
Dear Editor,

We have carried out a thorough revision of our manuscript. Most importantly, this included a 
recalibration of all models following a well documented procedure. The methods have been updated
to reflect this and provide all steps to reproduce the study. In the new calibration we carried out a 
well documented first step to explore parameter spaces using Latin hypersquare sampling. In 
addition, we changed the following: 

• Activation energy parameters for all reaction rates were merged into one parameter E_V 
(not for enzyme and microbial decay). 

• Parameter f_ug was fixed at 0.7 following Hagerty et al. 2014. 
• V_D was separated into different parameters, one for each reaction kinetics type (Eq. 6-9). 

The latter was done after calculating that the ranges required for these parameters differ by 
several orders of magnitude, and thus require separate calibration (our previous calculations 
had been incorrect).

Recalibration generally resulted in a better model fit (an exception was model M2-sat which we 
took anyways for consistency). In particular, first and second order decomposition models now 
resulted in good fits, so that we were able to make a relevant comparison between them and 
Michaelis-Menten models. The manuscript was thus generally and significantly improved. The 
main results remained unchanged, with diffusion and MM kinetics performing the best. All figures 
and numbers were updated. A second temperature sensitivity figure was added. Several figures and 
tables were also added to the supplementary material.

The improved results allowed us to better address the comments from the reviewers (as discussed in
our respective answers to each). Thus, we added a new model version with reverse Michaelis-
Menten kinetics and expanded the results and discussion sections on temperature responses as well 
as several other sections.

We also changed the ms title to reflect the broader focus of the study: "Diffusion limitations and 
Michaelis-Menten kinetics as drivers of combined temperature and moisture effects on carbon 
fluxes of mineral soils"

Here follow specific responses to editor comments and our previous responses to reviewers added 
below. (Note that pages and lines of modifications are respect to the non-revised manuscript. 
Positions may differ in the new version).

1. When measuring the result of the cumulated CO2 evolution in differing time intervals, i.e. in 
sealed samples, the O2 concentration will fall under the experiment, accordingly. 
Was the reduction in O2 concentrations considered and if not, what were the consequences for the 
interpretation of the results?

According to the accumulated CO2, minimum O2 levels were over 15 %. We now discuss O2 
limitations in the manuscript in light of previous literature and our observations. P16 L9-14 (revised
ms)

2. In your comment to Robert Grant's report, you mention (page 3 at the end of the second 
paragraph): 
"Adding further complexity would introduce parameter identifiability problems and add no relevant
information." 
If you intend to use this argument in the discussion, I would ask you, to consider the situation that 
two or more drivers affect the same process in a similar way. Examining only one of them, will 



include the risk of falling for a “wrong” one in the empirical analysis. So, one should be careful 
when going for simplicity and discuss the risks of doing so.

We agree. With "no relevant information" we meant functions with variables that in our experiment 
do not change. While O2 is a changing factor, we now discuss why it may not have been limiting. 
See response to comments below. 

3. In your comments to Thomas Wutzler's report, you mention on page 6 that you based your 
parameter space exploration and choice of initial parameters on preliminary work ('manual'...) . 
I would rather recommend using the appropriate statistical methods (as suggested in the report) 
and document the robustness of the approach. Then give the corresponding parameter correlation 
matrix (appendix) and discuss the main parameter correlations in the text also in the light of model 
complexity and equifinality (see point mentioned above). Please make sure to use a methodology 
that is reproducible (the 'manual' is not).

As stated above, models were all recalibrated following a documented procedure. Using a Latin 
hypercube of parameter spaces as a first step allowed a better exploration of parameter spaces. See 
manuscript for details. We now added the parameter correlation matrix as well as kernel density 
estimation plots to indicate which parameters were better constrained.

  
Response to comments by R. Grant

We  thank  R.  Grant  for  a  critical  evaluation  of  our  work.  Below  we  address  each  comment
individually.

----------------------------
"General comments This is an interesting model study that makes a key point that higher
order kinetics are needed to model respiration responses to changes in temperature
and soil water content. This point is important because many SOC models still re-
tain first order kinetics when making projections of climate change effects on SOC and
hence on climate feedbacks, with a possible risk of error. Of particular interest to me
but not often considered in modelling was the reduced sensitivity to temperature of mi-
crobial decay vs that of uptake and growth, and the point raised in the Discussion about
density-dependent microbial decay, as both these processes affect microbial biomass
and hence decomposition rates in higher order models."

We agree. We found it particularly interesting that from a process perspective we can demonstrate
that respiration dynamics do not necessarily reflect decomposition dynamics in the short and mid-
term.

----------------------------
"The authors have done a good job in testing model performance against experimental results from
soil  incubations.  However a more constrained testing of its performance would be achieved by
comparing the actual time courses of CO2 emissions measured during the incubations, rather than
just the totals measured over the duration of each treatment as done in this study."

Soil  respiration was determined by measuring the accumulated CO2 in  the flask's  headspace at
irregular  intervals.  As  such,  the  data  represent  a  time  course,  although  irregular  and  of  low
frequency (we unfortunately  did  not  have  the  capability  to  measure  high  frequency respiration
rates). This actual measured data was what we used for modelling purposes. While this is already



described in the methods, we added text in order to make the procedure clearer.

Changes in manuscript: added text near P.4 L.28-29, P.8 L.10-14

----------------------------
“Two key areas need to be developed for this model to be capable of more robust performance and
hence wider application:  the coupling of  C with N for all  transformations,  because kinetics  of
decomposition and respiration are strongly affected by SOC quality,  and the simulation of O2
limitations  on  microbial  activity  rather  than  fitting  declines  in  activity  with  higher  soil  water
contents. Both these areas are already well developed in some ecosystem models.”

We fully agree that these two aspects are potentially important for building predictive soil carbon
models for general  application.  There are  other  processes that  should be included in predictive
models  as  well,  such  as  oregano-mineral  associations  and  vertical  transport  of  SOM/DOC.
However,  this  study has  a  defined focus  and purposefully  ignores  many process  that  could  be
relevant  under  a  variety  of  situations.  This  study does  not  present  a  generally  valid  predictive
model. On the other hand, we believe the model showed a robust performance for the purpose of
simulating our observations. Diffusion limitations as implemented here can, in future studies, be
integrated in more complex predictive models and validated against larger sets of data. 
The variability in SR at high water content was captured by our diffusion-based model without a
representation of O2 limitation. We note that this model does not include an empirical decline at
higher moisture (as we understand is suggested in the comment). Only the saturation function in the
alternative model we compare it with included such an empirical function. This does not imply that
O2 limitations are not an important limiting factor in saturated soils and mechanistic simulations in
that area are useful. 
In  summary,  our  approach  was  to  start  from  a  simple  model  and  add  complexity  until  the
observations could be reproduced, specifically testing the effect of adding diffusion. Adding further
complexity would introduce parameter identifiability problems and add no relevant information.
That said, we understand the comment addresses the “wider application” of the model and we now
further address this by extending the discussion.

Changes in manuscript: added text near P.13 L.1-7

----------------------------
“P.2. L.15: a strong effects ? Introduction P.2 L.29: But note more rapid soil N mineralization,
uptake, NPP and litterfall that may offset this feedback. N cycling very much needs to be included
in any soil SOC model and the authors need to acknowledge this.”

We now acknowledge this in the discussion making the model limitations more explicit.

Changes in manuscript: added text near P.13 L.15-18

----------------------------
“P.4 L.16: Soil grinding and mixing will increase microbial access to SOC from that in a
natural soil, likely raising decomposition rates.”

Agreed but unavoidable in this setup. To minimize such effects, we allowed samples to rest during
pre-incubation. 

---------------------------- 
“P.4 L.18: A BD of 1.8 is inconsistent with a porosity of 0.45. One or the other must be checked.” 



Bulk density was incorrect and was changed.

Changes in manuscript: bulk density corrected to 1.4 g cm-3. P.4 L.18 

---------------------------- 
“P.4 L.21: The saturated value of 0.25 is less than the porosity of 0.45.”

Please note these are gravimetric moisture values, so 0.25 in g/g is close to the 0.45 volumetric
content.

---------------------------- 
“P.5  L.6:  This  statement  is  valid  as  long  as  the  model  simulates  experimental  protocol  (e.g.
duration of treatments).”

Agreed. Our simulations reproduced the exact incubation protocols we used.

---------------------------- 
Modelling approach
“P.7 L.3: Although if diffusion limitations reduce FPD you will also reduce CD and hence uptake,
so make sure there isn’t a duplicated effect caused by direct diffusion limitation to CD.”

Since in the model diffusion affects enzyme pools and the availability of CD for uptake, there is a
double effect on uptake, one indirect and one direct. This is intended. However, because CE decays
and CD does not, long term effects will result from the former but not from the latter limitation.
Unless CD is lost through another path such as leaching (here not considered).

---------------------------- 
“P..7 L.7: Check variable names.”

Changes in manuscript: corrected the variable name.

---------------------------- 
“P.7 L.13: But temperature sensitivity of fmr is different from that of growth.”

Equations 15 and 16 had not been updated to the latest model version and were incorrect. They have
been corrected. (But note that other manuscript sections were correct, e.g. parameter table). r_mr is
in fact temperature dependent, as expected. Temperature dependencies were calibrated, since we
did not find strong evidence for fixing these parameters. 

Changes in manuscript: corrected a wrong version of equations 15 and 16. Now F_MP= C_M *
r_md and F_MRM = C_M * r_mr

----------------------------
“P.8. eq.19: Low and high temperature inactivation terms are often used with Arrhenuis equations
to give greater Q10 at low temperature and must lower Q10 at higher while using biologically
realistic values of Ea (typically ca 65 kJ mol-1).”

With a simple Arrhenius function, we found that the observed Q10 can vary between low and high
temperatures (see supplementary figures). For the range we used, between 4 and 35 degC, a more
complex temperature function was not justified. 

----------------------------



Model Calibration
“Was a spinup run used to enable key state variables to stabilize at values independent of those
initialized? This is standard modelling protocol.” 

A spinup would be valid only if a steady state at initial conditions is assumed. Our soil was from 
arable fields and pre-processes in the lab. Because of this we did not assume steady state at time 0 
and instead estimated the initial pool sizes through calibration, as done in other studies (Menichetti, 
et al., Biogeosciences, 2016). This is stated in P.8 L.14-16.

----------------------------
“P.8 L.25: This is  a commendable objective because some SOC models still  retain first  order
algorithms.” 

Agreed.

----------------------------
“P.9  eq.  20,  21:  Reductions  of  f  (theta)  and f(psi)  at  higher  theta  and psi  are  caused by  O2
deficiency as noted later in the text, and are better modelled as such because these reductions are
temperature-dependent.” 

We commented on the O2 limitations above and in the paper discussion.

----------------------------
“P.10 L.4: MPa Results” 

Changes in manuscript: spelling corrected

----------------------------
“P.11 L.6: How were C inputs evaluated, as in natural ecosystems these also vary with temperature
and swc. In fact, these inputs are the most important part of a SOC model as they are the main
drivers of microbial activity.” 

We used a fixed value of 1.2 g d-1 C, which we found to be realistic for cultivated temperate soils.
Steady state was calculated analytically (supplementary equations) so inputs, temperature and swc
needed to be constants, as described.

----------------------------
“P.11 L.13-14. This is a nice test of the model. Describe how values for initialization of C pools
and threshold  swc were  determined for  this  study.  How did  these  values  affect  model  results,
particularly without model spinup? Ideally you should just change total SOC as determined from
the soil measurement, and develop rules for allocating total SOC to initial C pools depending on
site conditions, and then spinning up the model to equilibrium before comparison with observed
values. An even better test of the model would be against the actual time course of CO2 effluxes
measured during each incubation, as has been done in earlier modelling studies (e.g. Soil Sci. Soc.
Amer. J. 58:1681-1690). This test lets you see whether the model is really simulating the temporal
dynamics of respiration at different water contents under changing temperatures.”

As stated in P.9 L.23 – P.10 L.4., the C pools were initialized not by spinup but by calibration,
given that also in the validation case we could not determine if initial conditions were in steady
state. The reason to calibrate the swc threshold during validation is that this parameter is expected
to change between soils but we do not currently have a reliable means to estimate it, as stated in
P.10 L.1-4. We expanded the discussion where we address the issue of how pool sizes may be



affecting the modelled and observed values 

Changes in manuscript: text added near P.14 L.2–8

----------------------------
Discussion 
“P.12 L.10. Specify these changes as noted in Results to establish how robust the model really is.”

P.12 L.10 reads  “We note that few studies were found with data  on moisture and temperature
interactions and this was the only validation attempt carried out.” It is not clear what changes are
referred to.

----------------------------
“P.12 L.19-20. Would this problem be addressed by a cold temperature inactivation term in eq.
19?”

A further decrease in activity using an inactivation term, while realistic, would probably exacerbate
the problem here, since it seemingly already is the result of the lower rates under colder conditions.
A solution to this problem is however out of the scope of this study.

----------------------------
“P.12 L.29-30. The absence of O2 limitations is likely causing the reductions in Ea and Q10 at
higher swc in Fig. 5. Modelling these limitations should be a key next step in model development.
These limitations are already simulated in some other ecosystem models.”

We believe it is likely not a O2 limitation for two reasons. First, the decrease occurs sharply at ca.
50% saturation. At this water content and in small samples O2 should not be limiting. Second, our
model reproduced this decrease quite well without O2 limitations, showing that it is the result of
pool dynamics.

----------------------------
“P.13 L.4-5: The reduced temperature sensitivity of microbial and enzyme decay needed to model
realistic biomass at different temperatures is an important finding of this study.”

Yes, our results are compatible with such lower values.

----------------------------
Discussion paper
“P.13 L.15: Experimental determinations of Ea are often in the 65 kJ mol-1 range. The
larger value modelled here may have been required in the absence of a cold tempera-
ture inactivation term in eq. 19.”

If  4 degC is  “cold” then this  may be the case.  It  should be noted,  however,  that  experimental
determinations are “apparent” values. Apparent values given by our model are also in the lower
range. 
However, our focus is more on the distinction between the prescribed values (parameter values) and
the apparent ones and how these may interact with moisture. A detailed analysis of temperature
effects is outside this study’s scope. 

Changes in manuscript: added text near P.14 L.2-8

----------------------------



“P.13 L.16-18. Lower values probably arise from O2 limitations. The authors realistically
address the current limitations of the model.”

We do not discard a O2 effect, especially near saturation. But see our responses above.

----------------------------
“P.13 L.32: models”

Changes in manuscript: spelling corrected.

----------------------------
“P.14 L.8-9. Why not make the percolation threshold depend on soil water potential (e.g.
-15 MPa)? This might improve model robustness by reducing reparameterization for
each soil.”

The reason is that the published value was not valid for this soil, as explained in the following lines
P.14 L.22-25.

----------------------------
“P.14 L.30-21: Would CUE decline at higher temperatures if Rm (fmr in (16)) increased
exponentially with temperature, as it is known to do?”

As noted above, the equations using fmr were outdated and have been corrected. The parameter
r_mr is temperature dependent and determines the Rm flux. If CUE changes with T may depend on
its definition. Here we define it as f_ug, so it remains constant.

-------------------------------------------
We thank T. Wutzler for a constructive review. Below we address each comment individually.

Reviewer comments are in quotations followed by the author response and, where relevant, changes
to the manuscript.

Response to comments by T. Wutzler

“Moyano et al. compare several versions of SOM turnover models with a comprehensive set of
observations of varying temperature and soil moisture. They show that explicitly accounting for
diffusion,  compared to  using empirical  formulation  of  the  temperature/moisture  rate  modifiers,
improves fit and understanding of SOM decomposition. This result is interesting to the soil model
developers and biogeoscientists studying SOM turnover and consequences at soil core to larger
scales. The paper contains a strong validation by a good agreement with independent data. The
clarity of the discussion on reasons for the good validation fit, interactions with initial pools, and
different resulting temperature sensitivities can be improved.  With an extension of discussion and
some more clarifications in the discussion, the paper could be published. Nevertheless, I suggest
several additional tasks with this model and data, that would help the community.”

Please see responses to comments by R. Grant for changes already made to the discussion.

----------------------------
“First,  while the paper already contains three different  structural versions of decomposition,  I
suggest including another version of an inverse Michaelis-Menten dynamics for depolymerization
(but not for DOM uptake), where the non-linear term is in enzymes instead of the substrate (F = V



C_P * C_E/(K + C_E)). This would broaden the application of conclusions of this study, because
the  inverse  formulation  is  used  by  many  microbial  models  since  suggested  by  Schimel  and
Weintraub 2003.”

Reverse MM kinetics assume that enzyme concentrations can increase enough that they start to
compete for binding sites on SOM and thus saturate at some point. Schimel and Weintraub used this
approach to deal with a problem of model instability driven by the dynamics of the microbial pool.
However, we think a general saturation of the available SOM by enzymes in soils is unlikely to be
the norm, as it would imply a large and likely unsustainable production of enzymes and very rapid
decomposition of all polymeric C. We did not have stability issues in our model that would justify
using this MM form and find it an unlikely explanation of soil C dynamics. However, we will test
the effect of using the reverse MM and, if relevant, include information in the revised manuscript.

Changes in manuscript: inclusion of any relevant results following model calibration using reverse-
MM and comparison with other versions.

----------------------------
“Second, the study describes a decoupling between depolymerization and microbial uptake at low
diffusion rates, I assume by accumulating OM in the dissolved pool. Are the fluxes correlated again
for the same treatment, if you aggregate over say two weeks? The decoupling is a challenging fact
for  upscaling  studies,  that  often  assume  the  DOM  pool  in  quick  quasi  steady  state  with
decomposition and microbial uptake. For low moisture the decomposed flux was almost not taken
up and respired (Fig. 9). Would this also be true with two separate DOM pools after longer time? I
would appreciate an extended discussion on this topic.” 

As well pointed out, Figure 9 shows that for some samples at lower moisture decomposition did not
equilibrate with uptake in the 6 months of the simulated incubation. The plot also gives a good idea
of how fast soil at higher moisture content return to equilibrium. 
We kept the model simple where possible. The current form where there is only one DOC pool is a
simplification that assumes microbes have access to an amount equivalent to the concentration in
the bulk soil times a conductivity value. If conductivity is not 0, this amount will increase if the
concentration increases, until the input from decomposition equals output from uptake. The reason
this is done differently for enzymes is that enzymes have a decay rate, which means that the pool
decreases with time. So even if equilibrium is reached, the flux of enzymes from microbes to the
decomposition site will be lower if conductivity is lower, simply because a larger fraction is lost
before diffusing. Further analysis of the model could indeed go more into detail looking at such
dynamics. We take this as a suggestion future research.

Changes  in  manuscript:  discussion  extended  under  section  7.2  Moisture  effects  and  diffusion
limitation

----------------------------
“The model used enzyme pools split to locations but a simplified diffusion limited rate multiplier
for DOM. What is the reasoning for this decision, and what are the expected consequences for
using a rate modifier for enzymes too?”

See response to previous comment and addition to discussion.

----------------------------
“There is an interesting differentiation between parameterized temperature sensitivity (E_a) and an
apparent predicted one, the latter one also depending on partitioning of the pools (P13l20ff). What
are the reasons and consequences here. The paper would profit from an extended discussion here.”



We have extended the discussion on this topic. See also responses to R. Grant.

Changes in manuscript: discussion extended. P.14 L.2-18

----------------------------
“p5l10: The choice of the wording “particulate” suggests to OM floating together with the DOM. I
assume  instead  that  C_P  comprises  litter  and  residues  also  sitting  on  surfaces.  When  using
“polymeric” it conveys a different connotation and still the “P” can be used as acronyms.”

We followed the  advice  and changed to  “polymeric”.  (For  the  record:  according to  Wikipedia
“Particulate organic matter is defined as soil organic matter between 0.053 mm and 2 mm in size”.)

Changes in manuscript: the term “particulate” was changed to “polymeric”

----------------------------
“p7l10: The model assumes enzyme production to be modeled similar to growth respiration as a
fraction of uptake, instead similar to maintenance respiration as determined by microbial biomass.
What are the reasons for this formulation ? ”

From a practical side, initial testing of model structure resulted in this approach fitting the data best
(data  not shown).  From a theoretical  side,  is  would be logical  that  microbes  produce enzymes
mostly when C becomes available and save resources otherwise. A continued enzyme production
would lead to an unnecessary depletion of resources. We now note this in the same paragraph.

Changes in manuscript: text added near P.7 L.10-12

----------------------------
“p8l4ff: The wording here suggests, that all the processes have the same temperature sensitivity,
i.e.  same  E_a.  I  suggest  adding  another  index  to  E_a  that  this  parameter  varies  between
processes.”

We followed the suggestion and added a subindex.

Changes in manuscript: E_a in equation 19 changed to E_ap

----------------------------
“P8l10: I assume there is only one set of parameters fitted to the entire data of all temperature and
moisture  treatments.  Would  be  nice  to  state  that  here.  Please,  also  state  the  number  of  fitted
parameters, and add the initial partitions to Table 1.

That is correct. This is now clarified. Because of space limitations, initial parameter values and their
lower and upper bounds were added in a table in the supplementary material.

Changes in manuscript: 
- text added at P.8 L.10-11. 
- table with initial parameter values and boundaries added to supplementary material.

----------------------------
The fitted parameter vector in a 20 dimension space is  quite challenging for a gradient based
search.  Did you check  global  convergence  by  starting  from more  states,  maybe more  random
distributed  as  just  the  one  described for  p11l30.  What  are  the  most  important  correlations  in



parameter estimates?”

We agree. A global minima can of course not be guaranteed. In preliminary work we explored
parameter spaces manually and using latin hyper square methods. The initial parameter values used
here are already the result of these tests. Parameters in such model are often correlated and this was
also the case in our study. High, but not very high, correlations occurred between some parameters,
e.g. V_U_ref and g_0 (0.89), V_U_ref and E_r (0.83), V_D_ref and g_0 (0.84), f_CD and E_K
(0.83)  and  V_D_ref  and  V_U_ref  (0.8),  f_ug  and  f_ge  (0.83).  We  therefore  do  not  make
conclusions on how well constrained our estimates are, as this information is not obtained with
gradient or deterministic algorithms. However, we now added these remarks and a correlation plot
in the supplementary material for extra information.

Changes in manuscript: 
- text added in the discussion P.12 L. 13-16
- correlation plot of parameter sensitivities added to the supplementary material

----------------------------
“P8l10: model calibration open questions: How were enzyme pools initialized? What were the
values of fractions for particulate, dissolved and microbial pool, how do they compare to usual
concentration of DOM and microbial biomass? I  assume they were equal for all  moisture and
temperature treatments, right?”

As clarified  in  response  to  comments  by  R.  Grant,  all  C  pools  were  initialed  by  fitting  them
similarly to other model parameters (as initial  steady state was not assumed).  Upper and lower
bounds were set (see Table S1) to assure they stayed in a realistic range (text added in P.8 L.23-24).
The initial values of these fractions are found in Table 1. fM with 0.07 is in particular on the upper
range of observed values.

----------------------------
“P3l20:  Citation  of  the  kinetic  respiration  analysis  (Wutzler  2011)  is  not  appropriate  in  this
context.  I  assume  you  wanted  to  refer  to:  Wutzler  T  &  Reichstein  M (2008)  Colimitation  of
decomposition  by  substrate  and  decomposers  -  a  comparison  of  model  formulations.
Biogeosciences, 5, 749-759 10.5194/bg-5-749-2008”

Thanks for pointing this out.

Changes in manuscript: reference changed to Wutzler T & Reichstein M (2008)

----------------------------
“Fig 4: There seem to be two groups of observations, a higher branch and a lower one. Why is
this? Is it ok to fit a single smoother to this data?”

Figure  4  is  mainly  meant  as  a  visual  aid  since  it  is  not  possible  to  mark  which  model  point
corresponds to which data point. The smooth lines ignore the variability along the y axis, caused
mainly by the time effects resulting from two incubation cycles, but they help visualize the general
resulting relationship between moisture content and respiration fluxes. We added this clarification
in the results section. 

Changes in manuscript: added text near P.11 L.2-4

----------------------------
Technical comments:



The grammar of the paper needs to be re-checked, e.g. p9L18, p9L25, p13L19.”

Changes in manuscript: spelling and grammar mistakes were corrected.
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Abstract. While CO2 production in soils strongly responds strongly to changes in temperature and moisture but, the magnitude 

of such responses at different time scales remains difficult to predict. In particular, little is knownKnowledge of the 

mechanisms leading to the often observed interactions in the effects of these drivers on soil CO2 emissions is especially 

limited., even though such observations are common. Here we compare a number of modelling approaches to test which 

underlying mechanisms best Here we test the ability of different soil carbon models to simulate the interactive responses 5 

measured in soils incubated under combined levels of temperature and at a range of moisture levels and cycled through 5, 20 

and 35 °C. We applied parameter optimization methods while modifying two structural components of models: 1. the reaction 

kinetics of decomposition and uptake and 2. the functions relating fluxes with soil moisture. We found that two model 

components were critical for reproducing the observed interactive patterns were best simulated by a model using : 1. : 1. 

Michaelis-Menten reaction decomposition kinetics, which strongly improved the model fit when applied to decomposition 10 

reactions, and 2. combined with diffusion of dissolved C and enzymes. The latter replaces cIn contrast, conventional empirical 

functions as a mechanism relating moisture content with C fluxesthat scale decomposition rates directly.. Indeed, empirical 

functions failed to were unable to properly simulate capture the main observed interactions. After model calibration we were 

able toOur best model was able to explain 87 % of the variation in the data. Model simulations revealed resulted in a central 

role of Michaelis-Menten kinetics as a driver of temperature sensitivity variations as well as a decoupling of decomposition 15 

and respiration C fluxes in the short and mid-term, with interaction effects and general sensitivities to temperature and moisture 

being more pronounced for respiration. Sensitivity to different model parameters was highest for those affecting diffusion 

limitations, followed by activation energies, the Michaelis-Menten constant, and carbon use efficiency. Model validation 

resulted in a high fit against independent dataTesting against independent data strongly validated the model (R2 = 0.99) and 

highlighted the importance of initial soil C pool conditions. ). The same underlying model parameters resulted here in different 20 

apparent temperature sensitivities compared to the calibration step, demonstrating a strong effects of initial soil conditions. 

With t Ourthese results we could demonstrate the importance of model structure and the central role of diffusion and reaction 

kinetics for simulating and understanding complex dynamics in soil C.  dynamics related to temperature and moisture 

interactions. Future studies should further validate this mechanistic approach and extend its use to a larger range of soils. 

1. Introduction 25 

Soils are a main component of the global carbon (C) cycle, storing ca. 2200 Pg of C in the top 100 cm alone according to 

recent estimates (Batjes, 2014). This soil C pool is dynamic, and often exists in a non-equilibrium state as the result of an 

imbalance between input and output C fluxes, in which case it will act either as a C sink or source over time. Changes in the 

speed at which soil organisms decompose soil organic matter (SOM) and mineralize soil organic carbon (SOC) into CO2 are 

one way in which an imbalance can occur, producing a net sink or source of atmospheric CO2.  30 

It is well known that SOC mineralization and resulting CO2 fluxes are highly sensitive to variations in soil temperature and 

moisture (Hamdi et al., 2013; Moyano et al., 2013). As a result, feedbacks effects, either positive or negative, are expected to 
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occur from the interaction between climate change and global soil C stocks (Crowther et al., 2016; Davidson and Janssens, 

2006; Kirschbaum, 2006). However, the direction and magnitude of such feedbacks at the global scale remain uncertain. 

Increased soil respiration with a resulting net loss of soil C, and thus a positive climate feedback, is expected with the warming 

of permafrost soils and the drying of wetland soils. But there is still much large uncertainty and a lack of consensus regarding 

the long term response to climate variability of soils that are non-saturated, non-frozen, and dominated by a mineral matrix 5 

(Crowther et al., 2016), i.e. soils found under most forests, grasslands and agricultural lands. 

Future predictions of soil C dynamics require the use of mathematical models. Early soil C models, and most still in use, are 

based on first order decay of multiple C pools, with temperature and moisture having a general non-interactive effects on decay 

rates (Rodrigo et al., 1997). When appropriately calibrated tThese models, when appropriately calibrated,  do well at simulating 

soil respiration fluxes of soils under relatively stable conditions. They were are often developed to approximate long term 10 

steady- state conditions under specific land uses. They are also capable of fitting long term trends of soil C loss, such as data 

from long-term bare fallow where all litter input has stopped (Barré et al., 2010). However, they lack a theoretical basis 

justifying their basic assumptions of pool partitioning and decay mechanisms. They also generally need calibration for specific 

soil types or land cover types, and often fail to properly simulate observed short and mid-term variability in soil respiration. 

 Some of the most relevant observations these models have failed to reproduce include: changes (typically a dampening) of 15 

temperature sensitivities of decomposition over time (Hamdi et al., 2013), non-linear responses to soil moisture content 

(Borken and Matzner, 2009), and changes in decomposition rates in response to variations in concentrations of organic matter 

(Blagodatskaya and Kuzyakov, 2008). Such model shortcomings, which reflect missing or wrongly simulated processes, create 

a difficult to quantify uncertainty in global long term predictions of soil C and its feedback to climate change. It is therefore 

unclear if first order models can predict long term changes in C stocks under more dynamic (and therefore realistic) 20 

environmental conditions. 

Second order models have a more realistic basic structure compared to conventional first order models, since they simulate 

organic matter decomposition as a reaction between two pools, one of these being SOC and the decomposers pool (i.e. a 

microbial pool or enzyme pool). This single but fundamental change in decomposition kinetics strongly affects predicted long 

term changes in soil C, largely as a result of the dynamics of the decomposer pool, which itself can respond to temperature in 25 

a number of ways (Wutzler and Reichstein, 2008). Second order models also lead to more complex dynamics of short to mid-

term soil respiration, with apparent temperature sensitivities that vary over time, more in line with many observations. 

The temporal variability in the response of decomposition to moisture is most evident in the strong respiration pulses after dry 

soils are re-wetted, known as the Birch effect (Birch, 1958). But studies have shown that a successful simulation of the soil 

respiration pulses associated to re-wetting events such pulses requires the incorporation of additional mechanisms, namely the 30 

explicit representation of a bio-available C pool, such as dissolved organic matter (DOC), and a moisture regulation of 

decomposer’s access to this pool that may differ from the moisture regulation on the decomposition reaction itself (Lawrence 

et al., 2009; Zhang et al., 2014). 
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The response of soil respiration to temperature and moisture is highly dynamic, both spatially and temporally (Hamdi et al., 

2013; Moyano et al., 2012). Moisture and temperature interactions have been observed in a number of experimental studies 

(Craine and Gelderman, 2011; Rey et al., 2005; Suseela et al., 2012; Wickland and Neff, 2008), but neither consistent trends 

nor general explanatory theories have been identified. Improving our understanding of these interactions is a crucial step in 

increasing confidence in models and for interpreting modelling and experimental results (Crowther et al., 2016; Tang and 5 

Riley, 2014). Identifying the model structures and parameterizations that can best represent these interactive effects has been 

attempted by very few studies (Sierra et al., 2017, 2015). 

The objectives of this study are, first, to compare the ability of different soil C modelling approaches to reproduce temperature 

and moisture interactive effects on soil carbon fluxes and thus to , and second, to gain insight into the underlying mechanisms 

underlying the observed responses from the model comparison. With the hypothesis that a more mechanistic model will be 10 

better capable of simulating such interactions, we compare variations of a different model structures, model based on a 

microbial model with an explicit representation of a dissolved C pool. We testinged first order, second order, and Michaelis-

Menten reaction kinetics in combination with an explicit simulation of diffusion fluxes. We then , and then compare the best 

diffusion model with versions based on common empirical moisture relationships. 

2. Observational data 15 

Measurements of the interaction effects of temperature and moisture on soil respiration fluxes were obtained by incubating a 

crop field soil at several fixed levels of soil moisture and variable levels of temperature over a period of ca. 6 months, as 

detailed in the following.  

Soils from 0-20 cm depth were sampled at Versailles, France, from the ‘Le Closeaux’ experimental field plot, cultivated with 

wheat until 1992 and with maize since 1993. Mean annual temperature and rainfall are 10°C and 640 mm. The soil is classified 20 

as Luvisol (FAO) silt loam (26 % sand, 59 % silt, 15 % clay) containing no carbonates. Organic carbon contents at the start of 

the incubation were 1.2 % in weight. Soil samples were prepared for elemental analysis (C, N) using a planetary ball mill (3 

min at 500 rpm). C concentrations were measured using a CHN auto-analyzer (NA 1500, Carlo Erba). 

Sampled soils were thoroughly mixed, sieved at 2 mm and stored moist at 4 °C in plastic bags with holes for aeration for 10 

days. Soils were then put in small plastic cylinders containing the equivalent of 90g dry soil. To ensure a high and equal water 25 

conductivity, all samples were compacted to a bulk density of 1.48 g cm-3. The resulting soil porosity was 0.45. 

All samples were brought to a pF of 4.2 corresponding to about 7 % mass basis moisture. Three replicate samples were then 

adjusted to each of the moisture levels 1, 3, 7, 9, 11, 13, 15, 17, 19, 21, 25 % by weight by adding water or air drying. These 

values range from air-dry to saturation, with saturation reached at 25 %. Immediately after, the plastic cylinders were put in 

500 ml jars containing a small amount of water on the bottom (except for the 1 and 3 % moisture) to prevent soil drying, and 30 

equipped with a lid and a rubber septum for gas sampling. Because of the extremely low respiration rates, samples with 1 % 

moisture were placed in 125 ml jars containing 170 g of soil. 
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To minimize post-disturbance effects, samples were pre-incubated at 4 °C during 10 days. The samples were then cycled 

through incubation temperatures following the sequence 5-20-35-5-20-35 °C, thus applying two temperature cycles to each 

sample. This was done in order to capture possible hysteresis of temperature effects and to reducereduces the covariance 

between a temperature response and substrate depletion (helping constrain model parameters). Soil respiration was calculated 

at every temperature step by measuring the amount of CO2 accumulated in flask headspaces. For this, samples were Samples 5 

were flushed with CO2 free air and left to accumulate CO2 for 3 to 74 days. The variable accumulation timeamount of days 

was chosen so that sufficient CO2 accumulated for the micro gas chromatographer measurements (at least 100 ppm), thus 

depending on the soil temperature and moisture content. After the accumulation time, anAn air sample was then taken from 

each soil sample headspace and respiration rates calculated as the accumulated amount over the accumulation time. Samples 

were incubated forThis process was performed repeatedly over successive temperature steps over a total incubation period of 10 

ca. 6 months (Figure 1). 

As shown in Figure 1, the timing of temperature treatments was not equal for all samples, with some temperature steps missing 

at low moisture levels. This was partly due to the time required for CO2 concentrations in the flask headspace to reach 

detectable limits, the time necessary for carrying out measurements and human error. However, while important for a statistical 

comparison between treatments, such differences are of little consequence when looking at model performance and the fit 15 

between model and data, which isconstitute the focus of this studyresults presented here. 

3. Modelling approach 

3.1. Structure and state variables 

We started with a basic soil C model with the following state variables: a bio-unavailable polymericparticulate C pool (CP), a 

bio-available dissolved C pool (CD), a microbial C pool (CM) and two extracellular enzyme C pools, one representing the 20 

enzyme fraction at the decomposition site (CED) and one the fraction at the microbial site (CEM). With this model we assume 

two conceptual soil spaces that are separated by a diffusion barrier, one being the site of decomposition and the other the site 

of microbial uptake and enzyme production (Figure 2). This model thus closely follows Manzoni et al. (2016), and otherwise 

builds on other published microbial models (Allison et al., 2010; Schimel and Weintraub, 2003). We refer to those studies for 

general assumptions and application of this type of model. Aspects specific to this study are described below. 25 

The rates of change of the model state variable were defined as: 

𝑑𝐶𝑃
𝑑𝑡

= 𝐹𝐿𝑆𝑃 + 𝐹𝑀𝑃 − 𝐹𝑃𝐷 
( 1 ) 

𝑑𝐶𝐷
𝑑𝑡

= 𝐹𝐿𝑀𝐷 + 𝐹𝑃𝐷 + 𝐹𝐸𝐷𝐷 + 𝐹𝐸𝑀𝐷 − 𝐹𝐷𝑀 − 𝐹𝐷𝑅𝐺 − 𝐹𝐷𝐸𝑀  
( 2 ) 

𝑑𝐶𝑀
𝑑𝑡

= 𝐹𝐷𝑀 − 𝐹𝑀𝑃 − 𝐹𝑀𝑅𝑀  
( 3 ) 
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𝑑𝐶𝐸𝐷
𝑑𝑡

= 𝐹𝐸𝑀𝐸𝐷 − 𝐹𝐸𝐷𝐷 
( 4 ) 

𝑑𝐶𝐸𝑀
𝑑𝑡

= 𝐹𝐷𝐸𝑀 − 𝐹𝐸𝑀𝐸𝐷 − 𝐹𝐸𝑀𝐷 
( 5 ) 

where 𝐹 represents the flux of C from one pool to another as indicated by the subscripts, so that 𝐹𝑃𝐷 is the flux from the 

polymericparticulate pool to the dissolved pool. The subscripts 𝐿𝑆 and 𝐿𝑀 denote input of structural and metabolic litter (as 

defined by Parton et al., 1987), which for simulating the incubated soils were set to zero, and 𝑅𝑀 and 𝑅𝐺 are microbial growth 

and maintenance respiration. 

3.2. Decomposition and microbial uptake 5 

The flux of CP to CD, 𝐹𝑃𝐷, represents decomposition of organic matter, a process that in soils is largely driven by the activity 

of microorganisms. The latter produce exo-enzymes that catalyse the decomposition reaction. UD, represents the total uptake 

flux by microbes of the water soluble decomposed pool CD (microbes being the reaction “catalysers”). Conventional soil C 

models simulate decomposition as a first order decay reaction. However, more realistic models can be built by using either 

simple second order or Michaelis-Menten reaction kinetics. Thus, optional ways of modelling both FPD and UD include: 10 

𝐹 = 𝑉[𝑅] ( 6 ) 

𝐹 = 𝑉[𝑅][𝐶]  ( 7 ) 

𝐹 =
𝑉[𝑅][𝐶]

𝐾 + [𝑅]
 ( 8 ) 

𝐹 =
𝑉[𝑅][𝐶]

𝐾 + [𝐶]
 ( 9 ) 

where 𝐹 is the flux, 𝑉 is a base reaction rate, 𝐾 is the half saturation constant, R the reactant and C the catalyst. The ‘reverse’ 

Michaelis-Menten (Eq. 9) was applied by Schimel and Weintraub (2003) as an alternative for improving model stability and 

is included here for completeness. 

In the case of decomposition, The value for V is not equivalent among these equations, differing by several orders of magnitude. 

As a result, different parameters were used for V in each case, namely VDm, VDmr, VD1, and VD2. Similarly, are VD and parameters 15 

KD and KDe were used for K in Eq. (8) and (9), respectively. The terms [R] and [C] are concentrations of CP and CED. In the 

case of uptake, the parameterssethese are respectively VU, KU, CD and CM. The three four approaches for reaction kinetics were 

tested in order to find the best fit between model and data, as described in Sect. 4. 



 

7 

 

3.3. Diffusive fluxes 

Diffusion fluxes depend on a concentration difference, a diffusivity term, and the distance over which diffusion occurs 

(Manzoni et al., 2016). For the purpose of modelling diffusion in soils, values of diffusivity and diffusion distances are required 

that best average or represent the actual underlying soil complexity. For practical purposes, we combined these two values into 

a single calibrated parameter, a conductance (𝑔0), representing the compound effects of diffusivity and distance. This was 5 

done because the values of the latter are unconstrained (from lack of information), and their effects are inversely correlated, 

so simultaneous calibration would lead to a problem of parameter identifiability. The moisture-scaled conductance (𝑔), which 

in our model is assumed equal for the CD and CE pools, is then given by: 

𝑔 = 𝑔0𝑑 ( 10 ) 

where 𝑑 is a function of soil volumetric water content (VWC or ): 

𝑑 = (𝜙 − 𝜃𝑡ℎ)
𝑚 (

𝜃 − 𝜃𝑡ℎ
𝜙 − 𝜃𝑡ℎ

)
𝑛

 ( 11 ) 

where 𝜙 is pore space, and n and m are calibrated parameters (Hamamoto et al., 2010; Manzoni et al., 2016), which are variable 10 

and were also calibrated in this study. th is the percolation threshold for solute diffusion, for which ,Manzoni and Katul  (2014), 

was here set to 0.063 VWC, corresponding to reported a value of -15MPa. This value was not optimal in our case, so th was 

also calibrated. The diffusive flux of enzyme C between the microbial and the decomposition spaces is then calculated as:where 

𝜙 is pore space, and n and m are calibrated parameters (Hamamoto et al., 2010; Manzoni et al., 2016), which are variable and 

were also calibrated in this study. th is the percolation threshold for solute diffusion (Manzoni and Katul, 2014), which was 15 

here a calibrated parameter. The diffusive flux of enzyme C between the microbial and the decomposition spaces is then 

calculated as: 

𝐹𝐸𝑀𝐸𝐷 = 𝑔(𝐶𝐸𝑀 − 𝐶𝐸𝐷) ( 12 ) 

Diffusion limitations also affect the amount of the dissolved pool (CD) available for microbial uptake. Instead of dividing CD 

into a pool for each space, the conductance, 𝑔, was used as a multiplier of the base uptake rate, VU (Eq. (6-89)). This served to 

reduce the number of model pools and parameters while still retaining a diffusivity limitation on this flux. 20 

3.4. Microbial and enzyme dynamics 

UD is split into 𝐹𝐷𝑀, 𝐹𝐷𝑅𝐺𝐹𝐷𝐸𝑀 and 𝐹𝐷𝐸𝑀 , representing the fluxes of CD going to CM, RG and CEM, respectively. These fluxes 

are defined as: 

𝐹𝐷𝑀 = 𝑈𝐷𝑓𝑢𝑔(1 − 𝑓𝑔𝑒) ( 13 ) 
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𝐹𝐷𝑅𝐺 = 𝑈𝐷(1 − 𝑓𝑢𝑔) ( 14 ) 

𝐹𝐷𝐸𝑀 = 𝑈𝐷𝑓𝑢𝑔𝑓𝑔𝑒 ( 15 ) 

where 𝑓𝑢𝑔 represents the fraction of uptake going to growth, otherwise known as microbial growth efficiency or carbon use 

efficiency, and 𝑓𝑔𝑒 is the fraction of growth going to enzyme production. Enzyme production thus depends here on uptake 

rather than on microbial biomass. This approach follows the assumption that microbes produce enzymes only when new carbon 

is available and save resources otherwise. CM goes to either maintenance respiration or the CP pool according to: 

𝐹𝑀𝑃 = 𝐶𝑀𝑟𝑚𝑑(1 − 𝑓𝑚𝑟) ( 16 ) 

𝐹𝑀𝑅𝑀 = 𝐶𝑀𝑟𝑚𝑟𝑟𝑚𝑑𝑓𝑚𝑟 ( 17 ) 

where rmd is the rate of microbial deathdecay and rmrfmr is the ratefraction of microbial that decay that is lost as respiration. fmr 5 

thus determines the amount of maintenance respiration. and is here assumed to be constant (but note that rmd is temperature 

dependent). The breakdown of enzymes going to the CD pool, is determined by the rate of enzyme decay, red, as: 

𝐹𝐸𝐷𝐷 = 𝐶𝐸𝐷𝑟𝑒𝑑 ( 18 ) 

𝐹𝐸𝑀𝐷 = 𝐶𝐸𝑀𝑟𝑒𝑑 ( 19 ) 

3.5. Temperature effects 

Reaction rates (𝑉𝑈, 𝑉𝐷 , 𝐾𝑈, 𝐾𝐷  in Eq. (6-98)),8)) and decay and respiration rates (𝑟𝑒𝑑 , and 𝑟𝑚𝑑 , 𝑟𝑚𝑟) are temperature sensitive 

and calculated from their reference values following an Arrhenius type temperature response: 10 

𝑟 = 𝑟𝑟𝑒𝑓 𝑒𝑥𝑝(−
𝐸𝑎
𝑅
(
1

𝑇
−

1

𝑇𝑟𝑒𝑓
)) ( 20 ) 

where r ie 𝑝 is the temperature modified value ratefor the respective parameter, rref  𝑝𝑟𝑒𝑓  the reference value rate at temperature 

e Tref, T temperature in Kelvin, Ea the activation energy, and 𝑅 the universal gas constant. Three parameters were used for Ea: 

Ea_m and Ea_e for microbial and enzyme decay rates, respectively, and 𝐸𝑎_𝑉 for other reaction rates.Volumetric water content, 

𝜃 (m3 m-3) and temperature, T, are model input variables. 

 Temperature thus affects the rates of decomposition and uptake, the half saturation constant in the Michaelis-Menten equation, 15 

as well as the rates of microbial and enzyme decay. Apparent activation energies – describing the observed temperature 

relationship, both in measurements and model data – were obtained by fitting an Arrhenius equation to the temperature-flux 

relationship at each level of moisture and separately for 5-20 °C and 20-35 °C. 𝐸𝑎 was calculated for measured respiration, 

modelled respiration (RG+RM) and modelled decomposition (FPD). 
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4. Model calibration and comparisons 

Calibrated and non-calibrated parameters for all models are given in the supplementary material (Tables S1, S2 and S3). 

Whenever possible, fixed parameters as well as lower and upper bounds for calibrated parameters (Table S1) were set 

according to values reported in literature (e.g. Hagerty et al., 2014; Li et al., 2014; Price and Sowers, 2004). Equilibrium 

conditions were not assumed at the start of the experimental procedure. Therefore, initial conditions were obtained by also 5 

optimizing the fractions of initial carbon pool sizes (fP, fD, fM). Total organic C was set equal to the measured value. Models 

were calibrated by optimizing a set of parameters to best fit the measured soil respiration data described in section 2. Each 

model was calibrated by fitting a single set of parameters simultaneously to all the incubation data (Table S3).. For this, the 

model was run to reproduce each sample treatment, i.e. the applied incubation times and temperatures for each level of moisture 

(Figure 1). Accumulated soil respiration amounts were then calculated to match those from the observed data. Measured and 10 

simulated data from all samples were then combined and the an overall model cost calculated using the root mean square error 

(RMSE) and a weighting term, as described belowcalculated. Calibrated and non-calibrated parameters are shown in Table 1. 

Equilibrium conditions were not assumed at the start of the experimental procedure. Therefore, initial conditions were obtained 

by also optimizing the fractions of initial carbon pool sizes (fP, fD, fM). Total organic C was set equal to the average measured 

value. 15 

For pParameter optimization was carried out in two steps. We first explored parameter spaces using a Latin Hypercube of 

parameter values. For this we randomly selected unique parameter sets from a uniform distribution over each parameter range 

(R function randomLHS, package lhs, Stein, 1987) to obtain 30000 parameter sets. Model costs were then obtained by running 

models with each set. In the second step we used the Nelder-Mead algorithm (as implemented in the function modFit in 

package FME of the R programming language, R Development Core Team, 2016; Soetaert and Petzoldt, 2010) with initial 20 

parameter values being the set from the previous step with the lowest model cost. For the cost calculations Wwe used an error 

term (‘err’ argument to FME function modCost) to weight the residuals. The error was calculated as the normalized (0-1) 

standard deviation of measured values at each combination of temperature and moisture, with 0.1 added Tto avoid an 

unreasonable weighting of measurements with near zero errors, 0.1 was added to the normalized value. For parameter 

optimization we used the Nelder-Mead algorithm, as implemented in the function modFit in package FME of the R 25 

programming language (R Development Core Team, 2016; Soetaert and Petzoldt, 2010). We used an error term (‘err’ argument 

to FME function modCost) to weight the residuals. The error was calculated as the normalized (0-1) standard deviation of 

measured values at each combination of temperature and moisture. To avoid an unreasonable weighting of measurements with 

near zero errors, 0.1 was added to the normalized value.  

For a visual inspection of the model-data fits, we plotted both the measured and model relationship between soil respiration 30 

vs. moisture, soil respiration vs. temperature, and apparent activation energy (𝐸𝑎) vs. moisture content.  
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4.1. Comparison of reaction kinetics 

Models were named according to their decomposition kinetics followed by the uptake kinetics and the moisture function, using 

the abbreviations: 1 = first order, 2 = second order, M = Michaelis-Menten, Mr = reverse Michaelis-Menten, dif = diffusion, 

psi = water potential function, sat = water saturation function. Models with aAlternativealternative reaction kinetics leading to 

fluxes FPD and UD were compared by calibrating versions in diffusion based models using using differentall combinations of 5 

fluxes FPD and UD using Eq. (6-98). Thus, we tested all combinations of . Specifically, we compared first order for 

decomposition and uptake (11-dif),, second order for decomposition and uptake (22-dif), and, and Michaelis-Menten kinetics 

reaction kinetics for both decomposition and uptakewith all combinations of uptake (M1-dif, M2-dif and MM-dif). In addition, 

we tested reverse Michaelis-Menten decomposition with second order uptake (Mr2-dif).. We then evaluated the model-data fit 

based on RMSE values as well as on a visual inspection of the plotted relationships. A “best” model was then selected for 10 

further analysis. 

4.2. Comparison of moisture regulations: diffusion versus empirical 

A second model comparison was carried out to test the impact of different approaches for modelling moisture effects. For this 

we modified the model M2-dif (Table 2) removing diffusion fluxes and adding empirical moisture functions. This consisted 

in removing all diffusion effects (so that CEM and CED were replaced by a single CE pool and the uptake rate, VU, was no longer 15 

modified by 𝑔) and adding a function to scale (i.e. multiply) the decomposition flux, FPD. This approach is equivalent to the 

conventional way used to model moisture effects on soil C fluxes. Two alternative moisture scaling functions were tested 

(Moyano et al., 2013), one based on relative water saturation (M2-sat) and the other on water potential (M2-wp): 

𝑓(𝜃𝑆) = 𝑎𝜃𝑆 − 𝑏𝜃𝑆
2
 ( 21 ) 

𝑓() = max

{
 

 
𝑚𝑖𝑛 {1 −

[log10(Ψ) − log10(Ψ𝑜𝑝𝑡)]

[log10(Ψ𝑡ℎ) − log10(Ψ𝑜𝑝𝑡)]

1
0

 ( 22 ) 

were 𝜃𝑆 is relative water saturation,  is soil water potential and a, b, opt and th are fitted parameters. The latter two represent 

the optimal water potential for decomposition and a percolation threshold water potential (equivalent to th in Eq. (10)), and 20 

have with values of close to -0.03 and -15 MPa, respectively. Water potential was calculated based on Campbell (1974) and 

Cosby et al. (1984).  a and b are empirical parameters and were calibrated.were 𝜃𝑆 is relative water saturation,  is soil water 

potential and a, b, opt and th are fitted parameters. The latter two represent the optimal water potential for decomposition 

and a percolation threshold water potential (equivalent to th in Eq. (10)), and have values close to -0.03 and -15 MPa, 

respectively. Water potential was calculated based on Campbell (1974) and Cosby et al. (1984).  25 
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5. Model steady state, sensitivity analysis and validation 

Equations for steady state were derived by setting the rate of change in the state variables to zero in Eqs. 1-5 (where the flux 

terms are replaced by their respective equations), and then solving for the state variables. This was performed in Python using 

the “sympy” package (Meurer et al., 2017).Equations for steady state were derived by setting the rate of change in the state 

variables to zero in Eqs. 1-5 (where the flux terms are replaced by their respective equations), and then solving for the state 5 

variables. This was performed in Python using the “sympy” package (Meurer et al., 2017). 

A sensitivity analysis was carried out on all model parameters. For this we simply used using the default “sensFun” function 

from the R package FME, which perturbs each parameter individually by a small amount. We ran the model as above, i.e. 

simulating the incubation, and using daily output. Daily sensitivities were then averaged to obtain an overall value. Sensitivity 

values wereThe sensitivity was calculated for the CP pool alone, as this pool represents the largest fraction of soil C. 10 

For model validation, we used soil respiration data from the study by Rey et al. (2005) where a Mediterranean oak forest soil 

was incubated for one month in a full factorial design at 100, 80, 60, 40 and 20 % of water holding capacity and at 30, 20, 10 

and 4 °C. This soil differed from the one used for model calibration in at least 3 aspects: the amount of organic C (7 %), soil 

pore space (65 %), and texture (classified as silty clay loam). The optimized set of parameters from model M2-dif was used 

with the exception of the initial fraction of C pools (fP, fD, fM) and the percolation threshold (𝜃𝑡ℎ),which we chose to calibrated 15 

against the new data  (Nelder-Mead calibration)with the same procedure as above. The former was required since we had no 

information to estimate the microbial, dissolved, and enzyme C for this study and information regarding an initial soil steady-

state was also lacking.. In the case of 𝜃𝑡ℎ, we assumed that this parameter is especially sensitive to variations in soil texture 

and structure. AlthoughCalibration was then necessary as we did not have a formula to derive it for the new soil (although in 

previous studies it has been determined to beas equal to a water potential of -15MPa (Manzoni and Katul, 2014)15MP, this 20 

value did not provide agive good fit when applied to the validation data. . results in our analysis). 

6. Results 

6.1. Reaction kinetics 

The calibrated values for all models are shown in Table S3. Using different reaction kinetics resulted in  a strong 

variationsvariation in model performance as measured by RMSE (Table 2). Changes in RMSE were most more sensitive to 25 

the kinetics of decomposition (FPD), with models using Michaelis-MentenM and Mr decomposition kinetics resulting in 

distinctly lower RMSE values compared to 1st and 2nd order kinetics. On the other hand, different In terms of uptake 

reactionkineticsreaction kinetics, both  for the uptake flux, UD, had a much smaller impact on the RMSE, being slightly lower 

for 1st and 2nd order kinetics.  performed better than Michaelis-Menten kinetics. 
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Models M1-dif, M2-dif and Mr2-dif all showed a good fit to the data with the first two having a slightly higher R2. Thus, 

selecting a “best” model necessarily remains partially subjective. A visual comparison shows some weaknesses and strengths 

in each case. M1-dif and Mr2-dif better captured the variability in the data along the respiration axis at 35 °C (Figure S1) while 

M2-dif more closely captured the relationship at 20 °C and thus the temperature sensitivities (Figure S2). Given the small 

difference in performance between different uptake reaction kinetics, We selected model we chose to work with 2nd order 5 

kinetics for M2-dif (R2 = 0.87, Figure 3) as the “best” model,further analysis (model M2-dif, R2 = 0.84, Figure 3), as since this 

it better is a closer representation represents of the underlying mechanisms the actual mediation of uptake actually driving this 

flux, i.e. uptake does not occur without by microbial mediationbiomass when compared to model M1-dif.. It also requires less 

parameters than Michaelis-Menten and is thus a compromise in complexity. (We note We also had no theoretical reason to 

prefer Mr to M decomposition.(We note that the choice between 1st and 2nd order uptake had a small impact on this study’s 10 

results. On the other hand, Michaelis-Menten uptake kinetics had the poorest agreement with observations when comparing 

the plotted relationships. Plots for the three models based on Michaelis-Menten decomposition can be found in the Supplement 

material, Fig S1 and S2) The decomposition and uptake equations of the model M2-dif are then thus: 

𝐹𝑃𝐷 = 𝑉𝐷𝐶𝐸𝐷𝐶𝑃/(𝐾𝐷 + 𝐶𝑃) ( 23 ) 

𝑈𝐷  =  𝐶𝐷𝐶𝑀𝑉𝑈𝑔 ( 24 ) 

6.1.6.2. Moisture regulation 

Replacing diffusion effects with empirical moisture scalars, followed by re-calibration, decreased model performance 15 

compared to a diffusion based model, both when using relative water saturation (M2-sat) and water potential (M2-wp) 

functions (Table 2). Although empirical functions were it was possibleable to simulate approximate the shape of the 

respiration-moisture relationship for a specific temperatureat 20 °C, they, empirical functions were unable to capture the 

variation of this response across at higher and colder temperatures, as seen in the measurements and best simulated by the 

diffusion base modelsmodel (Figure 4). The dDiffusiondiffusion based modelsmodel more accurately simulated a linear 20 

relationship between respiration and moisture at lower temperatures and a steep increase followed by a plateau at high 

temperatures, with an . An intermediate response was seen at 20 °C.   

6.3. Temperature sensitivities 

Figure 5 show the apparent temperature sensitivities fitted to observations and modelled fluxes at different moisture levels and 

for two temperature ranges, 5-20 °C and 20-35 °C.  Figure 5 compares different reaction kinetics and Figure 6 different 25 

moisture functions. Michaelis-Menten decomposition outperformed 1st and 2nd order kinetics when simulating the variability 

in Ea observed along the moisture axis as well as the differences observed between colder (5-20 °C) and warmer (20-35 °C) 

temperature ranges. Model M2-dif closely followed the observed Ea values, which were near 100 kJ at colder temperatures 
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and in the 30-70 kJ range at warmer temperatures. Models M2-sat and M2-wp captured the large differences between 

temperature ranges but did not simulate the variability along the moisture axis as well as diffusion based models. 

6.2.6.4. Model steady state, sensitivity analysis and validation 

Model steady state equations are provided in the Supplement material. For 20 °C, 30 % VWC, 1.2 g d-1 C input, and 30 cm 

soil depth (z), the equilibrium sizes of the model pools are: 2560800, 3750, 1202800, 50, 7 and 40.4 g C for the CP, CD, CM 5 

and CED pools respectively. These values are stable over most of the moisture range and increase exponentially only at very 

low soil moisture (data not shown). A similar pattern was observed for temperature, with the CP pool increasing towards high 

values only at temperatures near 0 °C. The same pool showed little sensitivity to changes in C input. 

Table 1 shows the averaged values from the sensitivity analysis done on the model CP pool. The hHighesthighest sensitivities 

were were found for 𝑔0parameters and n, indicating the importance of parameters that affect the diffusion fluxes, with the n 10 

exponent in Eq. (10) having the largest effect, followed by the base conductance, 𝑔0. Large effects were also seen for most the 

activation energy parameters, denoting a strong general effect of temperature. Also high were the sensitivities to KD and fug, 

reflecting the importance of Michaelis-Menten kinetics for decomposition and carbon use efficiently, respectively. Notably 

lLow sensitivities were found for rates of microbial and enzyme decay. 

Simulation of the incubated soil from the study of Rey et al. (2005) resulted in a very high fit to the validation data after 15 

calibration of initial SOC fractions and θth, with an RMSE of 0.09 in fluxes that were almost an order of magnitude higher than 

those used for calibration, and a model R2 of 0.99 (Figure 7). This was reflected in a generally good agreement between the 

relationships of model and observations with moisture (Figure 8) and temperature (Figure 9). 

7. Discussion 

The interaction often observed in the effects of temperature and moisture on the cycling of soil C is an indicator of the complex 20 

nature of soil systems. Such responses are often ignored, particularly by modellers trying to minimize model complexity and 

derive functions that are easy to parameterize, but also by experimentalists focusing on finding an invariable response to a 

single factor. But a careful consideration of the nature of soils suggests that interactions should be expected, something that 

becomes evident in multi-factorial experiments as well as in field measurements. Here we found clear interactive effects in 

our experimental observations, adding to the evidence that fixed empirical temperature and moisture scalars, as used in 25 

conventional soil C models, are inappropriate for simulating the variability often found in natural conditions. 

When fitting models to the data, we were unable to attain a close fit when using first or second order reactions kinetics for 

decomposition. In fact, the resulting R2 values were highly negative, meaning that the models were worse predictors than the 

simple mean of the data. Since the total amount of soil C in our samples was equal among samples and its relative change in 

the six months of incubation was small, we expected that simple second order kinetics would do as well as Michaelis-Menten 30 

kinetics, assuming that the parameter values are adjusted to compensate for the different equation forms. The poor fits we saw 
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suggested that the optimization algorithm remained in a local minima of the cost function. However, better fits were not 

attained with 2nd order kinetics even after starting optimization with a higher initial VD_ref to compensate for the Michaelis-

Menten effects of KD. This, combined with the fact that But using Michaelis-Menten increased the R2 by ca. 5 % compared to 

second and first order kinetics. ThisThis, combined with the fact that the model was more highly than twice as sensitive to a 

change in KD,  more than to compared to VD, would indicate that Michaelis-Menten kinetics are in fact important for explaining 5 

soil C flows. Indeed, even in this case where the CP pool is relatively invariant, the outcome of a strong temperature effect 

modifying KD (𝐸𝑎 of 94 k89kJ) cannot be reproduced by simple 2nd order kinetics. 

The relative importance of different processes was also shown by the model parameter sensitivity values. It is perhaps not 

surprising that the some of the highest values were related to diffusion and temperature, since these were the two factors that 

varied in our experiment. However, these factors also vary considerably in natural ecosystems, so the values remain 10 

informative and largely drive changes in decomposition rates.. The high sensitivity found for fug also demonstrated the 

importance of C use efficiency of microbes, with the optimized value of 0.7 coinciding with that obtained by Haggerty et al. 

(2014)(2014). No strong correlations between the effects of different parameters were found, with most being below 0.6 

(Figure S4), thus giving a degree of confidence in the estimated values. While we did not obtain statistical confidence intervals, 

kernel density estimations (Figures S5-S12) suggest differing degrees of likelihood for different parameters. Activation 15 

energies in particular showed narrow ranges of optimal values with a strong dependence on model structure. 

Since optimizing all parameters against our data resulted in an R2 of 0.87484, it was surprising that model validation gave anto 

obtain an R2 of 0.99 during model validation. We note that few studies were found with data on moisture and temperature 

interactions under controlled conditions, and this was the only validation attempt carried out. ThisThe very high R2 is largely 

partially thanks to thea recalibration of initial pool sizes and probably also and may have to do withto the reduced amount of 20 

data coming from a simpler experimental design compared to our study. There were only 20 data points in the validation data, 

one for each temperature and moisture combination. In contrast, we had With 3 replicates, 11 moisture levels and 2 temperature 

cycles, and therefore, we had more data and associatedmore variability. Despite these pointsthe above and this being just a 

first validation step, such a close agreement using independent data and a soil that differed considerably in C content, provides 

strong support to the model structure we used.  25 

Model steady state or equilibrium is attained when the rate of change of all state variables equals zero, reflecting the state 

towards which the system will tend under invariant input and forcing conditions. Even though A steady state is never attained 

in natural systems, where external drivers are in constant change in natural systems, butsteady state information , but they can 

indicate the approximate modelhelp evaluate how the behaviour model behave under specific average conditions. Results here 

showed that the model M2-dif gives realistic values in the range of temperature for which it was calibrated, but leads to 30 

unrealistic values under colder conditions. In addition, the CP pool shows little sensitivity to changes in C input. Clearly, 

wWhilewhile the model fitted well the validation data,, it should not be may not be suitable when applied extrapolated outside 

the used ranges conditions used for development and should not may need further changes for be applied for field 

simulationsapplications. The limitations encountered are characteristic of non-linear microbial models and mark their current 
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limitations as predictive tools. However, such limitations are most likely the result of missing processes that still need to be 

adequately represented. For example, RrecentRecent work has shown, e.g., that a density dependent mortality rate of the 

microbial pool can lead to much more realistic long term simulations (Georgiou et al., 2017).  

It is important to point out(Georgiou et al., 2017). Leaching of CD is another example that our approach was to use a simple 

model with few processes andcould significantly affect C pools and modify only those components we tested. This allowed us 5 

to distinguish the effects of each modification and minimize parameter identifiability problems arising from having too many 

parameters with effects that may correlate. While this allowed us to focus on specific processes, it also meant that 

importantdynamics. Such mechanisms where left out. Some not essential for simulating our observations but will need to be 

assimilated for extending the application of these mechanisms are oxygen limitations in saturated conditions, leaching of CD, 

the coupling of the C and N cycles (introducing SOC quality and microbial stoichiometry limitations) and organo-mineral 10 

interactions. Our model thus needs further development to extend its application and general predictive capacity. In its current 

form, it cannot be extended to litter decomposition (Cotrufo et al., 2015) or organic soils, which will be much more dependent 

on substrate quality and less affected by carbon diffusion (Manzoni et al., 2012b). Also, peatlands and other saturated soils 

(Clymo, 1984; Frolking et al., 2001) will show different dynamics, reflecting the critical role of oxygen as a limiting factor. We 

did not include mineral adsorption of carbon as an active mechanism in this study. This is contrary to recent studies that used 15 

adsorption-desorption fluxes to explain the variability in temperature responses (Tang and Riley, 2014). However, some values 

of mineral desorption rates found in the literature (Ahrens et al., 2015) suggest that these rates, although important in the long 

term, are too slow to have a noticeable impact on the time scale of this or similar experiments, and thus on most estimates of 

soil respiration temperature sensitivities. Finally, nitrogen requirements will impose limits on the growth of microbial 

communities, which in models with microbial driven uptake and/or decomposition, will also regulate C fluxes (Grant et al., 20 

1993; Manzoni et al., 2012a). Despite such limitations, we demonstrated the effects and relevance of combining Michaelis-

Menten kinetics with diffusion in mineral soils, with model results being well supported by the data.models. 

Other limitations for simulating soil C cycling using this type of model can be pointed out. Our results cannot be extended to 

litter decomposition (Cotrufo et al., 2015) or organic soils, which will be much more dependent on substrate quality and less 

affected by carbon diffusion (Manzoni et al., 2012). Also, oxygen supply, which is critical in peatlands and other soils (Clymo, 25 

1984; Frolking et al., 2001), was not taken into account. Finally, we did not include mineral adsorption of carbon as an active 

mechanism in this study. This is contrary to recent studies that used adsorption-desorption fluxes to explain the variability in 

temperature responses (Tang and Riley, 2014). However, values of mineral desorption rates found in the literature (Ahrens et 

al., 2015) suggest that these rates, although important in the long term, are too slow to have a significant effect on the time 

scale of this or similar experiments, and thus on most estimates of soil respiration temperature sensitivities. 30 
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7.1. Temperature effects 

Unlike other calibrated parameters, the activation energy values for microbial (Ea_m) and enzyme (Ea_e) decay were fixed at 10 

kJ, representing a positive but low temperature sensitivity. This value was used in order to be consistent with two main 

observations:  

a) The effect of Ea_m on the amount of microbial carbon. A high Ea_m results in large changes of microbial biomass C 5 

with temperature. However, observations often show a negative but moderate effect of temperature on microbial biomass (Grisi 

et al., 1998; Salazar-Villegas et al., 2016).The effect of Ea_m on the amount of microbial carbon. A high Ea_m results in large 

changes of microbial biomass C with temperature. However, observations often show a negative but moderate effect of 

temperature on microbial biomass (Grisi et al., 1998; Salazar-Villegas et al., 2016). 

b) The effect of Ea_e on carbon decomposition rates. High Ea_e values result in increasing accumulations of soil C with 10 

warming (Allison et al., 2010; Tang and Riley, 2014) as a consequence of a decrease in the enzyme pool caused by accelerated 

turnover. This is a critical aspect of enzyme driven soil carbon models and largely determines simulated responses to long term 

warming. Experimental evidence for Ea_e is lacking, but the latest observations of mid-term responses to warming are 

compatible with low values (Crowther et al., 2016).The effect of Ea_e on carbon decomposition rates. High Ea_e values result 

in increasing accumulations of soil C with warming (Allison et al., 2010; Tang and Riley, 2014) as a consequence of a decrease 15 

in the enzyme pool caused by accelerated turnover. This is a critical aspect of enzyme driven soil carbon models and largely 

determines simulated responses to long term warming. Experimental evidence for Ea_e is lacking, but the latest observations 

of mid-term responses to warming are compatible with low values (Crowther et al., 2016). 

TheAll optimized 𝐸𝑎_𝑉𝐸𝑎 values of models with first and second order decomposition kinetics were in the range 40-50 kJ, 

translating to a Q10 of ca. 2. In contrast, for all but one model using M decomposition, values were above came close to 90 20 

kJ90kJ, which translates to a fairly high Q10 range of 3-of nearly 4. This high value  Interestingly, howeverwas apparent in the 

modelled respiration fluxes only at lower temperatures, while at temperatures higher than 20 the apparent Q10 , the actual 

relationship with temperature of both the observed and modelled CO2 production indicated a much lower sensitivity, 

approximatedingapproximating the more commonly measured observed Q10 value of 2. Such results followed closely our 

observations and agree well with general trends in Q10 along the temperature axis reported by Hamdi et al. (2013).Q10 value 25 

of 2. These values were mostly stable at high levels of soil moisture, but increased sharply under drier conditions. This moisture 

relationship, however, is not necessarily the norm and seems to depend on initial conditions and/or pool dynamics, as 

demonstrated by the validation step (Figure 9), where the apparent 𝐸𝑎 remained close to 90 kJ  and thus near the parameterized 

value. Also the change in Ea with moisture content followed a different trend in the validation data, although again values 

increased with lower moisture.  30 

The difference between prescribed and observed temperature sensitivities may be related to two factors. First, the apparent 

sensitivities do not represent the instantaneous sensitivities dictated by the prescribed values but reflect also the effects of other 

limiting factors that change with time. Pool sizes, including CM and CE, may differ from the initial conditions as time 
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progresses, making measurements at different temperatures not strictly comparable. The observation that Q10 values from 

studies using short incubation times (hours to days) are higher compared to those using longer incubation times (Hamdi et al., 

2013) is consistent with this idea. The second factor is related to the temperature sensitivity of the K constant of Michaelis-

Menten kinetics. Our results are well in line with the theory discussed by Davidson and Janssens (2006), who stated that 

“because the Km of most enzymes increases with temperature, the temperature sensitivities of Km and Vmax can neutralize each 5 

other, creating very low apparent Q10 values”. Indeed, this seems to be the most important effect of introducing Michaelis-

Menten kinetics in our simulations; not, as first assumed, the effects of concentrations of either the CP or CED pools, since the 

choice of M or Mr kinetics had only a small impact on the results. 

The above results demonstrate how different apparent sensitivities can be measured when soil pool dynamics change (e.g. 

through changes in diffusion limitations) even whenOn the underlying temperature sensitivities are the same. heother hand, 10 

the relationship we observed and were able to simulate seems by no means to be general, but rather to depend strongly on the 

system’s initial conditions. This became evident in the validation step, where the apparent temperature sensitivities, both in 

the observations and the model, remained close to an 𝐸𝑎 of 90 kJ and thus much closer to the parameterized Ea values. Also 

the change in Ea with moisture content followed a different trend in the validation data, although again values increased with 

lower moisture. We thus could see that, with the same underlying temperature sensitivities but different soil pool sizes (and 15 

possibly different diffusion limitations).Much of the variability in reported temperature sensitivities of soil respiration, and in 

particular its relationship with soil moisture (Craine and Gelderman, 2011), may be the result of the changing dynamics in 

microbial, enzyme and dissolved C pools during measurement times. Clearly, misleading ), different conclusions regarding an 

intrinsicon the temperature sensitivity of soil C decomposition are oftencan be reached by the usual procedure of simply fitting 

a function towhen looking only at measured respiration vs. temperature datafluxes. 20 

Decomposition, which was only modelled, consistently showed a lower apparent temperature sensitivity than respiration, with 

a Q10 between 1-2 for our experiment and just below 3 for the validation study. Arguably,  tThese values are may be the most 

relevant for predicting long term changes, since uptake and respiration ultimately depend on C made available by 

decomposition. Why these values remained especially low and how they may change in the long term remains to be explored, 

but These rather low sensitivities are consistent with some integrative studies at the ecosystem level (Mahecha et al., 2010) 25 

and again likely respond to the temperature sensitivities of Km and Vmax neutralizing each other.(Mahecha et al., 2010). Such 

results raise the question of what 𝐸𝑎  or Q10 values – i.e. the apparent for respiration, apparent for decomposition, or the 

parameterized – are adequate when applying best suited for conventional conventional first order empirical soil models. Since 

these modelsmodel will tend to have similar apparent and intrinsic behaviour, the answer is not clear and will require further 

research. Ultimately, the better best option may be to abandon such models and develop better validated mechanistic 30 

alternatives for prediction purposes. 
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7.2. Moisture effects and diffusion limitations 

8Diffusion fluxes are a function of water content, diffusivity coefficients and pool concentrations. Different equations have 

been used to calculate diffusion as a function of water content in soils (Hamamoto et al., 2010; Hu and Wang, 2003). All these 

equations generally predict a strong positive near exponential effect of water content on diffusion. Following previous studies 

(Manzoni et al., 2016), we chose the function from Hamamoto et al. (2010). This equation allows for an adjustment of the 5 

percolation threshold (th) in different soils. We note that when using the th obtained during calibration (0.063) we also 

obtained a high fit to the validation data (R2 = 0.987, data not shown), so the recalibration of th led to a noticeable but small 

improvement. While the value 0.063 for our soil came close to the water potential of -15 MPa found in previous studies 

(Manzoni and Katul, 2014), this relationship did not hold for the validation soil, where we assumed a higher clay and silt 

content from its classification. Thus, a prerequisite for applying our model to other soils is finding a relationship between th  10 

and soil type that holds in all cases. 

Diffusion regulations can be implemented either by simulating two separate pools between which diffusion takes place or by 

determining the available amount of a pool as a function of diffusivity (or conductance in our case) at each time step. In our 

model we used a combination, simulating a diffusion flux between enzyme pools and calculating the how much CD is available 

for uptake at each time step. We did not assume a diffusion regulation of available polymericparticulate C, an approach that is 15 

closer to empirical functions scaling the decomposition flux directly and that has been implemented in other microbial models 

(Davidson et al., 2012). 

In our study especially, but also in the validation data, the moisture response tended to become less linear and have a larger 

plateau at higher temperatures. The mechanisms leading to such interactions are still unclear, but our model comparison 

indicates that solute diffusion limitations play a central role. The plateau behaviour, a decrease near saturation, and even near 20 

linear responses, all contrast with the near exponential relationship between moisture and conductance given by Eq. (11010) 

and with the fact that no oxygen limitations at high moisture were modelled. They may, however, result from a faster depletion 

of available carbon at high moisture and at high temperatures, driving down the accumulated fluxes over time.  

While a low supply of O2 usually limits respiration rates in saturated soils under field conditions, O2 seemed to have a negligible 

effect in our study. At 35 °C, where fluxes were highest, no clear drop in respiration was observed near saturation, as is 25 

expected when O2 becomes limiting. Rather, the general behaviour was well simulated by our models using solute diffusion 

limitations only. Schurgers et al. (2006) found that the anaerobic fraction in soils with air O2 concentrations over 10 % is low 

until very close to saturation. The minimum flask air O2 concentrations in our samples, according to the maximum accumulated 

CO2 (56000 ppm), was over 15 % O2, which next to the small samples sizes would not indicate an O2 limitation. 

In models where decomposition and respiration are separated processes, these fluxes can show different responses. This 30 

decoupling is especially evident when diffusion limitations come into play. Plots of modelled fluxes against temperature and 

moisture (Fig. S3) showed a different relationship when comparing respiration and decomposition. Figure 10 shows modelled 

decomposition against respiration (using M2-dif) as accumulated values, each line being a sample at a different water content. 
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Without any diffusion limitation, the relationship follows a slope of ca. 0.3, determined by 1-fug, where fug is the fraction of 

uptake going to growth (the C use efficiency). This slope, however, changes as diffusion becomes limiting, and with 

temperature seems also to playingplay a role as evidenced by the shifts in the slope occurring at various intervals. With time 

these fluxes will tend to equilibrate as the CD and CED pools adjust. But the proportionality between these fluxes is not constant 

andin will depend on moisture, temperature, and time, even after months of incubation. These results show that, without a 5 

proper modelling framework and when assuming a constant proportionality, interpretations based only on respiration activity 

may lead to wrong conclusions about the dynamics of organic matter decomposition, especially at low moisture contents and 

in short and mid-term experiments. 

 

Conclusions 10 

As the main mechanism linking water content with the movement of substrates, microbes and enzymes, diffusion plays a 

central role in soil organic matter decomposition. We here showed that integrating it into models can significantly improve 

our understanding of soil C dynamics. Not only was our dDiffusiondiffusion-based models weremodel better at simulating the 

effects of moisture  variability, it also and improved the simulated temperature responses, thus allowing for a better 

interpretation of the observed temperature sensitivities. This and similar studies indicate that measured temperature 15 

sensitivities cannot be generalized or correctly interpreted without having a full understanding of the relevant soil factors 

involvedmechanisms, their interactions, and the state of soil carbon and microbial pools. 

We also found evidence that Michaelis-Menten kinetics plays an important role in soil C dynamics, explaining the strong 

differences in temperature sensitivities across temperature ranges. Our results are consistent with relatively high activation 

energies for both the V and K Michaelis-Menten parameters and generally lower apparent values. 20 

Creating models that capture the variability in the response of C dynamics across different soils and at different levels of 

driving factors remains challenging. However, process based models are of central importance for establishing confidence in 

C cycle predictions and soil-climate feedbacks. As seen here, the structure and process representation of models can be critical 

for simulating the complex response of soil C fluxes to combined changes in temperature and moisture. Diffusion as a moisture 

regulation of soil C fluxes has not been used in large scale predictions, which still rely on empirical scaling functions. Evidence 25 

of interactions seen in experiments and presented here from a mechanistic model perspective indicate that these simpler 

approaches do not always hold. Further research should focus on more extensively validationngvalidating these approaches 

and finding the relationships necessary for extending the application of such models to diverse soil types. 
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Figures 

 

Figure 1: Graphical representation of the incubated soil samples showing the fixed levels of moisture content and the times at 

different temperatures. 

 5 

 

Figure 2: Diagram showing C pools and fluxes, as well as the points of diffusion limitations. Second order decay may refer also to 

Michaelis-Menten reaction kinetics. Variations of this scheme were tested in this study. 
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Figure 3: Model vs measured accumulated CO2 of incubated soil samples. Colour depicts the range of volumetric water content 

(VWC) and size the temperature group. The model R2 is 0.847. 
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Figure 4: Relationship of soil respiration with volumetric soil moisture. Results shown over three temperatures levels (5, 20, 35 °C) 

for the observed data (obs) and three model versions (M2-dif, M2-wp and M2-sat). Broad lLines are smooth loess fits depicting the 

mean relationship. 
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Figure 5: Fitted temperature sensitivities of respiration and decomposition fluxes, showing activation energy (Ea) fitted using 

the whole temperature range (5-35 °C) and the equivalent Q10 derived for the temperature range 15-25 °C. Sensitivities are 

shown for respiration fluxes of observational data (R-obs) and of three model versions (R-M2-dif, R-M2-wp and R-M2-sat). 
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For comparison, the sensitivity of the decomposition flux from model M2-dif is also included (D-M2-dif).

 

Figure 5: Temperature sensitivities of respiration and decomposition fluxes, showing activation energy (Ea) fitted using two 

temperature ranges (5-20 and 20-35 °C) and the equivalent Q10 derived for a 10 °C range. Plotted are observed respiration data (R-

obs) and three models with different reaction kinetics (R-M2-dif, R-11-dif and R-22-dif). The sensitivities of the decomposition flux 5 
from model M2-dif is included for comparison (D-M2-dif). 
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Figure 6: Equivalent to Figure 5 but showing observational data (R-obs) next to models with different moisture functions (R-M2-

dif, R-M2-wp and R-M2-sat). 
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Figure 7: Model vs measured accumulated CO2 after simulating the experiment from ReayRay et al. (2005). Colour depicts the 

range of volumetric water content (VWC) size the temperature group. The model R2 is 0.99. 

 

 5 

  

Figure 8: Relationship of soil respiration with volumetric soil moisture shown for model M2-dif and observations from the validation 

data (obs). Results are shown over four temperatures levels. 
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Figure 9: Fitted temperature sensitivities of respiration and decomposition fluxes, showing Apparent activation energy (Ea) and 

equivalent Q10 (valid for the temperature range 15-25 °C) during the validation step. Values fitted to observed respiration (R-obs) 

as well as modelled respiration (R-M2-dif) and decomposition (D-M2-dif).. fitted using the whole temperature range (5-35 °C) and 

the derived equivalent Q10 valid for the temperature range 15-25 °C. Sensitivities are shown for respiration fluxes of the validation 5 
data (R-obs) and for the respiration and decomposition flux of model M2-dif. 

 

 

  

Figure 10: Modelled decomposed vs. respired C shown as accumulated values over the entire simulated incubation, including 10 
temperature steps.. Each line is a sample at a different moisture content. 
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Tables 

Table 1: Model pParameters of model M2-diffparameters, calibrated and non-calibrated, with results of a sensitivity analysis (Sens).. 

Calibrated parameters are rounded to two significant digits. The Sens column values are shows a relative measure of the sensitivity of 

the model CP pool to small perturbations in the parameter values. Values are rounded to two significant digits. 

Name 
ValueV

alue 
Units Sens 

Calibrated parameters 

𝑔0 0.982.2 h-1 4.63.5 

Ea_K 89 kJ 4 

Ea_r 95 kJ 3.8 

Ea_V 9487 kJ -1.23.6 

fD 9.12e-5 kg kg-1- 0.00 

fE 6.81e-4 kg kg-1- -0.05404 

fM 
0.0871

071 
kg kg-1- 0.3745 

fug 0.7 - 2.5 

fge 
0.0342

5025 
kg kg-1- 0.07404 

KD_ref 6250 kg C m-3 2.74.1 

n 2.3 - 0.66.4 

m 1.12 - 0.00 

red_ref 
5.6e5e-

4 
h-1 0.04303 

rmd_ref 
91.95e-

41.5e-3 
h-1 0.03303 

rmr_ref 
1.54.2e

-5 
h-1 0.0001001 

VDmVD_

ref 

0.3753

5 
h-1 -0.641.5 

VU_ref 
0.1109

2 
h-1 0.535 

th 0.063 m3m-3 0.00 

Non-calibrated parameters 
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  Tref 293 °K - 

Non-calibrated parameters 

Ea_m 10 kJ 4.60.61 

Ea_e 10 kJ 1.72.2 

fug 0.7 kg kg-1 1.3 

th 0.063 m3m-3 0 
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Table 2: Different model versions with their weighted and unweighted root mean squared errors (RMSE, in units mg C kg Soil-1 h-1) and 

R2 after parameter calibration (in units: mgC kgSoil-1 h-1). FPD = decomposition flux, UD = dissolved C uptake flux, 1st = first order 

kinetics, 2nd = simple second order kinetics, M = Michaelis-Menten kinetics, Mr = reverse Michaelis-Menten kinetics.. The remaining 

combinations of 1st and 2nd order reaction kinetics showed similarly high RMSE and are not shown. 5 

Model 

name 
FPD UD 

Moisture 

effect 

RMSE 

(weighted) 

RMSE 

(unweighted) 
R2 

11-dif 1st 1st Diffusion 0.284.34 0.0801.08 0.81-42 

22-dif 2nd 2nd Diffusion 0.284.45 0.0801.78 0.82-44 

M1-dif M 1st Diffusion 0.22121 0.06506 0.87686 

M2-dif M 2nd Diffusion 0.22424 0.069707 0.87484 

MM-dif M M Diffusion 0.245 0.078808 0.84282 

M2-sat M 2nd Eq. (201): 

f(S) 

0.3229 0.10909 0.6571 

M2-wp M 2nd Eq. 

(22121): 

f() 

0.2733 0.09311 0.7859 

Mr2-dif Mr 2 Diffusion 0.24 0.070 0.85 
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