the importance of considering parameter uncertainty in the land carbon component of Earth system model 

projections. The post-hoc correction that we present provides an innovative way to account for this parameter variation without 

the computational burden of additional ensemble runs. 

This analysis includes several basic assumptions and caveats. Specifically, we assume that the difference between treatment 25 

and control is driven entirely by the soil warming effect, and those warming effects are uniform across soil carbon quality. 

Though warming-induced changes in soil inputs are, on average, relatively small, they are have been shown to be highly 

variable in similar sites (Lu et al., 2013). The analysis of field data could be extended to account for these changes in inputs in 

follow-up studies (Eq. 3). A large increase in soil inputs would cause an underestimation of the Q10 value, while a decrease in 

soils inputs would cause an overestimation of the Q10 value (see Eq. 3). While there is some evidence to support soil 30 

temperature sensitivity dependency on soil carbon quality (Knorr et al., 2005), there is also evidence for a uniform soil 

temperature sensitivity (Hicks Pries et al., 2017). as is represented in the Earth system models considered in this study (Table 

1). A quality dependent Q10 would not be separable from the bulk decay term and thus a one pool model would be inappropriate 
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in this case (see SI). In addition, the dataset has acknowledged biases (see Crowther et al., 2016), which are typical of field 

studies. 

4.1 One pool simplification 

We find that multi-year soil carbon dynamics can be well-described by a one pool model at a specific time scale in both the 

Earth system models and field experiment. If we restrict the decomposition models to those with either independent or cascade 5 

pool structures (that is no carbon passed from the slow to the fast pools) then the temporal dynamics of the total soil carbon of 

the system at a specific time scale can be approximated by a single pool due to the fact that the lower triangular decomposition-

transfer matrix is diagonalizable (see SI for details). While this diagonalizable property does not hold for full feedback models 

where carbon is transferred from the slower to faster carbon pools, all decomposition-transfer matrices are M-matrices. If we 

combine the positive-inverse properties resulting from this M-matrix structure and assume that the soils are close to metastable 10 

state (that is soil inputs are roughly equal to the heterotrophic respiration outputs, as we show in Figure S3 for the Earth system 

models considered and would expect for soils from intact systems). Then the total soil carbon can be described by a bulk decay 

rate that is a linear combination of the transfer coefficients, decay rates, and input allocations of the component pools (see SI 

for analytical details). This provides analytical support for the one pool simplification seen numerically in the Earth system 

models in the CMIP5 project (Todd-Brown et al., 2013, 2014). 15 

The one pool simplifications described above are controversial assertions. The one pool model has proven inadequate to 

describe laboratory incubations where heterotrophic respiration over time is compared to the soil carbon stock (Thornton, 

1998; Weng and Luo, 2011). This is due to the multiple time scales considered (daily, monthly and annual) and, more 

importantly, the fact that these laboratory incubations are by their nature not at steady state since any inputs to the system are 

generally removed. Thus this analysis would not be expected to hold for laboratory incubation and we would further expect 20 

the bulk decay rate to change with time scales for sites undergoing rapid changes in inputs (in other words, the bulk decay rate 

inferred at a 1 year time step would not match the 100 year time step at a site undergoing transition from grassland to forest). 

Another key assumption is that soil organic carbon of different quality response the same to warming. However, the scalar 

multiplier representing environmental sensitivities are independent of pools in most models (ex (Parton et al., 1988)). These 

scalar multiplies (like the Q10 temperature sensitivity examined in this study) would be invariant to time scale if this modeling 25 

assumption is applied to the field analysis. Finally shifts in the allocation of dead vegetation to the different soil pools would 

shift the bulk decay rate of the one pool approximation (see SI: Analytical proofs). With these caveats in mind, we feel that 

the one pool approximation is extremely valuable in analyzing soil carbon models and data. 

5 Conclusion 

It is still unclear how the terrestrial carbon cycle in general, and soils in particular, will respond to climate change over the 21st 30 

century. The CMIP5 models, representing our best coupled climate models to date, have a wide range of soil carbon responses 
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over the 21st century (Todd-Brown et al., 2014). While it would be nice to have all the models agree on a tightly bound answer, 

the question we should be asking scientifically is: Does the variation in the models reflect our best scientific understanding? 

Models must capture not only mean trends but also system variance and accurately represent scientific uncertainty. 

Post-hoc correction of simulation results can provide some insight into known gaps in Earth system models without the 

computational hurdle of re-running simulation results. Previous studies have applied post-hoc corrections to address nutrient 5 

limitations on net primary production (Wieder et al., 2015b) and this study demonstrates the high level of uncertainty that can 

be driven by the soil temperature response parameter. This study suggests that soil carbon response to warming is highly 

variable in the field and ESMs should increase their variability to reflect this field-variation. Future studies increasing the 

number of field-warmed studies (van Gestel et al., 2018), as well as extending the field data to include changes in plant 

productivity in response to warming would inform the field-derived Q10 analysis explored here. In addition, explaining field 10 

moisture and applying that understanding to a post-hoc Earth system model analysis is a logical next step.  
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Figure 1: The model-data fits across different Q10 values for random subsets of 34 sites including the root mean squared error, and 
linear regression metrics R2, slope, and intercept. The model is take from Eq. 4 ("T = "U-./

6∆V/./). Slope and intercept values are 
shown with 2 standard deviation error bars. 15 
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Figure 2: The Q10 with good 1-to-1 model-data fits defined in Figure 1, at 90% confidence interval (band) with minimum and 
maximum values (dotted line) and median value (solid line), across 10 different sample sizes ranging from 5 to 34, for the original 
data set (True: blue) and randomized case-control (Random C-C: red). 
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Figure 3: Inferred Q10 values from the Earth system models (CMIP5, RCP 8.5). The colour scheme is centered around the field-
driven Q10 median value of 2.2. Grey indicates non-typical Q10 values that were either non-finite, less than 0.5 or greater then 5. 
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Figure 4: Changes in soil carbon stock (10 year means) over the 21st century from Earth system models (RCP 8.5). Grey dots are the 
original estimates, the open box is the soil carbon loss after the Q10 is rescaled using the 2.5%, 50%, and 97.5% quartiles from the 
field data 
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Model 

Center 

Earth system model Soil/land carbon  

sub-model 

Number of 

soil carbon 

pools 

Pool 

structure 

Temperature 

sensitivity 

Citations 

BCC BCC-CSM1.1 
BCC_AVIM1.0; 

AVIM2; CEVSA 
8 Cascade f(T) 

(Cao and Woodward, 1998; 

Ji et al., 2008; Wu et al., 

2013) 

CCCma CanESM2 CTEM 2 Cascade ;9:(0) 
(Arora, 2003; Arora et al., 

2011; Arora and Boer, 2010) 

NCAR CCSM4 

CLM 4.0; CN 7 Cascade 
Lloyd and 

Taylor 

(Gent et al., 2011; Lawrence 

et al., 2011; Oleson et al., 

2010; Thornton et al., 2007; 

Thornton and Rosenbloom, 

2005; Tjiputra et al., 2013) 

NSF-

DOE-

NCAR 

CESM1(BGC) 

CESM1(CAM5) 

CESM1(WACCM) 

NCC 
NorESM1-M 

NorESM1-ME 

NOAA 

GFDL 

GFDL-ESM2G 

LM3.0; ED 2 Independent f(T) 

(Dunne et al., 2013; 

Moorcroft et al., 2001; 

Shevliakova et al., 2009) 
GFDL-ESM2M 

MOHC* 
HadGEM2-CC 

ROTHC 4 Feedback Q10=2 
(Coleman and Jenkinson, 

1999; Collins et al., 2011) HadGEM2-ES 

INM INM-CM4 LSM 1.0 1 Independent Q10=2 
(Bonan, 1996; Volodin, 

2007) 

IPSL 

IPSL-CM5A-LR 

ORCHIDEE 5 Feedback f(T) 

(Dufresne et al., 2013; 

Krinner et al., 2005) IPSL-CM5A-MR 

IPSL-CM5B-LR 

MIROC 
MIROC-ESM 

SEIB-DGVM 3 Cascade 
Lloyd and 

Taylor 

(Sato et al., 2007; Watanabe 

et al., 2011) MIROC-ESM-CHEM 

MPI-M MPI-ESM-MR JSBACH 5 Cascade 
Lloyd and 

Taylor 

(Giorgetta et al., 2013; 

Schneck et al., 2013) 

MRI MRI-ESM1 LPJ-DGBM 3 Cascade 
Lloyd and 

Taylor 

(Adachi et al., 2013; Obata 

and Shibata, 2012; Sitch et 

al., 2003) 

Table 1: This is a summary of the soil decomposition sub-models for the ESMs used in this study and includes the number of pools, 
structure of the carbon exchange between those pools, temperature sensitivity function, and citations. Temperature sensitivity 
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function is either denoted as: f(T): borrowed from the Century model (Parton et al., 1987, 1988), Lloyd and Taylor: taken from the 
recommended form from (Lloyd and Taylor, 1994), Q10(T): a temperature dependent Q10 as defined by (Arora, 2003), or a Q10 
parameter for the Q10 function as defined in this manuscript. 

  

Deleted: CENTURY5 
Deleted: f(T): a unique temperature sensitivity function 
defined by (Coleman & Jenkinson, 1999), 



23 
 

 

SOC 

[Pg-C] 

Rel. 

Inputs 

dT 

[°C] Q10 

dSOC 

[Pg-C] 

dSOC 

Q10=1.6 

dSOC 

Q10=2.2 

dSOC 

Q10=2.7 

BCC-CSM1.1 1050 1.40 3.7 2.2 198 312 198 134 

CanESM2 1541 1.29 7.1 2.0 -53 239 -158 -354 

CCSM4 515 1.32 4.2 1.9 6 34 -16 -45 

CESM1(BGC) 515 1.29 3.8 1.9 8 29 -9 -31 

CESM1(CAM5) 553 1.30 4.6 1.8 -1 17 -30 -56 

CESM1(WACCM) 502 1.32 3.9 1.9 5 25 -12 -33 

GFDL-ESM2G 1422 1.41 5.1 1.9 -2 25 -23 -49 

GFDL-ESM2M 1278 1.38 4.5 2.0 -8 36 -24 -56 

HadGEM2-CC 1122 1.55 8.4 1.9 285 525 118 -71 

HadGEM2-ES 1129 1.56 8.3 1.8 259 417 41 -133 

INM-CM4 1688 1.27 3.3 2.3 69 238 88 2 

IPSL-CM5A-LR 1361 1.48 8.2 1.8 28 192 -205 -394 

IPSL-CM5A-MR 1403 1.43 7.6 1.8 7 158 -209 -387 

IPSL-CM5B-LR 1274 1.41 7.6 1.9 85 289 -63 -236 

MIROC-ESM 2586 1.35 7.2 2.5 -105 363 11 -170 

MIROC-ESM-

CHEM 2588 1.30 7.3 2.6 -89 467 75 -123 

MPI-ESM-MR 3110 1.31 6.3 1.8 212 461 -150 -452 

MRI-ESM1 1452 1.52 4.4 2.0 415 521 374 294 

NorESM1-M 547 1.31 3.7 1.9 -21 -4 -34 -51 

NorESM1-ME 553 1.32 3.6 2.0 5 31 -6 -27 

Multi-center mean 1403 1.37 5.4 2.0 88 248 19 -95 

Multi-center sd 793 0.09 1.8 0.2 153 191 155 209 
 
Table 2: Global model summary with multi-center mean and standard deviation for modern soil organic carbon (SOC) stocks [Pg-
C], relative shift in soil inputs (WX

WY
), absolute change in soil temperature (dT) [°C], inferred mean of Q10 as calculated by grid cell (see 

Eqn 5), the change in soil organic carbon (dSOC) over the 21st century [Pg-C], and the change in soil organic carbon with rescaled 
Q10 values (1.6, 2.2, and 2.7). 5 
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