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Abstract. CO2 production in soils responds strongly to changes in temperature and moisture but the magnitude of such 

responses at different time scales remains difficult to predict. Knowledge of the mechanisms leading to the often observed 

interactions in the effects of these drivers on soil CO2 emissions is especially limited. Here we test the ability of different soil 

carbon models to simulate responses measured in soils incubated at a range of moisture levels and cycled through 5, 20 and 

35 °C. We applied parameter optimization methods while modifying two structural components of models: 1. the reaction 5 

kinetics of decomposition and uptake and 2. the functions relating fluxes with soil moisture. We found that the observed 

interactive patterns were best simulated by a model using Michaelis-Menten decomposition kinetics combined with diffusion 

of dissolved C and enzymes. In contrast, conventional empirical functions that scale decomposition rates directly were unable 

to properly simulate the main observed interactions. Our best model was able to explain 87 % of the variation in the data. 

Model simulations revealed a central role of Michaelis-Menten kinetics as a driver of temperature sensitivity variations as well 10 

as a decoupling of decomposition and respiration C fluxes in the short and mid-term, with general sensitivities to temperature 

and moisture being more pronounced for respiration. Sensitivity to different model parameters was highest for those affecting 

diffusion limitations, followed by activation energies, the Michaelis-Menten constant, and carbon use efficiency. Testing 

against independent data strongly validated the model (R2 = 0.99) and highlighted the importance of initial soil C pool 

conditions. Our results demonstrate the importance of model structure and the central role of diffusion and reaction kinetics 15 

for simulating and understanding complex dynamics in soil C.  

1. Introduction 

Soils are a main component of the global carbon (C) cycle, storing ca. 2200 Pg of C in the top 100 cm according to recent 

estimates (Batjes, 2014). This soil C pool is dynamic, and often exists in a non-equilibrium state as the result of an imbalance 

between input and output C fluxes, in which case it will act either as a C sink or source over time. Changes in the speed at 20 

which soil organisms decompose soil organic matter (SOM) and mineralize soil organic carbon (SOC) into CO2 are one way 

in which an imbalance can occur, producing a net sink or source of atmospheric CO2.  

It is well known that SOC mineralization and resulting CO2 fluxes are highly sensitive to variations in soil temperature and 

moisture (Hamdi et al., 2013; Moyano et al., 2013). As a result, feedback effects, either positive or negative, are expected to 

occur from the interaction between climate change and global soil C stocks (Crowther et al., 2016; Davidson and Janssens, 25 

2006; Kirschbaum, 2006). However, the direction and magnitude of such feedbacks at the global scale remain uncertain. 

Increased soil respiration with a resulting net loss of soil C, and thus a positive climate feedback, is expected with the warming 

of permafrost soils and the drying of wetland soils. But there is still large uncertainty and a lack of consensus regarding the 

long term response to climate variability of soils that are non-saturated, non-frozen, and dominated by a mineral matrix 

(Crowther et al., 2016), i.e. soils found under most forests, grasslands and agricultural lands. 30 

Future predictions of soil C dynamics require the use of mathematical models. Early soil C models and most still in use are 

based on first order decay of multiple C pools, with temperature and moisture having general non-interactive effects on decay 



 

3 

 

rates (Rodrigo et al., 1997). When appropriately calibrated these models do well at simulating soil respiration fluxes of soils 

under relatively stable conditions. They are often developed to approximate long term steady-state conditions under specific 

land uses. They are also capable of fitting long term trends of soil C loss, such as data from long-term bare fallow where all 

litter input has stopped (Barré et al., 2010). However, they lack a theoretical basis justifying their basic assumptions of pool 

partitioning and decay mechanisms. They also generally need calibration for specific soil types or land cover types, and often 5 

fail to properly simulate observed short and mid-term variability in soil respiration. Some of the most relevant observations 

these models have failed to reproduce include: changes (typically a dampening) of temperature sensitivities of decomposition 

over time (Hamdi et al., 2013), non-linear responses to soil moisture content (Borken and Matzner, 2009), and changes in 

decomposition rates in response to variations in concentrations of organic matter (Blagodatskaya and Kuzyakov, 2008). Such 

model shortcomings, which reflect missing or wrongly simulated processes, create a difficult to quantify uncertainty in global 10 

long term predictions of soil C and its feedback to climate change. It is therefore unclear if first order models can predict long 

term changes in C stocks under more dynamic (and therefore realistic) environmental conditions. 

Second order models have a more realistic basic structure compared to conventional first order models, since they simulate 

organic matter decomposition as a reaction between SOC and decomposers (i.e. a microbial or enzyme pool). This single but 

fundamental change in decomposition kinetics strongly affects predicted long term changes in soil C, largely as a result of the 15 

dynamics of the decomposer pool, which itself can respond to temperature in a number of ways (Wutzler and Reichstein, 

2008). Second order models also lead to more complex dynamics of short to mid-term soil respiration, with apparent 

temperature sensitivities that vary over time, more in line with many observations. 

The temporal variability in the response of decomposition to moisture is most evident in the strong respiration pulses after dry 

soils are re-wetted, known as the Birch effect (Birch, 1958). But studies have shown that a successful simulation of such pulses 20 

requires the incorporation of additional mechanisms, namely the explicit representation of a bio-available C pool, such as 

dissolved organic matter (DOC), and a moisture regulation of decomposer’s access to this pool that may differ from the 

moisture regulation on the decomposition reaction itself (Lawrence et al., 2009; Zhang et al., 2014). 

The response of soil respiration to temperature and moisture is highly dynamic, both spatially and temporally (Hamdi et al., 

2013; Moyano et al., 2012). Moisture and temperature interactions have been observed in a number of experimental studies 25 

(Craine and Gelderman, 2011; Rey et al., 2005; Suseela et al., 2012; Wickland and Neff, 2008), but neither consistent trends 

nor general explanatory theories have been identified. Improving our understanding of these interactions is a crucial step in 

increasing confidence in models and for interpreting modelling and experimental results (Crowther et al., 2016; Tang and 

Riley, 2014). Identifying the model structures and parameterizations that can best represent these interactive effects has been 

attempted by very few studies (Sierra et al., 2017, 2015). 30 

The objectives of this study are to compare the ability of different soil C modelling approaches to reproduce temperature and 

moisture interactive effects on soil carbon fluxes and thus to gain insight into mechanisms underlying the observed responses. 

With the hypothesis that a more mechanistic model will be better capable of simulating such interactions, we compare different 

model structures, testing first order, second order, and Michaelis-Menten reaction kinetics in combination with an explicit 
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simulation of diffusion fluxes. We then compare the best diffusion model with versions based on common empirical moisture 

relationships. 

2. Observational data 

Measurements of the interaction effects of temperature and moisture on soil respiration fluxes were obtained by incubating a 

crop field soil at several fixed levels of soil moisture and variable levels of temperature over a period of ca. 6 months, as 5 

detailed in the following.  

Soils from 0-20 cm depth were sampled at Versailles, France, from the ‘Le Closeaux’ experimental field plot, cultivated with 

wheat until 1992 and with maize since 1993. Mean annual temperature and rainfall are 10°C and 640 mm. The soil is classified 

as Luvisol (FAO) silt loam (26 % sand, 59 % silt, 15 % clay) containing no carbonates. Organic carbon contents at the start of 

the incubation were 1.2 % in weight. Soil samples were prepared for elemental analysis (C, N) using a planetary ball mill (3 10 

min at 500 rpm). C concentrations were measured using a CHN auto-analyzer (NA 1500, Carlo Erba). 

Sampled soils were thoroughly mixed, sieved at 2 mm and stored moist at 4 °C in plastic bags with holes for aeration for 10 

days. Soils were then put in small plastic cylinders containing the equivalent of 90g dry soil. To ensure a high and equal water 

conductivity, all samples were compacted to a bulk density of 1.4 g cm-3. The resulting soil porosity was 0.45. 

All samples were brought to a pF of 4.2 corresponding to about 12.5 % volumetric moisture. Three replicate samples were 15 

then adjusted to each of the moisture levels 2, 5.5, 12.5, 16, 20, 23.5, 27, 30.5, 34, 38, 45 % by adding water or air drying. 

These values range from air-dry to saturation. Immediately after, the plastic cylinders were put in 500 ml jars containing a 

small amount of water on the bottom (except for the 2 and 5.5 % moisture) to prevent soil drying, and equipped with a lid and 

a rubber septum for gas sampling. Because of the extremely low respiration rates, samples with 2 % moisture were placed in 

125 ml jars containing 170 g of soil. 20 

To minimize post-disturbance effects, samples were pre-incubated at 4 °C during 10 days. The samples were then cycled 

through incubation temperatures following the sequence 5-20-35-5-20-35 °C, thus applying two temperature cycles to each 

sample. This was done in order to capture possible hysteresis of temperature effects and to reduce the covariance between a 

temperature response and substrate depletion (helping constrain model parameters). Soil respiration was calculated at every 

temperature step by measuring the amount of CO2 accumulated in flask headspaces. For this, samples were flushed with CO2 25 

free air and left to accumulate CO2 for 3 to 74 days. The variable accumulation time was chosen so that sufficient CO2 

accumulated for the micro gas chromatographer measurements (at least 100 ppm), thus depending on the soil temperature and 

moisture content. After the accumulation time, an air sample was taken from each soil sample headspace and respiration rates 

calculated as the accumulated amount over the accumulation time. Samples were incubated for a total period of ca. 6 months 

(Figure 1). 30 

As shown in Figure 1, the timing of temperature treatments was not equal for all samples, with some temperature steps missing 

at low moisture levels. This was partly due to the time required for CO2 concentrations in the flask headspace to reach 
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detectable limits, the time necessary for carrying out measurements and human error. However, while important for a statistical 

comparison between treatments, such differences are of little consequence when looking at model performance and the fit 

between model and data, which is the focus of this study. 

3. Modelling approach 

3.1. Structure and state variables 5 

We started with a basic soil C model with the following state variables: a bio-unavailable polymeric C pool (CP), a bio-available 

dissolved C pool (CD), a microbial C pool (CM) and two extracellular enzyme C pools, one representing the enzyme fraction 

at the decomposition site (CED) and one the fraction at the microbial site (CEM). With this model we assume two conceptual 

soil spaces that are separated by a diffusion barrier, one being the site of decomposition and the other the site of microbial 

uptake and enzyme production (Figure 2). This model thus closely follows Manzoni et al. (2016), and otherwise builds on 10 

other published microbial models (Allison et al., 2010; Schimel and Weintraub, 2003). We refer to those studies for general 

assumptions and application of this type of model. Aspects specific to this study are described below. 

The rates of change of the model state variable were defined as: 

𝑑𝐶𝑃
𝑑𝑡

= 𝐹𝐿𝑆𝑃 + 𝐹𝑀𝑃 − 𝐹𝑃𝐷 
( 1 ) 

𝑑𝐶𝐷
𝑑𝑡

= 𝐹𝐿𝑀𝐷 + 𝐹𝑃𝐷 + 𝐹𝐸𝐷𝐷 + 𝐹𝐸𝑀𝐷 − 𝐹𝐷𝑀 − 𝐹𝐷𝑅𝐺 − 𝐹𝐷𝐸𝑀  
( 2 ) 

𝑑𝐶𝑀
𝑑𝑡

= 𝐹𝐷𝑀 − 𝐹𝑀𝑃 − 𝐹𝑀𝑅𝑀  
( 3 ) 

𝑑𝐶𝐸𝐷
𝑑𝑡

= 𝐹𝐸𝑀𝐸𝐷 − 𝐹𝐸𝐷𝐷 
( 4 ) 

𝑑𝐶𝐸𝑀
𝑑𝑡

= 𝐹𝐷𝐸𝑀 − 𝐹𝐸𝑀𝐸𝐷 − 𝐹𝐸𝑀𝐷 
( 5 ) 

where 𝐹 represents the flux of C from one pool to another as indicated by the subscripts, so that 𝐹𝑃𝐷 is the flux from the 

polymeric pool to the dissolved pool. The subscripts 𝐿𝑆 and 𝐿𝑀 denote input of structural and metabolic litter (as defined by 15 

Parton et al., 1987), which for simulating the incubated soils were set to zero, and 𝑅𝑀  and 𝑅𝐺  are microbial growth and 

maintenance respiration. 

3.2. Decomposition and microbial uptake 

The flux of CP to CD, 𝐹𝑃𝐷, represents decomposition of organic matter, a process that in soils is largely driven by the activity 

of microorganisms. The latter produce exo-enzymes that catalyse the decomposition reaction. UD, represents the total uptake 20 

flux by microbes of the water soluble decomposed pool CD (microbes being the reaction “catalysers”). Conventional soil C 



 

6 

 

models simulate decomposition as a first order decay reaction. However, more realistic models can be built by using either 

simple second order or Michaelis-Menten reaction kinetics. Thus, optional ways of modelling both FPD and UD include: 

𝐹 = 𝑉[𝑅] ( 6 ) 

𝐹 = 𝑉[𝑅][𝐶]  ( 7 ) 

𝐹 =
𝑉[𝑅][𝐶]

𝐾 + [𝑅]
 ( 8 ) 

𝐹 =
𝑉[𝑅][𝐶]

𝐾 + [𝐶]
 ( 9 ) 

where 𝐹 is the flux, 𝑉 is a base reaction rate, 𝐾 is the half saturation constant, R the reactant and C the catalyst. The ‘reverse’ 

Michaelis-Menten (Eq. 9) was applied by Schimel and Weintraub (2003) as an alternative for improving model stability and 

is included here for completeness. 5 

The value for V is not equivalent among these equations, differing by several orders of magnitude. As a result, different 

parameters were used for V in each case, namely VDm, VDmr, VD1, and VD2. Similarly, parameters KD and KDe were used for K 

in Eq. (8) and (9), respectively. The terms [R] and [C] are concentrations of CP and CED. In the case of uptake, the parameters 

are respectively VU, KU, CD and CM. The four approaches for reaction kinetics were tested in order to find the best fit between 

model and data, as described in Sect. 4. 10 

3.3. Diffusive fluxes 

Diffusion fluxes depend on a concentration difference, a diffusivity term, and the distance over which diffusion occurs 

(Manzoni et al., 2016). For the purpose of modelling diffusion in soils, values of diffusivity and diffusion distances are required 

that best average or represent the actual underlying soil complexity. For practical purposes, we combined these two values into 

a single calibrated parameter, a conductance (𝑔0), representing the compound effects of diffusivity and distance. This was 15 

done because the values of the latter are unconstrained (from lack of information), and their effects are inversely correlated, 

so simultaneous calibration would lead to a problem of parameter identifiability. The moisture-scaled conductance (𝑔), which 

in our model is assumed equal for the CD and CE pools, is then given by: 

𝑔 = 𝑔0𝑑 ( 10 ) 

where 𝑑 is a function of soil volumetric water content (VWC or ): 

𝑑 = (𝜙 − 𝜃𝑡ℎ)
𝑚 (

𝜃 − 𝜃𝑡ℎ
𝜙 − 𝜃𝑡ℎ

)
𝑛

 ( 11 ) 
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where 𝜙 is pore space, and n and m are calibrated parameters (Hamamoto et al., 2010; Manzoni et al., 2016), which are variable 

and were also calibrated in this study. th is the percolation threshold for solute diffusion, for which Manzoni and Katul  (2014) 

reported a value of -15MPa. This value was not optimal in our case, so th was also calibrated. The diffusive flux of enzyme 

C between the microbial and the decomposition spaces is then calculated as: 

𝐹𝐸𝑀𝐸𝐷 = 𝑔(𝐶𝐸𝑀 − 𝐶𝐸𝐷) ( 12 ) 

Diffusion limitations also affect the amount of the dissolved pool (CD) available for microbial uptake. Instead of dividing CD 5 

into a pool for each space, the conductance, 𝑔, was used as a multiplier of the base uptake rate, VU (Eq. (6-9)). This served to 

reduce the number of model pools and parameters while still retaining a diffusivity limitation on this flux. 

3.4. Microbial and enzyme dynamics 

UD is split into 𝐹𝐷𝑀, 𝐹𝐷𝑅𝐺 and 𝐹𝐷𝐸𝑀, representing the fluxes of CD going to CM, RG and CEM, respectively. These fluxes are 

defined as: 10 

𝐹𝐷𝑀 = 𝑈𝐷𝑓𝑢𝑔(1 − 𝑓𝑔𝑒) ( 13 ) 

𝐹𝐷𝑅𝐺 = 𝑈𝐷(1 − 𝑓𝑢𝑔) ( 14 ) 

𝐹𝐷𝐸𝑀 = 𝑈𝐷𝑓𝑢𝑔𝑓𝑔𝑒 ( 15 ) 

where 𝑓𝑢𝑔 represents the fraction of uptake going to growth, otherwise known as microbial growth efficiency or carbon use 

efficiency, and 𝑓𝑔𝑒 is the fraction of growth going to enzyme production. Enzyme production thus depends here on uptake 

rather than on microbial biomass. This approach follows the assumption that microbes produce enzymes only when new carbon 

is available and save resources otherwise. CM goes to either maintenance respiration or the CP pool according to: 

𝐹𝑀𝑃 = 𝐶𝑀𝑟𝑚𝑑(1 − 𝑓𝑚𝑟) ( 16 ) 

𝐹𝑀𝑅𝑀 = 𝐶𝑀𝑟𝑚𝑟 ( 17 ) 

where rmd is the rate of microbial death and rmr is the rate of microbial maintenance respiration. The breakdown of enzymes 15 

going to the CD pool, is determined by the rate of enzyme decay, red, as: 

𝐹𝐸𝐷𝐷 = 𝐶𝐸𝐷𝑟𝑒𝑑 ( 18 ) 

𝐹𝐸𝑀𝐷 = 𝐶𝐸𝑀𝑟𝑒𝑑 ( 19 ) 
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3.5. Temperature effects 

Reaction rates (𝑉𝑈, 𝑉𝐷 , 𝐾𝑈, 𝐾𝐷  in Eq. (6-9)), decay and respiration rates (𝑟𝑒𝑑 , 𝑟𝑚𝑑 , 𝑟𝑚𝑟) are temperature sensitive and calculated 

from their reference values following an Arrhenius type temperature response: 

𝑟 = 𝑟𝑟𝑒𝑓 𝑒𝑥𝑝(−
𝐸𝑎
𝑅
(
1

𝑇
−

1

𝑇𝑟𝑒𝑓
)) ( 20 ) 

where r is the temperature modified rate, rref the reference rate at temperature Tref, T temperature in Kelvin, Ea the activation 

energy, and 𝑅 the universal gas constant. Three parameters were used for Ea: Ea_m and Ea_e for microbial and enzyme decay 5 

rates, respectively, and 𝐸𝑎_𝑉 for other reaction rates. Temperature thus affects the rates of decomposition and uptake, the half 

saturation constant in the Michaelis-Menten equation, as well as the rates of microbial and enzyme decay. Apparent activation 

energies – describing the observed temperature relationship, both in measurements and model data – were obtained by fitting 

an Arrhenius equation to the temperature-flux relationship at each level of moisture. 𝐸𝑎  was calculated for measured 

respiration, modelled respiration (RG+RM) and modelled decomposition (FPD). 10 

4. Model calibration and comparisons 

Calibrated and non-calibrated parameters for all models are given in the supplementary material (Tables S1, S2 and S3). 

Whenever possible, fixed parameters as well as lower and upper bounds for calibrated parameters (Table S1) were set 

according to values reported in literature (e.g. Hagerty et al., 2014; Li et al., 2014; Price and Sowers, 2004). Equilibrium 

conditions were not assumed at the start of the experimental procedure, as such a state is unlikely for samples that have been 15 

processed and disturbed. Therefore, initial conditions were obtained by also optimizing the fractions of initial carbon pool 

sizes (fP, fD, fM). Total organic C was set equal to the measured value. Models were calibrated by optimizing parameters to best 

fit the measured soil respiration data described in section 2. Each model was calibrated by fitting a single set of parameters 

simultaneously to all the incubation data (Table S3). For this, the model was run to reproduce each sample treatment, i.e. the 

applied incubation times and temperatures for each level of moisture (Figure 1). Accumulated soil respiration amounts were 20 

then calculated to match those from the observed data. Measured and simulated data from all samples were then combined and 

an overall model cost calculated using the root mean square error (RMSE) and a weighting term, as described below.  

Parameter optimization was carried out in two steps. We first explored parameter spaces using a Latin Hypercube of parameter 

values. For this we randomly selected unique parameter sets from a uniform distribution over each parameter range (R function 

randomLHS, package lhs, Stein, 1987) to obtain 30000 parameter sets. Model costs were then obtained by running models 25 

with each set. In the second step we used the Nelder-Mead algorithm (as implemented in the function modFit in package FME 

of the R programming language, R Development Core Team, 2016; Soetaert and Petzoldt, 2010) with initial parameter values 

being the set from the previous step with the lowest model cost. For the cost calculations we used an error term (‘err’ argument 

to FME function modCost) to weight the residuals. The error was calculated as the normalized (0-1) standard deviation of 
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measured values at each combination of temperature and moisture, with 0.1 added to avoid an unreasonable weighting of 

measurements with near zero errors.  

For a visual inspection of the model-data fits, we plotted both the measured and model relationship between soil respiration 

vs. moisture, soil respiration vs. temperature, and apparent activation energy (𝐸𝑎) vs. moisture content.  

4.1. Comparison of reaction kinetics 5 

Models were named according to their decomposition kinetics followed by the uptake kinetics and the moisture function, using 

the abbreviations: 1 = first order, 2 = second order, M = Michaelis-Menten, Mr = reverse Michaelis-Menten, dif = diffusion, 

psi = water potential function, sat = water saturation function. Alternative reaction kinetics leading to fluxes FPD and UD were 

compared in diffusion based models using different combinations of Eq. (6-9). Specifically, we compared first order for 

decomposition and uptake (11-dif), second order for decomposition and uptake (22-dif), and Michaelis-Menten decomposition 10 

with all combinations of uptake (M1-dif, M2-dif and MM-dif). In addition, we tested reverse Michaelis-Menten decomposition 

with second order uptake (Mr2-dif). We then evaluated the model-data fit based on RMSE values as well as on a visual 

inspection of the plotted relationships. A “best” model was then selected for further analysis. 

4.2. Comparison of moisture regulations: diffusion versus empirical 

A second model comparison was carried out to test the impact of different approaches for modelling moisture effects. For this 15 

we modified the model M2-dif (Table 2) removing diffusion fluxes and adding empirical moisture functions. This consisted 

in removing all diffusion effects (so that CEM and CED were replaced by a single CE pool and the uptake rate, VU, was no longer 

modified by 𝑔) and adding a function to scale (i.e. multiply) the decomposition flux, FPD. This approach is equivalent to the 

conventional way used to model moisture effects on soil C fluxes. Two alternative moisture scaling functions were tested 

(Moyano et al., 2013), one based on relative water saturation (M2-sat) and the other on water potential (M2-wp): 20 

𝑓(𝜃𝑆) = 𝑎𝜃𝑆 − 𝑏𝜃𝑆
2
 ( 21 ) 

𝑓() = max

{
 

 
𝑚𝑖𝑛 {1 −

[log10(Ψ) − log10(Ψ𝑜𝑝𝑡)]

[log10(Ψ𝑡ℎ) − log10(Ψ𝑜𝑝𝑡)]

1
0

 ( 22 ) 

were 𝜃𝑆 is relative water saturation,  is soil water potential and a, b, opt and th are fitted parameters. The latter two represent 

the optimal water potential for decomposition and a threshold water potential with values of -0.03 and -15 MPa, respectively. 

Water potential was calculated based on Campbell (1974) and Cosby et al. (1984). a and b are empirical parameters and were 

calibrated. 
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5. Model steady state, sensitivity analysis and validation 

Equations for steady state were derived by setting the rate of change in the state variables to zero in Eqs. 1-5 (where the flux 

terms are replaced by their respective equations), and then solving for the state variables. This was performed in Python using 

the “sympy” package (Meurer et al., 2017). 

A sensitivity analysis was carried out on model parameters using the “sensFun” function from the R package FME, which 5 

perturbs each parameter individually by a small amount. We ran the model as above, i.e. simulating the incubation and using 

daily output. Daily sensitivities were then averaged to obtain an overall value. Sensitivity values were calculated for the CP 

pool alone, as this pool represents the largest fraction of soil C. 

For model validation, we used soil respiration data from the study by Rey et al. (2005) where a Mediterranean oak forest soil 

was incubated for one month in a full factorial design at 100, 80, 60, 40 and 20 % of water holding capacity and at 30, 20, 10 10 

and 4 °C. This soil differed from the one used for model calibration in at least 3 aspects: the amount of organic C (7 %), soil 

pore space (65 %), and texture (classified as silty clay loam). The optimized set of parameters from model M2-dif was used 

with the exception of the initial fraction of C pools (fP, fD, fM) and the percolation threshold (𝜃𝑡ℎ),which we calibrated against 

the new data (Nelder-Mead calibration). The former was required since we had no information to estimate the microbial, 

dissolved, and enzyme C for this study and information regarding an initial soil steady-state was also lacking. In the case of 15 

𝜃𝑡ℎ, we assumed that this parameter is especially sensitive to variations in soil texture and structure. Although in previous 

studies it has been determined to be equal to a water potential of -15MPa (Manzoni and Katul, 2014) this value did not provide 

a good fit when applied to the validation data. 

6. Results 

6.1. Reaction kinetics 20 

The calibrated values for all models are shown in Table S3. Using different reaction kinetics resulted in variations in model 

performance as measured by RMSE (Table 2). Changes in RMSE were more sensitive to the kinetics of decomposition (FPD), 

with models using M and Mr decomposition kinetics resulting in lower RMSE values compared to 1st and 2nd order kinetics. 

In terms of uptake kinetics, both 1st and 2nd order kinetics performed better than Michaelis-Menten kinetics. 

Models M1-dif, M2-dif and Mr2-dif all showed a good fit to the data with the first two having a slightly higher R2. Thus, 25 

selecting a “best” model necessarily remains partially subjective. A visual comparison shows some weaknesses and strengths 

in each case. M1-dif and Mr2-dif better captured the variability in the data along the respiration axis at 35 °C (Figure S1) while 

M2-dif more closely captured the relationship at 20 °C and thus the temperature sensitivities (Figure S2). We selected model 

M2-dif (R2 = 0.87, Figure 3) as the “best” model, since it better represents the actual mediation of uptake by microbial biomass 
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when compared to model M1-dif. We also had no theoretical reason to prefer Mr to M decomposition. The decomposition and 

uptake equations of model M2-dif are then: 

𝐹𝑃𝐷 = 𝑉𝐷𝐶𝐸𝐷𝐶𝑃/(𝐾𝐷 + 𝐶𝑃) ( 23 ) 

𝑈𝐷  =  𝐶𝐷𝐶𝑀𝑉𝑈𝑔 ( 24 ) 

6.2. Moisture regulation 

Replacing diffusion effects with empirical moisture scalars followed by re-calibration decreased model performance compared 

to a diffusion based model, both when using relative water saturation (M2-sat) and water potential (M2-wp) functions (Table 5 

2). Although empirical functions were able to approximate the shape of the respiration-moisture relationship at 20 °C, they 

were unable to capture the variation of this response at higher and colder temperatures, as seen in the measurements and 

simulated by diffusion base models (Figure 4). Diffusion based models more accurately simulated a linear relationship between 

respiration and moisture at lower temperatures and a steep increase followed by a plateau at high temperatures, with an 

intermediate response seen at 20 °C.  10 

6.3. Temperature sensitivities 

Figure 5 show the apparent temperature sensitivities fitted to observations and modelled fluxes at different moisture levels and 

for two temperature ranges, 5-20 °C and 20-35 °C. Error! Reference source not found. Figure 5 compares different reaction 

kinetics and Figure 6 different moisture functions. Michaelis-Menten decomposition outperformed 1st and 2nd order kinetics 

when simulating the variability in Ea observed along the moisture axis as well as the differences observed between colder (5-15 

20 °C) and warmer (20-35 °C) temperature ranges. Model M2-dif closely followed the observed Ea values, which were near 

100 kJ at colder temperatures and in the 30-70 kJ range at warmer temperatures. Models M2-sat and M2-wp captured the large 

differences between temperature ranges but did not simulate the variability along the moisture axis as well as diffusion based 

models. 

6.4. Model steady state, sensitivity analysis and validation 20 

Model steady state equations are provided in the Supplement material. For 20 °C, 30 % VWC, 1.2 g d-1 C input, and 30 cm 

soil depth (z), the equilibrium sizes of the model pools are: 2560, 37, 120 and 4 g C for the CP, CD, CM and CED pools 

respectively. These values are stable over most of the moisture range and increase exponentially only at very low soil moisture 

(data not shown). A similar pattern was observed for temperature, with the CP pool increasing towards high values only at 

temperatures near 0 °C. The same pool showed little sensitivity to changes in C input. 25 

Table 1 shows the averaged values from the sensitivity analysis done on the model CP pool. High sensitivities were found for 

𝑔0 and n, indicating the importance of diffusion fluxes. Large effects were also seen for the activation energy parameters, 
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denoting a strong general effect of temperature. Also high were the sensitivities to KD and fug, reflecting the importance of 

Michaelis-Menten kinetics for decomposition and carbon use efficiently, respectively. Low sensitivities were found for rates 

of microbial and enzyme decay. 

Simulation of the incubated soil from the study of Rey et al. (2005) resulted in a very high fit to the validation data after 

calibration of initial SOC fractions and θth, with an RMSE of 0.09 in fluxes that were almost an order of magnitude higher than 5 

those used for calibration, and a model R2 of 0.99 (Figure 7). This was reflected in a generally good agreement between the 

relationships of model and observations with moisture (Figure 8) and temperature (Figure 9). 

7. Discussion 

The interaction often observed in the effects of temperature and moisture on the cycling of soil C is an indicator of the complex 

nature of soil systems. Such responses are often ignored, particularly by modellers trying to minimize model complexity and 10 

derive functions that are easy to parameterize, but also by experimentalists focusing on finding an invariable response to a 

single factor. But a careful consideration of the nature of soils suggests that interactions should be expected, something that 

becomes evident in multi-factorial experiments as well as in field measurements. Here we found clear interactive effects in 

our experimental observations, adding to the evidence that fixed empirical temperature and moisture scalars, as used in 

conventional soil C models, are inappropriate for simulating the variability often found in natural conditions. 15 

Since the total amount of soil C was equal among samples and its relative change in the six months of incubation was small, 

we expected that second order kinetics would do as well as Michaelis-Menten kinetics. But using Michaelis-Menten increased 

the R2 by ca. 5 % compared to second and first order kinetics. This combined with the fact that the model was highly sensitive 

to a change in KD, more than to VD, would indicate that Michaelis-Menten kinetics are in fact important for explaining soil C 

flows. Indeed, even in this case where the CP pool is relatively invariant, the outcome of a strong temperature effect modifying 20 

KD (𝐸𝑎 of 94 kJ) cannot be reproduced by 2nd order kinetics. 

The relative importance of different processes was also shown by the model parameter sensitivity values. It is perhaps not 

surprising that some of the highest values were related to diffusion and temperature, since these were the two factors that varied 

in our experiment. However, these factors also vary considerably in natural ecosystems and largely drive changes in 

decomposition rates. No strong correlations between the effects of different parameters were found, with most being below 25 

0.6 (Figure S4), thus giving a degree of confidence in the estimated values. While we did not obtain statistical confidence 

intervals, kernel density estimations (Figures S5-S12) suggest differing degrees of likelihood for different parameters. 

Activation energies in particular showed narrow ranges of optimal values with a strong dependence on model structure. 

Since optimizing all parameters against our data resulted in an R2 of 0.87, it was surprising to obtain an R2 of 0.99 during 

model validation. We note that few studies were found with data on moisture and temperature interactions under controlled 30 

conditions, and this was the only validation attempt carried out. This very high R2 is partially thanks to the recalibration of 

initial pool sizes and may have to do with the reduced amount of data coming from a simpler experimental design compared 
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to our study. There were only 20 data points in the validation data, one for each temperature and moisture combination. In 

contrast, we had 3 replicates, 11 moisture levels and 2 temperature cycles, and therefore more data and associated variability. 

Despite these points and this being a first validation step, such a close agreement using independent data and a soil that differed 

considerably in C content, provides strong support to the model structure we used.  

Model steady state or equilibrium is attained when the rate of change of all state variables equals zero, reflecting the state 5 

towards which the system will tend under invariant input and forcing conditions. Even though external drivers are in constant 

change in natural systems, steady state information can indicate the approximate model behaviour under specific average 

conditions. Results here showed that model M2-dif gives realistic values in the range of temperature for which it was calibrated, 

but leads to unrealistic values under colder conditions. In addition, the CP pool shows little sensitivity to changes in C input. 

While the model fitted well the validation data, it may not be suitable when applied outside the conditions used for development 10 

and may need further changes for field applications. The limitations encountered are characteristic of non-linear microbial 

models and mark their current limitations as predictive tools. However, such limitations are most likely the result of missing 

processes that still need to be adequately represented. For example, recent work has shown that a density dependent mortality 

rate of the microbial pool can lead to much more realistic long term simulations (Georgiou et al., 2017).  

It is important to point out that our approach was to use a simple model with few processes and C pools and modify only those 15 

components we tested. This allowed us to distinguish the effects of each modification and minimize parameter identifiability 

problems arising from having too many parameters with effects that may correlate. While this allowed us to focus on specific 

processes, it also meant that important mechanisms were left out. Some of these mechanisms are oxygen limitations in saturated 

conditions, leaching of CD, the coupling of the C and N cycles (introducing SOC quality and microbial stoichiometry 

limitations) and organo-mineral interactions. Our model thus needs further development to extend its application and general 20 

predictive capacity. In its current form, it cannot be extended to litter decomposition (Cotrufo et al., 2015) or organic soils, 

which will be much more dependent on substrate quality and less affected by carbon diffusion (Manzoni et al., 2012b). Also, 

peatlands and other saturated soils (Clymo, 1984; Frolking et al., 2001) will show different dynamics, reflecting the critical role 

of oxygen as a limiting factor. We did not include mineral adsorption of carbon as an active mechanism in this study. This is 

contrary to recent studies that used adsorption-desorption fluxes to explain the variability in temperature responses (Tang and 25 

Riley, 2014). However, some values of mineral desorption rates found in the literature (Ahrens et al., 2015) suggest that these 

rates, although important in the long term, are too slow to have a noticeable impact on the time scale of this or similar 

experiments, and thus on most estimates of soil respiration temperature sensitivities. Finally, nitrogen requirements will impose 

limits on the growth of microbial communities, which in models with microbial driven uptake and/or decomposition, will also 

regulate C fluxes (Grant et al., 1993; Manzoni et al., 2012a). Despite such limitations, we demonstrated the effects and 30 

relevance of combining Michaelis-Menten kinetics with diffusion in mineral soils, with model results being well supported by 

the data. 
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7.1. Temperature effects 

Unlike other calibrated parameters, the activation energy values for microbial (Ea_m) and enzyme (Ea_e) decay were fixed at 10 

kJ, representing a positive but low temperature sensitivity. This value was used in order to be consistent with two main 

observations:  

a) The effect of Ea_m on the amount of microbial carbon. A high Ea_m results in large changes of microbial biomass C 5 

with temperature. However, observations often show a negative but moderate effect of temperature on microbial biomass (Grisi 

et al., 1998; Salazar-Villegas et al., 2016). 

b) The effect of Ea_e on carbon decomposition rates. High Ea_e values result in increasing accumulations of soil C with 

warming (Allison et al., 2010; Tang and Riley, 2014) as a consequence of a decrease in the enzyme pool caused by accelerated 

turnover. This is a critical aspect of enzyme driven soil carbon models and largely determines simulated responses to long term 10 

warming. Experimental evidence for Ea_e is lacking, but the latest observations of mid-term responses to warming are 

compatible with low values (Crowther et al., 2016). 

The optimized 𝐸𝑎_𝑉 value of models with first and second order decomposition kinetics were in the range 40-50 kJ, translating 

to a Q10 of ca. 2. In contrast, for all but one model using M decomposition, values were above 90 kJ, which translate to a Q10 

of nearly 4. This high value was apparent in the modelled respiration fluxes only at lower temperatures, while at temperatures 15 

higher than 20 the apparent Q10 approximated the more commonly observed value of 2. Such results followed closely our 

observations and agree well with general trends in Q10 along the temperature axis reported by Hamdi et al. (2013). These values 

were mostly stable at high levels of soil moisture, but increased sharply under drier conditions. This moisture relationship, 

however, is not necessarily the norm and seems to depend on initial conditions and/or pool dynamics, as demonstrated by the 

validation step (Figure 9), where the apparent Ea remained close to 90 kJ  and thus near the parameterized value. Also the 20 

change in Ea with moisture content followed a different trend in the validation data, although again values increased with lower 

moisture.  

The difference between prescribed and observed temperature sensitivities may be related to two factors. First, the apparent 

sensitivities do not represent the instantaneous sensitivities dictated by the prescribed values but reflect also the effects of other 

limiting factors that change with time. Pool sizes, including CM and CE, may differ from the initial conditions as time 25 

progresses, making measurements at different temperatures not strictly comparable. The observation that Q10 values from 

studies using short incubation times (hours to days) are higher compared to those using longer incubation times (Hamdi et al., 

2013) is consistent with this idea. The second factor is related to the temperature sensitivity of the K constant of Michaelis-

Menten kinetics. Our results are well in line with the theory discussed by Davidson and Janssens (2006), who stated that 

“because the Km of most enzymes increases with temperature, the temperature sensitivities of Km and Vmax can neutralize each 30 

other, creating very low apparent Q10 values”. Indeed, this seems to be the most important effect of introducing Michaelis-

Menten kinetics in our simulations; not, as first assumed, the effects of concentrations of either the CP or CED pools, since the 

choice of using M versus Mr kinetics had only a small impact on the results. 
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The model results described above are thus emergent effects leading to apparent temperature sensitivities that vary in time, but 

are based on constant model parameter (Ea) values. These results demonstrate how apparent sensitivities are the result of the 

offsetting effects of different processes (e.g. sensitivities of Michaelis-Menten parameters V vs. Km) and how different values 

can be measured when soil pool dynamics change (e.g. through changes in diffusion limitations) even when the underlying 

temperature sensitivities are the same. Much of the variability in reported temperature sensitivities of soil respiration, and in 5 

particular its relationship with soil moisture (Craine and Gelderman, 2011), may be the result of the changing dynamics in 

microbial, enzyme and dissolved C pools during measurement times. Clearly, misleading conclusions regarding an intrinsic 

temperature sensitivity of soil C decomposition are often reached by the usual procedure of fitting a simple function to 

respiration vs. temperature data. 

Decomposition, which was only modelled, consistently showed a lower apparent temperature sensitivity than respiration, with 10 

a Q10 between 1-2 for our experiment and just below 3 for the validation study. These values may be the most relevant for 

predicting long term changes, since uptake and respiration ultimately depend on C made available by decomposition. These 

rather low sensitivities are consistent with some integrative studies at the ecosystem level (Mahecha et al., 2010) and again 

likely respond to the temperature sensitivities of Km and Vmax neutralizing each other. Such results raise the question of what 

𝐸𝑎 or Q10 values – i.e. the apparent for respiration, apparent for decomposition, or the parameterized – are best suited for 15 

conventional first order empirical soil models. Since these models will tend to have similar apparent and intrinsic behaviour, 

the answer is not clear and will require further research. Ultimately, the best option may be to abandon such models and 

develop better validated mechanistic alternatives for prediction purposes. 

7.2. Moisture effects and diffusion limitations 

Diffusion fluxes are a function of water content, diffusivity coefficients and pool concentrations. Different equations have 20 

been used to calculate diffusion as a function of water content in soils (Hamamoto et al., 2010; Hu and Wang, 2003). All these 

equations generally predict a strong positive near exponential effect of water content on diffusion. Following previous studies 

(Manzoni et al., 2016), we chose the function from Hamamoto et al. (2010). This equation allows for an adjustment of the 

percolation threshold (th) in different soils. We note that when using the th obtained during calibration (0.063) we also 

obtained a high fit to the validation data (R2 = 0.97, data not shown), so the recalibration of th led to a noticeable but small 25 

improvement. While the value 0.063 for our soil came close to the water potential of -15 MPa found in previous studies 

(Manzoni and Katul, 2014), this relationship did not hold for the validation soil, where we assumed a higher clay and silt 

content from its classification. Thus, a prerequisite for applying our model to other soils is finding a relationship between th  

and soil type that holds in all cases. 

Diffusion regulations can be implemented either by simulating two separate pools between which diffusion takes place or by 30 

determining the available amount of a pool as a function of diffusivity (or conductance in our case) at each time step. In our 

model we used a combination, simulating a diffusion flux between enzyme pools and calculating how much CD is available 
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for uptake at each time step. We did not assume a diffusion regulation of available polymeric C, an approach that is closer to 

empirical functions scaling the decomposition flux directly and that has been implemented in other microbial models 

(Davidson et al., 2012). 

In our study especially, but also in the validation data, the moisture response tended to become less linear and have a larger 

plateau at higher temperatures. The mechanisms leading to such interactions are still unclear, but our model comparison 5 

indicates that solute diffusion limitations play a central role. The plateau behaviour, a decrease near saturation, and even near 

linear responses, all contrast with the near exponential relationship between moisture and conductance given by Eq. (11) and 

with the fact that no oxygen limitations at high moisture were modelled. They may, however, result from a faster depletion of 

available carbon at high moisture and at high temperatures, driving down the accumulated fluxes over time.  

While a low supply of O2 usually limits respiration rates in saturated soils under field conditions, O2 seemed to have a negligible 10 

effect in our study. At 35 °C, where fluxes were highest, no clear drop in respiration was observed near saturation, as is 

expected when O2 becomes limiting. Rather, the general behaviour was well simulated by our models using solute diffusion 

limitations only. Schurgers et al. (2006) found that the anaerobic fraction in soils with air O2 concentrations over 10 % is low 

until very close to saturation. The minimum flask air O2 concentrations (corresponding to 56000 ppm of CO2, the maximum 

accumulated by a sample before changing headspace air) was over 15 % O2, which next to the small sample sizes would not 15 

indicate an O2 limitation. 

In models where decomposition and respiration are separated processes, these fluxes can show different responses. This 

decoupling is especially evident when diffusion limitations come into play. Plots of modelled fluxes against temperature and 

moisture (Fig. S3) showed a different relationship when comparing respiration and decomposition. Figure 10 shows modelled 

decomposition against respiration (using M2-dif) as accumulated values, each line being a sample at a different water content. 20 

Without any diffusion limitation, the relationship follows a slope of ca. 0.3, determined by 1-fug, where fug is the fraction of 

uptake to growth (the C use efficiency). This slope, however, changes as diffusion becomes limiting, with temperature also 

playing a role as evidenced by the shifts in the slope occurring at various intervals. With time these fluxes will tend to 

equilibrate as the CD and CED pools adjust. But the proportionality between these fluxes is not constant and will depend on 

moisture, temperature, and time, even after months of incubation. These results show that, without a proper modelling 25 

framework and when assuming a constant proportionality, interpretations based only on respiration activity may lead to wrong 

conclusions about the dynamics of organic matter decomposition, especially at low moisture contents and in short and mid-

term experiments. 

Conclusions 

As the main mechanism linking water content with the movement of substrates, microbes and enzymes, diffusion plays a 30 

central role in soil organic matter decomposition. We here showed that integrating it into models can significantly improve 

our understanding of soil C dynamics. Diffusion-based models were better at simulating the effects of moisture and improved 



 

17 

 

the simulated temperature responses, thus allowing for a better interpretation of the observed temperature sensitivities. This 

and similar studies indicate that measured temperature sensitivities cannot be generalized or correctly interpreted without 

having a full understanding of the relevant mechanisms, their interactions, and the state of soil carbon and microbial pools. 

We also found evidence that Michaelis-Menten kinetics plays an important role in soil C dynamics, explaining the strong 

differences in temperature sensitivities across temperature ranges. Our results are consistent with relatively high activation 5 

energies for both the V and K Michaelis-Menten parameters and generally lower apparent values. 

Creating models that capture the variability in the response of C dynamics across different soils and at different levels of 

driving factors remains challenging. However, process based models are of central importance for establishing confidence in 

C cycle predictions and soil-climate feedbacks. As seen here, the structure and process representation of models can be critical 

for simulating the complex response of soil C fluxes to combined changes in temperature and moisture. Diffusion as a moisture 10 

regulation of soil C fluxes has not been used in large scale predictions, which still rely on empirical scaling functions. Evidence 

of interactions seen in experiments and presented from a mechanistic model perspective indicate that these simpler approaches 

do not always hold. Further research should focus on more extensive validation and finding the relationships necessary for 

extending the application of models to diverse soil types. 
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Figures 

 

Figure 1: Graphical representation of the incubated soil samples showing the fixed levels of moisture content and the times at 

different temperatures. 

 5 

 

Figure 2: Diagram showing C pools and fluxes, as well as the points of diffusion limitations. Second order decay may refer also to 

Michaelis-Menten reaction kinetics. Variations of this scheme were tested in this study. 
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Figure 3: Model vs measured accumulated CO2 of incubated soil samples. Colour depicts the range of volumetric water content 

(VWC). The model R2 is 0.87. 
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Figure 4: Relationship of soil respiration with volumetric soil moisture. Results shown over three temperatures levels (5, 20, 35 °C) 

for the observed data (obs) and three model versions (M2-dif, M2-wp and M2-sat). Lines are smooth loess fits depicting the mean 

relationship. 
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Figure 5: Temperature sensitivities of respiration and decomposition fluxes, showing activation energy (Ea) fitted using two 

temperature ranges (5-20 and 20-35 °C) and the equivalent Q10 derived for a 10 °C range. Plotted are observed respiration data (R-

obs) and three models with different reaction kinetics (R-M2-dif, R-11-dif and R-22-dif). The sensitivities of the decomposition flux 

from model M2-dif is included for comparison (D-M2-dif). 5 
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Figure 6: Equivalent to Figure 5Error! Reference source not found. but showing observational data (R-obs) next to models with 

different moisture functions (R-M2-dif, R-M2-wp and R-M2-sat). 
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Figure 7: Model vs measured accumulated CO2 after simulating the experiment from Rey et al. (2005). Colour depicts the range of 

volumetric water content (VWC). The model R2 is 0.99. 
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Figure 8: Relationship of soil respiration with volumetric soil moisture shown for model M2-dif and observations from the validation 

data (obs). Results are shown over four temperatures levels. 
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Figure 9: Apparent activation energy (Ea) and equivalent Q10 (for the temperature range 15-25 °C) during the validation step. Values 

fitted to observed respiration (R-obs) as well as modelled respiration (R-M2-dif) and decomposition (D-M2-dif). 
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Figure 10: Modelled decomposed vs. respired C shown as accumulated values over the entire simulated incubation, including 

temperature steps. Each line is a sample at a different moisture content. 
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Tables 

Table 1: Parameters of model M2-diff, calibrated and non-calibrated, with results of a sensitivity analysis (Sens). Sens shows a relative 

measure of the sensitivity of the model CP pool to small perturbations in the parameter values. Values are rounded to two significant 

digits. 

  5 Name Value Units Sens 

Calibrated parameters 

𝑔0 0.98 h-1 3.5 

Ea_V 94 kJ -1.2 

fD 9.1e-5 kg kg-1 0.00 

fE 6.8e-4 kg kg-1 -0.05 

fM 0.08 kg kg-1 0.37 

fge 0.034 kg kg-1 0.07 

KD_ref 62 kg C m-3 2.7 

n 2.3 - 0.6 

m 1.1 - 0.00 

red_ref 5.6e-4 h-1 0.04 

rmd_ref 9.9e-4 h-1 0.03 

rmr_ref 1.5e-5 h-1 0.00 

VDm_ref 0.37 h-1 -0.64 

VU_ref 0.11 h-1 0.5 

th 0.063 m3m-3 0.00 

Non-calibrated parameters 

Ea_m 10 kJ 0.61 

Ea_e 10 kJ 1.7 

fug 0.7 kg kg-1 1.3 
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Table 2: Different model versions with their weighted and unweighted root mean squared errors (RMSE, in units mg C kg Soil-1 h-1) and 

R2 after parameter calibration. FPD = decomposition flux, UD = dissolved C uptake flux, 1 = first order kinetics, 2 = second order kinetics, 

M = Michaelis-Menten kinetics, Mr = reverse Michaelis-Menten kinetics. 

Model 

name 
FPD UD 

Moisture 

effect 

RMSE 

(weighted) 

RMSE 

(unweighted) 
R2 

11-dif 1 1 Diffusion 0.28 0.080 0.81 

22-dif 2 2 Diffusion 0.28 0.080 0.82 

M1-dif M 1 Diffusion 0.22 0.065 0.87 

M2-dif M 2 Diffusion 0.22 0.069 0.87 

MM-dif M M Diffusion 0.25 0.078 0.84 

M2-sat M 2 Eq. (21): 

f(S) 

0.32 0.109 0.65 

M2-wp M 2 Eq. (22): 

f() 

0.27 0.093 0.78 

Mr2-dif Mr 2 Diffusion 0.24 0.070 0.85 
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