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Abstract 28 

In this study, we report lipid biomarker patterns and phylogenetic identities of key 29 

microbial communities mediating anaerobic oxidation of methane (AOM) in active mud 30 

volcanoes (MVs) on the continental slope of the Canadian Beaufort Sea. The carbon isotopic 31 

compositions (δ13C) of sn-2- and sn-3-hydroxyarchaeol showed the highly 13C-depleted values 32 

(–114 ‰ to –82 ‰) associated with a steep depletion in sulfate concentrations within 0.7 m of 33 

sediment depths. This suggested the presence of methanotrophic archaea involved in sulfate 34 

dependent–AOM, albeit in a small amount. The ratio of sn-2-hydroxyarchaeol to archaeol (>1) 35 

and operational taxonomic units (OTUs) indicated that archaea of the ANME-2c and ANME-36 

3 clades were involved in AOM. Higher δ13C values of archaeol and biphytanes (BPs) (–55.2 37 

± 10.0 ‰ and –39.3 ± 13.0 ‰, respectively) suggested that archaeal communities were also 38 

assimilating AOM-derived inorganic carbon. Furthermore, the distinct distribution patterns of 39 

methanotrophs in the three MVs appears to be associated with varying intensities of ascending 40 

gas fluids. Consequently, our results suggest that the niche diversification of active mud 41 

volcanoes has shaped distinct archaeal communities that play important roles in AOM in the 42 

Beaufort Sea.  43 

 44 

Keywords: Arctic, Beaufort Sea, submarine mud volcano, methane, anaerobic oxidation of 45 
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1 Introduction 48 

Mud volcanoes (MVs) are kilometer-scale, low-temperature, seepage-related 49 

geomorphological features that provide some of the most remarkable indications of fluid 50 

venting (Ivanov et al., 1998). The roots of MVs can reach depths of up to 20 km (Shnukov et 51 

al., 2005); thus they provide key information about the geological history of the area and its 52 

possible hydrocarbon potential (Ivanov et al.,1992, 1998). Comprehensive investigations of 53 

numerous on- and off-shore MV provinces have revealed the overwhelming input of 54 

hydrocarbon gases in their formation. Eruptions often manifest as a catastrophic emission of 55 

fluids consisting of hydrocarbon gases (especially methane), hydrogen sulfide, carbon dioxide, 56 

petroleum products, water, and a complex mixture of sediments, so-called “mud breccia” 57 

(Akhmanov,1996; Akhmanov and Woodside, 1998; Ivanov et al.,1998). The occurrence of 58 

active MVs could constitute a significant portion of the geological sources of global 59 

atmospheric methane emissions (Kopf, 2002; Milkov et al., 2003). In the Arctic Ocean, where 60 

the temperature of the bottom water has been increasing (Levitus et al., 2000; Westbrook et al., 61 

2009; Polyakov et al., 2010), concern has been raised that the warming water will cause the 62 

disintegration of sediment-bound methane gas hydrates (Marín-Moreno et al., 2016). That 63 

would lead to higher methane concentrations/fluxes in surface sediments and thus the 64 

ascending methane would quickly be released into the water column and potentially the 65 

atmosphere (Niemann et al., 2006; Felden et al., 2010). The submarine MVs is therefore of 66 

considerable interest in global warming scenarios, since methane is a greenhouse gas that is 67 

>20 times more potent than carbon dioxide (Wuebbles and Hayhoe, 2002; Etminan et al., 2016). 68 

Accordingly, MV sediments can be regarded as a model system for studying the 69 

biogeochemical dynamics of sediments characterized by high methane fluxes. 70 

Across the Canadian Beaufort continental slope, active MVs were discovered at water 71 

depths of ~282 m, ~420 m, and ~740 m during the multibeam bathymetric mapping surveys 72 
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conducted in 2009 and 2010 (Campbell et al., 2009). They were named with respect to their 73 

water depths, i.e., MV282, MV420, and MV740 (Blasco et al., 2013; Saint-Ange et al., 2014). 74 

Previous investigations based on sediment coring and mapping with an autonomous 75 

underwater vehicle (AUV) and a remotely operated vehicle (ROV) showed that these MVs are 76 

young and active edifices characterized by ongoing eruptions (Paull et al., 2015). The gas 77 

ascending via these MVs consists of >95 % methane with δ13CCH4 values of –64 ‰ (Paull et 78 

al., 2015), indicating a microbial methane source (Whiticar, 1999). Siboglinid tubeworms and 79 

white bacteria mats were reported at MV420 (Paull et al., 2015). Those organisms typically 80 

consume sulfide and are thus often associated with elevated anaerobic methanotrophy in near-81 

surface sediments because sulfide is one end product of the anaerobic oxidation of methane 82 

(AOM), with sulphate as the terminal electron acceptor (Boetius and Wenzhöfer, 2013; Paull 83 

et al., 2015). AOM is mediated by several clades of anaerobic methanotrophic archaea (ANME) 84 

that typically form syntrophic associations with sulphate-reducing partner bacteria (Knittel and 85 

Boetius, 2009):  86 

 87 

CH4 + SO4
2−  →  HCO3

−  + HS−  + H2O 88 

 89 

A powerful tool to investigate AOM communities in sediments is the analysis of membrane 90 

lipids combined with their compound-specific carbon isotopic composition (13C), which can 91 

be used to chemotaxonomically infer community composition (Niemann and Elvert, 2008 and 92 

references therein). In particular, low 13C values in AOM-derived lipids are widely used to 93 

trace AOM in ancient (e.g. Zhang et al., 2003; Stadnitskaia et al.,2008a,b; Himmler et al., 2015) 94 

and modern seep settings (e.g. Hinrichs and Boetius, 2002; Niemann et al., 2005; Chevalier et 95 

al., 2011, 2014). Although the ebullition of methane from the Beaufort Sea MVs has been 96 

documented before (Paull et al., 2015), the sediment methane dynamics, including the role of 97 
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AOM as a barrier against uprising methane in these systems, has not been investigated. 98 

In this study, we thus investigated three sediment cores recovered from active MVs on the 99 

continental slope of the Canadian Beaufort Sea during the ARA05C expedition with the R/V 100 

ARAON in 2014. By using a combination suite of lipid and nucleic acid analyses with bulk 101 

geochemical parameters, our study sheds light on the specific archaeal communities involved 102 

in AOM at active MVs in the Canadian Beaufort Sea.  103 

 104 

2 Material and Methods 105 

2.1 Sample collection 106 

Three sediment cores were recovered using a gravity corer during the ARA05C expedition 107 

of the South Korean icebreaker R/V ARAON in the Canadian Beaufort Sea in August 2014 108 

(Fig. 1A-C). Core ARA05C-10-GC (70°38.992'N, 135°56.811'W, 282 m water depth, 221 cm 109 

core length), core ARA05C-01-GC (70°47.342'N, 135°33.952'W, 420 m water depth, 272 cm 110 

core length), and core ARA05C-18-GC (70°48.082'N, 136°05.932'W, 740 m water depth, 300 111 

cm core length) were retrieved from the active MV sites MV282, MV420 and MV740, 112 

respectively. Upon recovery, all sediment cores showed active degassing (Fig. 1D). When the 113 

sediment cores were split, we observed a mousse-like texture in cores ARA05C-10-GC and 114 

ARA05C-01-GC, related to outgassing as a result of the pressure change during recovery. Gas 115 

hydrates in the shape of about ≤2 cm thick isolated veins were observed at the bottom (230 to 116 

300 cm) of core ARA05C-18-GC. The split sediment cores were lithologically described, and 117 

then subsampled for total organic carbon (TOC), lipid biomarkers and 16S rRNA gene 118 

sequences on board. After subsampling, sediment samples were stored at –20°C for 119 

geochemical analyses and at –80°C for microbial analyses.  120 

 121 

2.2 Bulk geochemical analysis 122 
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Sediment samples were freeze-dried and homogenized using an agate mortar prior to the 123 

TOC analyses. Sediment samples (~1 g) were then treated with 8 mL 1N HCl to remove 124 

carbonates before measuring the TOC content and its isotopic composition using an elemental 125 

analyzer (EuroEA3028, Eurovector, Milan, Italy) connected to an isotope ratio mass 126 

spectrometer (Isoprime, GV Instruments, Manchester, UK). All isotope ratios of TOC are 127 

reported using the δ-notation (per mil) with respect to the Vienna Pee Dee Belemnite (VPDB). 128 

The analytical errors (standard deviations of repeated measurements of the internal standard 129 

IAEA CH6) were smaller than ±0.1 wt.% for TOC, and ±0.1 ‰ for δ13CTOC.  130 

 131 

2.3 Lipid extraction and purification 132 

The homogenized sediment samples (ca. 10 g) were extracted with an accelerated solvent 133 

extractor (Dionex ASE 200, Dionex Corporation, Sunnyvale, CA) using a solvent mixture of 134 

9:1 (v:v) dichloromethane (DCM) to methanol (MeOH) at a temperature of 100°C and a 135 

pressure of 7.6×106 Pa. The total lipid extract was dried over anhydrous Na2SO4 and was treated 136 

with tetrabutylammonium sulfite reagent to remove elemental sulfur. An aliquot was 137 

chromatographically separated into apolar and polar fractions over an Al2O3 (activated for 2 h 138 

at 150°C) column with solvents of increasing polarity. The apolar fraction was eluted using 139 

hexane:DCM (9:1, v:v), and the polar fraction was recovered with DCM:MeOH (1:1, v:v) as 140 

eluent. After column separation, 40 μl of 5α-androstane (10 μg/mL) were added to the apolar 141 

fraction as an internal standard. The polar fraction was divided into two aliquots, to which 142 

either C22 7,16-diol (10 μg/mL) or C46 GDGT (10 μg/mL) was added as an internal standard. 143 

Half of the polar fraction containing C22 7,16-diol was dried and silylated with 25 μL N,O-144 

bis(trimethylsilyl)trifluoroacetamide (BSTFA) and 25 μL pyridine before heating it to 60°C for 145 

20 min to form trimethylsilyl derivatives. The second half of the polar fraction containing C46 146 

GDGT was re-dissolved by sonication (5 min) in hexane:isopropanol (99:1, v:v) and then 147 
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filtered with a 0.45-μm PTFE filter. Afterwards, an aliquot of the filtered fraction was treated 148 

with HI following the procedure described by Kaneko et al. (2011) in order to cleave ether 149 

bonds from glycerol dialkyl glycerol tetraethers (GDGTs), thereby releasing biphytanes (BPs) 150 

which can be analyzed by a gas chromatography (GC).  151 

 152 

2.4 Identification and quantification of lipid biomarkers  153 

All apolar and polar fractions were analyzed using a Shimazu GC (Shimazu Corporation, 154 

Kyoto, Japan) equipped with a splitless injector and a flame ionization detector for compound 155 

quantification. A fused silica capillary column (CP-sil 5 CB, 25-m length, 0.32-mm i.d., and 156 

0.12-μm film thickness) was used with He (1.3 mL/min) as a carrier gas. The samples were 157 

injected under constant flow at an initial oven temperature of 70°C. The GC oven temperature 158 

was subsequently raised to 130°C at a rate of 20°C/min, and then to 320°C at 4°C/min with a 159 

final hold time of 15 min. Concentrations were obtained by comparing the peak area of each 160 

compound with that of 5α-androstane for the apolar fraction and C22 7,16-diol for the polar 161 

fraction. Compound identifications for the apolar, silylated and BP polar fractions were 162 

conducted using a Shimazu GC connected to a GCMS-QP2010 mass spectrometer (MS) 163 

operated at 70 eV (cycle time of 0.9 s, resolution of 1000) with a mass range of m/z 50–800. 164 

The samples were subjected to the same temperature conditions and capillary column described 165 

for GC analysis. Molecular structures were determined by comparing their mass spectral 166 

fragmentation patterns and retention times with previously published data. 167 

 An aliquot of the filtered polar fractions was analyzed by high-performance liquid 168 

chromatography–atmospheric pressure positive ion chemical ionization–mass spectrometry 169 

using an Agilent 6120 Series LC/MSD SL system (Agilent Technologies, Santa Clara, CA) 170 

equipped with an auto-injector and Chemstation chromatography manager software. 171 

Separation was achieved on two UHPLC silica columns (2.1 × 150 mm, 1.7 μm), fitted with 172 
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2.1 × 5 mm pre-columns of the same material and maintained at 30°C. Injection volumes varied 173 

from 1 L. GDGTs were eluted isocratically with 82% A and 18% B for 25 min, followed by 174 

a linear gradient to 35% B over 25 min, then to 100% B over 30 min, and finally maintained 175 

for 20 min, where A = hexane and B = hexane:2-propanol (90:10, v:v). The flow rate was 0.2 176 

mL/min, with a total run time of 90 min. After each analysis, the column was cleaned by back-177 

flushing hexane:2-propanol (90:10, v:v) at 0.2 mL/min for 20 min. Conditions for APCI-MS 178 

were as follows: nebulizer pressure 60 psi, vaporizer temperature 400°C, drying gas (N2) flow 179 

6 mL/min and temperature 200°C, capillary voltage –3.5 kV, corona 5 µA (~3.2 kV). Detection 180 

was achieved in single ion monitoring of [M + H]+ ions (dwell time 35 ms), as described by 181 

Schouten et al. (2007). GDGTs were quantified by integrating peak areas and using the internal 182 

standard according to Huguet et al. (2006). 183 

 184 

2.5 Compound-specific stable carbon isotope analysis 185 

The 13C values of selected compounds were determined by GC/combustion/isotope ratio 186 

mass spectrometry (GC-C-IRMS), as described by Kim et al. (2017). An IRMS (Isoprime, GV 187 

Instruments, UK) was connected with a GC (Hewlett Packard 6890 N series, Agilent 188 

Technologies, Santa Clara, CA) via a combustion interface (glass tube packed with copper 189 

oxide (CuO), operated at 850°C). The samples were subjected to the same temperature 190 

conditions and capillary column described for the GC and GC-MS analyses. Calibration was 191 

performed by injecting several pulses of reference gas CO2 of known 13C value at the 192 

beginning and the end of each sample run. Isotopic values are expressed as 13C values in per 193 

mil relative to the Vienna-PeeDee Belemnite (VPDB). The δ13C values were further corrected 194 

using a certified isotope standard (Schimmelmann alkane mixture type A6, Indiana University). 195 

The correlation coefficients (r2) of the known δ13C values of certified isotope standards with 196 
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the average values of the measured samples were higher than 0.99. In the case of silylation of 197 

alcohols, we corrected the measured δ13C values for the isotopic composition of the methyl 198 

adducts (the δ13C value of the BSTFA = –19.3 ± 0.5 ‰). In order to monitor the accuracy of 199 

the measurements, standards with known δ13C values were repeatedly analyzed every 5–6 200 

sample runs. Standard deviations of carbon isotope measurements were generally better than 201 

±0.4 ‰, as determined by repeated injections of the standard.  202 

 203 

2.6 Genomic DNA extraction and amplification of 16S rRNA genes  204 

Sediment samples stored at –80C were freeze-dried, and genomic DNA was extracted 205 

from ~0.5 g of freeze-dried samples using the FastDNA Spin Kit for Soil (Q-Biogene, Carlsbad, 206 

CA, USA). 16S rRNA gene was amplified by polymerase chain reaction (PCR) using the 8F 207 

(3-CTCAGAGTAGTCCGGTTGATCCYGCCGG-5’) / 519R (3’-208 

ACAGAGACGAGGTDTTACCGCGGCKGCTG-5’) primers with barcodes for archaeal 209 

community analysis. PCR was carried out with 30 µL of reaction mixture containing DreamTaq 210 

Green PCR Master Mix (2×) (Thermo Fisher Scientific, Waltham, MA, USA), 1 µL of 5 µM 211 

primers, and 4 µL of genomic DNA. The PCR procedure included an initial denaturation step 212 

at 94C for 3 min, 30 cycles of amplification (94C for 1 min, 55C for 1 min, and 72C for 213 

1.5 min), and a final extension step at 72C for 5 min. Each sample was amplified in triplicate 214 

and pooled. PCR products were purified using the LaboPass purification kit (Cosmogenetech, 215 

Seoul, Korea). Due to PCR failure for samples below 0.6 m in the MV740 sample, these 216 

samples were not included in further analysis. 217 

 218 

2.7 Archaeal community and phylogenetic analysis 219 

Sequencing of the 16S rRNA amplicon was carried out by Chun Lab (Seoul, South Korea) 220 
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using a 454 GS FLX-Titanium sequencing machine (Roche, Branford, CT, USA). 221 

Preprocessing and denoising were conducted using PyroTrimmer (Oh et al., 2012). Sequences 222 

were processed to remove primer, linker, and barcode sequences. The 3′ ends of sequences with 223 

low quality values were trimmed when the average quality score for a 5-bp window size was 224 

lower than 20. Sequences with ambiguous nucleotides and those shorter than 250 bp were 225 

discarded. Chimeric reads were detected and discarded using the de novo chimera detection 226 

algorithm of UCHIME (Edgar et al., 2011). Sequence clustering was performed using 227 

CLUSTOM (Hwang et al., 2013) with a 97 % similarity cutoff. Taxonomic assignment was 228 

conducted for representative sequences of each cluster by EzTaxon-e database search (Kim et 229 

al., 2012). Raw reads were submitted to the National Center for Biotechnology Information 230 

(NCBI) Sequence Read Archive (SRA) database (accession number PRJNA433786).  231 

For phylogenetic analysis of operational taxonomic units (OTUs) based on 16S rRNA 232 

genes, we selected OTUs belonging to the class Methanomicrobia that composed more than 233 

1 % of the relative abundance and aligned them with those of Methanomicrobia in jPHYDIT. 234 

A phylogenetic tree was constructed using the maximum-likelihood algorithm (Felsenstein et 235 

al., 1981) with MEGA 6 (Tamura et al., 2013). The robustness of the tree topologies was 236 

assessed by bootstrap analyses based on 1,000 replications of the sequences.  237 

 238 

3 Results 239 

3.1 Bulk geochemical and microbial lipid analyses  240 

Dissolved sulfate concentrations in sediment cores from MV282, MV420, and MV740 241 

ranged from 0.1 mM to 26.8 mM and sharply decreased within 0.7 m in core depths (Fig. 2, 242 

see also Paull et al., 2015). Overall, the TOC contents of core sediments from MV282, MV420 243 

and MV740 ranged from 1.2–1.5 wt.%, 1.0–1.3 wt.%, and 1.1–1.3 wt.%, respectively (Fig. 2, 244 

see also Table 1). Similarly, δ13CTOC values in MV282, MV420 and MV740 cores showed little 245 
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variation, with average values of –26.30.07 ‰, –26.20.05 ‰, and –26.30.06 ‰, 246 

respectively (Fig. 2, see also Table 1).  247 

Isoprenoid dialkyl glycerol diethers (DGDs), considered as biomarkers diagnostic for 248 

ANMEs such as archaeol (2,3-di-O-phytanyl-sn-glycerol) and sn-2-hydroxyarcaheol (2-O-3-249 

hydroxyphytanyl-3-O-phytanyl-sn-glycerol), were identified in the polar fractions of all three 250 

cores (Fig. S1); their concentrations were 0.03–0.09 μg/g and 0.01–0.13 μg/g, respectively (Fig. 251 

3, see also Table 1). Sn-3-hydroxyarchaeol was identified only in MV282 and MV420 252 

sediments at concentrations of 0.01–0.08 μg/g (Fig. 3, see also Table 1). Among non-isoprenoid 253 

DGDs, we identified DGD (If) with anteiso pentadecyl moieties attached at both the sn-1 and 254 

sn-2 positions in all three cores. The concentrations of non-isoprenoid DGD (If) ranged from 255 

0.06 to 0.25 μg/g (Fig. 3, see also Table 1). Isoprenoid glycerol dialkyl glycerol tetraethers 256 

(GDGTs) containing 0 to 3 cyclopentane moieties (GDGT-0 to GDGT-3) and crenarchaeol 257 

which, in addition to 4 cyclopentane moieties, contains a cyclohexane moiety, were detected 258 

in all samples investigated (Fig. 4). Overall, the isoprenoidal GDGTs were dominated by 259 

GDGT-0 and crenarchaeol, with concentrations of 0.02–0.19 μg/g and 0.02–0.25 μg/g, 260 

respectively, whereas GDGT-1 and GDGT-2 showed much lower concentrations (0.02 μg/g) 261 

in the three cores. In the apolar fractions, we did not detect any isoprenoid hydrocarbons that 262 

are typically associated with ANMEs, i.e., the C20 compound 2,6,11,15-tetramethylhexadecane 263 

(crocetane) or the C25 compound 2,6,10,15,19-pentamethylicosane (PMI).  264 

At the three MVs, the δ13C values of archaeol and sn-2-hydroxyarchaeols ranged from –265 

79.8 to –38.5 ‰ and from –113.9 to –82.1 ‰, respectively (Fig. 3, Table 1). The δ13C values 266 

of sn-3-hydroxyarchaeol were as low as –93.1 ‰. The δ13C values of the non-isoprenoid DGD 267 

(If) varied between –46.9 and –31.9 ‰. The δ13C values of BPs derived from the isoprenoid 268 

GDGTs ranged from –63.4 to –16.7 ‰. The δ13C values of BP-1 (on average –51.0 ‰) were 269 

slightly more depleted than those of BP-0 (on average –34.2 ‰), BP-2 (on average –28.3 ‰) 270 
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and BP-3 (on average –27.5 ‰). 271 

 272 

3.2 Depth profile of archaeal communities 273 

Archaeal communities were phylogenetically classified as the taxonomic level of class 274 

(Table S1 and Fig. S2). The archaeal classes detected were Miscellaneous Crenarchaeotal 275 

Group (MCG)_c, Methanomicrobia, SAGMEGMSBL_c, Thermoplasmata, Lokiarchaeota_c 276 

(formerly Marine Benthic Group B), MHVG3_c, Group 1a_c, and Group 1b_c. MCG_c of the 277 

phylum Bathyarchaeota was the most dominant archaeal class at the three MVs at a range of 278 

depths, with the exception of the surface of MV420, accounting for 39.7 to 99.2 % of the total 279 

archaeal sequences. In contrast to the archaeal communities below 0.3 m in MV282 and 1.1 m 280 

in MV420, which were dominated by MCG_c, shallow archaeal communities at depths of 0.0–281 

0.2 m at MV282, 0.1–0.7 m at MV420, and 0.1–0.6 m at MV740 had different compositions 282 

in the MVs. The class Methanomicrobia represented a relatively high proportion (up to 20.9 %) 283 

in these shallow depths at all three MVs.  284 

 285 

4 Discussion 286 

4.1 Signals of AOM activity in Beaufort Sea mud volcanoes  287 

Active gas bubble emissions into the overlying water column have previously been 288 

observed at all the investigated MVs, i.e., MV282, MV420, and MV740 (Paull et al., 2011 and 289 

2015). A sharp decrease in pore water sulfate concentration and a rapid increase in sediment 290 

temperature near the seafloor indicates the ascension of sulfate-depleted, warm fluids 291 

containing methane from these MVs (Paull et al., 2015). Thus, several lines of evidence suggest 292 

that interstitial methane gas is likely saturated near the seafloor of the investigated MVs, 293 

meaning that both an electron acceptor (sulfate) and a donor (methane) for AOM are present in 294 

the near-surface sediments. Furthermore, an indirect indication of AOM in near-surface 295 
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sediments is the presence of thiotrophic organisms, i.e., siboglinid tubeworms closely related 296 

to Oligobrachia haakonmosbiensis and the white bacterial mats found at the summit of MV420 297 

(Paull et al., 2015). Such thiotrophs, which consume the AOM end product, sulfide, are 298 

typically found in habitats characterized by high AOM activity in the near-surface sediments 299 

(Niemann et al., 2006; Rossel et al., 2011; Felden et al., 2014). 300 

AOM at active methane seeps typically proceeds with sulfate as the terminal electron 301 

acceptor (Boetius et al., 2000, Reeburgh, 2007; Knittel et al., 2009; James et al., 2016), 302 

although recent research also found indications for AOM with electron acceptors other than 303 

sulfate, i.e. oxidised Mn and Fe species (Beal et al., 2009) or nitrate/nitrite (Haroon et al., 2013). 304 

The key microbial communities involved in sulfate-dependent AOM are anaerobic methane 305 

oxidisers (ANMEs) in association with sulfate reducing partner bacteria (Knittel et al., 2009), 306 

although ANMEs may also mediate sulfate-dependent AOM without bacterial partners 307 

(Milcuka et al., 2012). AOM with alternative electron acceptors in marine settings is probably 308 

mediated by specialised ANMEs (Beal et al., 2009; Haroon et al., 2013), but it remains unclear 309 

how far potential bacterial partners are involved in these processes. At the MVs investigated 310 

here, we found indications for sulfate-methane transition zones (SMTZ) because sulfate 311 

penetrated only about 0.20 m (MV270), 0.20 m (MV420) and 0.45 m (MV740) into the sea 312 

floor, and we found corresponding elevated abundancies of sulfate-dependent AOM 313 

communities and their lipid biomarkers (Fig.2 and see discussion on AOM communities in 314 

sediments in section 4.2). In contrast to sulfate, the other potential electron acceptors for AOM 315 

mentioned above are typically depleted at shallow depths because redox-reactions are more 316 

thermodynamically feasible than AOM (Reeburgh, 2007). We did not detect any of the archaeal 317 

communities (i.e., Methanoperedens nitroreducens, Haroon et al., 2013) that mediate AOM 318 

with electron acceptors other than sulfate, which makes alternative modes of AOM at the 319 

investigated MVs rather unlikely.  320 
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 321 

4.2 Contribution of AOM to sedimentary biomass 322 

AOM-derived biomass (including lipids) is generally depleted in 13C compared to the 323 

13C-values of source methane as a result of isotopic fractionation during methane assimilation 324 

(Whiticar, 1999). As AOM-related biomarkers, we found substantial amounts of sn-2-325 

hydroxyarchaeol among the isoprenoid DGDs in all three MV sediment cores (Fig. 3). Sn-3-326 

hydroxyarchaeol, an isomer of sn-2-hydroxyarchaeol (e.g. Pancost et al., 2000; Elvert et al., 327 

2005; Niemann et al., 2005; Bradley et al., 2009), was also detected in MV282 but not in 328 

MV420 or MV740, except at 0.7 m in MV420 (Fig. 3). The δ13C values of sn-2-329 

hydroxyarchaeol were more depleted than the δ13CCH4 values (by about –64 ‰, Paull et al., 330 

2015), with average Δδ13C values (lipid-methane) of –35.5 ‰ in MV282, –33.8 ‰ in MV420, 331 

and –29.5 ‰ in MV740. Notably, the Δδ13C values of sn-2-hydroxyarchaeol were slightly 332 

larger in MV282 than in the other MVs. Similar to sn-2-hydroxyarchaeol, the δ13C values of 333 

sn-3-hydroxyarchaeol in the MV sediments were generally more depleted than the δ13CCH4 334 

values. Accordingly, the depleted-δ13C values of sn-2- and sn-3-hydroxyarchaeol indicated 335 

recent AOM occurrence in sediment where sulfate was present. On the other hand, the depleted 336 

δ13C values of sn-2-hydroxyarchaeol detected below the SMTZ were likely a fossil AOM 337 

signature (Lee et al., 2013). Non-isoprenoid DGD (If), identified as a robust marker of sulfate-338 

reducing bacteria (SRB) involved in AOM (e.g. Pancost et al., 2001a; Werne et al., 2002), was 339 

detected throughout all three MV sediment cores (Fig. 3). However, the δ13C values of the non-340 

isoprenoid DGD (If) (–46.9 to –32.6 ‰) were enriched in 13C relative to the ascending methane 341 

in the MVs. Therefore, our δ13C data from the non-isoprenoid DGD (If) suggest that those 342 

compounds originate from a mixed community mediating AOM and other processes.  343 

Furthermore, our measurements of the TOC content and δ13CTOC values in the three 344 

sediment cores revealed narrow ranges of 1.20.1 wt.% and –26.40.6 ‰, respectively (Fig. 2, 345 
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see also Table 1), without the negative isotopic excursion that has often been observed in MVs 346 

in association with methane-derived biomass from AOM (e.g. Haese et al., 2003; Werne et al., 347 

2004). Therefore, in accordance with methane ebullition to water column (Paull et al., 2015), 348 

our bulk geochemical data suggest that the contribution of AOM-biomass to sedimentary TOC 349 

was rather low at the MVs we investigated, which is in line with our findings that the non-350 

isoprenoid GDGTs substantially originate from bacterial sources unassociated with 351 

methanotrophy.  352 

Similarly, we found substantial amounts of archaeal lipids that originated from sources 353 

other than AOM. All sediment cores from the three MVs showed a predominance of GDGT-0 354 

and crenarchaeol (Fig. 4), revealing the contribution of marine pelagic Thaumarchaeota 355 

(Schouten et al., 2013). The isoprenoid GDGT distributions also did not show a clear 356 

dominance of GDGT-2 over GDGT-0. The values of the GDGT-0/crenarchaeol (Liu et al., 357 

2011), the GDGT-2/crenarchaeol (Weijers et al., 2011), and the methane index (Zhang et al., 358 

2011) were also low, with ranges of 0.8–1.7, 0.1–0.2, and 0.2–0.4, respectively. Thus, the 359 

GDGT signals found here indicate the negligible contribution of Euryarchaeota to AOM and 360 

the GDGT pool (e.g. Pancost et al., 2001b; Zhang et al., 2003; Niemann et al., 2005; 361 

Stadnitskaia et al., 2008a, b). The 13C-enriched isotopic signatures of BPs (Table 1) relative to 362 

methane provide further evidence that the isoprenoid GDGTs derived from methanotrophic 363 

archaea were low in the investigated sediments. For example, at sites characterized by high 364 

AOM activity, previous studies found GDGT-1 and -2 at concentrations of up to 20 μg/g, 100-365 

fold higher than in our results (Stadnitskaia et al., 2008b). We can only speculate about the 366 

reasons for the low abundances of AOM-related archaeal communities contributing to the 367 

GDGT pool. One possibility is a rather recent onset in seepage activity at the coring sites, which 368 

would leave too little time for the slow-growing AOM communities, which are characterized 369 

by doubling times on the month scale, to have grown large (Nauhaus et al., 2007).  370 
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 371 

4.3 AOM-related microbial communities in Beaufort Sea mud volcanoes 372 

4.3.1 Chemotaxonomy  373 

The composition of microbial lipids and their δ13C values can be used to infer the 374 

chemotaxonomic composition of microbes involved in sulfate-dependent AOM (Niemann and 375 

Elvert, 2008). Previously, three groups of anaerobic methanotrophic archaea (ANME-1, 376 

ANME-2 and ANME-3) have been reported in a diversity of cold seep environments, which 377 

are related to methanogens of the orders Methanosarcinales and Methanomicrobiales (Knittel 378 

and Boetius, 2009). Archaeol is ubiquitous in archaea, often serving as an indicator of 379 

methanogenic archaea in a wide range of environments including MVs (e.g. De Rosa and 380 

Gambacorta, 1988; Koga et al., 1993, 1998; Pancost et al., 2011). In contrast, sn-2-381 

hydroxyarchaeol has only been found in certain orders of methanogens such as 382 

Methanosarcinales, Methanococcales, Methanopyrales, Thermoplasmatales, Sulfolobales and 383 

Methanomicrobiales (e.g. Kushwaha and Kates, 1978; Koga et al., 1993, 1998; Koga and Morii, 384 

2005), and sn-3-hydroxyarchaeol has been detected in Methanosarcinales (Methanosaeta 385 

concilii) and Methanococcales (Methanococcus voltae) (Ferrante et al., 1988; Sprott et al., 386 

1993).  387 

Microbial communities dominated by ANME-2 at the cold seeps of the northwestern Black 388 

Sea contained higher amounts of sn-2-hydroxyarchaeol relative to archaeol, whereas the 389 

reverse was observed in microbial mats dominated by ANME-1 (Blumenberg et al., 2004). 390 

Indeed, the ratio of isotopically depleted sn-2-hydroxyarchaeol relative to archaeol can be used 391 

to distinguish ANME-1 (0–0.8) from ANME-2 (1.1–5.5), with ANME-3 (2.4) falling within 392 

the range of ANME-2 (Niemann et al., 2006; Niemann and Elvert, 2008). In our dataset, the 393 

concentration of sn-2-hydroxyarchaeol was slightly higher than that of archaeol in MV282, but 394 

lower in MV420 and MV740 (Fig. 3, see also Table 1). Accordingly, the sn-2-395 
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hydroxyarchaeol/archaeol ratio was between 1.3 and 1.8 in MV282, but below 0.7 for most of 396 

the samples from MV420 and MV740, except for at depths of 0.7 m (1.4) in MV420 and 0.4–397 

0.6 m (0.9–1.1) in MV740 (Fig. 3, see also Table 1). This observation suggests that ANME-2 398 

(or ANME-3) was involved in AOM in MV282, whereas ANME-1 was probably involved in 399 

AOM in MV420 and MV740, except for at the depths mentioned above. 400 

However, the δ13C values of archaeol were on average –62.6 ‰ in MV282, –49.4 ‰ in 401 

MV420, and –54.3 ‰ in MV740, except for at 0.7 m in MV420 (–79.8 ‰). Hence, the δ13C 402 

values of archaeol in most of the MV sediments appeared to be enriched in 13C in comparison 403 

to that of the ascending methane in the MVs (about –64 ‰, Paull et al., 2015), indicating 404 

admixture from processes other than AOM. Hence, it appears that the ratio of sn-2-405 

hydroxyarchaeol to archaeol was generally high in all investigated MVs, hinting a negligible 406 

involvement of ANME-1 in AOM even in MV420 and MV740. Previous studies showed that 407 

GDGTs were mostly absent in ANME-2-dominated settings, but not in ANME-1-dominated 408 

settings, which typically contain substantial amounts of GDGT-1 and GDGT-2 (e.g., 409 

Blumenberg et al., 2004; Stadnitskaia et al., 2008a, b; Chevalier et al., 2011; Kaneko et al., 410 

2013). The GDGT distributions found here (Fig. 4) indeed show a clear dominance of GDGT-411 

0 and crenarchaeol over GDGT-1 and GDGT-2. Hence, our lipid data indicate that ANME-2 412 

and/or ANME-3 are involved in AOM in the Beaufort Sea MVs rather than ANME-1. We did 413 

not detect crocetane, which is diagnostic for ANME-2 (Elvert et al., 1999), but we also found 414 

no PMIs which are structurally similar to crocetane and produced by ANME-1, -2 and -3 415 

(Niemann and Elvert, 2008), so we could not carry out a further chemotraxonomic distinction 416 

of the dominant ANME groups.  417 

 418 

4.3.2 Nucleic acid based phylogeny  419 

To further identify key AOM communities, we investigated the archaeal community by 420 
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pyrosequencing of 16S rRNA genes. In line with geochemical and biomarker signals for AOM 421 

in the surface sediments of the investigated MVs, we found archaeal sequences of the 422 

Methanomicrobia, which contains the order Methanosarcinales (i.e., the clade to which the 423 

ANME archaea also belong) at higher abundances in the upper depths of the MV sediment 424 

cores than the lower depths (see Table S2 and Fig. S2). To further clarify the phylogenetic 425 

position within the class Methanomicrobia (comprising both methanogens and methanotrophs), 426 

phylogenies of the three most dominant (more than 1 % of all archaeal sequences) 427 

Methanomicrobia OTUs (c116, c1698, and c1784) were inferred from 16S rRNA gene 428 

sequences (Supplementary Information Table S2). The OTU c116 represented 2.5–14.1 % and 429 

0.2–6.7 % of the archaeal sequences at core depths of 0.0–0.2 m in MV282 and 0.1–1.1 m in 430 

MV420, respectively, whereas this OTU was less than 0.2 % at MV740 (Supplementary 431 

information Table S2). The OTU c1698 accounted for more than 1 % of the archaeal sequences 432 

at the surface of MV282 but was absent at other MVs. The OTU c1784 accounted for 1.2–6.8 % 433 

and 3.7–14.9 % of the archaeal sequences at core depths of 0.0–0.2 m in MV282 and 0.4–0.6 434 

m in MV740, respectively. In contrast, this OTU was rarely detected at all depths of MV420, 435 

except for at the depth of 0.7 m. The OTUs c116 and c1698 belonged to ANME-3 archaeal 436 

lineage and the OUT c1784 formed a cluster with sequences of ANME-2c, a distinct lineage of 437 

Methanosarcinales (Fig. 5). Hence, the occurrence of these sequences, together with our lipid 438 

data, provides evidence that the AOM communities belong to the ANME-2 and ANME-3 439 

clades; ANME-1 does not seem to play a role at the investigated Beaufort Sea MVs. In line 440 

with our geochemical and lipid analyses, the abundance of ANME-sequences was also low, 441 

underscoring that the contribution of the AOM communities to the archaeal biomass at the MVs 442 

investigated here was rather minor. Instead, we found that most archaeal sequences belong to 443 

the MCG_c clade (up to 99.2 % of all sequences) within the phylum Bathyarchaeota. Although 444 

members of this clade were previously shown to perhaps be involved in methane oxidation in 445 
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marine and estuary settings (Inagaki et al., 2006; Jiang et al., 2011; Li et al., 2012), little is 446 

known about their physiology and biogeochemical roles in nature. 447 

 448 

4.4 Mechanism controlling microbial communities in Beaufort Sea mud volcanoes 449 

16S rRNA signatures from the Beaufort Sea MVs revealed the presence of AOM related 450 

to archaeal ANME-2 and ANME-3, albeit in relatively low proportions (Fig. 5). The ANME-2 451 

can be divided into three subgroups, ANME-2a, ANME-2b, and ANME-2c (e.g. Orphan et al., 452 

2001; Knittel et al., 2005). In the Beaufort Sea MVs, the ANME-2c subgroup was detected 453 

(Fig. 5). A previous study at Hydrate Ridge (Cascadia margin off Oregon, USA) showed that 454 

ANME-2c was dominant at symbiotic clam Calyptogena sites, accounting for >75 % of the 455 

total ANME-2, whereas ANME-2a was the most abundant at a site covered by the sulfide-456 

oxidizing bacterium Beggiatoa, accounting for up to 80 % (Knittel et al., 2005). Fluid flow 457 

rates and the methane fluxes from the seafloor were substantially weaker at Calyptogena sites 458 

than at Beggiatoa sites (e.g. Tryon et al., 1999; Sahling et al., 2002). The distinct distribution 459 

of ANME-2 subgroups might reflect their sulfide tolerance and oxygen sensitivity (Roalkvam 460 

et al., 2011). It appears that ANME-2c has a preferential niche interacting with chemosynthetic 461 

habitats in relatively low methane fluxes in the Beaufort Sea MVs.  462 

The thermal gradients in our study area (see Paull et al., 2015) were substantially higher 463 

in the MVs (517.7 mK/m in MV282, 557.9 mK/m in MV420, and 104.3 mK/m in MV740) 464 

than in the reference site (28.9 mK/m). In general, high geothermal gradients were observed 465 

where methane emission activities were high, as reported at Dvurechenskii MV (Feseker et al., 466 

2009) and Haakon Mosby MV (Kaul et al., 2006). Accordingly, among the MV sites, the 467 

methane flux appeared to be the highest at the MV420 site. Indeed, we found a lower abundance 468 

of ANME-2c in MV420 than in MV282 and MV740 (Fig. 5, see also Table S2). The MV740 469 

site had the lowest thermal gradient of the MV sites, and thus probably the lowest methane flux, 470 
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which is consistent with the presence of the gas hydrate flake at 230 cm in the MV740 sediment 471 

core (see Fig. 1D). At this MV site, ANME-2c occurred at a deeper core depth (0.3–0.7 m) than 472 

at the MV282 site (0.0–0.3 m, see also Table S2). This might be linked to the lower methane 473 

flux at the MV740 site than at the MV282 site, resulting in penetration of sulfate to deeper 474 

sediment depths. Notably, at active MV sites, the sulfate penetration depth can be limited to 475 

the upper 2-cm sediment layers (cf. Niemann et al., 2006).  476 

Besides ANME-2c, 16S rRNA gene analyses also revealed the presence of ANME-3 (see 477 

Table S2). Notably, ANME-3 occurred in MV420 whereas thermal gradients were high 478 

(indicating high methane flux) and ANME-2c was almost absent. However, ANME-3 was 479 

absent in MV740 where ANME-2c was present. Similar to ANME-2a, ANME-3 was 480 

previously found at a high fluid flow/methane flux site associated with Beggiatoa mats at the 481 

Haakon Mosby Mud Volcano located in Barents Sea at the water depth of 1,250 m (Niemann 482 

et al., 2006, Lösekann et al., 2007). Accordingly, it seems that ANME-3 thrives better in a 483 

setting with higher methane fluxes than ANME-2c.  484 

 485 

5 Summary and conclusions 486 

Integrated biogeochemical and nucleic acid analyses were performed for three sediment 487 

cores retrieved from active MVs in the Beaufort Sea. The sharp decrease in pore water sulfate 488 

concentrations and steep thermal gradients and previous observations of gas flare above the 489 

edifices indicate that sulfate-depleted, warm fluids and methane ascend from the Beaufort Sea 490 

MVs. We found isotopically depleted lipid biomarkers and nucleic acid signatures of microbial 491 

communities, most likely ANME-2c and ANME-3, mediating AOM in the surface sediments 492 

at these MVs. The prevalence of ANME-3 over ANME-2c at sites characterized by high 493 

thermal gradients (and thus probably high methane fluxes) provides a further indication of a 494 

methane-flux driven niche segregation of these ANME-clades. However, the overall 495 
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contribution of AOM-related biomass to the organic carbon pool was rather low, and the 496 

presence of dominant amounts of lipid biomarkers with comparably high 13C-values, as well 497 

as the dominance of non-ANME sequences, underscores the importance of processes other than 498 

AOM in the sediments of the MVs investigated here. Given that our gravity coring system 499 

failed to recover the uppermost surface sediments, preventing us from detecting the most active 500 

AOM occurrences in the Beaufort Sea MVs, further studies should investigate the undisturbed 501 

uppermost surface sediments to investigate the diversity and distribution of AOM-related 502 

archaeal communities in detail, and to clarify their preferred habitats in the Beaufort Sea MV 503 

systems, for instance, using ROV push cores. 504 
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Table Legends 791 

Table 1. Results of total organic carbon (TOC) contents, 13C of TOC, and concentrations and 792 

stable carbon isotopes of selected lipid biomarkers such as isoprenoid DGDs, non-isoprenoid 793 

DGDs, and biphytanes derived from isoprenoid GDGTs. 794 

 795 

 796 

Figure captions 797 

 798 

Fig. 1. (A) Map showing the study area (red box) with inset regional map of Alaska and 799 

northwestern Canada modified from Paull et al. (2015). (B) Map showing the three mud 800 

volcano (MV) locations on the upper slope of the Beaufort Sea. (C) Detailed bathymetric maps 801 

showing the locations of sediment cores ARA05C-10-GC (MV282), ARA05C-01-GC 802 

(MV420), and ARA05C-18-GC (MV740). (D) Lithology of the three sediment cores 803 

investigated.  804 

 805 

Fig. 2. Depth profiles of sulphate (SO4
2-) concentrations, total organic carbon (TOC) content, 806 

and δ13CTOC in sediment cores from MV282, MV420, and MV740. Grey hatched bars indicate 807 

gas-gaps in the sediment layers. Note that the sulphate concentration data are from Paull et al. 808 

(2015). 809 

 810 

Fig. 3. Vertical profiles of selected lipid biomarkers (archaeol, hydroxyarchaeol, and DGD (If)) 811 

obtained from sediment cores (A) ARA05C-10-GC (MV282), (B) ARA05C-01-GC (MV420), 812 

and (C) ARA05C-18-GC (MV740). Grey hatched bars indicate gas gaps in sediment layers. 813 

 814 
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Fig. 4. HPLC/APCI-MS base peak chromatograms of polar fractions obtained from sediment 815 

cores (A) ARA05C-10-GC (MV282), (B) ARA05C-01-GC (MV420), and (C) ARA05C-18-816 

GC (MV740). Note that the Roman numerals (I, II, III, IV and V) refer to GDGT-0, GDGT-1, 817 

GDGT-2, GDGT-3, and crenarchaeol, respectively. The Arabic numbers in GDGT-0, GDGT-1, 818 

GDGT-2, and GDGT-3 indicate the number of cyclopentane rings within the biphytane chains. 819 

 820 

Fig. 5. Phylogenetic tree based on 16S rRNA showing the relationships of methanomicrobial 821 

sequences recovered in this study with selected reference sequences of the domain 822 

Euryarchaeota. The phylogenetic tree was inferred by the maximum-likelihood method. 823 

Bootstrap values of >70 are shown on corresponding branches. The scale bar indicates 824 

evolutionary distance of 0.05 substitutions per site. 825 

 826 
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Table 1 827 

Core depth 

(mbsf) 

TOC 

(wt. % )  

δ
13

C
TOC

 

(‰ VPDB) 

Lipid biomarkers 

hydroxyarchaeol/archaeol 
Archaeol sn-2-hydroxyarchaeol sn-3-hydroxyarchaeol Non-isoprenoid DGDs  GDGT-0 GDGT-1 GDGT-2 GDGT-3 Crenarchaeol Biphytane 0 Biphytane 1 Biphytane 2 Biphytane 3 

      μg/g dw ‰ VPDB μg/g dw ‰ VPDB μg/g dw ‰ VPDB μg/g dw ‰ VPDB   μg/g dw μg/g dw μg/g dw μg/g dw μg/g dw ‰ VPDB ‰ VPDB ‰ VPDB ‰ VPDB   

                      

MV282                      

0.02 1.2 -26.6 0.05 -65.0 0.09 -107.4 0.02 n.d. 0.13 -39.4  0.07 0.01 0.01 0.00 0.09 -29.4 -46.2 -39.0 -27.1 1.8 

0.09 1.5 -26.6 0.09 -67.7 0.13 -100.6 0.03 n.d. 0.15 -40.1  0.07 0.01 0.01 0.01 0.08 -32.3 -63.4 -30.9 -26.8 1.6 

0.20 1.1 -26.4 0.06 -62.0 0.11 -103.2 0.03 -92.8 0.16 -41.4  0.06 0.01 0.01 0.00 0.06 -33.9 -46.3 -28.6 -26.6 1.7 

0.33 1.2 -26.4 0.07 -60.3 0.09 -98.6 0.02 n.d. 0.16 -37.9  0.05 0.01 0.01 0.00 0.05 - - - - 1.3 

0.50 1.3 -26.2 0.06 -64.8 0.07 -99.4 0.02 -84.2 0.13 -45.3  0.05 0.01 0.00 0.00 0.05 -36.4 n.d. -21.2 -29.6 1.3 

0.88 1.5 -26.0 0.06 -60.9 0.07 -103.6 0.02 n.d. 0.12 -42.9  0.05 0.01 0.01 0.00 0.05 - - - - 1.3 

1.05 1.4 -26.2 0.06 -60.8 0.08 -91.0 0.02 -87.3 0.14 -36.0  0.05 0.01 0.01 0.00 0.06 -32.2 -36.0 -29.0 -16.7 1.5 

1.30 1.4 -26.2 0.06 -63.7 0.08 -97.3 0.02 n.d. 0.14 -39.3  0.06 0.01 0.01 0.01 0.06 - - - - 1.3 

1.60 1.5 -26.0 0.06 -61.8 0.08 -98.1 0.02 -89.1 0.14 -38.8  0.05 0.01 0.00 0.00 0.05 -33.5 -38.6 -30.7 -37.6 1.5 

1.90 1.2 -26.5 0.03 -59.2 0.03 -96.0 0.01 n.d. 0.06 -43.8  0.02 0.00 0.00 0.00 0.02 - - - - 1.3 

                      

MV420                      

0.08 1.0 -26.4 0.03 -58.6 0.02 -113.8 n.d. n.d. 0.09 -34.3  0.12 0.01 0.01 0.01 0.07 -42.7 n.d. n.d. n.d. 0.5 

0.20 1.1 -26.3 0.04 -41.7 0.01 -86.8 n.d. n.d. 0.11 -36.6  0.19 0.02 0.01 0.01 0.12 - - - - 0.2 

0.33 1.1 -26.2 0.04 -47.6 0.02 -108.8 n.d. n.d. 0.15 -31.9  0.06 0.00 0.00 0.00 0.05 -34.0 -61.6 -22.9 -24.0 0.6 

0.50 1.1 -26.1 0.03 -38.6 0.00 -94.6 n.d. n.d. 0.11 -34.3  0.03 0.00 0.00 0.00 0.02 - - - - 0.1 

0.70 1.1 -26.7 0.09 -79.8 0.13 -113.9 0.08 -93.1 0.25 -46.9  0.10 0.01 0.01 0.01 0.13 -30.3 -51.4 -28.4 -24.0 1.4 

0. 88 1.2 -26.2 0.06 -49.0 0.03 -94.7 n.d. n.d. 0.10 -41.0  0.06 0.01 0.01 0.01 0.04 - - - - 0.5 

1.05 1.2 -26.0 0.06 -44.2 0.03 -92.4 0.02 n.d. 0.09 -40.2  0.07 0.01 0.01 0.01 0.06 -32.3 -55.7 -30.1 -30.4 0.5 

1.38 1.1 -26.1 0.06 -45.6 0.02 -95.7 n.d. n.d. 0.11 -41.5  0.07 0.01 0.01 0.01 0.06 - - - - 0.3 

1.6 1.2 -26.1 0.08 -45.3 0.03 -97.0 n.d. n.d. 0.11 -37.2  0.08 0.01 0.01 0.01 0.07 -34.8 -46.8 -29.4 -28.2 0.4 

1.81 1.2 -26.0 0.07 -47.7 0.03 -86.4 n.d. n.d. 0.09 -40.1  0.30 0.04 0.05 0.03 0.25 - - - - 0.4 

2.17 1.3 -26.1 0.06 -44.8 0.02 -92.1 n.d. n.d. 0.09 -39.9  0.27 0.03 0.04 0.03 0.22 - - - - 0.4 

                      

MV740                      

0.08 1.2 -26.3 0.04 -38.5 0.02 -86.2 n.d. n.d. 0.11 -34.3  0.07 0.01 0.01 0.01 0.05 -36.2 -49.5 -26.8 -25.3 0.5 

0.20 1.1 -26.3 0.04 -43.6 0.02 -87.8 n.d. n.d. 0.11 -32.6  0.07 0.01 0.01 0.01 0.05 - - - - 0.5 

0.35 1.3 -26.4 0.05 -59.6 0.05 -102.4 n.d. n.d. 0.12 -37.9  0.09 0.01 0.01 0.01 0.07 -36.1 -57.0 -24.6 -31.7 0.9 

0. 45 1.1 -26.4 0.04 -69.6 0.05 -103.7 n.d. n.d. 0.12 -37.5  0.09 0.01 0.01 0.01 0.06 -31.5 -56.0 -25.2 -31.4 1.1 

0.55 1.2 -26.5 0.05 -65.1 0.05 -103.3 n.d. n.d. 0.10 -42.7  0.06 0.01 0.01 0.01 0.05 -40.5 -50.6 -27.2 -30.7 1.0 

0. 75 1.1 -26.2 0.04 -58.3 0.02 -93.5 n.d. n.d. 0.11 -40.4  0.08 0.01 0.01 0.01 0.05 - - - - 0.7 

1.00 1.2 -26.1 0.04 -59.5 0.01 -93.7 n.d. n.d. 0.09 -36.7  0.09 0.01 0.01 0.01 0.07 -31.0 -55.5 -31.4 -26.8 0.3 

1.13 1.1 -26.2 0.03 -54.4 0.01 -96.7 n.d. n.d. 0.09 -37.4  0.08 0.01 0.01 0.01 0.05 - - - - 0.5 

1.55 1.3 -26.4 0.03 -53.9 0.01 -93.0 n.d. n.d. 0.08 -33.8  0.07 0.01 0.01 0.01 0.06 -33.4 -50.5 -27.0 -23.5 0.4 

2.00 1.2 -26.2 0.04 -41.2 0.01 -82.1 n.d. n.d. 0.09 -35.7  0.09 0.01 0.01 0.01 0.06 - - - - 0.3 

2.30 1.2 -26.3 0.04 -52.8 0.02 -88.8 n.d. n.d. 0.09 -38.6  0.08 0.01 0.01 0.01 0.06 -34.1 n.d. n.d. n.d. 0.4 

2.60 1.1 -26.4 0.03 -55.0 0.02 -90.1 n.d. n.d. 0.08 -37.3  0.06 0.01 0.01 0.01 0.05 - - - - 0.5 
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