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Response to Associate Editor 
 
Dear Dr. Schöngart, 
 
We thank you and the reviewers for your responses and valuable suggestions. We have 5 

made small modifications to the manuscript throughout, in order to clarify issues, and 
further discussions. In particular, we have included more technical details on the model 
output, and have included discussions on other factors that may affect the results we have 
found (particularly the decrease in NDVI). 
 10 

With increasing CO2, we found a decrease in ET and an increase in canopy nitrogen, both 
consistent with theory, suggesting more water and nutrient use efficient canopies. 
However, we also observed a decrease in NDVI with increasing CO2, which may be 
consistent with increased efficiency of fewer leaves.  
 15 

Thank you for your continued consideration. 
 
Best, 
Kerry Cawse-Nicholson 
 20 

 
I have read the three reviews as well as your responses and how you will address those in 
the revised version of bg-2018-73. All reviewers acknowledge the importance of this study 
and its novelty filling an important gap in understanding how plants and ecosystems will 
respond to continually rising CO2 coming up with different results as experiments, such as 25 

FACE, limited in space and time. I will ask you to address the valuable comments made by 
the reviewers and decided to accept bg-2018-73 for publication after a minor revision. 
 
Dr. A. P. Ballantyne notes the importance of this study in testing different remote-sensing 
techniques to test vegetation responses to elevated CO2 concentrations at the long-term. 30 

He focuses in his review much on the rather unexpected negative relationship between 
NDVI and soil CO2 flux which is an important observation. Possible factors, e.g., nutrient 
limitation, extreme climate events, oxygen deprivation of roots, soil acidification and plant 
vigor (see also comments of both anonymous referees) should be discussed indicating the 
need for further studies in this complex system. 35 
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We thank the reviewers for raising all of these potential factors, and we have included a 
paragraph summarising these at the end of the Discussions section, as well as a more 
detailed analysis of several factors that have been repeatedly raised (such as soil 
acidification) discussed earlier in the section. Of particular interest is the nutrient limitation 
– it is a plausible scenario that NDVI decreases because the leaves are more nutritionally 5 

efficient; thus there are fewer leaves needed. This is discussed in more detail in the 
manuscript.  
 
The author’s should also address the influence of elevation reducing the CO2 effect. 
We have discussed both partial pressures and cold air drainage. The partial pressures at 10 

Mammoth are about 60% of sea level. The fact that we see systematic ecosystem effects 
suggests that elevation is not on the flat part of the A-Ci curve. In other words, even if 
elevation were to reduce the CO2 effect, we still are seeing strong CO2 effects regardless, 
highlighting just how important and strong of a response we are able to detect. We will add 
this discussion to the revised manuscript. 15 

 
Please also indicate some additional statistics and the order of magnitude of change in NDVI 
per change in Soil CO2 flux in the abstract. 
Additional statistics have been provided throughout the manuscript, and we have included 
the change in NDVI per change in soil CO2 flux in the abstract. I have used the 200 – 800 20 

g/m2/day range in the abstract, since population sizes decrease beyond that level.   
 
I encourage the authors also to indicate the limitations of the FACE experiments around the 
world in contrast to the long-term emissions of volcanic CO2 emissions especially focusing 
on the warming trend. 25 

The FACE studies have been invaluable to our understanding of the CO2 effect, which 
contributes to among the largest uncertainties in projections of Earth’s climate. While it is 
true that they primarily assess CO2, we argue that the actual biggest limitation of FACE is 
the short durations—there has been no way to assess long-term changes in ecosystems. 
This is where the long term emissions of volcanic CO2 can play a game changing role in how 30 

to assess the long term CO2 effect on ecosystems.  
 
Even if 99% of the emitted gas volume is CO2, the author should mention what other gases 
are emitted with the respective numbers. Even if CO2 is a trace gas in the atmosphere it has 
a tremendous impact on the Earth system! 35 
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There is no significant H2S nor any SO2 present at soil levels at this site; see, for example, 
data in Sorey et al 1998, Werner et al, 2014, and a number of papers on volcanic degassing 
at Mammoth Mountain by our USGS co-author Lewicki (2006, 2007, 2008, 2012, 2014). The 
other contributing gases by volume are N2 and O2.  
 5 

Please do also consider the minor concerns indicated my Dr. Ballantyne. 
We have clarified many points throughout the manuscript in response to Dr. Ballantyne’s 
suggestions.  
 
Anonymous Referee #1 notes the novelty of this study filling an important gap in 10 

understanding how plants and ecosystems will respond to continually rising CO2 by 
overcoming limitations of previous studies in spatial and temporal scales. As he indicated, 
the authors should indicate some explanation to why looking at several different vegetation 
indices and comparing each individually to enhanced CO2 may be beneficial for 
understanding how plant physiology and growth is impacted and what methodologies may 15 

be selected in investigating other ecosystems. 
While all vegetation indices are indeed related, they differ enough to be considered 
independent variables. E.g. some account for soil moisture, others weight plant greenness 
more heavily. This was an exploratory effort in investigating the effects of CO2 on any 
measure of plant function, composition, and structure, and so we attempted to cover all 20 

avenues of investigation. This discussion has been included in the newest revision of the 
manuscript. 
 
As Dr. Ballantyne, anonymous reviewer #1 also focuses a lot on possible negative impacts 
(oxygen deprivation of roots, soil acidification, plant vigor) on elevated CO2 (contrasting 25 

results obtained by the FACE experiment) indicating the need for further studies especially 
on soil pH and O2 and citing important literature which should be considered by the 
authors.  
We note for clarification that the “kill-zone” is the exact location where CO2 is emitted from 
the soil—a property of the soil being altered by the emission; but, we focus on the 30 

“fertilization zone”, which is away from those emission points, with unaffected soils, where 
tree canopies are exposed to the CO2, which has diffused in the atmosphere away from the 
emission points. We have also included a discussion on other negative impacts, as above.  
 
The strength of the paper is the long-term monitoring vs. short-term observations as in 35 

FACE, and this should be evidenced in the discussion (as pointed out by the other reviews). 
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A more detailed discussion of the long-term monitoring aspect has been included. 
 
Please consider also the minor concerns and technical corrections indicated by reviewer #1. 
We have addressed the minor concerns raised by this reviewer. 
 5 

Anonymous referee #2 acknowledges the long-term character of this monitoring, but also 
criticizes the empirical model used for the analysis of many covariates (which are closely 
related to each other as pointed out by referee #1) to discern the effects of eCO2 on 
structure and dynamic.  
 10 

This reviewer has two major concerns. The first focuses on the variability of eCO2 over time 
and the authors give an interesting response indicating the history of measurements of CO2 
emissions at Mammouth Mountain and I would find in interesting to include this in the 
Material and Method section. The second one was addresses soil conditions as important 
factor on structure and dynamics of vegetation which was already indicated by the other 15 

two reviewers and should be sufficiently addressed in the revised version of bg-2018-73. 
We have included the review response in the revised manuscript, and have addressed soil 
conditions as indicated previously. 
 
Please also consider the minor concerns indicated by referee #2. 20 

We have addressed the minor concerns raised by this reviewer. 
 
I am looking forward to the revised version of bg-2018-73. Thank you for choosing 
Biogeosciences to publish this fascinating study. 
Thank you! 25 
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Anonymous Referee #1  

Received and published: 2 June 2018  

Overview and significance  

In this analysis Cawse-Nicholson et al. describe ecological attributes measured through 
several remote sensing platforms in relation to ground-measured and modeled elevated CO2 5 

originating from volcanic degassing. The primary objective and novelty of this study is to 
estimate the impact of elevated CO2 on plant growth and whole ecosystems by utilization 
naturally occurring gradients of elevated CO2 from volcanic degassing. Previous experiments 
and studies in estimating the impact of elevated CO2 on plants and ecosystems approach 
scaling limitations; whether through limited species diversity, space or time of exposure to 10 

elevated CO2, and/or cost of artificially elevating CO2. Therefore conclusions of experimental 
CO2 enhancements are limited to relatively few species and over short periods of time 
without leveraging natural gradients of elevated CO2. Methodologies to use natural CO2 
gradients in determining plant and ecosystem responses to elevated CO2 described herein, in 
conjunction with elevated CO2 experiments, will fill important gaps in understand how 15 

individual plants to whole ecosystems will respond to continually increasing levels of CO2. 
The hope for the methodology described herein is for it to be applied where gradients of CO2 
exists in order to understand the impact of elevated CO2 across multiple biomes.  

We thank the reviewer for noting the novelty of our study in overcoming scaling limitations 
of previous studies, and the important gap that we aim to fill in understanding how plants 20 

and ecosystems will respond to continually rising CO2. 

General comments:  

The authors outline their objectives as  

1. Evaluate the viability of using a passively degassing volcano system to study the properties 
of ecosystems; 2. assess the detectability of ecological responses to elevated soil CO2 25 

emissions via airborne data alone; 3. Present key lessons enabling future studies to extend 
our framework to other biomes.  



 

6 

 

Objective 1 is approached using soil CO2 flux measurements at a spatial resolution of 1 meter. 
This was made possible through the records of soil CO2 flux measurements at Mammoth 
Mountain. The authors acknowledge that measurements from soil CO2 fluxes will be much 
different and more stable than atmospheric fluxes of CO2 (page 5 line 10 and page 15 line 
35). This approach makes estimating actual atmospheric CO2 measurements intractable 5 

under known methodologies but is strong enough to infer that atmospheric CO2 was greater 
than background where soil CO2 flux was greater.  

Mammoth Mountain included a tree-kill zone for which the authors selected the trees around 
this zone. The presence of a tree-kill zone naturally leads to hypotheses that elevated CO2 
will have a negative effects on vegetation at some point up the CO2 gradient. Previous studies 10 

pointing this out are cited in the manuscript and detected by NDVI (Rouse et al. 2010 and 
Cholathat et al. 2011) and through tree ring anal- and biomass measurements derived from 
Lidar as proposed in Objective 2. Soil CO2 flux was shown to be a significant predictor for 
these indices and remotely sensed attributes. While the vegetation indices are all slightly 
different they are largely related to one another vs. the other measurements of biomass, 15 

plant foliar traits, and canopy evapotranspiration. Some explanation as to why looking at 
several different vegetation indices and comparing each individually to enhanced CO2 may 
be beneficial for understanding how plant physiology is impacted and what methodologies 
may be selected in investigating other biomes (Objective 3).  

While all vegetation indices are indeed related, they differ enough to be considered independent 20 

variables. E.g. some account for soil moisture, others weight plant greenness more heavily. 

This was an exploratory effort in investigating the effects of CO2 on any measure of plant 

function, composition, and structure, and so we attempted to cover all avenues of investigation. 

A note to this effect will be included in the next revision of the manuscript. 

We note for clarification that the “kill-zone” is the exact location where CO2 is emitted from 25 

the soil—a property of the soil being altered by the emission; but, we focus on the “fertilization 

zone”, which is away from those emission points, with unaffected soils, where tree canopies 

are exposed to the CO2, which has diffused in the atmosphere away from the emission points.  

The hypothesis and observations that elevated CO2 has negative effects on vegetation is 
contrary to many greenhouse and FACE experiments of artificially enhancing CO2, but is likely 30 

related to the intensity of elevated CO2 at the volcanic site. The authors also speculate that 
elevated soil CO2 may lead to oxygen deprivation of roots and soil acidification (page 15 line 
34 and cited in Farrar et al., 1995; Qi et al., 1994; McGee and Gerlach, 1998). This has major 
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confounding effects on being able to use volcanic degassing to detect the impact of elevated 
atmospheric CO2 on photosynthesis and carbon sequestration if suitable soil chemistry for 
plant growth becomes a limiting factor. Rouse et al. (2010) did observe that in multispectral 
analysis of vegetation revealed that plant vigor degraded under high CO2 but slightly 
increased under low CO2. Along the same lines that Cawse-Nicholson et al. have speculated, 5 

slight increase in plant vigor may exist in zones where soil O2 is still above a certain threshold 
and/or soils are adequately buffered. I suggest that in order for the methodology put forth by 
Cawse-Nicholson et al. to effectively capture the impact of elevated atmospheric CO2 on 
ecosystem traits that measurements be made of soil O2, soil pH, and atmospheric CO2 be 
made in future studies. As is, the study of Cawse-Nicholson et al. provides a valuable step 10 

forward in being able to scale-up the impact of elevated CO2 on plants to whole ecosystems 
and across differing biomes.  

 

We thank the reviewer for complimenting our study as a valuable step forward, as well as the 
suggestion for measurements in future studies. As one of our objectives was to provide 15 

guidance for future studies, these suggestions fit well with our objectives.  

As in our previous response above, we will clarify that any vegetation impacts are due not to 
soil changes from direct CO2 emissions, as we excluded the emission zones from our study. 
We will also clarify that the effects should not necessarily be given a subjective description of 
‘negative’; rather, it is important to note that the CO2 fertilization effect is unlikely to continue 20 

indefinitely, particularly at the same rates that FACE studies have shown only in the short-
term. All other experiments have been unable to show long-term effects. Our study suggests 
that over the scale of decades, some of these hypothesized greening or biomass increases 
may not be sustainable. Other results, such as an increase in canopy nitrogen with increasing 
CO2, do seem to remain consistent with our study, however.  25 

Specific comments: - Table 2. As the primary subject of this paper is elevated CO2, a complete 
ranking of the explanatory variables against CO2 would be informative even for dependent 
variables in which eCO2 was not the most influential variable.  

This is a good suggestion, and the complete ranking will be included. 
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Technical corrections: Page 11 line 15 slope and aspect seem mixed up as slopes of 350 are 
not feasible.  

Thank you. This has been corrected. 
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Review response to SC1 

 

The authors thank Prof. Ballantyne for the positive review and useful feedback on this 

manuscript. This paper aimed to demonstrate the capability of both the natural elevated CO2 

experiment and the collection of airborne instruments to provide innovative ecology results.   5 

 

We have responded to specific comments in red below: 

 

Review: Ecosystem responses to elevated CO2 using airborne remote sensing at Mammoth 

Mountain, California 10 

 

In this analysis Cawse-Nicholson use a volcanically active site where elevated CO2 fluxes 

have been monitored as a natural experiment to test vegetation response using remote sensing 

approaches. Given the contradictory results from previous studies at this site, it seems logical 

to revisit using new approaches. The rationale and methods for this study seemed logical and 15 

it provides a nice testing ground for testing a range of remote sensing techniques. I was quite 

surprised by the results showing the apparent suppression of growth (i.e. negative relationship 

between NDVI and soil CO2 flux), especially because this main conclusion was not clearly 

stated in the title or the abstract. It seems that the forests in this volcanic setting are 

responding adversely to something, but it is not clear why it would be elevated CO2 20 

concentrations. I think that most folks reading the title, perhaps the abstract and looking at the 

figures will be a bit perplexed as I was. This is a really fascinating study system that is fairly 

complex in terms of terrain and gases emitted. 

We thank you for noting the innovativeness on using volcanically-derived elevated CO2 as a 

means to assess long term ecosystem responses through remote sensing approaches. Some of 25 

the results were indeed unexpected—but, this is exactly why such a study is needed. It may 

be possible that the NDVI decrease is due to a progressive nutrient limitation, as has been 

suggested throughout the literature, but has never been tested empirically. However, much 

more in depth investigation is required to determine the underlying mechanisms explaining 

the results. As such, we frame this paper as more suggestive than conclusive, ideally leading 30 

to further work on this topic.  

 

General Comments: The authors go to great lengths to control for distance from these 

hotspots of CO2 to derive a gradient over which to investigate vegetation responses, which is 

no easy task, especially using remotely derived metrics over complex terrain. In particular, I 35 

wonder how cold air drainage at night affects CO2 concentrations at these sights (Pypker et 

al. 2007). It is conceivable that much higher CO2 concentrations are found downslope than 

upslope or adjacent to these CO2 efflux hotspots (Fig. 2a). In fact, biomass hotspots appear to 



 

10 

 

be adjacent or downslope from the CO2 hotspots (Fig. 2b); although it is difficult to discern 

without elevation contours. 

We agree that a more thorough assessment of CO2 flow through the landscape is needed. It is 

remarkable that we were able to detect clear signals from soil fluxes alone; we expect that the 

results would be improved with above- and within-canopy CO2 measurements, and better 5 

tracking over time. Given the available measurements from USGS, the best we could do was 

shift the ground CO2 dataset in all cardinal directions, to see if this resulted in an improved 

fit. The best model fit was found at the original ground CO2 location. We will include 

elevation contours in the revised manuscript. 

 10 

Where on the A-Ci curve are we operating? The vegetation at these sites is responding to the 

partial pressure of CO2 in the atmosphere, among other gases at this site. Figure 1 suggests 

that the CO2 flux was maybe 2 orders of magnitude greater than typical estimates at non-

volcanic sites (Jensen et al. 1996), but what is the partial pressure of CO2 in the atmosphere 

at these sites. I suspect that we are operating well above the asymptote on the A-Ci 15 

curve(Tissue, Griffin, and Ball 1999), such that we would see very little vegetation response 

to even large changes in the partial pressure of CO2. 

The partial pressures at Mammoth are about 60% of sea level. The fact that we see systematic 

ecosystem effects suggests that elevation is not on the flat part of the A-Ci curve. In other 

words, even if elevation were to reduce the CO2 effect, we still are seeing strong CO2 effects 20 

regardless, highlighting just how important and strong of a response we are able to detect. We 

will add this discussion to the revised manuscript. 

 

What are the other gases are being emitted from this volcanic field? The negative relationship 

between CO2 soil flux and NDVI is perplexing and needs explaining. Are these particularly 25 

sulfur rich volcanic fields? Has anyone developed a ‘rotten egg’ remote sensing index? No 

but seriously, if there are significant sulfur emissions this could be leading to sulfuric acid 

deposition and cation loss from the soils, such that the negative response to soil fluxes could 

actually be the result of another gas that is detrimental to plant growth other than CO2. 

There is no significant H2S nor any SO2 present at soil levels at this site; see, for example, 30 

data in Sorey et al 1998, Werner et al, 2014, and a number of papers on volcanic degassing at 

Mammoth Mountain by our USGS co-author Lewicki (2006, 2007, 2008, 2012, 2014). 

Furthermore, we excluded the direct areas of CO2 emissions, which impacts the local soil 

conditions, not representative of the larger ecosystem. We will add and clarify this detail in 

the revised manuscript. 35 
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Specific Comments: The abstract is a bit vague reporting statistical relationships but not the 

apparent negative response to increased soil CO2 flux and without any response numbers 

(change in NDVI per change in Soil CO2 flux). 

We will add more statistics to the revised manuscript. 

 5 

P2 L14 to 26 Perhaps the most fundamental flaw of FACE studies is very few have 

concomitant warming, which greatly limits ourinsight for the real world. 

The FACE studies have been invaluable to our understanding of the CO2 effect, which 

contributes to among the largest uncertainties in projections of Earth’s climate. While it is 

true that they primarily assess CO2, we argue that the actual biggest limitation of FACE is the 10 

short durations—there has been no way to assess long-term changes in ecosystems. This is 

where the long term emissions of volcanic CO2 can play a game changing role in how to 

assess the long term CO2 effect on ecosystems.  

P3 What other gases are being emitted from these volcanic fields.  

As discussed above, CO2 dominates by up to 99% of gas volume. 15 

P3 L37 ‘can be applied’ 

This will be corrected. 

P4 L20 is this g C or g CO2 per day...you might want to make this absolutely clear in the 

units 

These are g.m-2.d-1 of CO2, and will be clarified. 20 

P4 L27 why were these data not just aggregated to a coarser resolution. Further smoothing of 

already smooth data may lead to loss of meaningful variance. 

The original raw field CO2 flux measurement data were not available anymore. We worked 

from the 1m data that were provided to us by the USGS, which are aggregates of data 

collected by several different surveys in the 2011-2012 time frame, with the Horseshoe Lake 25 

area visited multiple times to characterize any very subtle temporal variation (Fig. 1 in 

Werner et al, 2014).   

P5 L20 some discussion of cold air drainage important in this mountainous terrain (see 

Pypker below). 

Thank you, we will include this discussion and reference. 30 

P7 L 12 as demonstrated by the authors- where? 

As demonstrated by Ma et al (2018). This will be made clearer in the next version. 

P11 L 18 Why not use a random forest model to identify variables of greatest importance. 

We considered random forest models and obtained similar result. We presented the results of 

the linear regression since the model itself is more easily interpretable by the reader.  35 

P12 L3 ‘well modeled’ be more descriptive precisely or accurately? 

Canopy height and biomass were accurately modelled with high R2. Will edit in the revision. 

Fig. 1 could benefit from a log y-scale or even better some estimate of pCO2  
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This will be modified in the revised manuscript. 

Fig. 3 the caption seems to be incomplete in describing all the panels. 

This will be modified in the revised manuscript. 
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Anonymous Referee #3  

This is an interesting study using a purported natural CO2 enhancement gradient to 
understand ecosystem scale responses to elevated CO2. The authors use a linear regression 
model to control for a couple of covariates to discern the effect of eCO2 on structure and 
process.  5 

We thank the reviewer for noting the interest of our study using a well-documented natural 
CO2 enhancement to understand ecosystem scale responses to elevated CO2.  

Overall, the empirical model results in confusing results, which the authors try to explain by 
referring to similar studies in other naturally enhanced CO2 systems.  

Some of the results may seem confusing because they go against shorter-term experiments. 10 

But, this is exactly why we did the study—if we knew what the results were going to be, there 
would be no reason for the study. Moreover, the results highlight numerous points made 
throughout the literature with respect to the FACE experiments—their short-term nature has 
been unable to uncover long-term results, which is exactly a primary purpose of our study. 
We edited the manuscript to make these points more clear (and to make understanding the 15 

results less confusing). 

I find the discussion quite speculative and have two concerns on the study and the usefulness 
of volcanic-CO2 seepage as an experimental setting.  

We agree that the Discussion is structured more as a Discussion, less as Results. We tried to 
make clear that this study was exploratory, rather than definitive, and that this study was 20 

meant to identify both potential signals as well as design elements for further study.  

1) The authors argue that the Mammoth Mt region is very well studied and that variability in 
CO2 over time and space is minimal, and that the ecosystems in the area are in some 
equilibrium with the seepage. But even ignoring variability before measurements began, the 
Figure 1 shows very high variability since measurements first started. I don’t think we can say 25 

with any confidence what the CO2 exposure has been over time and space, and whether the 
current study reflects the equilibrium conditions to eCO2.  

It is a fundamental principal of volcanology that all active volcanoes emit CO2 continuously 

during their entire life cycle. The CO2 emissions at Mammoth Mountain have been well 
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known since at least 1989, and their variability well documented by repeated CO2 efflux 

mapping between at least 1995 (ongoing), by the USGS (Werner et al. 2014) . The CO2 seeps 

at the site have been known for even longer (Varekamp & Buseck 1984, and geothermal 

assessment reports from the 1970s at least). All these studies show that the active Mammoth 

Mountain volcanic system has experienced a replenishment of the magmatic CO2  source in 5 

the deep subsurface in about 1989, possibly already an earlier one in 1978, though no 

systematic CO2 measurements were conducted in that earlier time period (Hill, 1996).  

Werner et al show remarkable spatial consistency for 9 years of systematic measurements at 

the CO2 gas seeps on Mammoth Mountain.  

 10 

2) The authors focus only on eCO2 as a driver of variability in structure and processes. Soil 
conditions (physical and chemical) are overlooked and it is quite possible that some sort of 
chemical toxicity is interacting with plant growth and causing the unusual ‘eCO2 responses’ 
that the team finds.  

The reviewer is correct in that soil chemistry is altered at the points of CO2 emission. 15 

However, we excluded those areas, instead focusing on the fertilization zone, which is away 

from those emission points, with unaffected soils, where tree canopies are exposed to the 

CO2, which has diffused in the atmosphere away from the emission points.  

 

Minor comments: - Define MASTER and ASO when first used - Effect of canopy height model 20 

(selecting tallest pixel in each 1 m2 grid cell) will likely bias the biomass estimate to outliers, 
why not use percentiles, i.e. 90th, to avoid this artefact? - Please discuss a bit more the sample 
size used to develop the plant traits models with AVIRIS.  

We will define MASTER and ASO at first use. Outliers have already been removed as part of 
the preprocessing of the biomass estimate. We will clarify this point.  25 

We will include information on the foliar trait model development in the next version of the 
manuscript. 
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Abstract. We present an exploratory study examining the use of airborne remote sensing 15 

observations to detect ecological responses to elevated CO2 emissions from active volcanic 

systems. To evaluate these ecosystem responses, existing spectroscopic, thermal, and lidar 

data acquired over forest ecosystems on Mammoth Mountain volcano, California, were 

exploited, along with in situ measurements of persistent volcanic soil CO2 fluxes. The 

elevated CO2 response was used to statistically model ecosystem structure, composition and 20 

function, evaluated via data products including biomass, plant foliar traits and vegetation 

indices, and evapotranspiration (ET). Using regression ensemble models, we found that soil 

CO2 flux was a significant predictor for ecological variables, including canopy greenness 

(Normalized Vegetation Difference Index,  (NDVI,), canopy nitrogen, ET, and biomass. With 

increasing CO2, we found a decrease in ET and an increase in canopy nitrogen, both 25 

consistent with theory, suggesting more water and nutrient use efficient canopies. However, 

we also observed a decrease in NDVI with increasing CO2 ,(a mean NDVI of 0.27 at 200 g 

m-2 day-1 CO2 reduced to a mean NDVI of 0.10 at 800 g m-2 day-1 CO2). This is inconsistent 

with theory; though consistent with increased efficiency of fewer leavesnonetheless, with 

more efficient leaves, it may be that the trees needed fewer leaves. We found no changea 30 

decrease in aboveground biomass with increasing CO2, also inconsistent with theory; but, we 

did findalso found a decrease in biomass variance, pointing to a long-term homogenization of 

structure with elevated CO2. saw decreasing NDVI, increasing ET, increasing canopy 

nitrogen, and a decrease in biomass variance, pointing to trees with fewer, but more efficient 

leaves. Additionally, the relationships between ecological variables changed with 35 

increasingly elevated (volcanically influenced) over non-volcanic “background” soil CO2 
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fluxes, suggesting a shift in coupling/decoupling among ecosystem structure, composition, 

and function synergies.  For example, ET and biomass were significantly correlated for areas 

without elevated CO2 flux, but decoupled with elevated CO2 flux. This study demonstrates 

that a) volcanic systems show great potential as a means to study the properties of ecosystems 

and their responses to elevated CO2 emissions and b) these ecosystem responses are 5 

measureablemeasurable using a suite of airborne remotely sensed data.  
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1 Introduction 

Terrestrial ecosystems have consistently taken up carbon over the past century, in excess or 

balancing losses due to deforestation and land use change, and this sink has grown with time 

(Le Quéré et al., 2016; Schimel et al., 2015). Much debate, however, has centred on the 

drivers of this uptake. Suggested mechanisms include nitrogen deposition (Peterson &and 5 

Melillo, 1985), land use (Schimel, 1995), and the direct effects of carbon dioxide on plant 

growth (Norby et al., 2016). The last, which proposes that increased atmospheric CO2 yields 

increased photosynthetic rates, is both the most probable and the most controversial. 

Although a multitude of experiments have shown positive photosynthetic responses to 

increased CO2 consistent with the observed growth in the terrestrial sink (Drake et al., 1997), 10 

many ecologists have argued that plant growth in intact ecosystems is limited by water, light 

or nutrients, rather than CO2 (Körner, 2006; McGuire et al., 1995). 

 

The Free-Air Carbon Enrichment (FACE) experiments, introduced in the 1990s, allow for 

CO2 fertilization of intact ecosystems by creating controlled fumigation conditions without 15 

the use of a growth chamber (Lewin et al., 1994). The FACE studies have been invaluable to 

our understanding of the CO2 effect, which contributes to among the largest uncertainties in 

projections of Earth’s climate. These studies have shown some consistent responses 

indicative of enhanced growth (Norby et al., 2016), as well as other physiological, 

morphological and ecosystem consequences, but also suffer from several structural 20 

deficiencieslimitations. Perhaps most notably, only short-term study periods are feasible; the 

longest-running experiment spanned only a decade, while atmospheric CO2 has been steadily 

rising for more than an order of magnitude longer than that duration. FACE can thus 

elucidate physiological responses to elevated CO2, but cannot unshroudand it is difficult to 

measure slower processes like plant acclimation, shifts in species dominance induced by CO2, 25 

or other long-term mechanisms mediated by changes to soil organic matter and nutrients. 

Additionally, because FACE experiments are vastly expensive to construct and operate, they 

tend to be small in scale, limited in replicability, and homogeneous in species, soils and 

landscapes. 

 30 

The FACE studies have been invaluable to our understanding of the CO2 effect, which 

contributes to among the largest uncertainties in projections of Earth’s climate. While it is 

true that they primarily assess CO2, we argue that the actual biggest limitation of FACE is the 

short durations—there has been no way to assess long-term changes in ecosystems. This is 

where the long-term localized emissions of volcanic CO2 can play a game changing role in 35 

how to assess the long-term CO2 effect on ecosystems. 
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As a result of limited empirical evidence for the strength of CO2 fertilization effects, global 

carbon cycle models disagree about the significance of their associated impacts. Some 

models show very large CO2 effects, while others indicate a smaller or saturating effect 

(Kolby Smith et al., 2015). Because future predicted fossil carbon uptake is highly dependent 

on the strength of the simulated CO2 fertilization, any constraints on the long-term effect of 5 

elevated CO2 on ecosystems would be valuable in reducing uncertainty in coupled carbon-

climate models (Friedlingstein et al., 2014). 

 

Diffuse Persistent diffuse volcanic CO2 emissions through soils result from the degassing of 

magma beneath volcanoes and offer a continuous natural experiment to study vegetation 10 

responses to elevated CO2 that is expansive in both space and time. These surface discharges 

yield broad atmospheric enhancements that transport CO2 downwind (Kerrick, 2001), 

resulting in swaths of variably affected plants whose periods of exposure can be over 

hundreds of years (Cook et al., 2001). Because volcanic CO2 emissions are a vital part of the 

global carbon cycle (Mason et al,., 2017; Schwandner et al., 2017) and have been monitored 15 

worldwide for decades (Boudoire et al. 2017; Camarda et al., 2012; Perez et al., 2011; 

Gerlach, 1991), the rate and spatial distribution of these fluxes are well-understood due to an 

abundance of field surveys in many volcanic systems (e.g. Hernández et al., 1998; Cardellini 

et al., 2003; Werner &and Brantley, 2003; Giammanco et al., 2007; Lewicki et al., 2014a). 

The “kill-zone” is the exact location where CO2 is emitted from the soil—a property of the 20 

soil being altered by the emission. Although the spatial distributions of CO2 emissions within 

tree kill areas have been well mapped (Pickles, et al., 2001; Werner &and Brantley, 2003; 

List, et al., 2005, and others), linking CO2 measurements to vegetation responses along a 

spatially diffuse CO2 degassing continuum (outside of the tree-kill zone) is a natural yet 

underutilized opportunity for studying the effects of elevated CO2 on plants (Schwandner et 25 

al., 2004). Furthermore, many CO2 emissions in volcanic systems have been ongoing for 

decades or centuries, thus allowing for the observation of equilibrium, long-term ecosystem 

responses after transient and acclimational responses have passed.  

 

While FACE experiments may demonstrate ecological responses to increased CO2 at the 30 

outset of elevation, studies in volcanic basins can do the same on super-century scales. 

However, because volcanic emissions can affect entire landscapes differentially depending on 

the flow dynamics of the gas, they require new and innovative techniques for analysis. 

Remote sensing observations allow for detailed measurements across a wide spatial extent 

that can be used to analyse ecological indicators of CO2 effects.  35 

 

Here, we present an exploratory study examining the use of airborne remote sensing data to 

detect ecological responses to elevated volcanic CO2 emissions. It is a fundamental principal 
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of volcanology that all active volcanoes emit CO2 continuously during their entire life cycle. 

We We leveraged existing data over Mammoth Mountain, California – a much-studied 

volcano that has been passively emitting CO2 at high concentrations through faults and 

fissures on its flanks, measured systematically since a large earthquake swarm in 1989, and 

their variability well documented by repeated CO2 efflux mapping (Farrar et al., 1995; 5 

Lewicki et al., 2014b, b; Werner et al., 2014). Figure 1 shows that the elevated soil CO2 

fluxes, measured by the USGS over a span of two decades, far exceed the atmospheric CO2 

measured by a flux tower at the same site.  

 

We developed a statistical framework for examining the relationships between field 10 

measurements of soil CO2 emissions into the air below the forest canopy and a suite of 

remotely sensed ecological variables. In this investigation, we aim to: (i) evaluate the 

viability of using a passively degassing volcanic system to study the properties of 

ecosystems; (ii) assess the detectability of ecological responses to elevated soil CO2 

emissions via airborne data alone; and (iii) present key lessons enabling future studies to 15 

extend our framework to other biomes. This methodology can be applied to any site that is 

exposed to elevated CO2. 

2 Methods 

2.1 Data 

Airborne remote sensing data from multiple sources have been acquired over Mammoth 20 

Mountain, California, USA, providing a substantial means to assess ecosystem structure 

(products derived from lidar, such as canopy height and biomass), composition (products 

derived from spectral data, such as vegetation indices and plant foliar traits), and function 

(data products derived from thermal data, such as evapotranspiration). Figure 12 illustrates 

several of the different products used in this study, highlighting the diversity of data sources 25 

and spatial resolutions. 

 

Mammoth Mmountain is an upper montane forest ecosystem, characterised by abundant 

Pinus contorta (lodgepole pine,), and also by mature stands of Abies magnifica (red fir, ), 

Pinus jeffreyi (Jeffrey pine, ), Pinus albicaulis (whitebark pine,), and Juniperus occidentalis 30 

(western juniper) (Potter, 1998). The elevation of our study areas ranged from 2700 to 2950 

m. Tree-kill soils are immature High Sierra soils formed from granite, pumice, rhyolite, and 

obsidian parent materials (McGee &and Gerlach, 1998).   
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2.1.1 Ground measurements 

We investigated soil CO2 fluxes within five actively degassing areas on Mammoth Mountain 

documented by Werner et al. (2014) in 2011 and 2012, which represents a period of relatively 

high emissions. (up to 2000 g m-2 day-1 of CO2). As described by Werner et al. (2014), fluxes 

were measured along fixed grid points using the accumulation chamber method (Rahn et al., 5 

1996). In situ measurements were obtained using a West Systems® (Florence, Italy) portable 

fluxmeter equipped with a LI-COR820 infrared gas analyzeranalyser. Based on statistical 

analysis, Werner et al. (2014) found soil CO2 fluxes measured within areas of volcanic CO2 

emissions to be significantly elevated over background areas that were dominated by soil 

respiration of CO2. Maps of soil CO2 flux were simulated from in-situ measurements at 1 m 10 

resolution using a sequential Gaussian simulation algorithm by these authors and we 

resampled their data to the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) 

resolution (13 m) using nearest neighbourneighbour resampling. Conventionally, studies of 

diffuse soil degassing of CO2 on volcanoes have emphasized understanding of the modes, 

locations, geometries, and changes in volcanic flank degassing for purposes of 15 

volcanologicalvulcanological research, hazard assessment, and monitoring. In many cases, 

volcanologists have focussed on areas associated with sufficient emissions of heat and CO2 

that vegetation has been killed off. In this study however, we focussed on vegetated areas 

where somewhat more mildly enhanced levels of volcanic CO2 emissions into the forest 

ecosystems might be beneficial for plant growth, rather than adverse.  As such, we 20 

investigated zones and gradients around tree-kill areas, excluding areas that were barren or 

contained dead trees by filtering by fractional vegetation cover, where appropriate.  The tree-

kill areas have local soil conditions that are not representative of the larger ecosystem. In 

addition, because tree-kill areas on Mammoth Mountain are largely associated with “cold” 

CO2 emissions, we completely avoided confounding influences of hydrothermal heat or 25 

acidic vapour emission on ecosystem response. Indeed, tThere is no significant H2S nor any 

SO2 present at soil levels at this site, and CO2 makes up ~99% of the gas by volume; see, for 

example, data in (Sorey et al 1998, Werner et al, 2014), and a number of papers on volcanic 

degassing at Mammoth Mountain (Lewicki 2006, 2007, 2008, 2012, 2014). The remaining 

1% is made up of N2 and O2.  30 

 

The use of a high-spatial-resolution time-averaged (to limit the influence of varying 

meteorological conditions) map of canopy-level atmospheric CO2 concentration would be 

most applicable to assess ecosystem response to elevated atmospheric CO2 concentrations.  

However, such maps are unavailable. We therefore took advantage of the extensive record of 35 

soil CO2 fluxes available for Mammoth Mountain. Although the effects of elevated CO2 in 

the soil may be difficult to de-convolve from elevated CO2 in the atmosphere, we treat their 

effects uniformly.  Implications of this are discussed below. 
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There is no significant H2S nor any SO2 present at soil levels at this site, and CO2 makes up 

~99% of the gas by volume; see, for example, data in (Sorey et al 1998, Werner et al, 2014), 

and a number of papers on volcanic degassing at Mammoth Mountain (Lewicki 2006, 2007, 

2008, 2012, 2014). Nitrogen is measured in small quantities (~1%).  5 

 

Although the AVIRIS, MASTER, and ASO lidarairborne datasets cover a wider region, only 

points with associated soil CO2 flux measurements were used to derive our models. The CO2 

flux measurements were spatially resampled to match the resolution of the other datasets, 

which resulted in small estimations with low confidence along the edges. To avoid spurious 10 

model fits, edge points with CO2<5 g. m-2. d-1 were excluded, where the CO2 range is 

[0,2000] g. m-2. d-1. In the remainder of this manuscript, analysed points with elevated CO2 

flux will be referred to as eCO2.  

2.1.2 AVIRIS  

The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Classic instrument acquires 15 

data from 400 to 2500 nm in 224 contiguous spectral channels. AVIRIS imagery was 

acquired over Mammoth in October 2014; this flight was chosen from a number of possible 

surveys of the area to minimize snow cover, and also because of its temporal proximity to the 

eCO2 ground measurements. The standard level 2 (L2) atmospherically corrected reflectance 

data (Thompson et al., 2015) was used (available from https://aviris.jpl.nasa.gov/), and the 20 

data had a spatial resolution of 13 m. This data was collected as part of the NASA HyspIRI 

Preparatory Airborne Campaign. 

 

Vegetation indices 

Vegetation indices are commonly used as an indicator of vegetation health and/or greenness. 25 

While many vegetation indices are related, they differ enough to be considered independent 

variables. E.g. some account for soil moisture, others weight plant greenness more heavily. 

This was an exploratory effort in investigating the effects of CO2 on any measure of plant 

function, composition, and structure, and so we attempted to cover all avenues of 

investigation. The following indices were derived from the AVIRIS spectral data: 30 

 The Normalized Difference Vegetation Index (NDVI)  

 Simple Ratio Index 

 Enhanced Vegetation Index 

 Red Edge Normalized Difference Vegetation Index 

 Modified Red Edge Simple Ratio Index 35 

 Modified Red Edge Normalized Difference Vegetation Index 
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 Vogelmann Red Edge Index 1 

Each uses a ratio between narrow bands to represent vegetation health as a single index, and 

all are described more fully in (Thenkabail et al,., 2016). 

 

Foliar traits 5 

The chemical composition of plants affects light interactions, especially in the short-wave 

infrared (Singh et al., 2015). Therefore, imaging spectroscopy can be used to map key 

vegetation properties, especially those affecting carbon and nutrient interactions. Spectral 

features, derived from data such as AVIRIS, have been shown to correlate significantly with 

certain chemicals and plant properties, such as carbon, nitrogen, nitrogen isotope 15, Leaf 10 

Mass per Area (LMA), cellulose, and acid digestible lignin (Singh et al.., 2015). These 

properties are associated with photosynthesis, light-harvesting ability, nutrient fluxes, and can 

be used to characterise vegetation responses to disturbances or climate trends (Townsend et 

al., 2008). 

  15 

The data were first corrected for its bi-directional reflectance distribution function (BRDF), 

using the Ross-Thick BRDF model with a quadratic volumetric scattering term (Roujean et 

al.., 1992; Lucht et al.., 2000). In situ vegetation chemical measurements, along with 

propagated uncertainties, were used to derive partial least squares regression models for each 

trait. Since these equations were derived in the nearby area of the Sierra Nevada Mountains 20 

(**more info here),, these equations were applied to the BRDF-corrected AVIRIS data used 

in this study. 

 

Infeasible negative numbers were removed for the modelling. 

2.1.3 MASTER 25 

The MODIS/ASTER (MASTER) airborne simulator acquires data in 50 channels between 

0.4 – 13 m. We utilized the 5five thermal channels (10 – 13 m), which had been processed 

to Level 2 (available from https://master.jpl.nasa.gov/). MASTER data were acquired in 

November 2013, with a 50m50 m spatial resolution.  

 30 

 Land Surface Temperature 

The five thermal bands from MASTER were used to calculate Land Surface Temperature 

(LST) in a standard Level 2 product. The acquired data were processed to radiance using 

MODTRAN 5.2 for the atmospheric correction, along with a water vapour scaling method 

(Tonooka, 2005). The Temperature Emissivity Separation (TES) algorithm was then used to 35 

derive LST and spectral emissivity (Gillespie et al., 1998).  

 



 

25 

 

The MASTER data are at coarser spatial resolution (50 m) compared to the other datasets 

(e.g., the working resolution for reprojection is the AVIRIS resolution of 13 m). An ideal 

dataset would have MASTER acquired at 13m13 m, or similar (~10 m; i.e., the scale of an 

individual tree canopy), but in order to build a comparable dataset for this analysis, we used 

two resampling methods: the standard nearest neighbour resampling; and a statistically 5 

principled method proposed in Ma et al. (2018). The statistical model proposed by Ma et al. 

(2018) represented LST as a combination of low-dimensional random effects linked with 

basis functions and a Gaussian graphical model (also called Gaussian Markov random field). 

As demonstrated by the authorsMa et al. (2018), this model provides a flexible and 

computationally efficient way to characterize potentially complex and nonstationary spatial 10 

variability. The parameters of the underlying statistical model were fitted to MASTER LST 

and ET data at 50 m resolution, using maximum likelihood estimation via an Expectation-

Maximization (EM) algorithm. The resampled data at 13 m spatial resolution were then 

generated via conditional statistical simulation in which we required that when aggregated 

back to the original coarse resolution, the resampled data matched the original MASTER data 15 

exactly.  

 

Evapotranspiration 

Evapotranspiration (ET) is the key water variable in ecosystem functioning, indicating plant 

water use and loss (Fisher et al., 2017). In this study, ET was calculated using the PT-JPL 20 

retrieval (Fisher et al., 2008), which partitions ET into canopy transpiration, soil evaporation, 

and interception evaporation by transforming potential ET (Priestley &and Taylor, 1972) into 

actual ET using ecophysiological constraints. The ECOSTRESS ET retrieval system was 

used to incorporate MASTER LST as the thermal input (Fisher et al., 2015); additional 

ancillary data were incorporated from MODIS and Landsat to constrain meteorological and 25 

phenological controls on ET (Verma et al., 2016; Famiglietti et al., 2018; Ryu et al., 2011; 

Kobayashi et al., 2008). The final ET product used here was only the canopy transpiration 

component (referred to as ET throughout), as our analytical interest lies only in the vegetation 

response to eCO2. 

2.1.4 ASO 30 

The Airborne Snow Observatory (ASO, http://aso.jpl.nasa.gov) is a coupled lidar (Riegl 

Q1560) and spectrometer (CASI-1500) mounted on a King Air A90 aircraft, and was 

originally developed to monitor snow in the mountains for water resource management 

(Painter et al., 2016). The Riegl Q1560 is a dual scanning lidar with two 1064 nm laser 

sources; each scanner is tilted in the along-track direction by 8 and the cross-track direction 35 

by 14 for enhanced retrieval of vertical surfaces. On June 27, 2017 ASO surveyed 

Mammoth Mountain, retrieving comprehensive lidar point cloud data at a mean of 7.8 pt. m-2 
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(max. value ~60 pt. m-2). Riegl RiPROCESS software was then used to a) extract point cloud 

data from raw waveforms (RiANALYZE) using the RiMTA Multiple Time Around 

algorithm and the RLMS Simple Classification Procedure for classification (SCP1), b) 

georeference the point cloud (RiWORLD), and c) export the point cloud to LAS 1.2 in UTM 

projection (RiWORLD).  5 

 

Digital Terrain Model 

The ASO lidar point cloud data were filtered to remove outliers by applying an elevation 

filter to eliminate points that exceed ±100 m from a baseline digital terrain model (DTM) that 

was obtained from the USGS (United States Geological Survey). The ASO data processing 10 

chain includes the identification of ground and off-ground points using the Multiscale 

Curvature Classification algorithm (Evans &and Hudak, 2007) and the calculation of a DTM 

(3m3 m x 3m3 m) that corresponds to the bare soil surface as interpolated from the lidar 

points classified as ground. Any data voids were then in-filled using search windows that 

were centred on each void pixel.  15 

 

Slope and Aspect 

The slope (steepness) and aspect (direction) were derived directly from the DTM with the 

terrain analysis processing tool provided by QGIS. These geo-algorithms use a first-order 

derivative estimation to calculate the slope angle for each pixel in degrees relative to the 20 

horizontal plane and the slope exposition in degrees counter-clockwise from north. 

Aspect was processed to account for circular angles, by considering: 

𝐾1 =  sin(𝛼 + (90 − 𝑑)) + 1 (1) 

𝐾2 =  cos(𝑑 −  𝛼) + 1 (2) 

where 𝛼 is the aspect derived from the DTM as described above, and 𝑑 is the prevailing wind 25 

direction. In the absence of local data, we assumed the prevailing wind direction to be 270 

(e.g. Anderson &and Farrar, 2001; Lewicki et al., 2008; Lewicki &and Hilley, 2014). (Note, 

the results presented below were not sensitive to this assumption.) 

 

Canopy Height and Biomass 30 

The aboveground biomass (AGB) map (30 m x 30 m) was calculated by integrating ASO 

lidar measurements on forest structure and field inventory data into an allometric equation 

developed by (Garcia et al., (2017):  

𝐴𝐺𝐵 = 11.50 × 𝑀𝐶𝐻1.20 × 𝐹𝐶0.88 (3) 

𝐴𝐺𝐵 = 11.50 × 𝑀𝐶𝐻1.20 × 𝐹𝐶𝐶0.88 (3) 

where MCH and FC are lidar-derived maps of mean canopy height and fractional cover, 35 

respectively. Eq. 3 was calibrated using AGB reference values derived from 69 field 
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inventory plots located in the Stanislaus National Forest and Yosemite National Park, Sierra 

Nevada, California. To compute the lidar-derived maps, we first normalized the ASO lidar 

point cloud to calculate the effective height of vegetation by removing the effect of 

topography using the DTM described here above. Then, we used the normalized point cloud 

to calculate a canopy height model (CHM, 1m x 1m) by selecting the highest lidar point 5 

within each grid cell. . Finally, the MCH was calculated by averaging the CHM within each 

30 m cell, whereas the FCC was computed as the ratio of grid cells covered by vegetation 

(i.e. MCH>2 m) to the total number of cells. Note that we defined both MCH and FC with a 

grid cell size of 30 m in order to agree with the size of the field samples (Garcia et al., 2017). 

We assumed that Eq. 3 was transferable to our study site because the calibration plots are 10 

located only 80 km apart and they are both populated by vegetation of the upper montane and 

subalpine biotic zones. 

 

2.1.5 Compiling the Dataset 

The data were first processed to create derived products, and then geolocated to the AVIRIS 15 

native resolution of 13 m. That is, for each AVIRIS pixel, the other datasets were resampled 

and reprojected so that every pixel is associated with a vector of remotely sensed and derived 

values. Datasets with finer resolution (soil CO2 flux and lidar) were averaged using the 

nearest neighbour principle. Derived products with coarser resolution (fractional cover, 

biomass, and evapotranspiration) were resampled using nearest neighbour resampling (e.g. 20 

the same biomass value may cover multiple AVIRIS pixels). Because its pixels were the 

largest, ET was also resampled using a statistically based method, described above in Section 

2.1.3. We note that although the downscaling approach is robust and statistically sound, we 

acknowledge that our statistical estimates involving ET will include some uncertainty due to 

spatial resolution.  25 

 

Once all pixels had been resampled, we had a total of 5520 data points. For certain 

experiments we found it necessary to threshold by fractional vegetation cover (FC>0.7; 

n=55), although the full dataset was used wherever possible.  

 30 

The dates of acquisition also differed across datasets. The soil CO2 flux datasets used in this 

study were measured during a peak in CO2 emissions (Werner et al., 2014), and this peak in 

emissions which iis thought to affect future plant growth after the fact. However, we are 

observing a snap shot of vegetation function within a zone small enough to be influenced by 

the same meteorological inputs, and our models have accounted for confounding factors such 35 

as slope, elevation, and aspect. Therefore, we considered measurements to be relative on a 

spatial scale, by comparing neighbouring pixels. The topographic confounders and the 
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fractional cover are derived from the lidar data acquired 4four years after the MASTER data; 

however, we do not expect changes in the terrain during that time period, and tree presence is 

unlikely to have changed significantly. 

2.2 Statistical Modelling 

The variables assessed included: vegetation indices; plant foliar traits; evapotranspiration; 5 

canopy height; and, biomass. Given this combination of variables, we tested whether changes 

in eCO2 were associated with significant changes in vegetation. We performed a series of 

multiple linear regressions using eCO2 as a predictor of various vegetation variables; in 

particular, regression ensembles build ensemblescollections of linear regression models, 

utilizing different predictor combinations, including multiplication of predictor variables. To 10 

control for confounding variables including elevation, slope, and aspect, (which are 

topographic proxies for temperature, moisture, and light, respectively)), we included them as 

predictors in the model. Then, the regression coefficient estimate for eCO2 is an estimate of 

the change in the response variable due to a change in eCO2, holding all other variables in the 

model (the confounders) constant. Random forests were investigated, and found to produce 15 

similar results. For ease of interpretation, we present here the results of the linear regression 

ensembles.   

 

Fractional vegetation cover (FC; derived from the lidar) was considered a proxy for 

vegetation presence. The geometric variables elevation, slope, and aspect were also derived 20 

from the lidar point cloud, as described above. Figure 23 illustrates the stratified behaviour of 

NDVI as coloured by the four confounding variables. There is a particularly clear separation 

for fractional cover, which reinforces an expected result: eCO2 had negligible effect on 

vegetation indices and other variables over bare ground, but showed higher impacts on fully 

vegetated pixels. Therefore, we model each vegetation variable, 𝑉, as 25 

 

𝑉 = 𝑏1𝐶 + 𝑏2𝐹 +  𝑏3 𝑆 + 𝑏4 𝐴 +  𝑏5 𝐸 + 𝑓(𝐶, 𝐹, 𝑆, 𝐴, 𝐸) +  𝜀 (4) 
 

where 𝐶 is the elevated soil CO2 flux, 𝐹 is the fractional vegetation cover, 𝑆 is the slope, 𝐴 is 

the aspect, 𝐸 is the elevation, and 𝜀 ~ 𝑁(0, 𝜎2) is random error. The function 𝑓(∙) describes 30 

relationships between the predictor variables, which for this model is limited to the first order 

interactions:  

 

𝑓(𝐶, 𝐹, 𝑆, 𝐴, 𝐸) = 𝑏6 𝐶 ∙ 𝐹 +  𝑏7 𝐶 ∙ 𝑆 +  𝑏8 𝐶 ∙ 𝐴 + 𝑏9 𝐶 ∙ 𝐸 +  𝑏10 𝐹 ∙ 𝑆 + ⋯ (5) 
 35 

Our hypothesis is  𝐻𝐴: 𝑏1 ≠ 0, that is, that the effect of eCO2 on vegetation variable 𝑉 
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is different from zero. Our null hypothesis is then 𝐻0: 𝑏1 = 0. 
 

Certain other confounding variables may affect the modelled relationships. The following 

scenarios and/or variables were also tested as confounders, but did not affect the model 

outcome: pixel position; site number; and species (plant species were estimated by 5 

performing an unsupervised classification on the AVIRIS data). The eCO2 dataset was also 

shifted to simulate winds and atmospheric pressure (Ogretim et al., 2013). This did not have 

an impact on the results. 

 

Additionally, diurnal patterns of mountain slope air flows may dilute and enrich the bulk air 10 

mass the trees are exposed to with respect to CO2 concentrations (Pypker et al., 2007). If 

these air flow patterns are strong, they may drain the local CO2 enhancement during morning 

and evening hours, when these flow events are usually strongest. However, due to the 

constant nature of these localized enhanced emissions, the gradient, if it was diluted by such 

effects, re-establishes itself during calmer daytime and night-time hours, as is evident by the 15 

“volcanic diffuse CO2 emission” signal being detectable from airborne in-situ measurements 

above the investigated sites as well (Gerlach et al. 1999).  

 

The eCO2 dataset was also shifted to simulate winds and atmospheric pressure (Ogretim, et 

al., 2013). This did not have an impact on the results.  20 

 

When evaluating the dynamics between different variables, it is assumed that the study from 

which our ground measurements were derived (Werner et al., 2014), covered most of the 

known CO2 diffuse emission areas, and so the remainder of the scene exists as a control. The 

control pixels were also thresholded according to the range of the confounding variables 25 

found for the eCO2 points. Therefore, we considered only control points with elevation, 

slope, and aspect values, respectively, between 2700 and 2950 m, less than 350, and less 

than 350.  

3 Statistical Estimation 

Although the models were run for 42 explanatory variables (including additional vegetation 30 

indices, foliar traits, and other vegetation descriptors), for the sake of brevity we only present 

the best performing variables (traits with significant p-values are shown, and for all other 

variables, those with significant p-values and R2>0.5). For the variables shown in Table 2, the 

p-value of the eCO2 term, 𝑏1, was for each model <0.05, and in most cases <<0.05. The most 

significant predictor was determined by ordering terms by p-values.  35 
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As the confounding variables are expected to drive the behaviour of ecosystem properties, a 

reduced eCO2 “rank” (in terms of p-value significance) does not negate the impact of eCO2 in 

the models; in fact, each ecosystem variable was strongly influenced by increasing eCO2, 

given the low p-values for the eCO2 coefficient in each model. The rank of each predictor 

variable is given in Table 3. Since multiplicative terms are allowed, two terms in a single 5 

ranking column (say, slope and fractional cover) means that the multiplication between the 

two terms is the term with the lowest p-value. To reduce the complexity of the table, each 

variable is listed only once, in order of first appearance, whether singly or as a product.  

4 Results 

4.1 Structure: Canopy Height and Biomass 10 

Canopy height and biomass were well accurately modelled with high R2, as seen in Table 2 

and Figure 34, although eCO2 was the least significant predictor. In each case, eCO2 was still 

regarded as statistically significant, but had lower predictive power than the topographic 

variables.  

 15 

Figure 45 shows the predictor variable eCO2 against the predicted biomass. There is 

variability at low eCO2 levels, but overall a small decrease in biomass with increasing eCO2. 

This decrease appears to saturate, and is better fit by a logarithmic function, however, given 

that interactions between terms in the model is allowed, we do not necessarily expect a linear 

fit, since the eCO2 contribution to the model may be multiplied by other confounding 20 

variables. There is also a decrease in biomass variance. In other words, trees exposed to 

higher eCO2 are more similar. 

4.2 Composition: Vegetation Indices and Foliar traits 

The performance of different vegetation indices and foliar traits varied. NDVI was best 

modelled, with an (R2 of= 0.68), and with eCO2 as the most significant predictor (p-value of 25 

1e-12). In general, the indices were better modelled than the traits. 

Figure 56 shows the predicted model for NDVI (a) and the canopy nitrogen concentration 

trait (b) against the eCO2 predictor variable. Modelled NDVI decreases with increasing eCO2, 

and there is a decrease in variance with increasing eCO2. The modelled canopy nitrogen 

concentration trait increases with increasing eCO2.  30 
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4.3 Function: Evapotranspiration 

Canopy transpiration was relatively well represented by the eCO2 model with an R2 = 0.55. 

For comparison, total ET was not well represented by the eCO2 model (R2 = 0.23), which is 

sensible, as eCO2 is expected to affect only plant transpiration and not soil evaporation. eCO2 

was the second most significant predictor, with fractional vegetation cover the most 5 

significant. Given that MASTER data were originally acquired at a much coarser resolution 

(50 m) than the eCO2 ground data (1 m), and that both were resampled to 13 m resolution for 

the overall consistent analysis, there may have been error introduced due to the resampling. 

This effect is seen by the much lower model fit with the statistical resampling, although the 

predicted models follow the same trend. In the remainder of the manuscript, references to ET 10 

refer to the data resampled using nearest neighbour resampling.  

Figure 67 shows the ET predicted by the model for the predictor variable eCO2. There is a 

decrease in ET for increasing eCO2, along with a decrease in variance. 

4.4 Ecosystem synergies  

Given that many of the vegetation indices and traits are only appropriate in the presence of 15 

vegetation, a fractional cover threshold of 0.7 was used for the eCO2 sample, for the sake of 

evaluating the dynamics between modelled variables. With this threshold, only 55 data points 

remained, and so the sample size is too small to make claims of statistical significance. 

Therefore, we present the following results as interesting observations that may inform future 

data acquisition. 20 

 

Figure 78 shows the dynamics between variables in the entire scene (i.e., non-elevated, 

background soil CO2) versus the points with eCO2 measurements. It is important to note that 

in each sub-figure, independent data sources are used to avoid showing intrinsically 

correlated datasets. Fractional cover and biomass are derived from the ASO lidar data; the 25 

vegetation trait data and foliar traits are derived from AVIRIS imagery; and ET is derived 

from MASTER data. In this case, the variables shown are directly as observed (or derived 

directly from the data source).  

 

We observed interesting dynamics between ecosystem variables, suggesting great potential 30 

for future research. In the eCO2 subset, NDVI was, on average, lower than that observed for 

the same fractional cover in the control dataset (Figure 8 a). This is consistent with the model 

illustration of decreased greenness for increasing eCO2. Similarly, ET was lower in the eCO2 

subset for pixels with the same NDVI observed in the control, showing a greater degree of 

stress even when plants have the same greenness (Figure 8 b). In addition, the strong linear 35 

relationship between ET and NDVI appears to break down for the points affected by eCO2.  
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Canopy nitrogen in the eCO2 subset increased with fractional cover, unlike the control which 

remained flat, which again mimics the modelled data findings (Figure 8 c). ET was lower in 

the eCO2 subset for the same biomass, which implies that plants are doubly affected by the 

enhanced CO2 – the biomass decreases with increasing eCO2, and the ET decreases further 5 

with decreasing biomass (Figure 8 d). Again, the strong linear relationship between ET and 

biomass breaks down for those points affected by eCO2. These findings suggest complex 

relationships between ecosystem parameters in their response to increasing eCO2. 

5. Discussion 

Using airborne remotely sensed ecosystem properties against a ground measured database of 10 

eCO2 (volcanic excess CO2 emanating into the forest canopy through the soil), we evaluated 

the effects of increasing eCO2 on plant structure, function, and composition.  Our aims were 

to: (i) evaluate whether a passively degassing volcanic system is a viable means to study 

properties of ecosystems; (ii) determine if ecosystem variables are adequately detected using 

airborne data; and (iii) present key lessons learnt that can enable similar studies over different 15 

biomes.  

 

This study has provided initial observations of ecological responses to eCO2 that are 

measurable from airborne data. We found that: a) eCO2 was a significant predictor in 

regression ensemble models of ecosystem variables, and b) there were visual differences 20 

between the sites of increased eCO2 and the background image. This work also demonstrates 

that an active volcanic system is a viable way in which to study the CO2 effect on 

ecosystems.  

 

The regression ensemble model showed that eCO2 was a significant predictor for two 25 

structural variables (canopy height and biomass), nine composition variables (6 vegetation 

indices, 3 foliar traits), and a function variable (ET). Therefore, as hypothesisedhypothesized, 

eCO2 affects ecosystems in structure, composition, and function, all of which are detectable 

both with airborne observations as well as within a volcanically-derived eCO2 system. 

Further evaluation of the model showed that both canopy height and biomass decreased with 30 

increasing eCO2; the vegetation indices decrease with increasing eCO2; canopy nitrogen 

concentration increases; LMA decreases; Carbon decreases; and ET decreases. 

 

Some of these observations contrasted with results found in other published studies, while 

others agreed. For instance, our study found a decrease in NDVI with increasing eCO2, which 35 

correlates to the multispectral satellite findings of Rouse et al.,. (2010) and Cholathat et al., 
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(2011). In some cases, the decrease others have found can be explained by the tree-kill effect, 

where vegetation is removed. However, by accounting for fractional cover in our models, we 

have shown that NDVI decreases independently from fractional cover (see in Figure 78). This 

shows that, regardless of whether the number of trees changes, the greenness of individual 

trees is reduced. This finding is in direct contrast with the CO2 fertilization hypothesis which 5 

states that rising CO2 has a positive effect on plant growth and productivity due to increased 

availability of carbon, and which has been shown using field data (Huang et al., 2007; Zhu et 

al., 2016). However, this decrease in NDVI could also be explained by a reduction in leaves, 

rather than a reduction in leaf health, due to more efficient leaves (e.g., higher nutrient 

concentration, more water use efficient in water use). 10 

 

The decrease in canopy height and biomass agrees with the tree-ring study done by (Biondi 

&and Fessenden,  (1999), which also found slower Lodgepole Pine growth rates in high CO2 

emission areas on Mammoth Mountain. However, a study by (Smith et al., . (2013) found an 

increase in biomass in the mixed-species temperate forest FACE experiment. In that 15 

experiment, there was large variation between and within species, and the experiment was 

limited to 4four years. Perhaps a long-term species composition shift due to eCO2 was the 

cause of the change in biomass in our study, but we do not have individual tree species-level 

data to support this hypothesis. 

 20 

Our model showed an increase in canopy nitrogen, which could indicate species selection or 

individual plant optimization, given the decrease in NDVI, biomass, and ET. Canopy 

nitrogen is associated with plant’s investment in photosynthesis (Singh et al., 2015). We also 

found an increase in canopy nitrogen relative to fractional cover, showing that the change in 

nitrogen was not impacted by an increase in overall vegetation for those sites (Figure 78). 25 

Tercek et al. (2008) noted that Dichanthelium lanuginosum (hot springs Panicgrasspanic 

grass) in Yellowstone had made physiological adjustments to photosynthetic enzymes in 

response to long-term exposure to CO2, and a study of ice cores showed a 40% decrease in 

stomatal density over the last 200 years, which paralleled an increase in global CO2 

(Woodward, 1987).  However, Sharma &and Williams (2009) evaluated vegetation naturally 30 

exposed to CO2 in Yellowstone National Park, and found reduced nitrogen at a leaf level in 

Pinus contortus (Lodgepole Pines,Pine), and increased nitrogen at a leaf level for Linaria 

dalmatica (Dalmation Toadflax.; an invasive, non-native herb). Once again, the species-level 

differences highlight the need for remote sensing analysis over areas that encompass wide 

species variation, in order to understand overall trends.  35 

 

Kimball, et al. (1998) found a slight increase in ET in a FACE experiment over cotton fields, 

but that increase was within the error of the ET estimation, and so was not deemed 
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statistically significant. In contrast, (Nendel, et al., . (2009) found a decrease in ET, and an 

increase in dry above-ground biomass over a FACE crop rotation experiment. In this study, 

we found a decrease in ET. In addition, we found a decrease in ET relative to both NDVI and 

biomass, when comparing the points affected by eCO2 to those unaffected points in the 

surrounding area. The unaffected sites showed a positive linear relationship between ET and 5 

both NDVI and biomass, which appeared to break down for points affected by eCO2 in both 

relationships. 

 

The combination of lower NDVI, higher canopy nitrogen, and higher ET suggests a canopy 

that uses less water with rising CO2CO2 , resulting in higher water use efficiency, with a 10 

nutrient rich canopy. Since leaves are stronger and more efficient, fewer are required for 

photosynthesis. While biomass increased slightly, the more obvious change was the decrease 

in the variance of biomass, which points to alignment to more similar trees with elevated 

CO2.  

 15 

High fluxes of CO2 through soils in “kill zones” on Mammoth Mountain have likely impacted 

forest ecosystems through oxygen deprivation in soil pore space, inhibition of root respiration 

and soil acidification (Farrar et al., 1995; Qi et al., 1994; McGee &and Gerlach, 1998). Since 

we used soil CO2 flux as the predictor variable in the model, some of the observed ecosystem 

responses may therefore be due to the effects of high concentrations of CO2 on the soil 20 

environment or some combination of soil and atmospheric effects. However, by using 

fractional cover as an input to the model, and excluding the “kill zones” altogether to derive 

Figure 8, we are focusing on the CO2 gradient over vegetated areas around these zones, that 

are less unlikely to be due to affected by soil acidification. The Mammoth Mountain soil CO2 

flux dataset does, however, provide a record of CO2 emissions that is more stable in space 25 

and time than measurements of atmospheric CO2 concentrations. In particular, forest 

canopies will through time be exposed to eCO2 at highly variable levels, because the 

originally mostly invariant eCO2 once emitted through the soil into the sub-canopy 

atmosphere, is subject to highly variable dispersion from thermal and wind disturbances at 

minutes, diurnal, and seasonal scales (Staebler &and Fitzjarrald, 2004). In-canopy 30 

concentration measurements of eCO2 will therefore be highly variable, and especially if 

conducted instantaneously, may not be representative of the long-term relative exposure 

strength in the canopy. 

 

Vegetation at this site is also responding to the partial pressure of CO2 in the atmosphere, 35 

among other gases. A response above the asymptote of the Nnet photosynthetic rate versus 

internal CO2 partial pressure (A-Ci curve) would result in very little vegetation response to 

the partial pressures (Tissue, Griffin, and Ball 1999). However, the partial pressure even at 
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elevated molar concentration at Mammoth are about 60% of those at sea level. The fact that 

we see systematic ecosystem effects suggests that elevation is not on the flat part of the A-Ci 

curve. In other words, even if elevation were to reduce the CO2 effect, we still are seeing 

strong CO2 effects regardless, highlighting just how important and strong of a response we 

are able to detect.  5 

 

We will clarify that the effects should not necessarily be given a subjective description of 

‘negative’; rather, it is important to note that the CO2 fertilization effect is unlikely to 

continue indefinitely, particularly at the same rates that FACE studies have shown only in the 

short-term. All other experiments have been unable to show long-term effects. Our study 10 

suggests that over the scale of decades, some of these hypothesized greening or biomass 

increases may not be sustainable. Other results, such as an increase in canopy nitrogen with 

increasing CO2, do seem to remain consistent with our study, however. 

 

This exploratory study leveraged existing data acquired over Mammoth Mountain. We used 15 

ASO lidar, AVIRIS, and MASTER data to derive products that describe ecosystem structure, 

composition, and function, and used field eCO2 measurements to show that elevated CO2 was 

a significant predictor of ecosystem variables, including vegetation indices, plant foliar traits, 

biomass, and evapotranspiration. While our study has shown the promise of airborne remote 

sensing in detecting measurable ecosystem changes in forest ecosystems on and around a 20 

CO2-emitting volcanic system, it was also completed using an existing ad-hoc collection of 

data. The nature of the collection of data sources enabled us to understand the details of the 

data characteristics necessary for future studies.  

 

Key lessons learnt from this study include: 25 

1. Future campaigns should acquire all data at the same or similar resolution, at 

individual tree-scale 

2.1.More than 55 vegetated tree points are necessary in order to draw meaningful 

conclusions regarding the dynamics between variables 

3.1.Combining lidar and spectral data across a range of wavelengths yielded a more 30 

complete view than using any one data source alone. 

 

While this study is useful for showing the benefit of both a passively emitting volcanic 

system and airborne data for evaluating the ecosystem response to eCO2, we anticipate that 

more meaningful results would be obtained with all datasets acquired simultaneously, at the 35 

same resolution. ET in particular varies over short time periods due to the influence of 

meteorological inputs, and so multi-temporal acquisitions would provide a better overview of 

the ecosystem function. Other possible factors could affect this very complex system, some 
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of which have been discussed previously, including pH, oxidative stress, water/nutrient 

availability, extreme climate events, and plant vigour. More fieldwork and test sites would be 

needed to rule out many of these factors. Other data, such as photosynthesis, may also add to 

future analysis. We note that this study was exploratory, rather than definitive, and that this 

study was intended to identify both potential signals as well as design elements for further 5 

study. 

6. Conclusions 

This exploratory study used airborne remote sensing data, coupled with ground 

measurements of soil CO2 flux on a forested volcano, to derive relationships between rising 

CO2 emissions and ecosystem structure, function, and composition metrics. We have shown 10 

that passively emitting volcanic systems are viable environments in which to study CO2 

impacts on ecosystems, with eCO2 the most significant predictor in regression ensemble 

models of several ecological variables, including NDVI, canopy nitrogen concentration, ET, 

and biomass. When comparing differences between vegetation parameters affected by eCO2 

and those estimated over the background scene, we found contrasting patterns and dynamics 15 

between ecological variables, showing that a combination of different remote sensing 

platforms is capable of providing a comprehensive view of ecosystem responses to long-term 

elevated volcanic CO2.  

 

Key lessons learnt from this study include: 20 

1. Future campaigns should acquire all data at the same or similar resolution, at 

individual tree-scale 

2. MWell more than 55 vegetated tree points are necessary in order to draw meaningful 

conclusions regarding the dynamics between variables in Mammoth Mountain (which 

has one dominant tree species). The number of required points in other environments 25 

will vary according to ecosystem complexity, and will likely far exceed this number. 

3. Combining lidar and spectral data across a range of wavelengths yielded a more 

complete view than using any one data source alone. 
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Figure 1: The USGS has measured elevated soil CO2 flux at Horseshoe Lake for the past 

two decades (Werner et al., 2014). These values are consistently higher than the 

atmospheric CO2 measured by USGS California Volcano Observatory eddy covariance 

station at Horseshoe Lake at the time of AVIRIS overpass on October 21, 2014 5 

(indicated by a solid line for clarity within the figure). 
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Figure 2: A wealth of remotely sensed imagery has been acquired over Mammoth 

Mmountain. Some data products used in this study include (a) maps of soil CO2 flux 

simulated based on accumulation chamber measurements, shown overlain on aerial 

RGB image; (b) above-ground biomass derived from Airborne Snow Observatory 5 

(ASO) lidar; (c) evapotranspiration derived from the MODIS/ASTER (MASTER) 

airborne simulator; and (d) Normalized Difference Vegetation Index (NDVI) derived 

from Airborne Visible/Infrared Imaging Spectrometer (AVIRIS image). 
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Table 1: Data sources are shown along with the year in which they were acquired, the original resolution of the 

dataset, and the method by which it was resampled. All datasets were resampled to the AVIRIS resolution of 13m. 

Data source Year 

acquired 

Original 

resolution 

Resampling method 

Soil CO2 flux  2011-2012 1 m Nearest neighbour 

Canopy height 2017 1 m Nearest neighbour 

Vegetation indices 2014 13 m Original resolution 

Foliar traits 2014 13 m Original resolution 

Fractional cover 2017 30 m Nearest neighbour 

Biomass 2017 30 m Nearest neighbour 

Evapotranspiration 2013 50 m Nearest neighbour; 

Ma et al. (2018) 

resampling 

 

 

 5 
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Table 2: The best performing vegetation indices (VI) and traits are shown with the predictive significance of eCO2 in 

the model, and with their correlation with a regression ensemble that included elevation, slope, aspect, and fractional 

cover as confounding variables (n=5520). The most significant predictor was determined by ordering terms by p-

values. 

Variable Most 

significant 

predictor 

term 

Estimate 

for eCO2 

coefficie

nt 

Standard 

error for 

eCO2 

coefficient 

p-

valu

e for 

the 

eCO

2 

term 

Model R2  

Structure:       

Canopy height Slope, FC 6e-3 1e-3 4e-6 0.92  

Biomass FC 1e-1 2e-2 5e-6 0.83  

       

Composition (Vegetation 

indices): 

      

Normalized Difference 

Vegetation Index (NDVI) 

eCO2 -6e-5 8e-6 1e-

12 

0.68  

Red Edge Normalized 

Difference VI 

eCO2 -3e-5 6e-6 1e-9 0.67  

Modified Red Edge 

Normalized Difference VI 

eCO2 -7e-5 6e-6 2e-

27 

0.65  

Vogelmann Red Edge 

Index 1 

eCO2 -3e-5 1e-5 2e-3 0.64  

Enhanced Vegetation 

Index 

eCO2 -1e-4 1e-5 2e-

22 

0.62  

Modified Red Edge 

Simple Ratio Index 

FC -1e-4 2e-5 5e-

10 

0.61  

       

Composition (Plant foliar 

traits): 

      

Trait: Canopy nitrogen 

concentration 

Intercept -8e-3 1e-3 2e-7 0.45  

Trait: Carbon FC 3e-2 5e-3 5e-9 0.45  

Trait: Leaf Mass per Area 

(LMA) 

Aspect  3e-1 1e-1 6e-2 0.40  

       

Function:       

Formatted: Font color: Text 1

Formatted: No underline



 

54 

 

Evapotranspiration 

(nearest neighbour) 

FC  -8e-3 

 

1e-3 5e-

16 

0.55 

 

 

Evapotranspiration 

(statistical resampling) 

FC -3e-4 2e-3 8e-1 0.38  
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Variable Ordered predictor terms (from most to least significant) 

Structure:       

Canopy height 
Slope, 

FC 
Intercept Elevation eCO2 Aspect  

Biomass FC Elevation Slope Intercept eCO2 Aspect 

       

Composition 

(Vegetation 

indices): 

      

Normalized 

Difference 

Vegetation Index 

(NDVI) 

eCO2 FC Slope Aspect Elevation Intercept 

Red Edge 

Normalized 

Difference VI 

eCO2, FC Aspect Slope Intercept Elevation  

Modified Red 

Edge 

Normalized 

Difference VI 

eCO2 
FC, 

Elevation 
Intercept Aspect Slope  
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Vogelmann Red 

Edge Index 1 
eCO2, FC Intercept Aspect Elevation Slope  

Enhanced 

Vegetation Index 
eCO2 Intercept Slope 

Elevation, 

FC 
Aspect  

Modified Red 

Edge Simple 

Ratio Index 

FC eCO2 Intercept Slope Aspect 
Elevatio

n 

       

Composition 

(Plant foliar 

traits): 

      

Trait: Canopy 

nitrogen 

concentration 

Intercept 
eCO2, 

Elevation 
FC 

Slope, 

Aspect 
  

Trait: Carbon FC Elevation eCO2 Intercept Slope Aspect 

Trait: Leaf Mass 

per Area (LMA) 
Elevation FC Intercept 

eCO2, 

Slope 
Aspect  

       

Function:       



 

57 

 

Evapotranspirati

on (nearest 

neighbour) 

FC  eCO2 Elevation Slope Aspect Intercept 

Evapotranspirati

on (statistical 

resampling) 

FC Elevation Slope eCO2 Aspect Intercept 
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Figure 3: Relationships between many ecological variables, including NDVI, and eCO2 depend 

highly on confounding factors. The NDVI data is partitioned into quartiles and coloured such 

that, if z is the confounding variable (fractional cover, slope, aspect or elevation), then zQ1 is the 

first quartile of the confounding data; zmed is the median of the confounding data; and zQ3 is the 5 
third quartile. Partitioning by fractional cover yields clear separations in the response variable 

(a) fractional cover, as expected, since rising eCO2 will have a less measureablemeasurable 

Field Code Changed



 

59 

 

effect on sparse vegetation within the pixel. The impact of (b) slope, (c) elevation, and (d) aspect 

is less clear visually, but their contribution to the model is statistically significant. 

 
Figure 4: Canopy height is well modelled by the eCO2 model, with an R2=0.92, and the 

1-1 line shown in black. However, the very tallest trees are not well captured. 5 
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Figure 5: The biomass model prediction is shown for increasing eCO2. There is high 

variability at low eCO2 values, but overall there is a small, but apparent, decrease in 

biomass with increasing eCO2.  
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Figure 6: (a) The modelled NDVI prediction is shown for predictor variable eCO2. 

There is a decrease in NDVI for increasing eCO2, despite larger variance at low eCO2 

values. (b) The modelled canopy nitrogen concentration trait prediction is shown for 

predictor variable eCO2. There is a clear increase in canopy nitrogen concentration 5 

with increasing eCO2.  

Field Code Changed



 

62 

 

 
Figure 7: The normalized canopy transpiration prediction is shown against predictor 

variable eCO2, for training data with nearest neighbour resampling. There is a clear 

decrease in ET for increasing eCO2, with larger variance at low eCO2 values.  

 5 
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Figure 8: Ecosystem dynamics inside (blue data points) and outside (orange data points) of the eCO2 measurement boundaries 

contrast. (a) In the entire image, NDVI increases slightly with increasing fractional cover. In the small eCO2 subset, NDVI 

appears to decrease with increasing fractional cover. (b) In the entire image, evapotranspiration increases with increasing 

NDVI, whereas the small eCO2 subset seems to cover points with lower ET. (c) Across the entire image, the nitrogen trait 

remains constant with increasing fractional cover (thresholded at FC>0.7). In the small eCO2 subset, the nitrogen trait appears 

to increase with increasing fractional cover. (d) In the entire scene, evapotranspiration increases with increasing biomass. In 

the small eCO2 subset, the evapotranspiration seems to be lower, on average, for the same range of biomass values. 


