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Abstract. The quantification of ammonia (NH3) emissions is still a challenge and the corresponding emission factor for grazed 7 

pastures is uncertain. This study presents NH3 emission measurements of two pasture systems in western Switzerland over the 8 

entire grazing season 2016. During the measurement campaign, each pasture system was grazed by 12 dairy cows in an 9 

intensive rotational management. The cow herds on the two pastures differed in the energy to protein balance of the diet. NH3 10 

concentrations were measured upwind and downwind of a grazed sub plot with line integrating open path instruments that 11 

were able to retrieve small horizontal concentration differences (< 0.2µg NH3 m-3). The NH3 emission fluxes were calculated 12 

by applying a backward Lagrangian Stochastic (bLS) dispersion model to the difference of paired concentration measurements 13 

and ranged from 0 to 2.5 µg N-NH3 m-2 s-1. The fluxes increased steadily during a grazing interval from previous non-14 

significant values to reach maximum emissions at the end of the grazing interval. Afterwards they decreased exponentially to 15 

near zero values within 3-5 days. A default emission curve was calculated for each of the two systems and adopted to each 16 

rotation in order to account for missing data values and to estimate inflow disturbances due to grazing on upwind paddocks. 17 

Dung and cow location were monitored to account for the non-negligible inhomogeneity of cow excreta on the pasture. The 18 

average emission (± std. dev. of individual rotation values) per grazing hour was calculated as 0.64 ± 0.11 g N-NH3 cow-1 h-1 19 

for the herd with the N balanced diet (system M) and 1.07 ± 0.06 g N-NH3 cow-1 h-1 for the herd with the protein rich grass-20 

only diet (system G). Surveys of feed intake, body weight and milk yield of the cow herds were used to estimate the nitrogen 21 

(N) excretion by an animal N budget model. Based on that, mean relative emission factors of 6.4 ± 2.0 % and 8.7 ± 2.7 % of 22 

the applied urine N were found for the systems M and G, respectively. The results can be used to validate the Swiss national 23 

emission inventory and demonstrate the positive effect of a N-balanced diet on pasture NH3 emission.   24 

1 Introduction 25 

Agricultural livestock production is the main source of air pollution by ammonia (NH3) (Bouwman et al., 1997). The largest 26 

share of the emissions is usually assigned to the excretions in the barn with subsequent manure storage and spreading (Kupper 27 

et al., 2015). The high emissions are largely responsible for the formation of secondary aerosols in the atmosphere through 28 

reactions with nitric and sulfuric acids (Nemitz et al., 2009). This can have a significant effect on human health and can also 29 

lead to eutrophication and acidification of the environment through deposition (Sutton et al., 2011).  30 
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Grazing is considered as one efficient mitigation option to reduce NH3 volatilisation due to the direct infiltration of urine in 1 

the soil before urea is degraded to ammonium and NH3. According to the Swiss inventory model Agrammon (Kupper et al., 2 

2015; see Fig. 4b therein) grazing livestock produces about eight times lower emissions compared to indoor housing (including 3 

storage and spreading of manure). Emission inventories usually make use of generalized emission factors that relate emissions 4 

to the corresponding source of water soluble nitrogen (urea, ammonium or dissolved NH3). In the case of grazed pastures the 5 

relevant nitrogen (N) source is urine by animal excretion (Petersen et al., 1998). However the pasture emission factor still has 6 

a large uncertainty because corresponding NH3 emission experiments are rare and the available studies reported a large range 7 

of emission factors (5 to 25.7 % of excreted urine N; e.g. Jarvis et al., 1989; Bussink, 1992; Laubach et al., 2012, 2013b). 8 

Many of the studies used manual applied urine and measured the emissions with chamber or wind tunnel methods. These 9 

techniques might lead to questionable results due to the altering of the environment and the high heterogeneity of the emissions 10 

(Misselbrook et al., 2005; Sintermann et al., 2012).  11 

Volten et al. (2012) introduced a new open path miniDOAS system that measures line integrated NH3 concentrations with a 12 

relatively high temporal resolution. Sintermann et al. (2016) adopted and further developed the system to field applicability 13 

and suggested that paired miniDOAS systems in combination with a dispersion model can be used to estimate emissions of a 14 

pasture. Bell et al. (2017) estimated the NH3 emission factor based on miniDOAS concentration measurements in combination 15 

with a backward Lagrangian Stochastic (bLS) dispersion model for a 12-d period and demonstrated the applicability of the 16 

miniDOAS / bLS combination for grazing systems. However no information on the excreta distribution on the pasture was 17 

obtained and retrieved emission factors were based on a standard cow and feeding strategy. The relatively short measurement 18 

campaign in May also limited the representativeness of the derived emission factor for a full year. For micrometeorological 19 

methods a spatially homogenous source area is usually needed (Munger et al., 2012) which is often not the case on grazed 20 

pastures (Draganova et al., 2016). However only very few studies reported on the uncertainty associated with a heterogeneous 21 

emission source and those studies usually focused on greenhouse gas emissions (Felber et al., 2015; Peltola et al., 2015).  22 

In the present experiment the miniDOAS systems in combination with bLS modelling were applied to determine NH3 23 

emissions of two paired rotational grazing system over a full grazing season. Position monitoring of dung patches with GPS 24 

and of cows with a camera system were used to relate the measured emissions to the animal and excreta density. The calculated 25 

emission factors were based on actual in situ cow productivity data and feed analyses and were compared to standard emission 26 

factors.  27 

2 Material and methods 28 

2.1 Site description and experimental design 29 

The study site was located in the Pre-Alps of Switzerland at the research farm Agroscope Posieux in the canton of Fribourg 30 

(46°46´04´´N, 7°06´28´´E). The soil is classified as stagnic Anthrosol with a loamy texture (20 % clay, 35 % silt and 45 % 31 

sand) and the vegetation consisted mainly of a typical grass clover mixture (10 % to 50 % Lolium perenne and 7 % to 40 % 32 
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Trifolium repens) with an increasing clover share during the grazing season. In 2007 the last renovation of the site took place. 1 

Since then the site has been used as an intensive pasture for cattle. Averaged over the past years, the average fertilizer 2 

application rate was about 120 kg N ha-1 per year, in addition to the excreta of grazing animals. Climate records show an annual 3 

average temperature of 8.7 °C and an annual precipitation amount of 1075 mm (MeteoSwiss, 2018). The experiment was 4 

conducted at a flat 5.5 ha pasture and the cows were managed in a rotational grazing system (Fig. 1). The whole pasture was 5 

divided into two separate systems having different feeding strategies of the cows. The southern system (labeled “G”) 6 

represented a full grazing regime without additional feed supplementation. This resulted in a considerable protein surplus for 7 

the animals leading to an unnecessary high N excretion. At the northern system (labeled “M”) cows were provided with 8 

additional maize silage (roughly 25 % of the total feed dry matter intake) which has a low protein content and resulted in a 9 

more demand-adjusted optimized protein content in the diet (Arriaga et al., 2010; Yan et al., 2006) leading to less N excretion. 10 

Each of the two pasture systems was divided into 11 paddocks resulting in a full rotation period of about 20 days, depending 11 

on the grass growth conditions. The size of the paddocks were adjusted to the different treatments: 1700 m2 for the northern 12 

M system and 2200 m2 for the southern G system.  The grazing rotation was synchronous for the two systems and started in 13 

the middle of the fields (on paddocks X.11 with X indicating both fields) in westerly direction (until paddock X.16) and then 14 

from the middle (X.21) to the eastern side of the field (X.25). Twice a day (around 05:00 – 07:00 and 15:00 – 17:00 LT) the 15 

cows were brought to the nearby barn for milking. However, in cases of high air temperatures in August and beginning of 16 

September the cows spent a longer period in the barn during daytime (typically 11:00 – 17:00 LT). Due to dry periods during 17 

the summer month and subsequent low grass growth additional pasture areas were used for grazing. The herd for each system 18 

consisted of 12 dairy cows. The main measurement campaign took place between May and October 2016, and in summary, 19 

seven full grazing rotations took place in that period (Table 1). During the measurement campaign, the site was fertilized with 20 

ammonium nitrate (28 kg ha-1, end of June) and urea (42 kg ha-1, X.11–X.16 mid of August, X.21–X.25 beginning of 21 

September).  22 

2.2 Ammonia emission measurements 23 

2.2.1 Ammonia concentration  24 

 Line-integrated NH3 concentrations were measured using four miniDOAS systems (Sintermann et al., 2016). These open path 25 

instruments make use of the differential optical absorption in the UV range (200 – 230 nm). Two miniDOAS systems (namely 26 

MD5 and MD2, naming based on serial number) were installed at system M and two instruments (MD1 and MD6) on system 27 

G (Fig. 1a). All instruments were installed at a height of 1.3 m. Each miniDOAS pair (e.g. MD5 and MD2) was separated by 28 

a horizontal distance of about 30 m which allowed for concentration measurements upwind and downwind of a subplot of the 29 

paddocks in between. The single light path between the sensor and the retroreflector for the individual devices had a length of 30 

30 to 35 m. The instruments reported NH3 concentration at a temporal resolution of one minute. The one minute data were 31 

processed to 30-min averages for further processing. Due to the predominant wind directions NE and SW one miniDOAS 32 
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usually reported upwind concentration CUpwind (µg NH3 m-3) and the other one the downwind concentration CDownwind (Fig. 1). 1 

This setting allowed for the computation of the horizontal concentration gradient ΔC caused by emissions from the area in 2 

between. The reference spectrum (Sintermann et al., 2016) for each miniDOAS was determined during a seven day inter-3 

comparison campaign at the Chaumont, Switzerland (47°02´58´´N, 6°58´16´´E, 1136m, 20-27 July 2016). The site is located 4 

30 km north-west of Posieux and is only marginally contaminated by NH3 and was therefore ideal to compute the reference 5 

spectra. The miniDOAS systems were operated in parallel and compared to wet chemical impingers (Häni et al., 2016) in order 6 

to retrieve the instrumental offset and absolute concentration.  7 

2.2.2 Turbulence and meteorological parameters 8 

For the characterization of turbulent mixing the three dimensional wind velocity (u, v, w) and air temperature was measured 9 

at 10 Hz using an ultrasonic anemometer-thermometer (HS-50, Gill Instruments Ltd., UK, hereafter termed sonic anemometer) 10 

mounted on a horizontal arm at 2 m above ground. Each system was equipped with one of those anemometers. The 11 

micrometeorological parameters friction velocity (u*, m s-1), roughness length (zo, m) and the Obukhov length (L, m) were 12 

computed from the 30 min processed eddy covariance data of the sonic anemometer. Further weather parameters were 13 

measured with a standard automated weather station (Campell Scientific Ltd., UK). It used a WXT520 (Vaisala, Vantaa, FL) 14 

to measure wind speed, precipitation, temperature and barometric pressure and a pyranometer (CNR1, Kipp&Zonen, Delft, 15 

NL) to measure global radiation. The station was installed at system M next to the sonic anemometer.  16 

2.2.3 Data filtering 17 

The raw MD concentrations were filtered based on the level of light reaching the spectrometer. This led to a data loss between 18 

about 1 % and 4 % for the different MD. An additional filter was applied to account for conditions with low turbulence by u* 19 

filtering. As the measurement site is located at the Swiss western plateau which is known for low wind speeds especially during 20 

the night a u* threshold of 0.05 m s-1 was applied leading to a relative data loss of  26 % and 30 % for system M and G, 21 

respectively. Flesch et al. (2014) stated that using a u* value of 0.05 m s-1 can be accepted as the data quality does not increase 22 

too much by applying higher u* values. The wind sectors facing towards the farm buildings north and south of the fields were 23 

removed as well due to unwanted advection from the nearby farm buildings (Figs. 1 and 2). Filtering for u* and wind direction 24 

decreased the data by about 44 % and 49 % for system M and G, respectively.  25 

2.2.4 Emission calculation based on dispersion modelling 26 

The emissions were calculated based on inverse dispersion modelling and measurements of NH3 concentrations upwind and 27 

downwind of an emitting source. An open–source version of the bLS model by Häni (2017) (based on Flesch et al., 2004) 28 

programmed in the statistical software R (R Core Team, 2016) was used. The first-order bLS model assumed horizontally 29 

homogenous and vertically inhomogeneous Gaussian turbulence and used the Monin-Obukhov Similarity Theory to calculate 30 

the vertical profiles of wind speed and turbulence. Minor adjustments to the original model (Flesch et al., 2004) are described 31 
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in Häni et al. (2018). The newly introduced deposition module, which is part of the software package, was not used in this 1 

study. The bLS model related the measured 30-min concentration difference ΔC (µg NH3 m-3) to the unknown emission rate 2 

E (µg NH3 m-2 s-1) of the investigated paddocks (Eq. 1). The coefficient D (s m-1) was determined based on the simulated 3 

movement of 25’000 fluid particles released at the location of the concentration sensor line and tracked backwards in time up 4 

to a distance of 250 m (extending well beyond the investigated pasture fields). Simulated touchdowns inside the specified 5 

source area contribute to the magnitude of D.  6 

 7 

 𝐸 =
𝐶Downwind−𝐶Upwind

𝐷
≡

∆𝐶

𝐷
                  (1) 8 

 9 

The bLS model used wind and turbulence information measured by the sonic anemometer. In order to calculate a concentration 10 

footprint for each 30-min period Δt, averaged data of the wind direction, the standard deviations of the wind components, u* 11 

and values representing the surface roughness were used. Additional geometric information of the source area locations and 12 

extensions and the position and height of the miniDOAS measurement paths were provided as well. An intrinsic assumption 13 

of the bLS model approach is that the model domain has a uniform surface roughness, which is supported by the results of 14 

Felber et al. (2015) for the same site, and that the defined emitting area is homogenous concerning its source strength. Thus it 15 

is assumed that the monitored pasture paddocks are homogenously grazed and the urine and dung patches, representing the 16 

main NH3 emission sources, are more or less uniformly (or randomly) distributed on the paddock area.  17 

The present inverse dispersion method yields a net NH3 flux of the investigated paddocks that is in excess of any general 18 

background flux (e.g. due to deposition of ambient NH3, e.g. Móring et al. (2017)). The resulting flux thus represents the effect 19 

(emission) of grazing excreta. However, because the excreta patches only cover a small part of the grazed pasture, the measured 20 

net flux may also include some short-range re-deposition of the gross excreta NH3 emission. A partitioning of these effects is 21 

beyond the scope of the present study and would require small-scale spatially resolved measurements (e.g. by enclosures) of 22 

patch and non-patch surface areas.  23 

2.2.5 Artificial release experiment  24 

In order to test the used methodology an additional experiment with an artificial gas release was conducted in June/July 2017 25 

at the field site next to the sonic anemometer of system M. The source consisted of a grid of 14 critical orifices (100µm 26 

diameter, stainless steel, LenoxLaser, USA) which were installed on ground facing upward with a distance of each other of 2 27 

m. The center of the line was connected to a distribution unit which regulated the gas flow with a mass flow controller (red-y 28 

smart controller, Voegtlin Instruments, Switzerland). The flow rate, pressure within the grid and the accumulated gas flow was 29 

saved to a hard disk within the housing of the distribution unit. A gas mixture with 5 ± 0.1 % NH3 in 95 % CH4 (CarbaGas, 30 

Switzerland) was used with a release rate of about 3.1 standard L min-1. Two miniDOAS systems (MD2 and MD5) were 31 
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installed in parallel roughly 6 m north east and south west of the source line to account for the predominant wind directions. 1 

Both instruments were installed at a height of about 0.6 m due to the close distance to the artificial source.  2 

2.3 Estimation of N excretion on the pasture 3 

The NH3 emission flux, quantified as described above, is a pasture area related quantity. In order to allow a comparison of the 4 

results of the present study with literature reports and with emission inventory models, emission factors were derived by 5 

relating the measured emissions to the urine N input from the cows. As N input to the pasture cannot easily be measured total 6 

N and urine N of the excretions of the cows were estimated with a dairy cow nitrogen budget model based on the official Swiss 7 

feeding recommendation for dairy cows (Bracher et al., 2011). Input to the model were information concerning the milk yield 8 

and N content, the weight of the cows, the calving date, and the crude protein proportional to the N content in the forage (Table 9 

2). Milk yield and body weight was measured for each cow on a daily basis whereas data on grass protein was only collected 10 

and analyzed eight times between end of April and end of September, but usually close in time to the measurement period. 11 

The grass parameters of the systems M and G were averaged for further processing. Crude protein of the maize silage was 12 

analyzed three times (beginning of May, mid of July, beginning of September). Missing data were linearly interpolated between 13 

the measured values. The N in the excretions were finally calculated as a balance between the N input of the feed, N storage 14 

due to body weight gain and N in milk and excreta for each cow and each day of the year. The break-down in urine N and 15 

dung N is based on N balance studies (Bracher et al., 2011). Finally, based on the grazing duration the urine N input to the 16 

investigated paddocks was computed for each rotation. An associated uncertainty of 15 % was estimated by comparing the N 17 

budget model to published results of Swiss N excretion studies (Bretscher, unpublished data).  18 

2.4 Cow and excreta distribution monitoring 19 

The measured concentration difference and thus the derived NH3 flux is mainly related to the emission of the surface area 20 

between the MD sensor paths on each grazing system (according to the main wind directions, Fig. 1). This is only a part of the 21 

entire paddock area, which was considered as uniformly emitting area in the bLS calculations (Sect. 2.2.4) and for which the 22 

average urine N input was quantified (Sect. 2.3). On a pasture cows can move freely and therefore the urine and dung patches 23 

may not be homogenously distributed on the entire area, which can lead to error prone emission estimates (Auerswald et al., 24 

2010; Bell et al., 2017; Laubach et al., 2013a). 25 

In order to assess the spatial distribution of the cow excreta on the paddocks X.11 and X.12 as main emission sources in our 26 

experiment, we used two different approaches. The number and position of dung patches was determined with a hand held 27 

GPS device within the first 3–5 days after grazing. In addition, the cow position on the pasture was monitored with a day–28 

night digital camera system at a temporal resolution of 10 minutes. The location of the individual cows were manually marked 29 

on the displayed pictures in a post processing step. However, the night mode often did not yield useful information and 30 

therefore images showing the cow positions during nighttime were very sparse. 31 
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In order to account for inhomogeneity of the excreta distribution within the investigated paddocks, they were divided as shown 1 

in Fig. 3a. The middle sections between the paired MD sensor paths represent the main source areas of the measured fluxes. 2 

Their excreta density dX.meas was related to the density of the entire paddocks d(X.11+X.12) to determine the excreta density 3 

correction factor kd: 4 

𝑘𝑑 =
𝑑(𝑋.11+𝑋.12)

𝑑𝑋.𝑚𝑒𝑎𝑠
           (2) 5 

The exemplary dung patch survey in Fig. 3a shows a positive deviation from the average paddock-wide density for both system 6 

M (kd = 1.28) and system G (kd = 1.40). However, dung observations were only available for two rotations for the paddock 7 

M.11, three rotations for G.11 and two rotations for X.12 while daytime cow position observation by camera was available for 8 

the whole measurement campaign for system M, and from rotation three onwards for system G. As cow excreta (mainly in 9 

form of urine) is the main source of NH3 emissions, missing dung density values were estimated based on a regression analysis 10 

(R2 = 0.98) between parallel surveys of density anomalies for dung patches and cow positions (Fig. 3b). 11 

The kd factors derived from the combined information of the dung patch and the cow position surveys were used to calculate 12 

integral NH3 emissions Eint for each rotation for the two investigated paddocks X.11 and X.12 (with corresponding areas A) 13 

for a time period between start of grazing until end of grazing (EOG):  14 

𝐸int = ∑ 𝐸(𝑡)∆𝑡 ∙ 𝑘𝑑
−1 ∙ (𝐴𝑋.11 + 𝐴𝑋.12)

𝐸𝑂𝐺+10 𝑑𝑎𝑦𝑠

𝑡=𝑠𝑡𝑎𝑟𝑡 𝑜𝑓 𝑔𝑟𝑎𝑧𝑖𝑛𝑔

 15 

             (3) 16 

3 Results and Discussion 17 

This chapter is organized as follows. The first section (Sect. 3.1) shows the observed NH3 concentrations during the grazing 18 

campaign, whereas the next sections present and discuss the emission fluxes. Sect. 3.2 describes the measured area-related 19 

fluxes including interference correction and the gap filling leading to cumulative emissions over individual grazing events. 20 

The corresponding emission uncertainty and its sources are discussed in Sect. 3.3. The area related emission were converted 21 

to animal related emissions using cow and dung distribution monitoring results (Sect. 3.4) and further converted to emission 22 

factors related to animal urine N (Sect. 3.5). In the final section of the chapter (Sect. 3.6) the advantages and problems of the 23 

experimental design are highlighted.   24 

 25 

3.1 Ammonia concentrations during grazing season 26 

The NH3 concentration values observed during the entire measurement campaign had a strong temporal and spatial variability. 27 

They were typically in the range of 4-15 µg NH3 m-3 with maximum values of about 100 µg NH3 m-3. As shown in Fig. 2 the 28 

highest concentrations usually resulted from advection from the nearby farm located in the northern direction of the miniDOAS 29 
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instruments. This advection is weaker at the southern system G due to the larger distance to the farm. The general concentration 1 

pattern is nevertheless very similar for both systems. The highest wind speeds (above 4 m s-1) usually resulted in low NH3 2 

concentrations due to a good mixing of the atmospheric boundary layer with lowest concentrations coming from the south–3 

western direction. The higher background concentration from the north–easterly direction is probably a result of a nearby 4 

piggery some 350 m away. During the whole measurement period (beginning of May – mid of October) the MD instruments 5 

were online between 62 % (MD 6) and 85 % (MD 2) of the time.  Power failure and instrument errors were the main reasons 6 

for the partial data loss. The measurement campaign at the Chaumont mountain site (Sect. 2.2.1) led to a data loss for the first 7 

three days during rotation four. During rotation one no data of the MD instruments MD1 and MD6 could be acquired due to 8 

instrument errors.  9 

During the grazing period on the paddocks X.11 and X.12 the NH3 concentration difference increased (see example for one 10 

rotation in Fig. 4) due to increased excreta on the field, mainly in the form of urine. Concentration differences in the range of 11 

about 0 – 8 µg NH3 m-3 for system M and of about 0 – 15 µg NH3 m-3 for system G were measured. A few hours after grazing 12 

the concentration differences started to decrease significantly. Mostly within the first three to five days after the EOG the 13 

concentration differences reached values around the accuracy limit of the MD devices (about 0.2 µg NH3 m-3). Typically for 14 

the Swiss western plateau wind speed had a strong diurnal pattern with low wind speeds during nighttime. This often led to a 15 

weak mixing in the boundary layer and subsequent high observed concentrations. In order to avoid error prone emission 16 

estimates the concentration values were filtered according to Sect. 2.2.3. This led to low data availability for emission 17 

calculation especially during nighttime conditions. Precipitation events typically resulted in low concentrations and subsequent 18 

low concentration differences.  19 

3.2 Field scale fluxes  20 

The field scale fluxes were determined based on the concentration differences of the paired MD systems and the dispersion 21 

coefficient D (see Eq. 1) computed by the bLS model. The emissions typically showed a diurnal emission pattern with highest 22 

values occurring between midday and late afternoon, which correlated well with atmospheric driving parameters like air 23 

temperature, wind speed and global radiation (Fig. 5, horizontal axis). This emission behaviour can theoretically be explained 24 

with higher wind speeds and unstable conditions during daytime leading to a reduction of the aerodynamic resistance at the 25 

interface between the atmosphere and the urine patch surface and thus leading to higher emissions. Ammonia fluxes are also 26 

based on the thermodynamic equilibrium at this interface leading to higher emissions with increasing temperatures during 27 

daytime (Flechard and Sutton, 2013). Beside the diurnal variation, the emissions generally increased during the grazing phase 28 

(typical grazing duration: 50-70 hours, Table 1) with a fast subsequent decrease afterwards (Fig. 5a, vertical axis). The 29 

observed emission fluxes usually decreased to insignificant values within 3–5 days after EOG. This management related 30 

temporal pattern could be parameterised as shown in Fig. 6, where daytime emission values are plotted against the elapsed 31 

time since the start / end of the grazing period. The emissions showed an approximately linear increase during the grazing (due 32 

to the continuous formation of new excreta patches) and an exponential decay after EOG. The decay or e-folding time of the 33 
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exponential function was evaluated as 28 and 23 hours (37 % of maximum value at the beginning) for the systems M and G, 1 

respectively. 2 

Due to quality related data filtering (Sect. 2.2.3) and missing concentration data the emission time series had a considerable 3 

share of gaps that needed to be filled in order to calculate cumulative emissions. The following relatively simple gap filling 4 

procedure was applied: 5 

(i) Gaps shorter than three hours were filled by linear interpolation between available measurements 6 

(ii) For longer gaps during daytime, the management related emission curves in Fig. 6 (linear increase during grazing and 7 

subsequent exponential decrease) were fitted to the available daytime data of individual grazing phases. This allowed to 8 

account for different weather and soil effects between the rotations. 9 

(iii) Because of the low amount of available nighttime data, it was not possible to derive and fit individual curves for longer 10 

nighttime gaps. Thus it was assumed that the general temporal pattern is similar to daytime conditions (curves in Fig. 6) but 11 

with a lower amplitude for nighttime. The corresponding reduction factor (= 0.39) was based on the overall ratio between 12 

mean nighttime and daytime emissions during grazing.  13 

Due to the limited amount of measured data and the considerable number of possible environmental driving parameters (air 14 

temperature, global radiation, wind speed, precipitation, soil / leaf humidity, Fig. 5, also  Bell et al., 2017; Häni et al., 2016; 15 

Laubach et al., 2013b; Móring et al., 2016) the emissions were not parameterised as a function of these parameter but only as 16 

a function of grazing duration and elapsed time since start/end of grazing. Nevertheless, a good agreement was found using a 17 

linear increase of emissions during the grazing period and an exponential decrease afterwards.  18 

The applied flux measurement approach as described in Section 2.2 assumes a spatially limited emission between the two 19 

measurement paths and negligible emission upwind of the system. However, upwind paddocks were grazed while the 20 

measurement paddocks were in the emission decay phase. In some cases, depending on wind direction, the emission sources 21 

on the upwind paddocks can lead to a greater concentration signal of the inflow compared to the outflow instrument. They 22 

interfere with the concentration signals of the paddock(s) of interest and can lead to an underestimation of the true emission. 23 

In the strict sense this is a problem of an under–determined systems when fewer concentration detectors are available compared 24 

to the emission sources (see also Bell et al., 2017). To estimate the influence of grazed upwind paddocks, a default emission 25 

pattern Edef(t) according to the fitted curves in Fig. 6 was used. The effect of each upwind paddock i on the measured 26 

concentration difference C in Eq. 1 was calculated from the corresponding bLS dispersion coefficients for both MD systems 27 

Di,Upwind and Di,Downwind.  28 

 29 

∆𝐶corr =  ∑ 𝐸def(𝑡𝑖) • (𝐷𝑖, Upwind − 𝐷𝑖, Downwind)𝑖                 (4) 30 

 31 

This effect was corrected for in the flux calculation (Eq. 1). The resulting measured fluxes during the campaign were within a 32 

range of 0 to 2.1 µg N-NH3 m-2 s-1 for system M and 0 to 2.3 µg N-NH3 m-2 s-1 for system G.  33 
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The cumulative integral emission Eint (Eq. 3) for each system and rotation was calculated based on the gap-filled half-hourly 1 

fluxes and the area of the investigated paddocks (see example in Fig. 7). Depending on atmospheric driving parameters (mainly 2 

precipitation) about half of the overall emission occurred during the grazing phase. Precipitation events during that time period 3 

led to a significant reduction in emissions with subsequent higher emission later on (observable especially during rotations 4 

two and the higher fluxes on the 14th of May in Fig. 6). Over the entire grazing season, cumulative emissions for the different 5 

rotations were retrieved under variable weather conditions with highest air temperatures recorded during rotation three to 6 

rotation six and the highest precipitation amounts occurring at the first three rotations (Table 3). The highest integral emissions 7 

occurred usually at the southern paddock and showed a strong temporal variability depending mainly on the grazing duration 8 

(Table 1) and N input (Table 3). The emissions during rotation seven on system G showed the largest magnitude of all single 9 

rotations and fields. This is also in line with the highest N input to the pasture from cow excreta. 10 

3.3 Uncertainty of emission flux measurements 11 

3.3.1 Effect of different error sources 12 

The performance of the miniDOAS devices for concentration measurements was optimised by adjusting the offsets among all 13 

four instruments during the 7-d inter-calibration at the Chaumont site between rotation 3 and 4. During that period the 14 

instruments were running in parallel and the measured concentrations (mostly 0 – 2 µg NH3 m-3) were compared to the 15 

measurements of wet chemical impingers. It was found that the potential bias between the instruments was below 0.2 µg NH3 16 

m-3 and was therefore similar to the results by Sintermann et al. (2016).  17 

Missing flux data were replaced either by values of the default emission curve (Fig. 6) or by applying a liner interpolation 18 

between measurements. The default emission curves were also used to estimate unwanted interferences in the measured 19 

concentration differences from emitting upwind paddocks. In order to test the sensitivity of the emission result to uncertainties 20 

in the gap filling method and interferences from upwind grazing, we varied the values of the default emission curve to 50 % 21 

and 150 % of the default values. The sensitivity towards the exponential decay time of the default emission curve was tested 22 

with a systematic increase in the decay time of 50 % (decay_slow) and a reduction of 30 % (decay_fast). We found (Fig. 8) 23 

that the relative effect of all simulated errors on the cumulative emissions was generally below 20 % for individual rotations 24 

(except for few outliers). The highest impact on the emission results was due to the uncertainty in the gap filling of missing 25 

values that predominantly occurred during night. Since the simulated error sources are independent, they were combined to an 26 

overall measurement related error of 17 % by Gaussian error propagation.  27 

The bLS dispersion modelling is a well-defined approach and was evaluated extensively by Flesch et al. (2005), Harper et al. 28 

(2010), and McGinn et al. (2009) who found that the model uncertainty is typically in the order of 20 %. Combining the 20 % 29 

uncertainty for the bLS modelling and the 17 % measurement related uncertainty results in total mean systemic uncertainty of 30 

26 %. 31 
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3.3.2 Artificial gas release  1 

For an exemplary test of the performance of the applied methodology, tracer gas releases were conducted at the same site in 2 

the year after the main experiment in June and July 2017. The gas was only released during stationary westerly winds in order 3 

to avoid advection from the nearby barn. Table 4 lists the main meteorological and technical aspects of the individual releases 4 

and shows the corresponding results. The duration of the releases strongly depended on the observed wind speed and varied 5 

therefore significantly.  6 

Due to the westerly winds MD 2 detected the upwind concentrations and MD5 the downwind concentrations. All 7 

measurements were averaged to 30-min values and the emissions were calculated following Eq. 1 (Fig. 9). In order to check 8 

the mass flow controller of the artificial source, the release rate of all single orifices were measured during three releases 9 

(release 2, 4 and 5). The observed differences between the summed orifice release rates and the measured mass flow from the 10 

gas cylinder varied between -7 and 9 % and an overall average of only 1 ± 8.7 %. The associated uncertainty of the artificial 11 

source of 17.4 % was calculated as two times the standard deviation. 12 

The quality of the calculated emission for each source experiment is defined as recovery rate which is calculated as the ratio 13 

of the measured cumulative emissions of the bLS and the cumulative measured emission from the flow controller (Table 4). 14 

Four out of five releases resulted in a recovery rate above 100 % and four release experiments showed a recovery rate between 15 

88 and 124 %. Release number one had an exceptional high recovery rate of about 150 %. During that particular release the 16 

dynamic pressure within the tubes of the system upstream of the flow controller was higher at the beginning compared to the 17 

following ones. Nevertheless, we have no conclusive explanation for this individual result. The overall mean of 111 % and the 18 

standard deviation of 18 % was calculated based on all individual half-hourly measurements. As the recovery rates were not 19 

significantly different from 100 % we can assume that the inverse dispersion methodology in combination with miniDOAS 20 

line sensors is suitable to quantify the NH3 emission of the pasture experiment.  21 

3.4 Animal related emissions  22 

As the bLS approach assumes a homogenous spatial distribution of emission sources within the investigated paddock, the 23 

actual distribution of the cow excreta could have a significant influence on the calculated emissions per animal or per excreta 24 

input. The relative density of the emitting urine patches was assumed to be proportional to the observed density of dung patches 25 

and/or animal positions as described in Sect. 2.4. Figure 10 shows the correction factor kd (Eq. 2, 3) of the excreta density in 26 

the main measurement section (between the MD instruments) from the mean density of the entire paddock area. In case of a 27 

uniform excreta distribution kd should be 1. However, a considerable heterogeneous distribution was found for the different 28 

rotations and paddocks. On the southern pasture (system G) a generally higher excreta density was found between the MD 29 

devices in comparison to the averaged field. On the northern pasture (system M) the effect was more variable with negative 30 

deviations until rotation 5 and positive deviations towards the end of the grazing season.   31 
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There is some uncertainty associated to the visual identification (for GPS localisation) of dung patches due to potential double 1 

counting or overlooking of dung patches on the paddock, and due to the use of the linear relationship between cow and dung 2 

density. But these errors are assumed to behave random-like and are thus relatively small resulting in a combined relative 3 

emission uncertainty of about 7 %. This is much smaller compared to the systematic uncertainty of the measured fluxes (Sect. 4 

3.3.1). Since there was no cow nor dung monitoring data available for system G during rotation 2, no correction for 5 

inhomogeneous excreta density was applied in this case, but a higher uncertainty (25 %) was attributed to the emission based 6 

on the variability of the dung density of the other rotations (Fig. 10). 7 

In order to calculate the animal related emission and the emission factor for the individual rotations, the derived cumulative 8 

emissions were corrected for excreta inhomogeneity (Eq. 3) by applying excreta density ratios kd shown in Fig. 10 (see also 9 

Eq. 2). The measured emissions per cow and grazing hour (h) stayed rather constant with a value of about 0.64 ± 0.11 g N-10 

NH3 cow-1 h-1 (mean ± one standard deviation) for system M and about 1.07 ± 0.12 g N-NH3 cow-1 h-1 for system G (Fig. 11). 11 

For comparison, the application of a 10 % standard emission factor for NH3 (EMEP/EEA, 2016) results in larger mean values 12 

and a larger variability (system M: 0.99 ± 0.24 g N-NH3 cow-1 h-1; system G: 1.22 ± 0.31 g N-NH3 cow-1 h-1).  13 

The error bars in Fig. 11 represent the total error of the absolute emissions. This error is predominantly due to systematic 14 

effects (Sect. 3.3.1) that are identical (bLS uncertainty) or very similar (gap filling uncertainty) for the two parallel pasture 15 

systems. Therefore these systematic errors are not relevant for the comparison of the two systems, for which only the random 16 

uncertainty and the instrument bias uncertainty (Fig. 8) have to be considered. The random uncertainty for the seasonal mean 17 

was estimated from the variability between rotations. In combination with the bias uncertainty this results in a significant mean 18 

difference between the two systems of 0.43 ± 0.13 g N-NH3 cow-1 h-1, corresponding to a relative reduction effect of the N-19 

balanced diet compared to the grazing-only diet of 40 %.        20 
 21 

3.5 Emission factors for the two pasture systems 22 

The EF values for individual rotations in Table 3 are based on the measured cumulative emissions relative to the urine N 23 

deposited (excreted) on the two pasture systems for the different rotations. They range within 4.9 % – 11.1 % for system M 24 

and show generally higher values for system G (range 7.2 – 16 %). The highest EF values were observed during the second 25 

rotation. They are mainly driven by the low N content of the grass on pasture resulting in low estimated urine N excretion 26 

(Table 2). The variation in EF is in contrast to the rather stable measured absolute NH3 emissions as shown in Fig. 11. This 27 

may indicate that the analysed grass samples are not fully representative for the selective grazing intake of the cows. On the 28 

other hand, an exceptionally high value of the measured emission is unlikely, because a rainfall event started during the second 29 

half of the grazing period and lasted almost two days with a precipitation amount of about 40 mm (data not shown). Typically 30 

smaller volatilisation of NH3 is expected during such weather periods (Sommer and Olesen, 2000). A delayed onset of the 31 

emissions was observed as described in Móring et al. (2016) after the rain event stopped. However, the emissions were small 32 

compared to the ones observed during the first grazing day (roughly one third) and were therefore not able to counterbalance 33 

the reduced emissions of the second part of the grazing period.  34 
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The annual average pasture EF and its uncertainty was derived from the overall means of NH3 emission and urine N input and 1 

resulted in 6.4 ± 2.0 % for system M and 8.7 ± 2.7 % for system G. The uncertainty of about 1/3 mainly stem from the 2 

systematic errors discussed in Sect. 3.3.1 and 2.4.  The found mean EFs are ranked towards the lower end of reported values 3 

(5 – 26 % of excreted urine N, e.g. Bussink, 1992; Jarvis et al., 1989; Laubach et al., 2012, 2013b) but are in line with the 4 

results (6 – 9 %) of the recent study by Bell et al. (2017). A single emission factor as used in many inventory models (e.g. 5 

EMEP/EEA, 2016; Kupper et al., 2015) would not be able to reflect the observed difference of 2.3 % between the two 6 

grazing/feeding systems in our experiment. The reduction in EF for system M is not statistically significant but may indicate 7 

a nonlinear effect of the N input rate on the NH3 emission, similar to the findings of the recent literature synthesis study by 8 

Jiang et al. (2017) who reported a higher emission factor with increasing fertiliser N application. Thus the optimised N-9 

balanced feeding strategy may decrease the NH3 emission even more than expected from the reduced urine N excretion.  10 

3.6 Advantages and problems of experimental setup 11 

The present field experiment was optimised to measure the NH3 emissions of two neighbouring pastures managed in an 12 

intensive rotation. The periodic high density of animals (55-70 cows ha-1) and fresh excreta on the grazed paddocks resulted 13 

in intermittent high fluxes and allowed to observe the temporal behaviour of the emissions (Fig. 6, Fig. 7). This would not be 14 

possible on a continuous grazing system with much larger paddock sizes and accordingly smaller excreta densities and 15 

emissions. For continuous grazing on large fields other micrometeorological measurement techniques like the eddy covariance 16 

(Ammann et al., 2012) would be preferable. The small paddock sizes in this study also kept the cow excreta heterogeneity on 17 

a moderate level, whereas on larger free range grazing areas the animals often gather at the same place (Cowan et al., 2015) 18 

leading to a more complicated quantification of the EF. While the distribution of dung patches and cows was monitored by 19 

means of visual inspection or evaluation of the camera images, a direct localisation of urine patches was not possible in this 20 

way. Sensors for urine patch detection exist, but are either still in development (Kumar et al., 2016), relatively expensive (Quin 21 

et al., 2016), or unpractically for field scale experiments (Dodd et al., 2015). Therefore we assumed a similar density 22 

distribution of dung and urine patches on the paddock (Auerswald et al., 2010; Luo et al., 2017).  23 

The present setup with the parallel pastures and accordingly similar micrometeorological conditions constituted an effective 24 

way to analyse the difference between the two systems as the main systematic uncertainty source of the single pasture emissions 25 

(bLS, Sect. 3.3.1) were cancelled out. However, subsequent grazing on neighbouring upwind paddocks could produce 26 

interferences with the measurements that could be corrected only in an approximate way. Another error source arose due to 27 

the strong variability of the measured crude protein in the grass with consequent high variability of the estimated N in the 28 

urine. It was not directly measured as automated monitoring techniques for urine N on the pasture are not yet mature enough 29 

and still have some limitations regarding the animal welfare (Misselbrook et al., 2016). Manual measurements of the urine N 30 

amount were outside of the scope of this project due to the laborious work.  31 
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4 Concluding remarks 1 

In a paired field experiment NH3 emissions on two pasture systems were measured for an entire grazing season under real 2 

practice conditions. The herds of the two pastures were kept in an intensive rotational grazing management with different 3 

protein to energy ratios resulting in different N excretion rates. The fast rotation with a short but high stocking rate and excreta 4 

deposition within the grazed paddock allowed to observe the temporal dynamics of the corresponding NH3 emission. Maximum 5 

emissions were found at the end of each grazing phase on the investigated area. Afterwards an exponential decay of the 6 

emissions led to non-significant low values typically within 3-5 days. A diurnal emission pattern with peaks during the 7 

afternoon was observed on all rotations. 8 

Monitoring of the cow and dung density distribution was essential for a quantitative comparison of the two systems. The 9 

emission per cow and grazing hour showed only a very limited variation over the season but a distinct difference (40 %) 10 

between the two systems. About half of this difference could be explained by the different urine N excretion rate of the two 11 

herds. The resulting average EFs were 6.4 ± 2.0 % and 8.7 ± 2.7 % for the herd with the N balanced diet and the herd with the 12 

N surplus in the forage, respectively. Thus the experiment showed the large potential of an optimised feeding strategy to reduce 13 

NH3 emissions. The results can also serve as a validation for the Swiss national emission inventory for NH3 emissions on 14 

pastures. It is recommended for further studies to include the regular analyses of the N content in the urine in order to overcome 15 

the associated uncertainties.  16 
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Table 1: Summary of grazing rotations 2016 on paddocks X.11 and X.12 investigated for NH3 emissions 1 

Rotation no. Start date  Sojourn time  

on pasture [h] 

Sojourn time  

in barn [h]  

1 2016–05–09 44.5 11 

2 2016–05–26 46.5 9 

3 2016–07–04 37 8.5 

4 2016–07–26 51 20.5 

5 2016–08–10 29 8 

6 2016–09–04 36.5 17 

7 2016–09–26 55 13 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 
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Table 2: Measured driving parameters and resulting urine N and feces N of the animal N budget model averaged for the individual 1 
rotations and for each herd (system M / G). If only one number is given it corresponds to both herds simultaneously. Rotation 4 is 2 
not shown due to missing miniDOAS measurements.  3 

Rotation   

System 

1 

M | G 

2 

M | G 

3 

M | G 

5 

M | G 

6 

M | G 

7 

M | G 

Animal weight (kg) 639 | 635 646 | 635 636 | 637 630 | 630 630 | 637 633 | 637 

Days since calving 187 | 199 204 | 216 182 | 197 217 | 218 242 | 243 258 | 265 

Milk yield 

  (kg cow-1 d-1) 

26.7 | 25.3 24.4 | 23.7 25.0 | 23.8 23.3 | 23.3 23.2 | 20.6 19.2 | 15.9 

Grass crude protein 

  (g kg-DM-1) 

203 147 178 200 218 200 

Maize crude protein 

  (g kg-DM-1) 

91 | na 91 | na 89 | na 80 | na 72 | na 71 | na 

Urine N (g cow-1 d-1) 274 | 324 135 | 157 218 | 269 266 | 326 295 | 371 244 | 317 

Feces N (g cow-1 d-1) 160 | 157 146 | 146 150 | 152 150 | 151 153 | 149 147 | 142 

 4 
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Table 3: Cumulative emission results for paddocks X.11 and X.12 (combined) of the two pasture systems (M / G) during the 1 
individual rotations. Corresponding averaged weather parameters and N excretion input to the paddocks are also listed. Rotation 4 2 
is not shown due to missing miniDOAS data at the beginning of the rotation.  3 

Rotation   

System 

1 

M | G 

2 

M | G 

3 

M | G 

5 

M | G 

6 

M | G 

7 

M | G 

flux data coverage (until  

   3 days after EOG) [%] 

55 | na 65 | 44 34 | 39 na | 30 50 | na 51 | 50 

Air temperature [°C] 11.9 14.8 18.9 17.8 18.1 14.4 

u* [m s-1] 0.13 0.15 0.12 0.09 0.11 0.13 

Precipitation [mm] 51 75 61 7 33 10 

Integral  emission 

  [g N-NH3] 

332 | na 349 | 600 357 | 496 na | 341 277 | na 330 | 726 

N excretion total [kg] 9.6 | 10.7 6.5 | 7.1 6.8 | 7.8 5.9 | 6.9 8.2 | 9.5 10.8 | 12.6 

N excretion urine [kg] 6.1 | 7.2 3.1 | 3.6 4.0 | 5.0 3.8 | 4.7 5.4 | 6.7 6.7 | 8.7 

EF relative to urine N  

  input [%] 

5.5 | na 11.1 | 16.4 8.8 | 10.0 na | 7.2 5.1 | na 4.9 | 8.3 
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Table 4: Artificial source characteristics, environmental conditions, measured MD concentrations and recovery rates during the 1 
individual gas release experiments. Averaged values during the release periods are shown. For selected parameters, the standard 2 
deviation is given as well. 3 

        Release date 

Parameter 

09–06–2017 12–06–2017 19–06–2017 27–06–2017 12–07–2017 

Release duration 

[h] 
1.5 2.5 3.5 1.5 3.0 

Pressure 

[bar] 
5.48±1.15 5.14±0.1 3.57±0.51 5.05±0.07 4.68±0.29 

Flowrate [l/min] 3.12 ± 0.08 3.12 ± 0.07 2.59 ± 0.34 3.17 ± 0.04 3.13 ± 0.06 

Abs. Emission 

[g NH3] 
10.6 17.8 20.7 10.8 21.0 

Wind direction 

[°] 
269 272 256 230 240 

Friction velocity 

[m s-1] 
0.18 ± 0.04 0.26 ± 0.03 0.25 ± 0.04 0.26 ± 0.07 0.53 ± 0.05 

Air temperature 

[°C] 
20.1 25.6 26.0 24.6 24.1 

ΔC [µg NH3 m-3] 40.6 ± 10.3 29.5 ± 9.1 14.3 ± 4.9 26.4 ± 7.1 9.4 ± 2.3 

Upwind conc. 

[µg NH3 m-3] 
2.2 ± 1.9 3.3 ± 2.5 15.3 ± 1.4 6.6 ± 1.7 1.2 ± 0.3 

Recovery rate 

[%] 
150 ± 4 124 ± 10 88 ± 9 114 ± 9 112 ± 12 
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 1 

Figure 1: a) Measurement site with the pastures for the two herds (blue: grass diet with additional maize silage; green: full grazing 2 
regime; grey: optional pasture areas) and the division into the paddocks (M.11-M.25, G.11–G.25). Additionally the location of the 3 
two sonic anemometers and the four miniDOAS systems (MD1 – MD6, naming based on serial number) are shown. b) Wind 4 
distribution for the northern sonic anemometer with the corresponding sector contributions (black dotted circles) for the period 5 
May – October 2016. The areas A and B indicate wind sectors from which advection from nearby farm building can occur. The wind 6 
distribution was overlaid on a Google Earth image of the experimental area (Map data: Google, DigitalGlobe) 7 
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 1 

Figure 2: The Polar plot shows the averaged NH3 concentration of the miniDOAS MD5 (top) and MD6 (bottom) depending on wind 2 
direction and wind speed (black dotted circles) for the period May – October 2016. The sectors A and B indicate areas with either 3 
high NH3 concentration from farm buildings or otherwise unfavourable wind direction due to the measurement setup. The polar 4 
plots were produced using the R software package openair  (Carslaw and Ropkins, 2012) and overlaid on a Google Earth image of 5 
the experimental area (Map data: Google, DigitalGlobe). 6 
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 1 

Figure 3: (a) GPS tagged dung positions recorded after grazing rotation 7 overlaid on a Google Earth image of the experimental 2 
area (Map data: Google, DigitalGlobe). The positions of the MD ammonia sensors/paths are indicated by the red dots/dotted lines. 3 
The white lines enclose the main emission measurement area between the sensors. Their dung patch density dX.meas was related to 4 
the average density over the investigated paddocks according to Eq. 2; (b) comparison of kd values according to Eq. 2 for dung patch 5 
and cow position distributions on system M (blue) and system G (green) 6 
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 1 

Figure 4: Time series of a) MD concentration measurements (MD2 and MD5) on pasture system M and b) corresponding difference 2 
in concentration. The concentration differences during good wind conditions are shown in black colour while the grey colour indicate 3 
concentration differences during undesirable weather conditions. c) Time series of u* and global radiation. The blue dashed line 4 
indicate the 0.05 m s-1 u* threshold. d) Time series of wind direction. Wind direction values overlapping with the preferred wind 5 
sector (avoiding sector A and B, Fig. 2) are shown in black colour. The preferred wind sectors are indicated by the red area. e) Time 6 
series of air temperature and precipitation. The grey shaded area indicates grazing on the paddocks in between MD2 and MD5.  7 
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 1 

Figure 5: a) Measured averaged half hourly fluxes of all rotations of the system M depending on hour of day and elapsed time since 2 
grazing on the paddocks in between MD2 and MD5 started. b) Half hourly averaged values of global radiation, wind speed and air 3 
temperature measured at system M during May to October 2016.  4 
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 1 

Figure 6: Average temporal pattern of management related NH3 emission for system M (blue) and system G (green) for daytime 2 
conditions. Curves with linear increase from start of grazing until three hours after end of grazing and exponential decrease 3 
afterwards were fitted to the 6-hourly averaged values of the measured daytime fluxes. These curves were used as default emission 4 
pattern for flux correction and gap filling (see Section 3.2). The vertical bars indicate the standard deviation of averaged half-hourly 5 
fluxes. The black vertical line indicates the end of grazing. For better readability the data points for the two systems were slightly 6 
shifted horizontally.  7 
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 1 

Figure 7: Measured emission of paddocks M.11 and M.12 (between sensors MD2 and MD5, Fig. 1a) during rotation 1. Missing half-2 
hourly flux data were filled based on either linear interpolation or on the default emission curve (Fig. 6) in order to compute the 3 
cumulative emission. For comparison the uncorrected emissions (interference of upwind grazing acc. to Eq. 4 not considered) are 4 
also shown. The shaded time intervals indicate grazing on the investigated paddocks.  5 
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 1 

Figure 8: Sensitivity analysis of various error sources on emission results for individual rotations.  Each boxplot shows the resulting 2 
relative effect of a potential systematic error. The investigated effects include the over- or underestimation of: the offset in 3 
concentration measurements (cyan), exponential decay times of the default emission curves in Fig. 6 (green), magnitude of default 4 
emission curves used for upwind source interference correction (red) and for gap filling (blue). 5 
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 1 

Figure 9: Released (red) and measured (blue) NH3 emissions during the artificial source experiment 3 on the 19 June 2017. The 2 
measured emissions were quantified using the concentration difference of the miniDOAS systems MD2 and MD5 and the 3 
corresponding modelled bLS dispersion coefficient. The error bars indicate the uncertainty of the artificial source (Sect. 3.3.2) and 4 
from the measured emissions (bLS dispersion modelling, Sect. 3.3).  5 
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 1 

Figure 10: Correction factor kd (Eq. 2, 3) of the excreta density for rotations with available emission results (Table 3). For the 2 
rotations without dung observations, the corresponding correction factors (hatched bars) were estimated based on a regression 3 
analysis between parallel surveys of density anomalies for dung patches and cow positions (Fig. 3b). The error bars show the 4 
corresponding uncertainty of estimated kd values as described in Sect. 3.4.  5 
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 1 

Figure 11: Emissions per cow and grazing hour for system M and system G. Measured values (thick dots and lines) in comparison 2 
to estimated values based on urine N amount from the N balance model and the EMEP standard emission factor for NH3 (10 %, see 3 
EMEP/EEA, 2016). The error bars (2σ) were calculated based on the methodological uncertainty (Sect. 3.3.1) and on excreta density 4 
uncertainty of the single rotations (Sect. 3.4).  5 

 6 


