Dear Editor,

We have carried out a thorough revision of our manuscript. Most importantly, this included a
recalibration of all models following a well documented procedure. The methods have been updated
to reflect this and provide all steps to reproduce the study. In the new calibration we carried out a
well documented first step to explore parameter spaces using Latin hypersquare sampling. In
addition, we changed the following:

* Activation energy parameters for all reaction rates were merged into one parameter E V
(not for enzyme and microbial decay).

* Parameter f ug was fixed at 0.7 following Hagerty et al. 2014.

* V_D was separated into different parameters, one for each reaction kinetics type (Eq. 6-9).
The latter was done after calculating that the ranges required for these parameters differ by
several orders of magnitude, and thus require separate calibration (our previous calculations
had been incorrect).

Recalibration generally resulted in a better model fit (an exception was model M2-sat which we
took anyways for consistency). In particular, first and second order decomposition models now
resulted in good fits, so that we were able to make a relevant comparison between them and
Michaelis-Menten models. The manuscript was thus generally and significantly improved. The
main results remained unchanged, with diffusion and MM kinetics performing the best. All figures
and numbers were updated. A second temperature sensitivity figure was added. Several figures and
tables were also added to the supplementary material.

The improved results allowed us to better address the comments from the reviewers (as discussed in
our respective answers to each). Thus, we added a new model version with reverse Michaelis-
Menten kinetics and expanded the results and discussion sections on temperature responses as well
as several other sections.

We also changed the ms title to reflect the broader focus of the study: "Diffusion limitations and
Michaelis-Menten kinetics as drivers of combined temperature and moisture effects on carbon
fluxes of mineral soils"

Here follow specific responses to editor comments and our previous responses to reviewers added
below. (Note that pages and lines of modifications are respect to the non-revised manuscript.
Positions may differ in the new version).

1. When measuring the result of the cumulated CO2 evolution in differing time intervals, i.e. in
sealed samples, the O2 concentration will fall under the experiment, accordingly.

Was the reduction in O2 concentrations considered and if not, what were the consequences for the
interpretation of the results?

According to the accumulated CO2, minimum O2 levels were over 15 %. We now discuss O2
limitations in the manuscript in light of previous literature and our observations. P16 L9-14 (revised
ms)

2. In your comment to Robert Grant's report, you mention (page 3 at the end of the second
paragraph):

"Adding further complexity would introduce parameter identifiability problems and add no relevant
information."

If you intend to use this argument in the discussion, I would ask you, to consider the situation that
two or more drivers affect the same process in a similar way. Examining only one of them, will



include the risk of falling for a “wrong” one in the empirical analysis. So, one should be careful
when going for simplicity and discuss the risks of doing so.

We agree. With "no relevant information" we meant functions with variables that in our experiment
do not change. While O2 is a changing factor, we now discuss why it may not have been limiting.
See response to comments below.

3. In your comments to Thomas Wutzler's report, you mention on page 6 that you based your
parameter space exploration and choice of initial parameters on preliminary work (‘'manual’...) .

I would rather recommend using the appropriate statistical methods (as suggested in the report)
and document the robustness of the approach. Then give the corresponding parameter correlation
matrix (appendix) and discuss the main parameter correlations in the text also in the light of model
complexity and equifinality (see point mentioned above). Please make sure to use a methodology
that is reproducible (the 'manual’ is not).

As stated above, models were all recalibrated following a documented procedure. Using a Latin
hypercube of parameter spaces as a first step allowed a better exploration of parameter spaces. See
manuscript for details. We now added the parameter correlation matrix as well as kernel density
estimation plots to indicate which parameters were better constrained.

Response to comments by R. Grant

We thank R. Grant for a critical evaluation of our work. Below we address each comment
individually.

"General comments This is an interesting model study that makes a key point that higher
order kinetics are needed to model respiration responses to changes in temperature

and soil water content. This point is important because many SOC models still re-

tain first order kinetics when making projections of climate change effects on SOC and
hence on climate feedbacks, with a possible risk of error. Of particular interest to me
but not often considered in modelling was the reduced sensitivity to temperature of mi-
crobial decay vs that of uptake and growth, and the point raised in the Discussion about
density-dependent microbial decay, as both these processes affect microbial biomass
and hence decomposition rates in higher order models."”

We agree. We found it particularly interesting that from a process perspective we can demonstrate
that respiration dynamics do not necessarily reflect decomposition dynamics in the short and mid-
term.

"The authors have done a good job in testing model performance against experimental results from
soil incubations. However a more constrained testing of its performance would be achieved by
comparing the actual time courses of CO2 emissions measured during the incubations, rather than
just the totals measured over the duration of each treatment as done in this study."”

Soil respiration was determined by measuring the accumulated CO, in the flask's headspace at
irregular intervals. As such, the data represent a time course, although irregular and of low
frequency (we unfortunately did not have the capability to measure high frequency respiration
rates). This actual measured data was what we used for modelling purposes. While this is already



described in the methods, we added text in order to make the procedure clearer.

Changes in manuscript: added text near P.4 L.28-29, P.8 L..10-14

“Two key areas need to be developed for this model to be capable of more robust performance and
hence wider application: the coupling of C with N for all transformations, because kinetics of
decomposition and respiration are strongly affected by SOC quality, and the simulation of O2
limitations on microbial activity rather than fitting declines in activity with higher soil water
contents. Both these areas are already well developed in some ecosystem models.”

We fully agree that these two aspects are potentially important for building predictive soil carbon
models for general application. There are other processes that should be included in predictive
models as well, such as oregano-mineral associations and vertical transport of SOM/DOC.
However, this study has a defined focus and purposefully ignores many process that could be
relevant under a variety of situations. This study does not present a generally valid predictive
model. On the other hand, we believe the model showed a robust performance for the purpose of
simulating our observations. Diffusion limitations as implemented here can, in future studies, be
integrated in more complex predictive models and validated against larger sets of data.

The variability in SR at high water content was captured by our diffusion-based model without a
representation of O2 limitation. We note that this model does not include an empirical decline at
higher moisture (as we understand is suggested in the comment). Only the saturation function in the
alternative model we compare it with included such an empirical function. This does not imply that
02 limitations are not an important limiting factor in saturated soils and mechanistic simulations in
that area are useful.

In summary, our approach was to start from a simple model and add complexity until the
observations could be reproduced, specifically testing the effect of adding diffusion. Adding further
complexity would introduce parameter identifiability problems and add no relevant information.
That said, we understand the comment addresses the “wider application” of the model and we now
further address this by extending the discussion.

Changes in manuscript: added text near P.13 L.1-7

“P.2. L.15: a strong effects ? Introduction P.2 L.29: But note more rapid soil N mineralization,
uptake, NPP and litterfall that may offset this feedback. N cycling very much needs to be included
in any soil SOC model and the authors need to acknowledge this.”

We now acknowledge this in the discussion making the model limitations more explicit.

Changes in manuscript: added text near P.13 L.15-18

“P.4 L.16: Soil grinding and mixing will increase microbial access to SOC from that in a
natural soil, likely raising decomposition rates.”

Agreed but unavoidable in this setup. To minimize such effects, we allowed samples to rest during
pre-incubation.

“P.4L.18: A BD of 1.8 is inconsistent with a porosity of 0.45. One or the other must be checked.”



Bulk density was incorrect and was changed.

Changes in manuscript: bulk density corrected to 1.4 g cm-3. P.4 L.18

“P.4 L.21: The saturated value of 0.25 is less than the porosity of 0.45.”

Please note these are gravimetric moisture values, so 0.25 in g/g is close to the 0.45 volumetric
content.

“P.5 L.6: This statement is valid as long as the model simulates experimental protocol (e.g.
duration of treatments).”

Agreed. Our simulations reproduced the exact incubation protocols we used.

Modelling approach
“P.7 L.3: Although if diffusion limitations reduce FPD you will also reduce CD and hence uptake,
so make sure there isn’t a duplicated effect caused by direct diffusion limitation to CD.”

Since in the model diffusion affects enzyme pools and the availability of CD for uptake, there is a
double effect on uptake, one indirect and one direct. This is intended. However, because CE decays
and CD does not, long term effects will result from the former but not from the latter limitation.
Unless CD is lost through another path such as leaching (here not considered).

“P..7 L.7: Check variable names.”

Changes in manuscript: corrected the variable name.

“P.7 L.13: But temperature sensitivity of fmr is different from that of growth.”

Equations 15 and 16 had not been updated to the latest model version and were incorrect. They have
been corrected. (But note that other manuscript sections were correct, e.g. parameter table). r_mr is
in fact temperature dependent, as expected. Temperature dependencies were calibrated, since we
did not find strong evidence for fixing these parameters.

Changes in manuscript: corrected a wrong version of equations 15 and 16. Now F MP=C M *
r mdand F MRM=C M *r mr

“P.8. eq.19: Low and high temperature inactivation terms are often used with Arrhenuis equations
to give greater Q10 at low temperature and must lower Q10 at higher while using biologically
realistic values of Ea (typically ca 65 kJ mol-1).”

With a simple Arrhenius function, we found that the observed Q10 can vary between low and high
temperatures (see supplementary figures). For the range we used, between 4 and 35 degC, a more
complex temperature function was not justified.




Model Calibration
“Was a spinup run used to enable key state variables to stabilize at values independent of those
initialized? This is standard modelling protocol.”

A spinup would be valid only if a steady state at initial conditions is assumed. Our soil was from
arable fields and pre-processes in the lab. Because of this we did not assume steady state at time 0
and instead estimated the initial pool sizes through calibration, as done in other studies (Menichetti,
et al., Biogeosciences, 2016). This is stated in P.8 L.14-16.

“P.8 L.25: This is a commendable objective because some SOC models still retain first order
algorithms.”

Agreed.

“P.9 eq. 20, 21: Reductions of f (theta) and f(psi) at higher theta and psi are caused by O2
deficiency as noted later in the text, and are better modelled as such because these reductions are
temperature-dependent.”

We commented on the O2 limitations above and in the paper discussion.

“P.10 L.4: MPa Results”

Changes in manuscript: spelling corrected

“P.11 L.6: How were C inputs evaluated, as in natural ecosystems these also vary with temperature
and swec. In fact, these inputs are the most important part of a SOC model as they are the main
drivers of microbial activity.”

We used a fixed value of 1.2 g d' C, which we found to be realistic for cultivated temperate soils.
Steady state was calculated analytically (supplementary equations) so inputs, temperature and swc
needed to be constants, as described.

“P.11 L.13-14. This is a nice test of the model. Describe how values for initialization of C pools
and threshold swc were determined for this study. How did these values affect model results,
particularly without model spinup? Ideally you should just change total SOC as determined from
the soil measurement, and develop rules for allocating total SOC to initial C pools depending on
site conditions, and then spinning up the model to equilibrium before comparison with observed
values. An even better test of the model would be against the actual time course of CO2 effluxes
measured during each incubation, as has been done in earlier modelling studies (e.g. Soil Sci. Soc.
Amer. J. 58:1681-1690). This test lets you see whether the model is really simulating the temporal
dynamics of respiration at different water contents under changing temperatures.”

As stated in P.9 L.23 — P.10 L.4., the C pools were initialized not by spinup but by calibration,
given that also in the validation case we could not determine if initial conditions were in steady
state. The reason to calibrate the swc threshold during validation is that this parameter is expected
to change between soils but we do not currently have a reliable means to estimate it, as stated in
P.10 L.1-4. We expanded the discussion where we address the issue of how pool sizes may be



affecting the modelled and observed values

Changes in manuscript: text added near P.14 L.2-8

Discussion
“P.12 L.10. Specify these changes as noted in Results to establish how robust the model really is.”

P.12 L.10 reads “We note that few studies were found with data on moisture and temperature
interactions and this was the only validation attempt carried out.” It is not clear what changes are
referred to.

“P.12 L.19-20. Would this problem be addressed by a cold temperature inactivation term in eq.
19?7

A further decrease in activity using an inactivation term, while realistic, would probably exacerbate
the problem here, since it seemingly already is the result of the lower rates under colder conditions.
A solution to this problem is however out of the scope of this study.

“P.12 L.29-30. The absence of O2 limitations is likely causing the reductions in Ea and Q10 at
higher swc in Fig. 5. Modelling these limitations should be a key next step in model development.
These limitations are already simulated in some other ecosystem models.”

We believe it is likely not a O2 limitation for two reasons. First, the decrease occurs sharply at ca.
50% saturation. At this water content and in small samples O2 should not be limiting. Second, our
model reproduced this decrease quite well without O2 limitations, showing that it is the result of
pool dynamics.

“P.13 L.4-5: The reduced temperature sensitivity of microbial and enzyme decay needed to model
realistic biomass at different temperatures is an important finding of this study.”

Yes, our results are compatible with such lower values.

Discussion paper

“P.13 L.15: Experimental determinations of Ea are often in the 65 kJ mol-1 range. The
larger value modelled here may have been required in the absence of a cold tempera-
ture inactivation term in eq. 19.”

If 4 degC is “cold” then this may be the case. It should be noted, however, that experimental
determinations are “apparent” values. Apparent values given by our model are also in the lower
range.

However, our focus is more on the distinction between the prescribed values (parameter values) and
the apparent ones and how these may interact with moisture. A detailed analysis of temperature
effects is outside this study’s scope.

Changes in manuscript: added text near P.14 L.2-8




“P.13 L.16-18. Lower values probably arise from O2 limitations. The authors realistically
address the current limitations of the model.”

We do not discard a O2 effect, especially near saturation. But see our responses above.

“P.13 L.32: models”

Changes in manuscript: spelling corrected.

“P.14 L.8-9. Why not make the percolation threshold depend on soil water potential (e.g.
-15 MPa)? This might improve model robustness by reducing reparameterization for
each soil.”

The reason is that the published value was not valid for this soil, as explained in the following lines
P.14 L..22-25.

“P.14 L.30-21: Would CUE decline at higher temperatures if Rm (fmr in (16)) increased
exponentially with temperature, as it is known to do?”

As noted above, the equations using fmr were outdated and have been corrected. The parameter
r_mr is temperature dependent and determines the Rm flux. If CUE changes with T may depend on
its definition. Here we define it as f ug, so it remains constant.

We thank T. Wutzler for a constructive review. Below we address each comment individually.

Reviewer comments are in quotations followed by the author response and, where relevant, changes
to the manuscript.

Response to comments by T. Wutzler

“Moyano et al. compare several versions of SOM turnover models with a comprehensive set of
observations of varying temperature and soil moisture. They show that explicitly accounting for
diffusion, compared to using empirical formulation of the temperature/moisture rate modifiers,
improves fit and understanding of SOM decomposition. This result is interesting to the soil model
developers and biogeoscientists studying SOM turnover and consequences at soil core to larger
scales. The paper contains a strong validation by a good agreement with independent data. The
clarity of the discussion on reasons for the good validation fit, interactions with initial pools, and
different resulting temperature sensitivities can be improved. With an extension of discussion and
some more clarifications in the discussion, the paper could be published. Nevertheless, I suggest
several additional tasks with this model and data, that would help the community.”

Please see responses to comments by R. Grant for changes already made to the discussion.

“First, while the paper already contains three different structural versions of decomposition, |
suggest including another version of an inverse Michaelis-Menten dynamics for depolymerization
(but not for DOM uptake), where the non-linear term is in enzymes instead of the substrate (F =V



C P *C E/K + C E)). This would broaden the application of conclusions of this study, because
the inverse formulation is used by many microbial models since suggested by Schimel and
Weintraub 2003.”

Reverse MM kinetics assume that enzyme concentrations can increase enough that they start to
compete for binding sites on SOM and thus saturate at some point. Schimel and Weintraub used this
approach to deal with a problem of model instability driven by the dynamics of the microbial pool.
However, we think a general saturation of the available SOM by enzymes in soils is unlikely to be
the norm, as it would imply a large and likely unsustainable production of enzymes and very rapid
decomposition of all polymeric C. We did not have stability issues in our model that would justify
using this MM form and find it an unlikely explanation of soil C dynamics. However, we will test
the effect of using the reverse MM and, if relevant, include information in the revised manuscript.

Changes in manuscript: inclusion of any relevant results following model calibration using reverse-
MM and comparison with other versions.

“Second, the study describes a decoupling between depolymerization and microbial uptake at low
diffusion rates, I assume by accumulating OM in the dissolved pool. Are the fluxes correlated again
for the same treatment, if you aggregate over say two weeks? The decoupling is a challenging fact
for upscaling studies, that often assume the DOM pool in quick quasi steady state with
decomposition and microbial uptake. For low moisture the decomposed flux was almost not taken
up and respired (Fig. 9). Would this also be true with two separate DOM pools after longer time? |
would appreciate an extended discussion on this topic.”

As well pointed out, Figure 9 shows that for some samples at lower moisture decomposition did not
equilibrate with uptake in the 6 months of the simulated incubation. The plot also gives a good idea
of how fast soil at higher moisture content return to equilibrium.

We kept the model simple where possible. The current form where there is only one DOC pool is a
simplification that assumes microbes have access to an amount equivalent to the concentration in
the bulk soil times a conductivity value. If conductivity is not 0, this amount will increase if the
concentration increases, until the input from decomposition equals output from uptake. The reason
this is done differently for enzymes is that enzymes have a decay rate, which means that the pool
decreases with time. So even if equilibrium is reached, the flux of enzymes from microbes to the
decomposition site will be lower if conductivity is lower, simply because a larger fraction is lost
before diffusing. Further analysis of the model could indeed go more into detail looking at such
dynamics. We take this as a suggestion future research.

Changes in manuscript: discussion extended under section 7.2 Moisture effects and diffusion
limitation

“The model used enzyme pools split to locations but a simplified diffusion limited rate multiplier
for DOM. What is the reasoning for this decision, and what are the expected consequences for
using a rate modifier for enzymes too?”’

See response to previous comment and addition to discussion.

“There is an interesting differentiation between parameterized temperature sensitivity (E_a) and an
apparent predicted one, the latter one also depending on partitioning of the pools (P13120ff). What
are the reasons and consequences here. The paper would profit from an extended discussion here.”



We have extended the discussion on this topic. See also responses to R. Grant.

Changes in manuscript: discussion extended. P.14 L.2-18

“p5l10: The choice of the wording “particulate” suggests to OM floating together with the DOM. I
assume instead that C_P comprises litter and residues also sitting on surfaces. When using
“polymeric” it conveys a different connotation and still the “P” can be used as acronyms.”

We followed the advice and changed to “polymeric”. (For the record: according to Wikipedia
“Particulate organic matter is defined as soil organic matter between 0.053 mm and 2 mm in size”.)

Changes in manuscript: the term “particulate” was changed to “polymeric”

“p7l10: The model assumes enzyme production to be modeled similar to growth respiration as a
fraction of uptake, instead similar to maintenance respiration as determined by microbial biomass.
What are the reasons for this formulation ?

From a practical side, initial testing of model structure resulted in this approach fitting the data best
(data not shown). From a theoretical side, is would be logical that microbes produce enzymes
mostly when C becomes available and save resources otherwise. A continued enzyme production
would lead to an unnecessary depletion of resources. We now note this in the same paragraph.

Changes in manuscript: text added near P.7 L.10-12

“p8l4ff: The wording here suggests, that all the processes have the same temperature sensitivity,
i.e. same E a. I suggest adding another index to E a that this parameter varies between
processes.”

We followed the suggestion and added a subindex.

Changes in manuscript: E_a in equation 19 changed to E_ap

“P8L10: I assume there is only one set of parameters fitted to the entire data of all temperature and
moisture treatments. Would be nice to state that here. Please, also state the number of fitted
parameters, and add the initial partitions to Table 1.

That is correct. This is now clarified. Because of space limitations, initial parameter values and their
lower and upper bounds were added in a table in the supplementary material.

Changes in manuscript:
- textadded at P.8 L.10-11.
- table with initial parameter values and boundaries added to supplementary material.

The fitted parameter vector in a 20 dimension space is quite challenging for a gradient based
search. Did you check global convergence by starting from more states, maybe more random
distributed as just the one described for pll1130. What are the most important correlations in



parameter estimates?”’

We agree. A global minima can of course not be guaranteed. In preliminary work we explored
parameter spaces manually and using latin hyper square methods. The initial parameter values used
here are already the result of these tests. Parameters in such model are often correlated and this was
also the case in our study. High, but not very high, correlations occurred between some parameters,
e.g. V.U refand g 0 (0.89), V.U ref and E r (0.83), V.D ref and g 0 (0.84), f CD and E K
(0.83) and V_D ref and V_U ref (0.8), f ug and f ge (0.83). We therefore do not make
conclusions on how well constrained our estimates are, as this information is not obtained with
gradient or deterministic algorithms. However, we now added these remarks and a correlation plot
in the supplementary material for extra information.

Changes in manuscript:
- text added in the discussion P.12 L. 13-16
- correlation plot of parameter sensitivities added to the supplementary material

“P8110: model calibration open questions: How were enzyme pools initialized? What were the
values of fractions for particulate, dissolved and microbial pool, how do they compare to usual
concentration of DOM and microbial biomass? I assume they were equal for all moisture and
temperature treatments, right?”’

As clarified in response to comments by R. Grant, all C pools were initialed by fitting them
similarly to other model parameters (as initial steady state was not assumed). Upper and lower
bounds were set (see Table S1) to assure they stayed in a realistic range (text added in P.8 L.23-24).
The initial values of these fractions are found in Table 1. fi, with 0.07 is in particular on the upper
range of observed values.

“P3120: Citation of the kinetic respiration analysis (Wutzler 2011) is not appropriate in this
context. I assume you wanted to refer to: Wutzler T & Reichstein M (2008) Colimitation of
decomposition by substrate and decomposers - a comparison of model formulations.

Biogeosciences, 5, 749-759 10.5194/bg-5-749-2008"
Thanks for pointing this out.

Changes in manuscript: reference changed to Wutzler T & Reichstein M (2008)

“Fig 4: There seem to be two groups of observations, a higher branch and a lower one. Why is
this? Is it ok to fit a single smoother to this data?”

Figure 4 is mainly meant as a visual aid since it is not possible to mark which model point
corresponds to which data point. The smooth lines ignore the variability along the y axis, caused
mainly by the time effects resulting from two incubation cycles, but they help visualize the general
resulting relationship between moisture content and respiration fluxes. We added this clarification
in the results section.

Changes in manuscript: added text near P.11 L.2-4

Technical comments:



The grammar of the paper needs to be re-checked, e.g. p9L18, p9L25, p13L19.”

Changes in manuscript: spelling and grammar mistakes were corrected.
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Abstract. While-CO, production in soils stronghy-responds strongly to changes in temperature and moisture but; the magnitude

of such responses at different time scales remains difficult to predict. tn—particular—little—is—knewnKnowledge of the
mechanisms leading to the often observed interactions in the effects of these drivers on soil CO, emissions_is especially

limited.
wnderlying-mechanisms—best Here we test the ability of different soil carbon models to simulate the-interactive-responses
measured in soils incubated under-combined-levels-of temperature-and-at a range of moisture levels and cycled through 5, 20

and 35 °C. We applied parameter optimization methods while modifying two structural components of models: 1. the reaction

Kinetics of decomposition and uptake and 2. the functions relating fluxes with soil moisture. We found that fwo—medel
components-were-critical-for-reproducing-the observed interactive patterns were best simulated by a model using 41
Michaelis-Menten reaction-decomposition kinetics—whi

reactions—and-2. combined with diffusion of dissolved C and enzymes. Fhe-latterreplaces<ln contrast, conventional empirical
functions as-a-mechanism-relating-moisture-content-with-C-fluxesthat scale decomposition rates directly—tndeed,—empirical
functionsfailed-to were unable to properly simulate-capture the main observed interactions. After-model-calibrationwe-were
able-teOur best model was able to explain 87 % of the variation in the data. Model simulations_revealed resulted-in-a_central

role of Michaelis-Menten Kkinetics as a driver of temperature sensitivity variations as well as a decoupling of decomposition
and respiration C fluxes in the short and mid-term, with interaction-effectsand-general sensitivities to temperature and moisture
being more pronounced for respiration. Sensitivity to different model parameters was highest for those affecting diffusion
limitations, followed by activation energies, the Michaelis-Menten constant, and carbon use efficiency. Meodel-validation
resulted-in-a-high-fitagainst-independent-dataTesting against independent data strongly validated the model (R? = 0.99) and
highlighted the importance of initial soil C pool conditions. the%ameundenwngmedewaﬁame{epsmukedheremdﬁiemm

With-t Ourthese results we-could-demonstrate the importance of model structure and the central role of diffusion and reaction

kinetics for S|mulat|ng and understanding complex ynamics in soil C. —dynamres—rela{ed—te—tempera&we—and—merstwe

1. Introduction

Soils are a main component of the global carbon (C) cycle, storing ca. 2200 Pg of C in the top 100 cm alene-according to
recent estimates (Batjes, 2014). This soil C pool is dynamic, and often exists in a non-equilibrium state as the result of an
imbalance between input and output C fluxes, in which case it will act either as a C sink or source over time. Changes in the
speed at which soil organisms decompose soil organic matter (SOM) and mineralize soil organic carbon (SOC) into CO; are
one way in which an imbalance can occur, producing a net sink or source of atmospheric COs.

It is well known that SOC mineralization and resulting CO, fluxes are highly sensitive to variations in soil temperature and

moisture (Hamdi et al., 2013; Moyano et al., 2013). As a result, feedbacks effects, either positive or negative, are expected to
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occur from the interaction between climate change and global soil C stocks (Crowther et al., 2016; Davidson and Janssens,
2006; Kirschbaum, 2006). However, the direction and magnitude of such feedbacks at the global scale remain uncertain.
Increased soil respiration with a resulting net loss of soil C, and thus a positive climate feedback, is expected with the warming
of permafrost soils and the drying of wetland soils. But there is still much-large uncertainty and a lack of consensus regarding
the long term response to climate variability of soils that are non-saturated, non-frozen, and dominated by a mineral matrix
(Crowther et al., 2016), i.e. soils found under most forests, grasslands and agricultural lands.

Future predictions of soil C dynamics require the use of mathematical models. Early soil C models; and most still in use; are
based on first order decay of multiple C pools, with temperature and moisture having a-general non-interactive effects on decay
rates (Rodrigo etal., 1997). When appropriately calibrated tThese models;-when-appropriatehy-calibrated;- do well at simulating

soil respiration fluxes of soils under relatively stable conditions. They were-are often developed to approximate long term

steady--state conditions under specific land uses. They are also capable of fitting long term trends of soil C loss, such as data
from long-term bare fallow where all litter input has stopped (Barré et al., 2010). However, they lack a theoretical basis
justifying their basic assumptions of pool partitioning and decay mechanisms. They also generally need calibration for specific
soil types or land cover types, and often fail to properly simulate observed short and mid-term variability in soil respiration.
_Some of the most relevant observations these models have failed to reproduce include: changes (typically a dampening) of
temperature sensitivities of decomposition over time (Hamdi et al., 2013), non-linear responses to soil moisture content
(Borken and Matzner, 2009), and changes in decomposition rates in response to variations in concentrations of organic matter
(Blagodatskaya and Kuzyakov, 2008). Such model shortcomings, which reflect missing or wrongly simulated processes, create
a difficult to quantify uncertainty in global long term predictions of soil C and its feedback to climate change. It is therefore
unclear if first order models can predict long term changes in C stocks under more dynamic (and therefore realistic)
environmental conditions.

Second order models have a more realistic basic structure compared to conventional first order models, since they simulate
organic matter decomposition as a reaction between two-pools—ene-of-these-being-SOC and the-decomposers peel(i.e. a
microbial peet-or enzyme pool). This single but fundamental change in decomposition kinetics strongly affects predicted long
term changes in soil C, largely as a result of the dynamics of the decomposer pool, which itself can respond to temperature in
a number of ways (Wutzler and Reichstein, 2008). Second order models also lead to more complex dynamics of short to mid-
term soil respiration, with apparent temperature sensitivities that vary over time, more in line with many observations.

The temporal variability in the response of decomposition to moisture is most evident in the strong respiration pulses after dry
soils are re-wetted, known as the Birch effect (Birch, 1958). But studies have shown that a successful simulation of the-seil
respiration-pulses-associated-to-re-wetting-events-such pulses requires the incorporation of additional mechanisms, namely the
explicit representation of a bio-available C pool, such as dissolved organic matter (DOC), and a moisture regulation of

decomposer’s access to this pool that may differ from the moisture regulation on the decomposition reaction itself (Lawrence

et al., 2009; Zhang et al., 2014).
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The response of soil respiration to temperature and moisture is highly dynamic, both spatially and temporally (Hamdi et al.,
2013; Moyano et al., 2012). Moisture and temperature interactions have been observed in a number of experimental studies
(Craine and Gelderman, 2011; Rey et al., 2005; Suseela et al., 2012; Wickland and Neff, 2008), but neither consistent trends
nor general explanatory theories have been identified. Improving our understanding of these interactions is a crucial step in
increasing confidence in models and for interpreting modelling and experimental results (Crowther et al., 2016; Tang and
Riley, 2014). Identifying the model structures and parameterizations that can best represent these interactive effects has been
attempted by very few studies (Sierra et al., 2017, 2015).
The objectives of this study are;-first; to compare the ability of different soil C modelling approaches to reproduce temperature
and moisture interactive effects on soil carbon fluxes_ and thus to -and-secondto-gain insight into the-underlying-mechanisms
underlying the observed responses-from-the-medel-comparisen. With the hypothesis that a more mechanistic model will be
better capable of simulating such interactions, we compare variations—efa-different model structures, medel-based-on—a
icrobial-medelwith-an-explicitrepresentation-of a-dissolved-C-poel-We-testinged first order, second order, and Michaelis-

Menten reaction kinetics in combination with an explicit simulation of diffusion fluxes. We then ;-and-then-compare the best

diffusion model with versions based on common empirical moisture relationships.

2. Observational data

Measurements of the interaction effects of temperature and moisture on soil respiration fluxes were obtained by incubating a
crop field soil at several fixed levels of soil moisture and variable levels of temperature over a period of ca. 6 months, as
detailed in the following.

Soils from 0-20 cm depth were sampled at Versailles, France, from the ‘Le Closeaux’ experimental field plot, cultivated with
wheat until 1992 and with maize since 1993. Mean annual temperature and rainfall are 10°C and 640 mm. The soil is classified
as Luvisol (FAOQ) silt loam (26 % sand, 59 % silt, 15 % clay) containing no carbonates. Organic carbon contents at the start of
the incubation were 1.2 % in weight. Soil samples were prepared for elemental analysis (C, N) using a planetary ball mill (3
min at 500 rpm). C concentrations were measured using a CHN auto-analyzer (NA 1500, Carlo Erba).

Sampled soils were thoroughly mixed, sieved at 2 mm and stored moist at 4 °C in plastic bags with holes for aeration for 10
days. Soils were then put in small plastic cylinders containing the equivalent of 90g dry soil. To ensure a high and equal water
conductivity, all samples were compacted to a bulk density of 1.48 g cm3. The resulting soil porosity was 0.45.

All samples were brought to a pF of 4.2 corresponding to about 7 % mass basis moisture. Three replicate samples were then
adjusted to each of the moisture levels 1, 3, 7, 9, 11, 13, 15, 17, 19, 21, 25 % by weight by adding water or air drying. These
values range from air-dry to saturation, with saturation reached at 25 %. Immediately after, the plastic cylinders were put in
500 ml jars containing a small amount of water on the bottom (except for the 1 and 3 % moisture) to prevent soil drying, and
equipped with a lid and a rubber septum for gas sampling. Because of the extremely low respiration rates, samples with 1 %

moisture were placed in 125 ml jars containing 170 g of soil.
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To minimize post-disturbance effects, samples were pre-incubated at 4 °C during 10 days. The samples were then cycled
through incubation temperatures following the sequence 5-20-35-5-20-35 °C, thus applying two temperature cycles to each
sample. This was done in order to capture possible hysteresis of temperature effects and to reducereduces the covariance

between a temperature response and substrate depletion (helping constrain model parameters). Soil respiration was calculated

at every temperature step by measuring the amount of CO, accumulated in flask headspaces. For this, samples were Samples
were-flushed with CO, free air and left to accumulate CO; for 3 to 74 days. The variable accumulation timeameunt-of-days

was chosen so that sufficient CO, accumulated for the micro gas chromatographer measurements (at least 100 ppm), thus

depending on the soil temperature and moisture content. After the accumulation time, an/An air sample was then-taken from
each soil sample headspace and respiration rates calculated as the accumulated amount over the accumulation time. Samples

were incubated forFhi ver a total ineubation-period of

ca. 6 months (Figure 1).

As shown in Figure 1, the timing of temperature treatments was not equal for all samples, with some temperature steps missing
at low moisture levels. This was partly due to the time required for CO, concentrations in the flask headspace to reach
detectable limits, the time necessary for carrying out measurements and human error. However, while important for a statistical
comparison between treatments, such differences are of little consequence when looking at model performance and the fit
between model and data, which iseenstitute the focus of this studyresutspresented-here.

3. Modelling approach
3.1 Structure and state variables

We started with a basic soil C model with the following state variables: a bio-unavailable polymericparticulate C pool (Cp), a
bio-available dissolved C pool (Cp), a microbial C pool (Cm) and two extracellular enzyme C pools, one representing the
enzyme fraction at the decomposition site (Cep) and one the fraction at the microbial site (Cem). With this model we assume
two conceptual soil spaces that are separated by a diffusion barrier, one being the site of decomposition and the other the site
of microbial uptake and enzyme production (Figure 2). This model thus closely follows Manzoni et al. (2016), and otherwise
builds on other published microbial models (Allison et al., 2010; Schimel and Weintraub, 2003). We refer to those studies for
general assumptions and application of this type of model. Aspects specific to this study are described below.

The rates of change of the model state variable were defined as:

dc, 1
——=F,p+ Fyp — Fpp (1)

dt

dCp (2)
T Fryp + Epp + Fgpp + Fgyp — Fom — Fpr, — Fpiy,

dCy (3)

—— =Fpy — Fyp — F
dt DM MP MRy
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dCgp (4)
dt = FEMED - FEDD

dCry (5)
“dr = FDEM - FEMED - FEMD

where F represents the flux of C from one pool to another as indicated by the subscripts, so that Fpp, is the flux from the

polymericparticulate pool to the dissolved pool. The subscripts Lg and L,, denote input of structural and metabolic litter (as

defined by Parton et al., 1987), which for simulating the incubated soils were set to zero, and R,, and R are microbial growth

and maintenance respiration.

3.2. Decomposition and microbial uptake

The flux of Cp to Cp, Fpp, represents decomposition of organic matter, a process that in soils is largely driven by the activity
of microorganisms. The latter produce exo-enzymes that catalyse the decomposition reaction. Up, represents the total uptake
flux by microbes of the water soluble decomposed pool Cp (microbes being the reaction “catalysers”). Conventional soil C
models simulate decomposition as a first order decay reaction. However, more realistic models can be built by using either

simple second order or Michaelis-Menten reaction kinetics. Thus, optional ways of modelling both Fpp and Up include:

F =V[R] (6)
F = V[R][C] (7)
_ VIR][C]
F—E:ﬁa (8)
_ VIR][C]
e o

where F is the flux, V is a base reaction rate, K is the half saturation constant, R the reactant and C the catalyst. The ‘reverse’

Michaelis-Menten (Eq. 9) was applied by Schimel and Weintraub (2003) as an alternative for improving model stability and

is included here for completeness.
Inthe-case-of decompesition;-The value for V is not equivalent among these equations, differing by several orders of magnitude.

As aresult, different parameters were used for V in each case, namely Vom, Vomr, Vo1, and Vp. Similarly, are-Vp-and-parameters

Kp_and Kpe Were used for K in Eq. (8) and (9), respectively. The terms [R] and [C] are concentrations of Cp and Cep. In the

case of uptake, the parameterssethese are respectively Vy, Ky, Cp and Cw. The three-four approaches for reaction kinetics were
tested in order to find the best fit between model and data, as described in Sect. 4.
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3.3. Diffusive fluxes

Diffusion fluxes depend on a concentration difference, a diffusivity term, and the distance over which diffusion occurs
(Manzoni et al., 2016). For the purpose of modelling diffusion in soils, values of diffusivity and diffusion distances are required
that best average or represent the actual underlying soil complexity. For practical purposes, we combined these two values into
a single calibrated parameter, a conductance (g,), representing the compound effects of diffusivity and distance. This was
done because the values of the latter are unconstrained (from lack of information), and their effects are inversely correlated,
so simultaneous calibration would lead to a problem of parameter identifiability. The moisture-scaled conductance (g), which

in our model is assumed equal for the Cp and Cg pools, is then given by:

9 = godo (10)

where d is a function of soil volumetric water content (VWC or 6):

0 — O \"
4= 6 60" (5—5") (11)

where ¢ is pore space, and n and m are calibrated parameters (Hamamoto et al., 2010; Manzoni et al., 2016), which are variable

and were also calibrated in this study. 8 is the percolation threshold for solute diffusion, for which ;Manzoni and Katul (2014);

was-here-set-t6-0:063 VAN C—corresponding-te-reported a value of -15MPa. This value was not optimal in our case, so G was

also calibrated. The diffusive flux of enzyme C between the microbial and the decomposition spaces is then calculated as:where

Fpyep = 9(Crm — Cep) (12)

Diffusion limitations also affect the amount of the dissolved pool (Cp) available for microbial uptake. Instead of dividing Cp
into a pool for each space, the conductance, g, was used as a multiplier of the base uptake rate, Vy (Eq. (6-89)). This served to

reduce the number of model pools and parameters while still retaining a diffusivity limitation on this flux.

3.4. Microbial and enzyme dynamics

Up is split into Fpy, Fpr,Fogs; and Fig,,, representing the fluxes of Cp going to Cw, Re and Cew, respectively. These fluxes

are defined as:

Fpy = UDfug(l - fge) (13)
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FDRG =Up (1 - fug) (14)

FDEM = UDfugfge (15)

where f, , represents the fraction of uptake going to growth, otherwise known as microbial growth efficiency or carbon use

efficiency, and fy. is the fraction of growth going to enzyme production._Enzyme production thus depends here on uptake

rather than on microbial biomass. This approach follows the assumption that microbes produce enzymes only when new carbon

is available and save resources otherwise. Cu goes to either maintenance respiration or the Cp pool according to:

Fyp = CyTma(1 — finr) (16)

Fygy, = CrTmrFmatmr (17)

where rnq is the rate of microbial deathdecay and rmfw: is the ratefraction of microbial that-decay-that-is-lostasrespiration—fu:

thus-determines-the-amount-of-maintenance respiration.-and-is-here-assumed-to-be-constant-(but-note-that-r.q-is-temperature
dependent): The breakdown of enzymes going to the Cp pool, is determined by the rate of enzyme decay, req, as:

Fg,p = CepTea (18)
Fgyp = CemTea (19)
3.5. Temperature effects

Reaction rates (Vy, Vp, Ky, Kp in EQ. (6-98)),8))-and decay and respiration rates (r,4,-ah€ 15,4, ;) are temperature sensitive
and calculated from their reference values following an Arrhenius type temperature response:

_ E, (1 1 20
T = Trep €XP R\T T, (20)

where 1 ie-p-is the temperature modified value ratefor-the-respective-parameter, I'ei -prz-the reference valuerate at temperature

e Tref, T temperature in Kelvin,_E, the activation energy, and R the universal gas constant. Three parameters were used for E,:

Ea m and E,  for microbial and enzyme decay rates, respectively, and E, ,,_for other reaction rates.\elumetric-watercontent;
(-3} and-temperatureT-are-model-input-variables:

_Temperature thus affects the rates of decomposition and uptake, the half saturation constant in the Michaelis-Menten equation,

as well as the rates of microbial and enzyme decay. Apparent activation energies — describing the observed temperature

relationship, both in measurements and model data — were obtained by fitting an Arrhenius equation to the temperature-flux

relationship at each level of moisture-and-separatelyfor 5-20-°C-and-20-35-°C. F, was calculated for measured respiration,

modelled respiration (Rec+Rwm) and modelled decomposition (Fpp).
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4, Model calibration and comparisons

Calibrated and non-calibrated parameters for all models are given in the supplementary material (Tables S1, S2 and S3).

Whenever possible, fixed parameters as well as lower and upper bounds for calibrated parameters (Table S1) were set

according to values reported in literature (e.q. Hagerty et al., 2014; Li et al., 2014; Price and Sowers, 2004). Equilibrium

conditions were not assumed at the start of the experimental procedure. Therefore, initial conditions were obtained by also

optimizing the fractions of initial carbon pool sizes (fp, fp, fu). Total organic C was set equal to the measured value. Models

were calibrated by optimizing a-set-ef-parameters to best fit the measured soil respiration data described in section 2. Each

model was calibrated by fitting a single set of parameters simultaneously to all the incubation data (Table S3).- For this, the

model was run to reproduce each sample treatment, i.e. the applied incubation times and temperatures for each level of moisture

(Figure 1)._ Accumulated soil respiration amounts were then calculated to match those from the observed data. Measured and

simulated data from all samples were then combined and the-an overall model cost calculated using the root mean square error

(RMSE) and a weighting term, as described belowealeulated. Calibrated-and-non-calibrated-parameters-are-shown-inFable-L

ForpParameter optimization was carried out in two steps. We first explored parameter spaces using a Latin Hypercube of

parameter values. For this we randomly selected unigue parameter sets from a uniform distribution over each parameter range

(R function randomLHS, package lhs, Stein, 1987) to obtain 30000 parameter sets. Model costs were then obtained by running

models with each set. In the second step we used the Nelder-Mead algorithm (as implemented in the function modFit in

package FME of the R programming language, R Development Core Team, 2016; Soetaert and Petzoldt, 2010) with initial

parameter values being the set from the previous step with the lowest model cost. For the cost calculations Wwe used an error

term (‘err’ argument to FME function modCost) to weight the residuals. The error was calculated as the normalized (0-1)

standard deviation of measured values at each combination of temperature and moisture, with 0.1 added Fto avoid an
unreasonable weighting of measurements with near zero errors—0-1-was—added-to-the—normakized—value. For-parameter

For a visual inspection of the model-data fits, we plotted both the measured and model relationship between soil respiration

vs. moisture, soil respiration vs. temperature, and apparent activation energy (E,) vs. moisture content.
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4.1. Comparison of reaction kinetics

Models were named according to their decomposition Kinetics followed by the uptake kinetics and the moisture function, using

the abbreviations: 1 = first order, 2 = second order, M = Michaelis-Menten, M, = reverse Michaelis-Menten, dif = diffusion,

psi = water potential function, sat = water saturation function. Medels-with-aAlternativeatternative reaction kinetics leading to
fluxes Fpp and Up were compared by-calibrating-versions-in diffusion based models using using-differental combinations of
fluxes—Fppo—and—Yp—using-Eq. (6-98)—Thus,—we—tested—all-combinations—ef—. Specifically, we compared first order_for
decomposition and uptake (11-dif),; second order_for decomposition and uptake (22-dif), and; and-Michaelis-Menten kineties
reaction-kineticsfor-beth-decomposition and-uptakewith all combinations of uptake (M1-dif, M2-dif and MM-dif). In addition,

we tested reverse Michaelis-Menten decomposition with second order uptake (M,2-dif).- We then evaluated the model-data fit

based on RMSE values as well as on a visual inspection of the plotted relationships. A “best” model was then selected for

further analysis.

4.2. Comparison of moisture regulations: diffusion versus empirical

A second model comparison was carried out to test the impact of different approaches for modelling moisture effects. For this
we modified the model M2-dif (Table 2) removing diffusion fluxes and adding empirical moisture functions. This consisted
in removing all diffusion effects (so that Cem and Cep Were replaced by a single Ce pool and the uptake rate, Vy, was no longer
modified by g) and adding a function to scale (i.e. multiply) the decomposition flux, Fpp. This approach is equivalent to the
conventional way used to model moisture effects on soil C fluxes. Two alternative moisture scaling functions were tested

(Moyano et al., 2013), one based on relative water saturation (M2-sat) and the other on water potential (M2-wp):
f(8s) = abs — besz (21)

[10g1o (W) —log, (Lpopt)]

f(¥) = max ming® [10810(qjth)1_ loglO(Lpopt)] (22)

0
were 6 _is relative water saturation, \V' is soil water potential and a, b, W and W are fitted parameters. The latter two represent
the optimal water potential for decomposition and a pereelation-threshold water potential-{equivalentto-Gn-r-Eg—{10)); and
have-with values of elese-to--0.03 and -15 MPa, respectively. Water potential was calculated based on Campbell (1974) and

Cosby et al. (1984).- a and b are empirical parameters and were calibrated.were-8--is+elative-water saturation,-is-soil-water

sefoptinondobt opdt o Htind oommciore - TTho- o s bereprosenibthoentimnboinnelontin —erdosermpesitar
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5. Model steady state, sensitivity analysis and validation

Equations for steady state were derived by setting the rate of change in the state variables to zero in Egs. 1-5 (where the flux

terms are replaced by their respective equations), and then solving for the state variables. This was performed in Python using

the “sympy” package (Meurer et al., 2017).

A sensitivity analysis was carried out on-all model parameters—Ferthis-we-simphy-used using the default-"“sensFun” function
from the R package FME, which perturbs each parameter individually by a small amount. We ran the model as above, i.e.

simulating the incubation; and using daily output. Daily sensitivities were then averaged to obtain an overall value. Sensitivity
values wereThe-sensitivity-was calculated for the Cp pool alone, as this pool represents the largest fraction of soil C.

For model validation, we used soil respiration data from the study by Rey et al. (2005) where a Mediterranean oak forest soil
was incubated for one month in a full factorial design at 100, 80, 60, 40 and 20 % of water holding capacity and at 30, 20, 10
and 4 °C. This soil differed from the one used for model calibration in at least 3 aspects: the amount of organic C (7 %), soil
pore space (65 %), and texture (classified as silty clay loam). The optimized set of parameters from model M2-dif was used
with the exception of the initial fraction of C pools (fe, fo, fm) and the percolation threshold (6,),which we ehese-te-calibrated
against the new data-_(Nelder-Mead calibration)with-the-same-procedure-as-abeve. The former was required since we had no
information to estimate the microbial, dissolved, and enzyme C for this study and information regarding an initial soil steady-

state was also lacking.- In the case of 8,;,, we assumed that this parameter is especially sensitive to variations in soil texture

and structure. Althoug

previous studies it has been determined to beas equal to a water potential of -15MPa (Manzoni and Katul, 2014)35M#P this
value did not provide agive good fit when applied to the validation data.——+resuls-in-our-analysis)-

6. Results
6.1. Reaction kinetics

The calibrated values for all models are shown in Table S3. Using different reaction kinetics resulted in_—a—streng

variationsvariatien in model performance as measured by RMSE (Table 2). Changes in RMSE were mest-more sensitive to
the kinetics of decomposition (Fep), with models using Michaelis-MentenM and M, decomposition Kkinetics resulting in
distinethy—lower RMSE values compared to 1% and 2" order Kinetics.—-On-the—other—hand; different-In terms of uptake
reactionkineticsreaction-kinetics, both -forthe-uptake flux,Up;-had-a-much-smalerimpact-on-the RMSE -being-slightly-lower

for-1%t and 2" order Kkinetics— performed better than Michaelis-Menten Kinetics.

11
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Models M1-dif, M2-dif and M,2-dif all showed a good fit to the data with the first two having a slightly higher R%. Thus,

selecting a “best” model necessarily remains partially subjective. A visual comparison shows some weaknesses and strengths

in each case. M1-dif and M,2-dif better captured the variability in the data along the respiration axis at 35 °C (Figure S1) while
M2-dif more closely captured the relationship at 20 °C and thus the temperature sensitivities (Figure S2). Given-the-small
difference-in-performance between different uptake reaction kinetics,-We selected model we-chose to-work with 2% order
kineties-for M2-dif (R?= 0.87, Figure 3) as the “best” model, further-analysis-{model- M2-dif-R*=0.84, Figure-3); as-since this
it better is-a-closerrepresentation-represents ofthe-underlying-mechanisms-the actual mediation of uptake actualy-drivingthis

ﬂux—%*p&ak&dee&ne%eeeum#ﬁhe%lmlcroblal mediationbiomass when compared to model M1-dif.- H-alse-requiresless

We-note-We also had no theoretical reason to

material-Fig-Stand-S2)-The decomposition and uptake equations of the-model M2-dif are then-thus:

Fpp = VpCepCp/(Kp + Cp) (23)

UD = CDCMVUg (24)

6:1.6.2. Moisture regulation

Replacing diffusion effects with empirical moisture scalars; followed by re-calibration; decreased model performance
compared to a diffusion based model, both when using relative water saturation (M2-sat) and water potential (M2-wp)
functions (Table 2). Although empirical functions were it—was—pessibleable to simulate—approximate the shape of the
respiration-moisture relationship for-a-specific-temperatureat 20 °C, they; empirical-funetions-were unable to capture the
variation of this response aeross-at higher and colder temperatures, as seen in the measurements and best-simulated by the
diffusion base modelsmedel (Figure 4). Fhe-dDiffusiondiffusion based modelsmodel more accurately simulated a linear

relationship between respiration and moisture at lower temperatures and a steep increase followed by a plateau at high

temperatures, with an —An-intermediate response was-seen at 20 °C.

6.3. Temperature sensitivities

Figure 5 show the apparent temperature sensitivities fitted to observations and modelled fluxes at different moisture levels and

for two temperature ranges, 5-20 °C and 20-35 °C. Figure 5 compares different reaction kinetics and Figure 6 different

moisture functions. Michaelis-Menten decomposition outperformed 1% and 2™ order Kinetics when simulating the variability

in E, observed along the moisture axis as well as the differences observed between colder (5-20 °C) and warmer (20-35 °C)

temperature ranges. Model M2-dif closely followed the observed E; values, which were near 100 kJ at colder temperatures

12
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and in the 30-70 kJ range at warmer temperatures. Models M2-sat and M2-wp captured the large differences between

temperature ranges but did not simulate the variability along the moisture axis as well as diffusion based models.

6.2.6.4. Model steady state, sensitivity analysis and validation

Model steady state equations are provided in the Supplement material. For 20 °C, 30 % VWC, 1.2 g d* C input, and 30 cm
soil depth (z), the equilibrium sizes of the model pools are: 25608060, 3750, 12028006,-56,—+ and 46-4 g C for the Cp, Cp, Cm
and Cep pools respectively. These values are stable over most of the moisture range and increase exponentially only at very
low soil moisture (data not shown). A similar pattern was observed for temperature, with the Cp pool increasing towards high
values only at temperatures near 0 °C. The same pool showed little sensitivity to changes in C input.

Table 1 shows the averaged values from the sensitivity analysis done on the model Cp pool. Fhe-hHighesthighest sensitivities
were-were found for g,parameters and n, indicating the importance of parameters-that-affect-the-diffusion fluxes;with-the-n

exponentin-Eg—10)-havingthe largest-effectfollowed by-the-base-conductance . Large effects were also seen for mest-the

activation energy parameters, denoting a strong general effect of temperature. Also high were the sensitivities to Kp and fyg,
reflecting the importance of Michaelis-Menten kinetics for decomposition and carbon use efficiently, respectively. Notably
{Low sensitivities were found for rates of microbial and enzyme decay.

Simulation of the incubated soil from the study of Rey et al. (2005) resulted in a very high fit to the validation data_after

calibration of initial SOC fractions and 6, with an RMSE of 0.09 in fluxes that were almost an order of magnitude higher than

those used for calibration, and a model R? of 0.99 (Figure 7). This was reflected in a generally good agreement between the

relationships of model and observations with moisture (Figure 8) and temperature (Figure 9).

7. Discussion

The interaction often observed in the effects of temperature and moisture on the cycling of soil C is an indicator of the complex
nature of soil systems. Such responses are often ignored, particularly by modellers trying to minimize model complexity and
derive functions that are easy to parameterize, but also by experimentalists focusing on finding an invariable response to a
single factor. But a careful consideration of the nature of soils suggests that interactions should be expected, something that
becomes evident in multi-factorial experiments as well as in field measurements. Here we found clear interactive effects in

our experimental observations, adding to the evidence that fixed empirical temperature and moisture scalars, as used in

conventional soil C models, are inappropriate for simulating the variability often found in natural conditions.

alle Aere nian neg a_meaninga-tha ne-moge AMere \worse nrag 0 nan-the

simple-mean-of the-data-Since the total amount of soil C in-oursamples-was equal among samples and its relative change in

the six months of incubation was small, we expected that simple-second order kinetics would do as well as Michaelis-Menten
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Menten-effects-of Kp—TFhis—combined-with-the fact that But using Michaelis-Menten increased the R? by ca. 5 % compared to

second and first order Kinetics. ThisThis; combined with the fact that the model was mere-highly than-twice-as-sensitive to a

change in Kp, -more than to eempared-te-Vp, would indicate that Michaelis-Menten kinetics are in fact important for explaining
soil C flows. Indeed, even in this case where the Cp pool is relatively invariant, the outcome of a strong temperature effect
modifying Ko (E, of 94 k89kJ) cannot be reproduced by simple-2" order Kinetics.

The relative importance of different processes was also shown by the model parameter sensitivity values. It is perhaps not
surprising that the-some of the highest values were related to diffusion and temperature, since these were the two factors that
varied in our experiment. However, these factors also vary considerably in natural ecosystems.—se—the—values—+emain
informative and largely drive changes in decomposition rates—Fhe-high-sensitivityfoundforf.s—also-demonstrated-the

{2014)2014). No strong correlations between the effects of different parameters were found, with most being below 0.6

(Figure S4), thus giving a degree of confidence in the estimated values. While we did not obtain statistical confidence intervals,

kernel density estimations (Figures S5-S12) suggest differing degrees of likelihood for different parameters. Activation

energies in particular showed narrow ranges of optimal values with a strong dependence on model structure.
Since optimizing all parameters against our data resulted in an R? of 0.87484, it was surprising that-medelvalidation-gave-anto
obtain an R? of 0.99 during model validation. We note that few studies were found with data on moisture and temperature

interactions under controlled conditions, and this was the only validation attempt carried out. ThisFhe very high R? is largely

partially thanks to thea recalibration of initial pool sizes and-probabhy-alse-and may have to do withte the reduced amount of

data coming from a simpler experimental design compared to our study. There were only 20 data points in the validation data,

one for each temperature and moisture combination. In contrast, we had With-3 replicates, 11 moisture levels and 2 temperature

cycles, and therefore; we-had-more data and associatedmere variability. Despite these pointsthe-abeve and this being just-a

first validation step, such a close agreement using independent data and a soil that differed considerably in C content, provides

strong support to the model structure we used.

Model steady state or equilibrium is attained when the rate of change of all state variables equals zero, reflecting the state
towards which the system will tend under invariant input and forcing conditions. Even though A-steady-state-is-never-attained
innatural-systems;-where-external drivers are in constant change_in natural systems, butsteady state information ;-butthey-can
indicate the approximate modelhelp-evaluate-how-the behaviour medel-behave-under specific average conditions. Results here
showed that the-model M2-dif gives realistic values in the range of temperature for which it was calibrated, but leads to

unrealistic values under colder conditions. In addition, the Cp pool shows little sensitivity to changes in C input.-Clearly;
wWhilewhHe the model fitted well the validation data,; it sheuld-net-be-may not be suitable when applied extrapelated-outside
the used—ranges—conditions used for development and shewld—net—may need further changes for be—applied—forfield

simulationsapplications. The limitations encountered are characteristic of non-linear microbial models and mark their_current
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limitations as predictive tools. However, such limitations are most likely the result of missing processes that still need to be

adequately represented. For example, RrecentReeent work has shown—e-g-; that a density dependent mortality rate of the

microbial pool can lead to much more realistic long term simulations (Georgiou et al., 2017).

It is important to point out{Geergiou-et-al-—2017)—tLeaching-of Co-is-anotherexample that our approach was to use a simple
model with few processes andeeuld-significanthy-affect C pools and modify only those components we tested. This allowed us
to distinguish the effects of each modification and minimize parameter identifiability problems arising from having too many

parameters with effects that may correlate. While this allowed us to focus on specific_processes, it also _meant that

importantdynamics—Such mechanisms where left out. Some not-essential-for-simulating-our-observations-but-witl-need-to-be
assimilated-forextending-the-application-of these mechanisms are oxygen limitations in saturated conditions, leaching of Cp,

the coupling of the C and N cycles (introducing SOC quality and microbial stoichiometry limitations) and organo-mineral

interactions. Our model thus needs further development to extend its application and general predictive capacity. In its current

form, it cannot be extended to litter decomposition (Cotrufo et al., 2015) or organic soils, which will be much more dependent

on substrate quality and less affected by carbon diffusion (Manzoni et al., 2012b). Also, peatlands and other saturated soils

(Clymo, 1984; Frolking et al., 2001) will show different dynamics, reflecting the critical role of oxygen as a limiting factor. We

did not include mineral adsorption of carbon as an active mechanism in this study. This is contrary to recent studies that used

adsorption-desorption fluxes to explain the variability in temperature responses (Tang and Riley, 2014). However, some values

of mineral desorption rates found in the literature (Ahrens et al., 2015) suggest that these rates, although important in the long

term, are too slow to have a noticeable impact on the time scale of this or similar experiments, and thus on most estimates of

soil respiration temperature sensitivities. Finally, nitrogen requirements will impose limits on the growth of microbial

communities, which in models with microbial driven uptake and/or decomposition, will also regulate C fluxes (Grant et al.,

1993; Manzoni et al., 2012a). Despite such limitations, we demonstrated the effects and relevance of combining Michaelis-

Menten kinetics with diffusion in mineral soils, with model results being well supported by the data.medels-
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7.1. Temperature effects

Unlike other calibrated parameters, the activation energy values for microbial ( £2.,) and enzyme (£..) decay were fixed at 10
kJ, representing a positive but low temperature sensitivity. This value was used in order to be consistent with two main
observations:

a) The effect of Ea m_on the amount of microbial carbon. A high E. m results in large changes of microbial biomass C

with temperature. However, observations often show a negative but moderate effect of temperature on microbial biomass (Grisi

et al., 1998; Salazar-Villegas et al., 2016).Fhe-effect-of E, n-on-the-amount-of-microbial-carbon—A-high-E._nresulis-inlarge

b) The effect of Ea ¢ 0n carbon decomposition rates. High Ea ¢ values result in increasing accumulations of soil C with

warming (Allison et al., 2010; Tang and Riley, 2014) as a consequence of a decrease in the enzyme pool caused by accelerated

turnover. This is a critical aspect of enzyme driven soil carbon models and largely determines simulated responses to long term

warming. Experimental evidence for E, . is lacking, but the latest observations of mid-term responses to warming are
compatible with low values (Crowther et al., 2016). Fhe-effect-of E, -on-carbon-decomposition-rates—High-E._valuesresult

TheAH optimized E, £z values of models with first and second order decomposition kinetics were in the range 40-50 kJ,

translating to a Q1o Of ca. 2. In contrast, for all but one model using M decomposition, values were above eame-close-te-90

kJ9OkJ, which translates to a fairhy-high-Q1o range-of3-of nearly 4. This high value -aterestingly—heweverwas apparent in the

modelled respiration fluxes only at lower temperatures, while at temperatures higher than 20 the apparent Qig the-actual

approximatedingapproximating the more commonly measured-observed Qag-value of 2. Such results followed closely our

observations and agree well with general trends in Q1o along the temperature axis reported by Hamdi et al. (2013).Qi-value

of2- These values were mostly stable at high levels of soil moisture, but increased sharply under drier conditions. This moisture

relationship, however, is not necessarily the norm and seems to depend on initial conditions and/or pool dynamics, as

demonstrated by the validation step (Figure 9), where the apparent E, remained close to 90 kJ and thus near the parameterized

value. Also the change in E, with moisture content followed a different trend in the validation data, although again values

increased with lower moisture.

The difference between prescribed and observed temperature sensitivities may be related to two factors. First, the apparent

sensitivities do not represent the instantaneous sensitivities dictated by the prescribed values but reflect also the effects of other

limiting factors that change with time. Pool sizes, including Cu and Cg, may differ from the initial conditions as time
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progresses, making measurements at different temperatures not strictly comparable. The observation that Qo values from

studies using short incubation times (hours to days) are higher compared to those using longer incubation times (Hamdi et al.,

2013) is consistent with this idea. The second factor is related to the temperature sensitivity of the K constant of Michaelis-

Menten Kinetics. Our results are well in line with the theory discussed by Davidson and Janssens (2006), who stated that

“because the Ky, of most enzymes increases with temperature, the temperature sensitivities of Km and Vmax can neutralize each

other, creating very low apparent Q0 values”. Indeed, this seems to be the most important effect of introducing Michaelis-

Menten Kinetics in our simulations; not, as first assumed, the effects of concentrations of either the Cp or Cep pools, since the

choice of M or M; kinetics had only a small impact on the results.

The above results demonstrate how different apparent sensitivities can be measured when soil pool dynamics change (e.q.

through changes in diffusion limitations) even when@n the underlying temperature sensitivities are the same. heether-hand;

possibhy-different diffusiontimitations)}-Much of the variability in reported temperature sensitivities of soil respiration, and in

particular its relationship with soil moisture (Craine and Gelderman, 2011), may be the result of the changing dynamics in

microbial, enzyme and dissolved C pools during measurement times. Clearly, misleading }-¢ifferent-conclusions regarding an

intrinsicen-the temperature sensitivity of soil C decomposition are oftenean-be reached by the usual procedure of simply fitting

a function towhen-looking-only-at-measured respiration vs. temperature datafhuxes.

Decomposition, which was only modelled, consistently showed a lower apparent temperature sensitivity than respiration, with

a Q1o between 1-2 for our experiment and just below 3 for the validation study.-Arguably— tThese values are-may be the most
relevant for predicting long term changes, since uptake and respiration ultimately depend on C made available by

decomposition. W

but-These rather low sensitivities are consistent with some integrative studies at the ecosystem level (Mahecha et al., 2010)
and again likely respond to the temperature sensitivities of K and Vmax neutralizing each other.{Mahecha-et-ak-—2010). Such
results raise the question of what E, or Qi values — i.e. the apparent for respiration, apparent for decomposition, or the
parameterized — are adeguate-when-apphying-best suited for conventional eenventienal-first order empirical soil models. Since

these modelsmodel will tend to have similar apparent and intrinsic behaviour, the answer is not clear and will require further

research. Ultimately, the better-best option may be to abandon such models and develop better validated mechanistic

alternatives for prediction purposes.

17



10

15

20

25

30

7.2. Moisture effects and diffusion limitations

8Diffusion fluxes are a function of water content, diffusivity coefficients and pool concentrations. Different equations have
been used to calculate diffusion as a function of water content in soils (Hamamoto et al., 2010; Hu and Wang, 2003). All these
equations generally predict a strong positive near exponential effect of water content on diffusion. Following previous studies
(Manzoni et al., 2016), we chose the function from Hamamoto et al. (2010). This equation allows for an adjustment of the
percolation threshold (&) in different soils. We note that when using the &y obtained during calibration (0.063) we also
obtained a high fit to the validation data (R? = 0.987, data not shown), so the recalibration of @ led to a noticeable but small
improvement. While the value 0.063 for our soil came close to the water potential of -15 MPa found in previous studies
(Manzoni and Katul, 2014), this relationship did not hold for the validation soil, where we assumed a higher clay and silt
content from its classification. Thus, a prerequisite for applying our model to other soils is finding a relationship between &
and soil type that holds in all cases.

Diffusion regulations can be implemented either by simulating two separate pools between which diffusion takes place or by
determining the available amount of a pool as a function of diffusivity (or conductance in our case) at each time step. In our
model we used a combination, simulating a diffusion flux between enzyme pools and calculating the-how much Cp is available
for uptake at each time step. We did not assume a diffusion regulation of available polymericparticulate C, an approach that is
closer to empirical functions scaling the decomposition flux directly and that has been implemented in other microbial models
(Davidson et al., 2012).

In our study especially, but also in the validation data, the moisture response tended to become less linear and have a larger
plateau at higher temperatures. The mechanisms leading to such interactions are still unclear, but our model comparison

indicates that solute diffusion limitations play a central role. The plateau behaviour, a decrease near saturation, and even near

linear responses, all contrast with the near exponential relationship between moisture and conductance given by Eq. (11610)
and with the fact that no oxygen limitations at high moisture were modelled. They may, however, result from a faster depletion
of available carbon at high moisture and at high temperatures, driving down the accumulated fluxes over time.

While a low supply of O, usually limits respiration rates in saturated soils under field conditions, O, seemed to have a negligible

effect in our study. At 35 °C, where fluxes were highest, no clear drop in respiration was observed near saturation, as is

expected when O, becomes limiting. Rather, the general behaviour was well simulated by our models using solute diffusion

limitations only. Schurgers et al. (2006) found that the anaerobic fraction in soils with air O, concentrations over 10 % is low

until very close to saturation. The minimum flask air O, concentrations in our samples, according to the maximum accumulated

CO, (56000 ppm), was over 15 % O,, which next to the small samples sizes would not indicate an O, limitation.

In models where decomposition and respiration are separated processes, these fluxes can show different responses. This
decoupling is especially evident when diffusion limitations come into play. Plots of modelled fluxes against temperature and
moisture (Fig. S3) showed a different relationship when comparing respiration and decomposition. Figure 10 shows modelled

decomposition against respiration (using M2-dif) as accumulated values, each line being a sample at a different water content.
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Without any diffusion limitation, the relationship follows a slope of ca. 0.3, determined by 1-fu, where fyq is the fraction of
uptake geing-to growth (the C use efficiency). This slope, however, changes as diffusion becomes limiting, and-with
temperature seems-also te-playingplay a role as evidenced by the shifts in the slope occurring at various intervals. With time
these fluxes will tend to equilibrate as the Cp and Cep pools adjust. But the proportionality between these fluxes is not constant
andin will depend on moisture, temperature, and time, even after months of incubation. These results show that, without a
proper modelling framework and when assuming a constant proportionality, interpretations based only on respiration activity
may lead to wrong conclusions about the dynamics of organic matter decomposition, especially at low moisture contents and

in short and mid-term experiments.

Conclusions

As the main mechanism linking water content with the movement of substrates, microbes and enzymes, diffusion plays a
central role in soil organic matter decomposition. We here showed that integrating it into models can significantly improve
our understanding of soil C dynamics. Net-enhrwas-ourdDiffusiondiffusion-based models weremedel better at simulating the
effects of moisture_—variabitity,—it-alse—and improved the simulated temperature responses, thus allowing for a better
interpretation of the observed temperature sensitivities. This and similar studies indicate that measured temperature
sensitivities cannot be generalized or correctly interpreted without having a full understanding of the relevant seH-facters
velvedmechanisms, their interactions, and the state of soil carbon and microbial pools.

We also found evidence that Michaelis-Menten Kinetics plays an important role in soil C dynamics, explaining the strong

differences in temperature sensitivities across temperature ranges. Our results are consistent with relatively high activation

energies for both the V and K Michaelis-Menten parameters and generally lower apparent values.

Creating models that capture the variability in the response of C dynamics across different soils and at different levels of
driving factors remains challenging. However, process based models are of central importance for establishing confidence in
C cycle predictions and soil-climate feedbacks. As seen here, the structure and process representation of models can be critical
for simulating the complex response of soil C fluxes to combined changes in temperature and moisture. Diffusion as a moisture
regulation of soil C fluxes has not been used in large scale predictions, which still rely on empirical scaling functions. Evidence
of interactions seen in experiments and presented here-from a mechanistic model perspective indicate that these simpler
approaches do not always hold. Further research should focus on more extensively validationngvatidating these-approaches
and finding the relationships necessary for extending the application of sueh-models to diverse soil types.
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Figure 1: Graphical representation of the incubated soil samples showing the fixed levels of moisture content and the times at
different temperatures.
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Figure 2: Diagram showing C pools and fluxes, as well as the points of diffusion limitations. Second order decay may refer also to
Michaelis-Menten reaction kinetics. Variations of this scheme were tested in this study.
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Figure 3: Model vs measured accumulated CO: of incubated soil samples. Colour depicts the range of volumetric water content
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(VWC)-and-size-the temperature-group. The model R? is 0.847.
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Figure 5: Temperature sensitivities of respiration and decomposition fluxes, showing activation enerqy (Ea) fitted using two

temperature ranges (5-20 and 20-35 °C) and the equivalent Q1o derived for a 10 °C range. Plotted are observed respiration data (R-

obs) and three models with different reaction Kinetics (R-M2-dif, R-11-dif and R-22-dif). The sensitivities of the decomposition flux

from model M2-dif is included for comparison (D-M2-dif).
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Tables

Table 1: Medel-pParameters of model M2-diffparameters, calibrated and non-calibrated, with results of a sensitivity analysis (Sens).-
Calibrated-parameters-are-rounded-to-two-significant-digits—Fhe-Sens eelumn-values-are-shows a relative measure of the sensitivity of

the model Cp pool to small perturbations in the parameter values. Values are rounded to two significant digits.

ValueV ]
Name Units Sens
alue

Calibrated parameters

9o 0.982:2 ht 4:63.5
Eax 89 k3 4
= 95 kd 3.8
Eav 9487 kJ -1.23:6
fo 9.12e-5 kg kg- 0.00
fe 6.81e-4 kg kg- -0.05404
f OoER kg kg 0.3745
) 071 —
fug 07 - 25
f 00342 kg kg™ 0.07404
ge 5025 KQg Kg™ O/
Ko, ref 6250 kgCm?® 2741
n 2.3 - 0.664
m 1.12 - 0.00
5.6ese-
led_ref ht 0.04303
4
91.95e-
Mmd_ref ht 0.03303
- 41.5e-3
1.54:2e
Mmr_ref 5 ht 0.000100%
VomVe 0.3753
N ht -0.644.5
ref 5
0.1109
VU_ref h1 0535
2
6Gn 0.063 m®m-3 0.00
Non-calibrated-parameters
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Fret 293 °%K -
Non-calibrated parameters

Eanm 10 kJ 4.60.61

Eae 10 kJ 1.722

fug 0.7  kgkg! 13

G 0063  mPm? 0
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Table 2: Different model versions with their weighted and unweighted root mean squared errors (RMSE,_ in units mg C kg Soil** h') and
R? after parameter calibration-{in-units:-mgC-kgSeil*-h3). Fpp = decomposition flux, Up = dissolved C uptake flux, 1% = first order
klnetlcs 2“‘4 smple—second order klnetlcs M Mlchaells Menten klnetlcs,Mr = reverse Michaelis-Menten Kinetics.—Fhe-remaining

Model Moisture RMSE RMSE

2

name Feo Uo effect (weighted) (unweighted) R
11-dif 18 18 Diffusion 0.284-34 0.0801-08 0.81-42
22-dif 20 20 Diffusion 0.284-45 0.0801-78 0.82-44
M1-dif M 18 Diffusion 0.22121 0.06506 0.87688
M2-dif M 20 Diffusion 0.22424 0.069707 0.87484
MM-dif M M Diffusion 0.245 0.078808 0.84282
M2-sat M 2% Eq. (201): 0.3229 0.10909 0.657
M2-wp M 2nd Eq. 0.2733 0.09311 0.7859
M, 2-dif M, 2 Diffusion 0.24 0.070 0.85
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