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Abstract. Borneo contains some of the world’s most biodiverse and carbon dense tropical forest, but this 750,000-km2 island 

has lost 62% of its old-growth forests within the last 40 years. Efforts to protect and restore the remaining forests of Borneo 

hinge on recognising the ecosystem services they provide, including their ability to store and sequester carbon. Airborne 35 

Laser Scanning (ALS) is a remote sensing technology that allows forest structural properties to be captured in great detail 

across vast geographic areas. In recent years ALS has been integrated into state-wide assessment of forest carbon in 

Neotropical and African regions, but not yet in Asia. For this to happen new regional models need to be developed for 

estimating carbon stocks from ALS in tropical Asia, as the forests of this region are structurally and compositionally distinct 
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from those found elsewhere in the tropics. By combining ALS imagery with data from 173 permanent forest plots spanning 

the lowland rain forests of Sabah, on the island of Borneo, we develop a simple-yet-general model for estimating forest 

carbon stocks using ALS-derived canopy height and canopy cover as input metrics. An advanced feature of this new model 

is the propagation of uncertainty in both ALS- and ground-based data, allowing uncertainty in hectare-scale estimates of 

carbon stocks to be quantified robustly. We show that the model effectively captures variation in aboveground carbons 5 

stocks across extreme disturbance gradients spanning tall dipterocarp forests and heavily logged regions, and clearly 

outperforms existing ALS-based models calibrated for the tropics, as well as currently available satellite-derived products. 

Our model provides a simple, generalised and effective approach for mapping forest carbon stocks in Borneo, and underpins 

ongoing efforts to safeguard and facilitate the restoration of its unique tropical forests. 

1 Introduction 10 

Forests are an important part of the global carbon cycle (Pan et al., 2011), storing and sequestering more carbon than any 

other ecosystem (Gibbs et al., 2007). Estimates of tropical deforestation rates vary, but roughly 230 million hectares of forest 

were lost per year between 2000 and 2012, and an additional 30% were degraded by logging or fire (Asner et al., 2009; 

Hansen et al., 2013). Forest degradation and deforestation causes substantial releases of greenhouse gases to the atmosphere 

– about 1-2 billion tonnes of carbon per year – which equates to about 10% of global emissions (Baccini et al., 2012). Even 15 

if nations de-carbonise their energy supply chains within agreed schedules, a rise of 2°C in mean annual temperature is 

unavoidable unless 300 million hectares of degraded tropical forests are protected, and land unsuitable for agriculture is 

reforested (Houghton et al., 2015). Signatories to the Paris agreement, brokered at COP21 in 2015, are now committed to 

reducing emissions from tropical deforestation and forest degradation (i.e., REDD+; Agrawal et al., 2011), whilst 

recognising that these forests also harbour rich biodiversity and support livelihoods for around a billion people (Vira et al., 20 

2015). 

Accurate monitoring of forest carbon stocks underpins these initiatives to generate carbon credits through REDD+ and 

similar forest conservation and climate change mitigation programs (Agrawal et al., 2011). Airborne laser scanning (ALS) 

has shown particular promise in this regard, because it generates high resolution maps of forest structure from which 

aboveground carbon density (ACD) can be estimated (Asner et al., 2010; Lefsky et al., 1999; Nelson et al., 1988; Popescu et 25 

al., 2011; Wulder et al., 2012). The principle of ALS is that laser pulses are emitted downwards from an aircraft, and a 

sensor records the time it takes for individual beams to strike a surface (e.g., leaves, branches or the ground) and bounce 

back to the emitting source, thereby precisely measuring the distance between the object and the airborne platform. 

Divergence of the beam means it is wider than leaves and allows penetration into the canopy, resulting is a 3D point cloud 

that captures the vertical structure of the forest. By far the most common approach to using ALS data for estimating forest 30 

carbon stocks involves developing statistical models relating ACD estimates obtained from permanent field plots to summary 

statistics derived from the ALS point cloud, such as the mean height of returns or their skew (Zolkos et al., 2013). These 
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“area-based” approaches were first used for mapping structural attributes of complex multi-layered forests in the early 2000s 

(Drake et al., 2002; Lefsky et al., 2002), and have since been applied to carbon mapping in several tropical regions (Asner et 

al., 2010, 2014; Baraloto et al., 2012; Jubanski et al., 2013; Longo et al., 2016; Réjou-Méchain et al., 2015; Vaglio Laurin et 

al., 2014).  

This paper develops a statistical model for mapping forest carbon, and its uncertainty, in Southeast Asian forests. We work 5 

with ALS and plot data collected in the Malaysian state of Sabah, on the north-eastern end of the island of Borneo (Fig. 1), 

which is an important testbed for international efforts to protect and restore tropical forests. Borneo lost around 62% of its 

old-growth forest in just 40 years as a result of heavy logging, and subsequent establishment of oil palm and forestry 

plantations (Gaveau et al., 2014, 2016). Sabah lost its forests at an even faster rate in this period (Osman et al., 2012), and 

because these forests are amongst the most carbon dense in the tropics, carbon loss has been considerable (Carlson et al., 10 

2012a, 2012b; Slik et al., 2010). In response to past and ongoing forest losses, the Sabah state government has recently taken 

a number of concrete steps towards becoming a regional leader in forest conservation and sustainable management. Among 

these was commissioning a new high-resolution wall-to-wall carbon map for the entire state (Asner et al., 2018), which will 

inform future forest conservation and restoration efforts across the region. Here we develop the ALS-based model that will 

underpin this new carbon map (Asner et al., 2018). 15 

The approach we take builds on the work of Asner and Mascaro (2014), who proposed a general model for estimating ACD 

(in Mg C ha-1) in tropical forests using a single ALS metric – the mean top-of-canopy height (TCH, in m) – and minimal 

field data inputs. The method relates ACD to TCH, stand basal area (BA; in m2 ha-1) and the community-weighted mean 

wood density (WD; in g cm-3) over a prescribed area of forest such as one hectare, as follows: 

𝐴𝐶𝐷𝐺𝑒𝑛𝑒𝑟𝑎𝑙 = 3.836 × 𝑇𝐶𝐻0.281 × 𝐵𝐴0.972 × 𝑊𝐷1.376  (1) 

Asner and Mascaro (2014) demonstrated that tropical forests from 14 regions differ greatly in structure. Remarkably, they 20 

found that a generalised power-law relationship could be fitted that transcended these contrasting forests types, once regional 

differences in structure were incorporated as sub-models relating BA and WD to TCH. However, this general model may 

generate systematic errors in ACD estimates if applied to regions outside the calibration range, and Asner and Mascaro 

(2014) make clear that regional models should be obtained where possible. Since South East Asian rainforests were not 

among the 14 regions used to calibrate the general model, and are phylogenetically and structurally distinct from Neotropical 25 

and Afrotropical forests (Banin et al., 2012), new regional models are needed before Borneo’s forest carbon stocks can be 

surveyed using ALS. Central to the robust estimation of ACD using ALS data is identifying a metric which captures 

variation in basal area among stands. Asner and Mascaro's (2014) power-law model rests on an assumption that basal area is 

closely related to top-of-canopy height, an assumption supported in some studies, but not in others (Coomes et al., 2017; 

Duncanson et al., 2015; Spriggs, 2015). The dominance of Asian lowland rainforests by dipterocarp species make them 30 

structurally unique (Banin et al., 2012; Feldpausch et al., 2011; Ghazoul, 2016) and gives rise to greater aboveground carbon 
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densities than anywhere else in the tropics (Avitabile et al., 2016; Sullivan et al., 2017), highlighting the need for new ALS-

based carbon estimation models for this region. 

Here we develop a regional model for estimating ACD from ALS data that underpins ongoing efforts to map Sabah’s forest 

carbon stocks at high resolution to inform conservation and management decisions for one of the world’s most threatened 

biodiversity hotspots (Asner et al., 2018; Nunes et al., 2017). Building on the work of Asner and Mascaro (2014), we 5 

combine ALS data with estimates of ACD from a total of 173 permanent forests plots spanning the major lowland 

dipterocarp forest types and disturbance gradients found in Borneo to derive a simple-yet-general equation for predicting 

carbon stocks from ALS metrics at hectare resolution. As part of this approach we also develop a novel framework for 

propagating uncertainty in both ALS- and ground-based data, allowing uncertainty in hectare-scale estimates of carbon 

stocks to be quantified robustly. To assess the accuracy of this new model, we then benchmark it against existing ALS-10 

derived equations of ACD developed for the tropics (Asner and Mascaro, 2014), as well as satellite-based carbon maps of the 

region (Avitabile et al., 2016; Pfeifer et al., 2016). 

2 Materials and methods 

2.1 Study region 

The study was conducted in Sabah, a Malaysian state in northern Borneo (Fig. 1a). Mean daily temperature is 26.7 °C 15 

(Walsh and Newbery, 1999) and annual rainfall is 2600-3000 mm (Kumagai and Porporato, 2012). Severe droughts linked to 

El Niño events occur about once every ten years (Malhi and Wright, 2004; Walsh and Newbery, 1999). Sabah supports a 

wide range of forests types, including dipterocarp forests in the lowlands that are among the tallest in the tropics (Fig. 1b; 

Banin et al., 2012). 

2.2 Permanent forest plot data 20 

We compiled permanent forest plot data from five forested landscapes across Sabah (Fig. 1a): Sepilok Forest Reserve, 

Kuamut Forest Reserve, Danum Valley Conservation Area, the Stability of Altered Forest Ecosystems (SAFE) experimental 

forest fragmentation landscape (Ewers et al., 2011), and Maliau Basin Conservation Area. Here we provide a brief 

description of the permanent plot data collected at each site, which are summarized in Table 1. Additional details are 

provided in Supplement S1. 25 

2.2.1 Sepilok Forest Reserve 

The reserve is a protected area encompassing a remnant of coastal lowland old-growth tropical rainforest (Fox, 1973) and is 

characterized by three strongly contrasting soil types that give rise to forests that are structurally and functionally very 

different (Dent et al., 2006; DeWalt et al., 2006; Nilus et al., 2011): alluvial dipterocarp forest in the valleys (hereafter 

alluvial forests), sandstone hill dipterocarp forest on dissected hillsides and crests (hereafter sandstone forests), and heath 30 

Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-74
Manuscript under review for journal Biogeosciences
Discussion started: 9 March 2018
c© Author(s) 2018. CC BY 4.0 License.



5 

 

forest on podzols associated with the dip slopes of cuestas (hereafter heath forests). We used data from nine permanent 4 ha 

forest plots situated in the reserve, three in each forest type. These were first established in 2000–01 and were most recently 

re-censused in 2013–15. All stems with a diameter (D, in cm) ≥ 10 cm were recorded and identified to species (or closest 

taxonomic unit). Tree height (H, in m) was measured for a subset of trees (n = 718) using a laser range finder. For the 

purposes of this analysis, each 4 ha plot was subdivided into 1-ha subplots, giving a total 36 plots of 1-ha in size. The corners 5 

of the plots were geolocated using a Geneq SXBlue II Global Positioning System (GPS) unit, which uses satellite-based 

augmentation to perform differential correction and is capable of a positional accuracy of less than 2 m (95% confidence 

intervals). 

2.2.2 Kuamut Forest Reserve 

The reserve is a former logging area that is now being developed as a restoration project. Selective logging during the past 10 

30 years has left large tracts of forest in a generally degraded condition, although the extent of this disturbance varies across 

the landscape. Floristically and topographically the Kuamut reserve is broadly similar to Danum Valley – with which it 

shares a western border – and predominantly consists of lowland dipterocarp forests. Within the forest reserve, 39 circular 

plots with a radius of 30 m were established in 2015–16. Coordinates for the plot centres were taken using a Garmin 

GPSMAP 64S device with an accuracy of ±10 m (95% confidence intervals). Within each plot, all stems with D ≥ 10 cm 15 

were recorded and identified to species (or closest taxonomic unit), and H was measured using a laser range finder. Because 

the radius of the plots was measured along the slope of the terrain (as opposed to a horizontally projected distance), we 

slope-corrected the area of each plot by multiplying by cos(θ), where θ is the average slope of the plot in degrees as 

calculated from the digital elevation model obtained from the ALS data. The average plot size after applying this correction 

factor was 0.265 ha (6% less than if no slope correction had been applied). 20 

2.2.3 Danum Valley Conservation Area 

The site encompasses the largest remaining tract of primary lowland dipterocarp forest in Sabah. Within the protected area, 

we obtained data from a 50 ha permanent forest plot which was established in 2010 as part of the Centre for Tropical Forest 

Science (CTFS) ForestGEO network (Anderson-Teixeira et al., 2015). Here we focus on 45 ha of this plot for which all 

stems with D ≥ 1 cm have been mapped and taxonomically identified (mapping of the remaining 5 ha of forest was ongoing 25 

as of January 2017). For the purposes of this study, we subdivided the mapped area into 45 1-ha plots, the coordinates of 

which were recorded using the Geneq SXBlue II GPS. In addition to the 50 ha CTSF plot, we also secured data from 20 

circular plots with a 30 m radius that were established across the protected area by the Carnegie Airborne Observatory 

(CAO) in 2017. These plots were surveyed following the same protocols as those described previously for the plots at 

Kuamut in Sect. 2.2.2. 30 
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2.2.4 SAFE landscape and Maliau Basin Conservation Area 

Plot data from three sources were acquired from the SAFE landscape and the Maliau Basin Conservation Area: research 

plots established through the SAFE project, plots used to monitor riparian buffer zones, and plots from the Global Ecosystem 

Monitoring (GEM) network (http://gem.tropicalforests.ox.ac.uk). As part of the SAFE project, 166 plots of 25 × 25 m in size 

were established in forested areas (Ewers et al., 2011; Pfeifer et al., 2016). Plots are organized in blocks which span a land-5 

use intensity gradient, ranging from twice-logged forests that are currently in the early stages of secondary succession within 

the SAFE landscape, to relatively undisturbed old-growth forests at Maliau Basin (Ewers et al., 2011; Struebig et al., 2013). 

Plots were surveyed in 2010, at which time all stems with D ≥ 10 cm were recorded and plot coordinates were taken using a 

Garmin GPSMap60 device (accurate to within ±10 m; 95% confidence intervals). Of these 166 plots, 38 were re-surveyed in 

2014, at which time all stems with D ≥ 1 cm were recorded and tree heights were measured using a laser range finder. Using 10 

these same protocols, a further 48 plots were established in 2014 along riparian buffer zones in the SAFE landscape. As with 

the SAFE project plots, riparian plots are also spatially clustered into blocks. The small size of the SAFE and riparian plots 

(0.0625 ha) makes them prone to high uncertainty when modelling carbon stocks from ALS (Réjou-Méchain et al., 2014), 

especially given the relatively low positional accuracy of the GPS coordinates. To minimize this source of error, we chose to 

aggregate individual plots into blocks for all subsequent analyses (n = 27, with a mean size of 0.5 ha). Lastly, we obtained 15 

data from six GEM plots – four within the SAFE landscape and two at Maliau Basin. The GEM plots are 1-ha in size and 

were established in 2014. All stems with D ≥ 10 cm were mapped, measured for height using a laser range finder, and 

taxonomically identified. The corners of the plots were georeferenced using the Geneq SXBlue II GPS. 

2.3 Estimating aboveground carbon density and its uncertainty 

Across the five study sites we compiled a total of 173 plots that together cover a cumulative area of 116.1 ha of forest. For 20 

each of these plots we calculated aboveground carbon density (ACD, in Mg C ha-1) following the approach outlined in the 

BIOMASS package in R (R Core Development Team, 2016; Réjou-Méchain et al., 2017). This provides a workflow to not 

only quantify ACD, but also propagate uncertainty in ACD estimates arising from both field measurement errors and 

uncertainty in allometric models. The first step is to estimate the aboveground biomass (AGB, in kg) of individual trees using 

Chave et al.'s (2014) pantropical biomass equation: 𝐴𝐺𝐵 =  0.067 × (𝐷2 × 𝐻 × 𝑊𝐷)0.976 . For trees with no height 25 

measurement in the field, H was estimated using a locally calibrated H–D allometric equations, while wood density (WD, in 

g cm-3) values were obtained from the global wood density database (Chave et al., 2009; Zanne et al., 2009; see Supplement 

S1 for additional details on both H and WD estimation). 

In addition to quantifying AGB, Réjou-Méchain et al.’s (2017) workflow uses Monte Carlo simulations to propagate 

uncertainty in biomass estimates due to (i) measurement errors in D (following Chave et al.'s (2004) approach, where 95% of 30 

stems are assumed to contain small measurement errors that are in proportion to D, while the remaining 5% is assigned a 

gross measurement error of 4.6 cm), (ii) uncertainty in H–D allometries, (iii) uncertainty in WD estimates arising from 
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incomplete taxonomic identification and/or coverage of the global wood density database, and (iv) uncertainty in the AGB 

equation itself. Using this approach, we generated 100 estimates of AGB for each recorded tree. ACD was then quantified by 

summing the AGB of all trees within a plot, dividing the total by the area of the plot, and applying a carbon content 

conversion factor of 0.47 (Martin and Thomas, 2011). By repeating this across all simulated values of AGB, we obtained 100 

estimates of ACD for each of the 173 plots that reflect the uncertainty in stand-level carbon stocks (note that a preliminary 5 

analysis showed that 100 iterations were sufficient to robustly capture mean and standard deviation values of plot-level ACD, 

while also allowing for efficient computing times). As a last step, we used data from 45 plots in Danum Valley – where all 

stems with D ≥ 1 cm were measured – to develop a correction factor that compensates for the carbon stocks of stems with D 

< 10 cm that were not recorded (Phillips et al., 1998; see Eq. (S2) in Supplement S1). 

2.3.1 Stand basal area and wood density estimation 10 

In addition to estimating ACD for each plot, we also calculated basal area (BA, in m2 ha-1) and the community-weighted 

mean WD, as well as their uncertainties. BA was quantified by summing 𝜋 × (𝐷 2⁄ )2 across all stems within a plot, and then 

applying a correction factor that accounts for stems with D < 10 cm that were not measured (see Eq. (S3) in Supplement S1). 

In the case of BA, uncertainty arises from measurement errors in D, which were propagated through following the approach 

of Chave et al. (2004) described in Sect. 2.3. The community-weighted mean WD of each plot was quantified as ∑ 𝐵𝐴𝑖𝑗 ×15 

𝑊𝐷𝑖 , where BAij is the relative basal area of species i in plot j, and WDi is the mean wood density of species i. Uncertainty in 

plot-level WD reflects incomplete taxonomic information and/or lack of coverage in the global wood density database. 

2.4 Airborne laser scanning data 

ALS data covering the permanent forest plots described in Sect. 2.2 were acquired through two independent surveys, the first 

undertaken by NERC’s Airborne Research Facility (ARF) in November of 2014 and the second by the Carnegie Airborne 20 

Observatory (CAO) in April of 2016. Table 1 specifies which plots where flown with which system. NERC ARF operated a 

Leica ALS50-II LiDAR sensor flown on a Dornier 228-201 at an elevation of 1400–2400 m.a.s.l. (depending on the study 

site) and a flight speed of 120–140 knots. The sensor emits pulses at a frequency of 120 kHz, has a field of view of 12° and a 

footprint of about 40 cm. The average point density was 7.3 points m-2. The Leica ALS50-II LiDAR sensor records both 

discrete point and full waveform ALS, but for the purposes of this study only the discrete return data, with up to four returns 25 

recorded per pulse, were used. Accurate georeferencing of the ALS point cloud was ensured by incorporating data from a 

Leica base station running in the study area concurrently to the flight. The ALS data were pre-processed by NERC’s Data 

Analysis Node and delivered in LAS format. All further processing was undertaken using LAStools software 

(http://rapidlasso.com/lastools). The CAO campaign was conducted using the CAO–3 system, a detailed description of 

which can be found in Asner et al. (2012). Briefly, CAO–3 is a custom-designed, dual-laser full-waveform system that was 30 

operated in discrete return collection mode for this project. The aircraft was flown at 3600 m.a.s.l. at a flight speed of 120–

140 knots. The ALS system was set to a field of view of 34° (after 2° cut-off from each edge) and a combined-channel pulse 
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frequency of 200 kHz. The ALS pulse footprint at 3600 m.a.s.l. was approximately 1.8 m. With adjacent flight-line overlap, 

these settings yielded approximately 2.0 points m-2. Despite differences in the acquisition parameters of the two surveys 

which can influence canopy metrics derived from ALS data (Gobakken and Næsset, 2008; Roussel et al., 2017), a 

comparison of regions of overlap between the flight campaigns showed strong agreement between data obtained from the 

two sensors (Supplement S2). 5 

2.4.1 Airborne laser scanning metrics 

ALS point clouds derived from both surveys were classified into ground and non-ground points, and a digital elevation 

model (DEM) was fitted to the ground returns to produce a raster at 1 m resolution. The DEM was then subtracted from the 

elevations of all non-ground returns to produce a normalised point cloud, from which a canopy height model (CHM) was 

constructed by averaging the first returns. Finally, any gaps in the raster of the CHM were filled by averaging neighbouring 10 

cells. From the CHMs we calculated two metrics for each of the permanent field plots: top-of-canopy height (TCH, in m) and 

canopy cover at 20 m aboveground (Cover20). TCH is the mean height of the pixels which make up the surface of the CHM. 

Canopy cover is defined as the proportion of area occupied by crowns at a given height aboveground (i.e., 1 – gap fraction). 

Cover20 was calculated by creating a plane horizontal to the ground in the CHM at a height of 20 m aboveground, counting 

the number of pixels for which the CHM lies above the plane, and then dividing this number by the total number of pixels in 15 

the plot. A height of 20 m aboveground was chosen as previous work showed this to be the optimal height for estimating 

plot-level BA in an old-growth lowland dipterocarp forest in Sabah (Coomes et al., 2017). 

2.4.2 Accounting for geopositional uncertainty 

Plot coordinates obtained using a GPS are inevitably associated with a certain degree of error, particularly when working 

under dense forest canopies. However, this source of uncertainty is generally overlooked when attempting to relate field-20 

estimates of ACD to ALS metrics. To account for geopositional uncertainty, we introduced normally-distributed random 

errors in the plot coordinates. These errors were assumed to be proportional to the operational accuracy of the GPS unit used 

to geolocate a given plot: ±2 m for plots recorded with the Geneq SXBlue II GPS and ±10 m for those geolocated using 

either the Garmin GPSMap60 or Garmin GPSMAP 64S devices. This process was iterated 100 times, and at each step we 

calculated TCH and Cover20 across all plots. Note that for plots from the SAFE project and those situated along riparian 25 

buffer zones, ALS metrics were calculated for each individual 0.0625 ha plot before being aggregated into blocks (as was 

done for the field data). 

2.5 Modelling aboveground carbon density and associated uncertainty 

We started by using data from the 173 field plots to fit a regional form of Asner and Mascaro's (2014) model, where ACD is 

expressed as the following function of ALS-derived TCH and field-based estimates of BA and WD: 30 
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𝐴𝐶𝐷 = 𝜌0 × 𝑇𝐶𝐻𝜌1 × 𝐵𝐴𝜌2 × 𝑊𝐷𝜌3   (2) 

where 𝜌0−3 represent constants to be estimated from empirical data. In order to apply Eq. (2) to areas where field data are not 

available, the next step is to develop sub-models to estimate BA and WD from ALS metrics. Of particular importance in this 

regard is the accurate and unbiased estimation of BA, which correlates very strongly with ACD (Pearson’s correlation 

coefficient (ρ) = 0.93 across the 173 plots). Asner and Mascaro (2014) found that a single ALS metric – TCH – could be 

used to reliably estimate both BA and WD across a range of tropical forest regions. However, recent work suggests this may 5 

not always be the case (Duncanson et al., 2015; Spriggs, 2015). In particular, Coomes et al. (2017) showed that ALS metrics 

that capture information about canopy cover at a given height aboveground – such as Cover20 – were better suited to 

estimating BA. Here we compared these two approaches to test whether Cover20 can prove a useful metric to distinguish 

between forests with similar TCH but substantially different BA. 

2.5.1 Basal area sub-models 10 

Asner and Mascaro (2014) modelled BA as the following function of TCH: 

𝐵𝐴 =  𝜌0 × 𝑇𝐶𝐻  (3) 

We compared the goodness of fit of Eq. (3) to a model that additionally incorporates Cover20 as a predictor of BA. Doing so, 

however, requires accounting for the fact that TCH and Cover20 are correlated. To avoid issues of collinearity (Dormann et 

al., 2013), we therefore first modelled the relationship between Cover20 and TCH using logistic regression, and used the 

residuals of this model to identify plots that have higher or lower than expected Cover20 for a given TCH: 15 

ln (
𝐶𝑜𝑣𝑒𝑟20

1 − 𝐶𝑜𝑣𝑒𝑟20

) = 𝜌0 + 𝜌1 × ln(𝑇𝐶𝐻) 
 (4) 

Predicted values of canopy cover (𝐶𝑜𝑣𝑒𝑟̂
20) can be obtained from Eq. (4) as follows: 

𝐶𝑜𝑣𝑒𝑟̂
20 =

1

1 + 𝑒−𝜌0 × 𝑇𝐶𝐻−𝜌1
 

 (5) 

From this, we calculated the residual cover (Coverresid) for each of the 173 field plots as 𝐶𝑜𝑣𝑒𝑟20 −  𝐶𝑜𝑣𝑒𝑟̂
20, and then 

modelled BA as the following non-linear function of TCH and Coverresid : 

𝐵𝐴 =  𝜌0 × 𝑇𝐶𝐻𝜌1 × (1 + 𝜌2 × 𝐶𝑜𝑣𝑒𝑟𝑟𝑒𝑠𝑖𝑑)   (6) 

Eq. (6) was chosen after careful comparison with alternative functional forms. This included modelling BA directly as a 

function of Cover20, without including TCH in the regression. We discarded this last option as BA estimates were found to be 20 

highly sensitive to small variations in canopy cover when Cover20 approaches 1. 

2.5.2 Wood density sub-models  

Following Asner and Mascaro (2014), we modelled WD as a power-law function of TCH:  
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𝑊𝐷 = 𝜌0 × 𝑇𝐶𝐻𝜌1  (7) 

The expectation is that, because the proportion of densely-wooded species tends to increase during forest succession (Slik et 

al., 2008), taller forests should – on average – have higher stand-level WD values. While this explicitly ignores the well-

known fact that WD is also influenced by environmental factors that have nothing to do with disturbance (e.g., soils or 

climate; Quesada et al., 2012), we chose to fit a single function for all sites as from an operational standpoint applying forest 

type-specific equations would require information on the spatial distribution of these forest types across the landscape 5 

(something which may not necessarily be available, particularly for the tropics). For comparison, we also tested whether 

replacing TCH with Cover20 would improve the fit of the WD model. 

2.5.3 Error propagation and model validation 

Just as deriving accurate estimates of ACD is critical to producing robust and useful maps of forest carbon stocks, so too is 

the ability to place a degree of confidence on the mean predicted values obtained from a given model (Réjou-Méchain et al., 10 

2017). In order to fully propagate uncertainty in ALS-derived estimates of ACD, as well as robustly assessing model 

performance, we developed the following approach based on leave-one-out cross validation: (i) of the 173 field plots, one 

was set aside for validation, while the rest were used to calibrate models; (ii) the calibration dataset was used to fit both the 

regional ACD model [Eq. (2)], as well as of the BA and WD sub-models [Eq. (3, 6–7)]; (iii) the fitted models were used to 

generate predictions of BA, WD and ACD for the validation plot previously set aside. In each case, Monte Carlo simulations 15 

were used to incorporate model uncertainty in the predicted values. For Eq. (4) and (6), parameter estimates were obtained 

using the L-BFGS-B nonlinear optimization routine implemented in Python (Morales and Nocedal, 2011). For power-law 

models fit to log-log transformed data [i.e., Eq. (2) and (7)], we applied the Baskerville (1972) correction factor by 

multiplying predicted values by exp(𝜎2 2⁄ ), where σ is the estimated standard deviation of the residuals (also known as the 

residual standard error); (iv) model fitting and prediction steps (ii–iii) were repeated 100 times across all estimates of ACD, 20 

BA, WD, TCH and Cover20 that had previously been generated for each field plot. This allowed us to fully propagate 

uncertainty in ACD arising from field measurement errors, allometric models and geopositional errors; (v) lastly, steps (i–iv) 

were repeated for all 173 field plots.  

Once predictions of ACD had been generated for all 173 plots, we assessed model performance by comparing predicted and 

observed ACD values (ACDpred and ACDobs, respectively) on the basis of root mean square error (RMSE) – calculated as 25 

√
1

𝑁
∑ (𝐴𝐶𝐷𝑜𝑏𝑠 − 𝐴𝐶𝐷𝑝𝑟𝑒𝑑)

2𝑁
𝑖=1  – and relative systematic error (or bias), which we calculated as 

1

𝑁
∑ (

𝐴𝐶𝐷𝑝𝑟𝑒𝑑−𝐴𝐶𝐷𝑜𝑏𝑠

𝐴𝐶𝐷𝑜𝑏𝑠
)𝑁

𝑖=1 ×

100  (Chave et al., 2014). Additionally, we tested how plot-level errors (calculated for each individual plot as 

|𝐴𝐶𝐷𝑜𝑏𝑠−𝐴𝐶𝐷𝑝𝑟𝑒𝑑|

𝐴𝐶𝐷𝑜𝑏𝑠
× 100) varied as a function of forest carbon stocks and in relation to plot size (Réjou-Méchain et 

al., 2014). 
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The modelling and error propagation framework described above was chosen after a thorough comparison with a number of 

alternative approaches. The objective of this comparison was to identify the approach that would yield the lowest degree of 

systematic bias in the predicted values of ACD, as we consider this to be a critical requirement of any carbon estimation 

model, particularly if – as is the case here – that model is to underpin the generation of a carbon map designed to inform 

management and conservation policies (Asner et al., 2018). Of the two alternative approaches we tested, the first relied on 5 

fitting a combination of ordinary and nonlinear least squares regression models to parametrise the equations presented above. 

As with the modelling routine described above, this approach did not account for potential spatial autocorrelation in the 

residuals of the models, which could result in a slight underestimation of the true uncertainty in the fitted parameter values. 

We contrasted this approach with one that used generalised and nonlinear least squares regression that explicitly account for 

spatial dependencies in the data. Both these approaches underperformed compared to the routine described above, as they 10 

substantially overestimated ACD values in low carbon density forests and underestimated ACD in carbon-rich ones (see 

Supplement S3 for details). This tendency to introduce a systematic bias in the ACD predictions was particularly evident in 

the case of the spatially explicit models (see Fig. S4b). In light of this we opted for the approach presented here, even though 

we acknowledge that it may slightly underestimate uncertainty in modelled ACD values due to spatial non-independence in 

the data.  15 

2.6 Comparison with satellite-derived estimates of aboveground carbon density 

We compared the accuracy of ACD estimates obtained from ALS with those of two existing carbon maps that cover the 

study area. The first of these is a carbon map of the SAFE landscape and Maliau Basin derived from RapidEye satellite 

imagery (Pfeifer et al., 2016). The map has a resolution of 25 × 25 m and makes use of textural and intensity information 

from four wavebands to model forest biomass (which we converted to carbon by applying a conversion factor of 0.47; 20 

Martin and Thomas, 2011). The second is a recently published consensus map of pan-tropical forest carbon stocks at 1 km 

resolution (Avitabile et al., 2016). It makes use of field data and high-resolution locally-calibrated carbon maps to refine 

estimates from existing pan-tropical datasets obtained through satellite observations (Baccini et al., 2012; Saatchi et al., 

2011).  

To assess the accuracy of the two satellite products, we extracted ACD values from both carbon maps for all overlapping 25 

field plots and then compared field and satellite-derived estimates of ACD on the basis of RMSE and bias. For consistency 

with previous analyses, ACD values for SAFE project plots and those in riparian buffer zones were extracted at the 

individual plot level (i.e., 0.0625 ha scale) before being aggregated into the same blocks used for ALS-model generation. In 

the case of Avitabile et al. (2016), we acknowledge that because of the large difference in resolution between the map and 

the field plots, comparisons between the two need to be made with care. This is particularly true when only a limited number 30 

of field plots are located within a given 1 km2 grid cell. To at least partially account for these difference in resolution when 

assessing agreement between Avitabile et al.'s (2016) map and the field data, we first averaged ACD values from field plots 

that fell within the same 1 km2 grid cell. We then compared satellite- and plot-based estimates of ACD for (i) all grid cells 

Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-74
Manuscript under review for journal Biogeosciences
Discussion started: 9 March 2018
c© Author(s) 2018. CC BY 4.0 License.



12 

 

within which field plots were sampled, regardless of their number and size (n = 135) as well as for (ii) a subset of grid cells 

for which at least five plots covering a cumulative area ≥ 1 ha were sampled in the field (n = 8). The expectation is that grid 

cells for which a greater number of large plots have been surveyed should show closer alignment between satellite- and plot-

based estimates of ACD. 

3 Results 5 

The regional model of ACD – parameterized using field estimates of wood density and basal area and ALS estimates of 

canopy height – was: 

𝐴𝐶𝐷𝑅𝑒𝑔𝑖𝑜𝑛𝑎𝑙 = 0.567 × 𝑇𝐶𝐻0.554 × 𝐵𝐴1.081 × 𝑊𝐷0.186   (8) 

The model had an RMSE of 19.0 Mg C ha-1 and a bias of 0.6% (Fig. 2a; see Supplement S4 for confidence intervals on 

parameter estimates for all models reported here). The regional ACD model fit the data better than Asner and Mascaro's 

(2014) general model (i.e., Eq. (1) in the Sect. 1), which had an RMSE of 32.0 Mg C ha-1 and tended to systematically 10 

underestimate ACD values (bias = –7.1%; Fig. 2b). 

3.1 Basal area sub-models 

When modelling BA in relation to TCH, we found the best-fit model to be: 

𝐵𝐴 =  1.112 × 𝑇𝐶𝐻  (9) 

In comparison, when BA was expressed a function of both TCH and Coverresid we obtained the following model: 

𝐵𝐴 =  1.287 × 𝑇𝐶𝐻0.987 × (1 + 1.983 × 𝐶𝑜𝑣𝑒𝑟𝑟𝑒𝑠𝑖𝑑)  (10) 

where 𝐶𝑜𝑣𝑒𝑟𝑟𝑒𝑠𝑖𝑑 = 𝐶𝑜𝑣𝑒𝑟20 −
1

1+𝑒12.431×𝑇𝐶𝐻−4.061 (Fig. 5). Of the two sub-models used to predict BA, Eq. (10) proved the 15 

better fit to the data (RMSE = 9.3 and 6.6 m2 ha-1, respectively; see Supplement S5), reflecting the fact that in our case BA 

was more closely related to canopy cover than TCH (Fig. 3). 

3.2 Wood density sub-model 

When modelling WD as a function of TCH, we found the best fit model to be:  

𝑊𝐷 =  0.385 × 𝑇𝐶𝐻0.097  (11) 

Across the plot network WD showed a general tendency to increase with TCH (Fig. 4; RMSE of 0.056 g cm-3). However, the 20 

relationship was weak and Eq. (11) did not capture variation in WD equally well across the different forest types (see 

Supplement S5). In particular, heath forests at Sepilok – which have very high WD despite being much shorter than 

surrounding lowland dipterocarp forests (0.64 against 0.55 g cm-3) – were poorly captured by the WD sub-model. We found 
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no evidence to suggest that replacing TCH with canopy cover at 20 m aboveground would improve the accuracy of these 

estimates (see Supplement S5). 

3.3 Estimating aboveground carbon density from airborne laser scanning 

When field-based estimates of BA and WD were replaced with ones derived from TCH using Eq. (9) and (11), the regional 

ACD model generated unbiased estimates of ACD (bias = –1.8%). However, the accuracy of the model decreased 5 

substantially (RMSE = 48.1 Mg C ha-1; Fig. 2c). In particular, the average plot-level error was 21% and remained relatively 

constant across the range of ACD values observed in the field data (yellow line in Fig. 6a). In contrast, when the combination 

of TCH and Cover20 were used to estimate BA through Eq. (10), we obtained more accurate estimates of ACD (RMSE = 39.3 

Mg C ha-1, bias = 5.3%; Fig. 2d). Moreover, in this instance plot-level errors showed a clear tendency to decrease in large 

and high-carbon density plots (Fig. 6), declining from an average 25.0% at 0.1-ha scale to 19.5% at 0.25-ha, 16.2% at 0.5-ha 10 

and 13.4% at 1-ha (blue line in Fig. 6b). 

3.4 Comparison with satellite-derived estimates of aboveground carbon density 

When compared to ALS-derived estimates of ACD, both satellite-based carbon maps of the study area showed much poorer 

agreement with field data (Fig. 7). Pfeifer et al.'s (2016) map covering the SAFE landscape and Maliau Basin systematically 

underestimated ACD (bias = –36.9%) and had an RMSE of 77.8 Mg C ha-1 (Fig. 7a). By contrast, Avitabile et al.'s (2016) 15 

pan-tropical map tended to overestimate carbon stocks. When we compared field and satellite estimates of ACD across all 

grid cells for which data was available we found that carbon stocks were overestimate by 111.2% on average, with an RMSE 

of 100.1 Mg C ha-1 (grey circles in Fig. 7b). As expected, limiting this comparison to grid cells for which at least five plots 

covering a cumulative area ≥ 1 ha were sampled led to greater agreement between field and satellite estimates of ACD (large 

black circles in Fig. 7b). Yet the accuracy of the satellite-derived estimates of ACD remained much lower than that derived 20 

from ALS data (RMSE = 82.8 Mg C ha-1; bias = 59.3%). 

4 Discussion 

We developed an area-based model for estimating aboveground carbon stock from ALS data that can be applied to mapping 

the lowland tropical forests of Borneo. We found that adding a canopy cover term to Asner and Mascaro’s (2014) general 

model substantially improved its goodness of fit (Fig. 2c–d), as it allowed us to capture variation in stand basal area much 25 

more effectively compared to models parameterized solely using plot-averaged TCH. In this process, we also implemented 

an error propagation approach that allows various sources of uncertainty in ACD estimates to be incorporated into carbon 

mapping efforts. In the following sections we place our approach in the context of ongoing efforts to use remotely sensed 

data to monitor forest carbon stocks, starting with ALS-based approaches and then comparing these to satellite-based 

modelling. Finally, we end by discussing the implication of this work for the conservation of Borneo’s forests. 30 
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4.1 Including canopy cover in the Asner and Mascaro (2014) carbon model 

We find that incorporating a measure of canopy cover at 20 m aboveground in the Asner and Mascaro (2014) model 

improves its goodness-of-fit substantially without compromising its generality. Asner and Mascaro’s (2014) model is 

grounded in forest and tree geometry, drawing its basis from allometric equations for estimating tree aboveground biomass 

such as that of Chave et al. (2014), where a tree’s biomass is expressed as a multiplicative function of its diameter, height 5 

and wood density: 𝐴𝐺𝐵 = 𝜌0 × (𝑊𝐷 × 𝐷2 × 𝐻)𝜌1 . By analogy, the carbon stock within a plot is related to the product of 

mean wood density, total basal area and top-of-canopy height (each raised to a power). Deriving this power-law function 

from a knowledge of the tree size distribution and tree-biomass relationship is far from straightforward mathematically 

(Spriggs, 2015; Vincent et al., 2014), but this analogy seems to hold up well in a practical sense. When fitted to data from 14 

forest types spanning aridity gradients in the Neotropics and Madagascar, Asner and Mascaro (2014) found that a single 10 

relationship applied to all forests types, once regional differences in structure were incorporated as sub-models relating BA 

and WD to TCH. However, the model’s fit depends critically on there being a close relationship between BA and TCH, as BA 

and ACD tend to be tightly coupled (ρ = 0.93 in our case). Whilst that held true for the 14 forest types previously studied, in 

Bornean forest we found that the BA sub-models could be improved considerably by including canopy cover as an 

explanatory variable. This makes intuitive sense if one considers an open forest comprised of just a few trees – the crown 15 

area of each tree scales with its basal area, so the gap fraction at ground level of a plot is negatively related to the basal area 

of its trees (Singh et al., 2016). A similar principle applies in denser forests, but in forests with multiple tiers formed by 

overlapping canopies such as those that occur in Borneo, the best-fitting relationship between gap fraction and basal area is 

no longer at ground level, but is instead further up the canopy (Coomes et al., 2017). 

The functional form used to model BA in relation to TCH and residual forest cover (i.e., Eq. (10) presented above) was 20 

selected for two reasons: first, for a plot with average canopy cover for a given TCH, the model reduces to the classic model 

of Asner and Mascaro (2014), making comparisons straightforward. Secondly, simpler functional forms (e.g., ones relating 

BA directly to Cover20) were found to have very similar goodness-of-fit, but predicted unrealistically high ACD estimates for 

a small fraction of pixels when applied to mapping carbon across the landscape. This study is the first to formally introduce 

canopy cover into the modelling framework of Asner and Mascaro (2014), but several other studies have concluded that gap 25 

fraction is an important variable to include in multiple regression models of forest biomass (Colgan et al., 2012; Ni-Meister 

et al., 2010; Pflugmacher et al., 2012; Singh et al., 2016; Spriggs, 2015). Regional calibration of the Asner and Mascaro 

(2014) model was necessary for the lowland forests of Southeast Asia, because dominance by dipterocarp species make them 

structurally unique (Ghazoul, 2016): trees in the region grow tall but have narrow stems for their height (Banin et al., 2012; 

Feldpausch et al., 2011), creating forests that have among the greatest carbon densities of any in the tropics (Avitabile et al., 30 

2016; Sullivan et al., 2017). 

Our approach differs from the multiple-regression-with-model-selection approach that is typically adopted for modelling 

ACD of tropical forests using ALS data (Chen et al., 2015; Clark et al., 2011; D’Oliveira et al., 2012; Drake et al., 2002; 
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Hansen et al., 2015; Ioki et al., 2014; Jubanski et al., 2013; Réjou-Méchain et al., 2015; Singh et al., 2016). These 

studies – which build on two decades of research in temperate and boreal forests (Lefsky et al., 1999; Nelson et al., 1988; 

Popescu et al., 2011; Wulder et al., 2012) – typically calculate between 5 and 25 summary statistics from the height 

distribution of ALS returns and explore the performance of models constructed using various combinations of those 

summary statistics as explanatory variables. Typically, the “best-supported” model is then selected from the list of 5 

competing models on offer, by comparing relative performance using evaluation statistics such as R2, RMSE or AIC.  

There is no doubt that selecting regression models in this way provides a solid basis for making model-assisted inferences 

about regional carbon stocks and their uncertainty (Ene et al., 2012; Gregoire et al., 2016). However, a well-recognised 

problem is that models tend to be idiosyncratic by virtue of local fine-tuning, so cannot be applied more widely than the 

region for which they were calibrated, and cannot be compared very easily with other studies. For example, it comes as no 10 

surprise that almost all publications identify mean height or some metric of upper-canopy height (e.g., 90th or 99th percentile 

of the height distribution) as being the strongest determinant of biomass. But different choices of height metric make these 

models difficult to compare. Other studies include variance terms to improve goodness of fit. For instance, a combination of 

75th quantile and variance of return heights proved effective in modelling ACD of selectively logged forests in Brazil 

(D’Oliveira et al., 2012). Several recent studies include measures of laser penetration to the lower canopy in the best-15 

performing models. A model developed for lower montane forests in Sabah included the proportion of last returns within 

12 m of the ground (Ioki et al., 2014), while the proportions of returns in various height tiers were selected for ALS carbon 

mapping of sub-montane forest in Tanzania (Hansen et al., 2015). Working with Asner and Mascaro’s (2014) power-law 

model may sacrifice goodness-of-fit compared with locally tuned multiple regression models, but provides a systematic 

framework for ALS modelling of forest carbon throughout the tropics. 20 

4.2 Quantifying and propagating uncertainty  

One of the most important applications of ACD-estimation models is to infer carbon stocks within regions of interest. Carbon 

stock estimation has traditionally been achieved by networks of inventory plots, designed to provide unbiased estimates of 

timber volumes within an acceptable level of uncertainty, using well-established design-based approaches (Särndal et al., 

1992). Forest inventories are increasingly supported by the collection of cost-effective auxiliary variables, such as ALS-25 

estimated forest height and cover, that increase the precision of carbon stock estimation when used to construct regression 

models, which are in turn used to estimate carbon across areas where the auxiliary variables have been measured (e.g., 

McRoberts et al., 2013). But just as producing maps of our best estimates of carbon stocks across landscapes is critical to 

informing conservation and management strategies, so too is the ability to provide robust estimates of uncertainty associated 

with these products (Réjou-Méchain et al., 2017). 30 

Assessing the degree of confidence which we place on a given estimate of ACD requires uncertainty to be quantified and 

propagated through all process involved in the calculation of plot-level carbon stocks and statistical model fitting (Chen et 

al., 2015). Our Monte Carlo framework allows field-measurement errors, geo-positional errors and model uncertainty to be 
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propagated in a straightforward and robust manner (Yanai et al., 2010). Our approach uses Réjou-Méchain et al.’s (2017) 

framework as a starting point for propagating errors associated with field measurements (e.g., stem diameter recording, wood 

density estimation) and allometric models (e.g., height-diameter relationships, tree biomass estimation) into plot-level 

estimates of ACD. We then combine these sources of uncertainty with those associated with co-location errors between field 

and ALS data and propagate these through the regression models we develop to estimate ACD from ALS metrics. This 5 

approach – which is fundamentally different to estimating uncertainty by comparing model predictions to validation field 

plots – is not widely used within the remote sensing community (e.g., Gonzalez et al., 2010) despite being the more 

appropriate technique for error propagation when there is uncertainty in field measurements (Chen et al., 2015). 

Nevertheless several sources of potential bias remain. Community-weighted wood density is only weakly related to ALS 

metrics and is estimated with large errors (Fig. 4). The fact that wood density cannot be measured remotely is well 10 

recognised, and the assumptions used to map wood density from limited field data have major implications for carbon maps 

produced by satellites (Mitchard et al., 2014). For Borneo, it may prove necessary to develop separate wood density sub-

models for estimating carbon in heath forests versus other lowland forest types (see Fig. 4). Height estimation is another 

source of potential bias (Rutishauser et al., 2013): four published height-diameter curves for Sabah show similar fits for 

small trees (< 50 cm diameter) but diverge for large trees (Coomes et al., 2017), which contain most of the biomass (Bastin 15 

et al., 2015). Terrestrial laser scanning is likely to address this issue in the coming years, providing not only new and 

improved allometries for estimating tree height, but also much more robust field reference estimates of ACD from which to 

calibrate ALS-based models of forest carbon stocks (Calders et al., 2015; Gonzalez de Tanago Menaca et al., 2017). As this 

transition happens, careful consideration will also need to be given to differences in acquisition parameters among ALS 

campaigns and how these in turn influence ACD estimates derived from ALS metrics. While we found strong agreement 20 

between canopy metrics derived from the two airborne campaigns (Supplement S2), previous work has highlighted how 

decreasing ALS point density and changing footprint size can impact on the retrieval of canopy parameters (Gobakken and 

Næsset, 2008; Roussel et al., 2017). In this regard new approaches designed to explicitly correct for differences among ALS 

flight specifications (e.g., Roussel et al., 2017) offer great promise for minimizing this source of bias. 

Lastly, another key issue influencing uncertainty in ACD estimates derived from ALS data is the size of the field plots used 25 

to calibrate and validate prediction models. As a rule of thumb, the smaller the field plots the poorer the fit between field 

estimates of ACD and ALS-derived canopy metrics (Asner and Mascaro, 2014; Ruiz et al., 2014; Watt et al., 2013). Aside 

from the fact that small plots inevitably capture a greater degree of heterogeneity in ACD compared to larger ones (leading to 

more noise around regression lines), they are also much more likely to suffer from errors associated with poor alignment 

between airborne and field data, as well as exhibiting strong edge effects (e.g., large trees whose crowns straddle the plot 30 

boundary). As expected, for our best-fitting model of ACD we found that plot-level errors tended to decrease with plot size 

(blue curve Fig. 6b), going from 25.0% at 0.1-ha scale to 13.4% for 1-ha plots. This result is remarkably consistent with 

previous theoretical and empirical work conducted across the tropics, which reported mean errors of around 25-30% at 0.1-

ha scale and approximately 10-15% at 1-ha resolution (Asner and Mascaro, 2014; Zolkos et al., 2013). These results have led 
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to the general consensus that 1-ha plots should become the standard for calibrating against ALS data. That being said, 

because there is a trade-off between the number of plots one can establish and their size, working with 1-ha plots inevitably 

comes at the cost of replication and representativeness. As such, in some cases it may be preferable to sacrifice some 

precision (e.g., by working with ¼-ha plots, which in our case had a mean error of 19.5%) in order to gain a better 

representation of the wider landscape – so long as uncertainty in ACD is fully propagate throughout. 5 

4.3 Comparison with satellite-derived maps  

Our results show that when compared to independent field data, existing satellite products systematically under- or over-

estimate ACD (depending on the product; Fig. 7). While directly comparing satellite-derived estimates with independent 

field data in not entirely straight forward – particularly when the resolution of the map is much coarser than that of the field 

plots (Réjou-Méchain et al., 2014), as is the case with Avitabile et al. (2016) –  it does appear that ALS is able to provide 10 

much more robust and accurate estimates of ACD and its heterogeneity within the landscape than what is possible with 

current space-borne sensors. However, ALS data is limited in its temporal and spatial coverage, due to high operational 

costs. Consequently, researchers should focus on fusing ALS-derived maps of ACD with satellite data to get wall-to-wall 

coverage in space and time. NASA plans to start making high resolution laser ranging observations from the international 

space station in 2018 as part of the GEDI mission, while ESA’s biomass mission will use P-band synthetic aperture radar to 15 

monitor forests from space from 2021. Pan-tropical monitoring of forest carbon using data from a combination of space-

borne sensors is fast approaching, and regional carbon equations derived from ALS data such as the one we develop here 

will be critical to calibrate and validate these efforts. 

5 Conclusions 

Since the 1970s Borneo has lost more than 60% of its old-growth forests, the majority of which have been replaced by large-20 

scale industrial palm oil plantations (Gaveau et al., 2016, 2014). Nowhere else has this drastic transformation of the 

landscape been more evident than in the Malaysian state of Sabah, where forest clearing rates have been among the highest 

across the entire region (Osman et al., 2012). Certification bodies such as the Roundtable on Sustainable Palm Oil (RSPO) 

have responded to criticisms by adopting policies that prohibit planting on land designated as High Conservation Value 

(HCV), and have recently proposed to supplement the HCV approach with High Carbon Stock (HCS) assessments that 25 

would restrict expansion of palm oil plantations onto carbon-dense forests. Yet enforcing these policies requires an accurate 

and spatially-detailed understating of how carbon stocks are distributed cross the entire state, something which is currently 

lacking. With the view of halting further deforestation of carbon-dense old-growth forests and generating the necessary 

knowledge to better manage its forests into the future, in 2016 the Sabah state government commissioned CAO to deliver a 

high-resolution ALS-based carbon map of the entire state (Asner et al., 2018). The regional carbon model we develop here 30 

underpins this initiative (Asner et al., 2018; Nunes et al., 2017), and more generally will contribute to ongoing efforts to use 
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remote sensing tools to provide solutions for identifying and managing the more than 500 million ha of tropical lands that are 

currently degraded (Lamb et al., 2005). 
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Table 1: Summary of permanent forest plot data collected at each study site and description of which ALS sensor was used to at each 

location. Plot size is in hectares, while minimum stem diameter thresholds (Dmin) are given in cm. 

Study site Census year № plots Plot size № trees Dmin Height Species ID ALS sensor 

Sepilok Forest Reserve 2013–15 36 1 22430 10   NERC ARF 

Kuamut Forest Reserve 2015–16 39 0.265* 5588 10   CAO–3

Danum Valley Conservation area 
       

 

 
CTFS plot 2010–16 45 1 215016 1   NERC ARF

 CAO plots 2017 20 0.271* 2771 10   CAO–3

SAFE landscape         

 
SAFE experiment 2014 38† 0.0625 8444 1  

 
NERC ARF 

 SAFE experiment 2010 101† 0.0625 2517 10   NERC ARF

 Riparian buffers 2014 48† 0.0625 1472 10   NERC ARF

 
GEM plots 2014 4 1 1900 10   NERC ARF

Maliau Basin Conservation area 
       

 

 
SAFE experiment 2010 27† 0.0625 894 10 

  
NERC ARF 

  GEM plots 2014 2 1  905 10   NERC ARF

*Mean plot size after applying slope correction (see Sect. 2.2.2 for further details) 
†Plots established as part of the SAFE experiment and those located along riparian buffer zones in the SAFE landscape were 5 
aggregated into spatial blocks prior to statistical analyses (n = 27 with a mean plot size of 0.5 ha; see Sect. 2.2.4 for further details). 
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Figure 1: Panel (a) shows the location of the Sepilok and Kuamut Forest Reserves, the Danum Valley and Maliau Basin Conservation 

Areas, and the SAFE landscape within Sabah (Malaysia). Green shading in the background represents forest cover at 30-m resolution in 

the year 2000 (Hansen et al., 2013). In panel (b), the relationship between field-measured aboveground carbon density and ALS-derived 

top-of-canopy height found across the study sites (coloured circles, n = 173) is compared to measurements taken mostly in the Neotropics 5 
(Asner and Mascaro 2014; grey circles, n = 754). 
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Figure 2: Relationship between field-estimated and modelled aboveground carbon density (ACD). Panel (a) shows the fit of the 

regionally-calibrated ACD model (Eq. (8) in Sect. 3) which incorporate field-estimated basal area (BA) and wood density (WD), while (b) 

corresponds to Asner and Mascaro's (2014) general ACD model (Eq. (1) in Sect. 1). Panels (c–d) illustrate the predictive accuracy of the 

regionally-calibrated ACD model when field-measured BA and WD values are replaced with estimated derived from airborne laser 5 
scanning. In (c) BA and WD were estimated from top-of-canopy height (TCH) using Eq. (9) and (11), respectively. In contrast, ACD 

estimates in panel (d) were obtained by modelling BA as a function of both TCH and canopy cover at 20 meters aboveground following 

Eq. (10). In all panels, predicted ACD values are based on leave-one-out cross validation. Dashed lines correspond to a 1:1 relationship. 

Error bars are standard deviations and the RMSE of each comparison is printed in the bottom right-hand corner of the panels. 
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Figure 3: Relationship between field-measured basal area and (a) top-of-canopy height and (b) canopy cover at 20 meters aboveground as 

measured through airborne laser scanning. Error bars correspond to standard deviations. 

 

Figure 4: Relationship between community-weighted mean wood density (from field measurements) and top-of-canopy height (from 5 
airborne laser scanning). Error bars correspond to standard deviations. 
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Figure 5: Relationship between ALS-derived canopy cover at 20 meters aboveground and top-of-canopy height. Panel (a) shows the 

distribution of the field plots with a line of best fit passing through the data, with error bars corresponding to standard deviations. Panel (b) 

illustrates how estimates of aboveground carbon density (ACD; obtained using Eq. (8), with Eq. (10) and (11) as inputs) vary as a function 

of the two ALS metrics for the range of values observed across the forests of Sabah.  5 

 
Figure 6: Model errors (calculated for each individual plot as (|𝑨𝑪𝑫𝒐𝒃𝒔 − 𝑨𝑪𝑫𝒑𝒓𝒆𝒅|) 𝑨𝑪𝑫𝒐𝒃𝒔⁄ × 𝟏𝟎𝟎) in relation to (a) field-estimated 

aboveground carbon density (ACD) and (b) plot size. Curves (± 95% shaded confidence intervals) were obtained by fitting linear models to 

log-log transformed data. Black lines correspond to the regionally-calibrated ACD model (Eq. (8) in Sect. 3). Orange lines show model 

errors when basal area (BA) was estimated from top-of-canopy height (TCH) using Eq. (9). In contrast, blue lines show model errors when 10 
BA was expressed as a function of both TCH and canopy cover at 20 meters aboveground following Eq. (10). Vertical dashed lines along 

the horizontal axis show the distribution of the data (in panel (b) plot size values were jittered to avoid overlapping lines). 
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Figure 7: Comparison between field-estimated aboveground carbon density (ACD) and satellite-derived estimates of ACD reported in (a) 

Pfeifer et al. (2016) and (b) Avitabile et al. (2016). In panel (b) large black point correspond to grid cells in Avitabile et al.'s (2016) pan-

tropical biomass map for which at least five plots covering a cumulative area ≥ 1 ha were sampled in the field. By contrast, grid cells for 

which comparisons are based on less than five plots are depicted by small grey circles. Error bars correspond to standard deviations, while 5 
the RMSE of the satellite estimates is printed in the bottom right-hand corner of the panels (note that for panel (b) the RMSE in grey is that 

calculated across all plots, whereas that in black is based only on the subset of grid cells for which at least five plots covering a cumulative 

area ≥ 1 ha were sampled in the field). For comparison with ACD estimates obtained from airborne laser scanning, a kernel density plot fit 

to the points in Fig. 2d is displayed in the background. 
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