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We thank both referees for their comments and suggestions. We would also like thank
the associate editor for diligently inviting reviewers who are most well suited. We find
the comments very helpful. In the light of these comments, we realized that we were
missing an opportunity to improve our workflow, we now highlight this change and
report our results below.

Also it is clear from both referee comments that we should enhance our literature ci-
tation, and revise text accordingly. Below please find our responses and suggested
changes in the manuscript.

C1

Referee’s Comment (RC) 1 - Contrary to statements made in the paper, the tech-
niques used by the authors are for the most part not novel. There is in fact
a substantial literature on replacing the likelihood function with more efficient
calculation methods, and I shall give pointers to the literature below. Overall it
seems that the literature is very poorly referenced in this paper. However, in the
field of ecosystem modelling, several techniques described by the authors have
been used hardly at all, so the paper can be valuable in introducing the ideas to
a new audience.

RC 2 - The methods are not novel, but application of the method in the field of
biogeosciences is in its infancy and the example experiment provided here may
be useful in designing further approaches.

Authors’ Comment (AC) - We thank the reviewers for this remark. In terms of our
novelty statements, we wanted to explain that this paper is the culmination of work that
has started approximately 12 years ago (please see AGU talk abstract by Dietze et al.,
2009) and it was rather novel even across disciplines back then. We acknowledge the
fact that this is not the case anymore and offer our apologies for missing key papers.

However, as both reviewers highlighted, a decade after they were first introduced, the
techniques described in this paper have been used hardly at all in the field of ecosys-
tem modeling. This is not surprising given that applications of these techniques require
a non-trivial amount of computational and statistical expertise, not to mention a steep
debugging curve of both models and algorithms. In this paper, we report the integration
of a standardized ecological application of these methods in an open-source ecolog-
ical informatics toolbox for the general use of the ecosystem modeling community. It
is exactly our hope that the experiments and the implementations provided here may
foster more use and development of novel types of model emulators.

We have revised the novelty statements and provided citations from the literature as
needed. We appreciate the constructive comments of the reviewers, which have im-
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proved both our workflow and manuscript.

RC 1 - To introduce new methodological ideas to people, the language should be
clear and consistent, and that is not the case here. There is a worrying lack of un-
derstanding of the difference between the concepts of ’error’ and ’uncertainty’.
The first refers to deviation from truth, the second to incomplete knowledge,
but in this paper the terms are occasionally treated as synonyms, which makes
the Introduction highly unclear. Proper terminology for these concepts and oth-
ers can, for example, be found in the review of Bayesian methods by Van Oijen
(2017), where also additional references on MCMC, emulation and hierarchical
modelling in ecosystem modelling can be found.

The Introduction mentions that "Parameter error refers to the uncertainty about
the true values of the model parameters", which is quite wrong. Parameter error
means assigning a value to a parameter which differs from reality, e.g. stating
that the light- use efficiency is 1 g MJ-1 when in reality it is 2 g MJ-1. Not knowing
whether it is 1 or 2 or anything else is uncertainty. It is therefore also incorrect to
state, as the authors do, that "parameter error asymptotically goes to zero with
enough data". It is the conditional uncertainty that goes to zero, not the error.
Every experimentalist knows that having any number of biased measurements
makes no parameter converge to its correct value - and all measurements have
their hidden or unhidden biases. There is no safe way to "estimate observation
error from data".

AC - As mentioned in our previous short comment, we share the reviewer’s concerns
about the consistency of concepts. It is important for us that discussions of these con-
cepts, and methods for their analyses become more common practice in ecosystem
modeling studies. We completely agree with reviewer’s definitions of error and uncer-
tainty, and revised these sections in the introduction as follows:

Authors’ changes in the manuscript L64-82 :
C3

The Bayesian approach also distinguishes between parametric, model
structural and data uncertainties, which is critical for ecological forecasting.
Parameter uncertainty refers to the uncertainty about the true values of the
model parameters due to data deficiency and model simplification (McMa-
hon et al., 2009; Van Oijen, 2017). As models are simplified representations
of reality, it is often not possible to measure the true value of an ecosystem
model parameter precisely in the field, regardless of the measurement er-
rors (Van Oijen, 2017). However, measurements can still provide estimates
for parameter values that makes the model represent the reality better (Van
Oijen, 2017). Hence, it is possible to reduce parameter uncertainty with
more measurements, conditioned upon the model structure and the mea-
surement error (Van Oijen, 2017; Dietze, 2017a). Therefore, the parameter
uncertainty should be reflected by probability distributions and propagated
into model predictions. By reducing parameter uncertainties, PDA helps us
identify where we need further data collection and improved model repre-
sentations.

By contrast, process or model structural uncertainty refers to the uncer-
tainty about how to represent ecological processes in models. As every
model is a simplification of reality, there will always be underrepresented
processes or insufficiently modeled interactions in ecological models (Van
Oijen, 2017; McMahon et al., 2009; Clark, 2005). With more observations,
we can advance our theoretical understanding and better characterize eco-
logical processes, but process uncertainty does not necessarily decrease
with more data, the way parameter uncertainty does (Dietze, 2017a; Gupta
et al., 2012; Clark, 2005). As process uncertainty is part of our imperfect
models, it is part of the uncertainty associated with the model predictions.

Unlike process and parameter uncertainties, data (observation) uncertainty
does not need to be propagated into model predictions. Observation error
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is a result of the limited precision and accuracy of the measurement instru-
ments, hence, the uncertainty about it is not part of the process that we are
trying to model (Van Oijen, 2017; McMahon et al., 2009). In Bayesian PDA,
observation uncertainty should be treated independent of the deviations of
model predictions from data as part of the likelihood for observations to in-
form model predictions without biases (Dietze, 2017a). For a more in depth
terminology for these concepts in the context of process-based models and
Bayesian methods, see review by Van Oijen (2017).

RC 1 - The treatment of the subject matter in the Introduction is further hampered
by poor terminology regarding parameters. Terms like "parameter", "parameter
vector", "parameter set[s]" are used arbitrarily and inconsistently. [As an exer-
cise for the reader: show that lines 98 and 147 cannot both apply.] Note that a
set is unordered and a vector is ordered, so a point in parameter space can not
be a "parameter set". And "covariances among parameters" are not real quanti-
ties but statistical quantities that capture part of our uncertainty and that change
when more data come in. Therefore the covariances are in no way "accounted
for". Please note that your subject matter of Bayesian calibration using MCMC
is unfamiliar to many readers, so getting an idea of what is going on requires
using precise language. Apologies for these pedantic remarks, but in my expe-
rience people stumble over the smallest inconsistency when learning Bayesian
methods.

AC - We are grateful for such remarks, and have revised the text accordingly.

L98-99: In the emulator approach, we first propose a set of parameter un-
derlinevectors (knots) according to a statistical design (Fig. 1). Then, we
run the full model with this set of underlinedesign points in parameter space,
and compare the model outputs with data.
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L113-115: Instead of constructing an emulator for the raw model output,
we adopt the approach of constructing an emulator of the likelihood – the
statistical assessment of the probability of the data given a vector of model
parameters which forms the basis for both frequentist and Bayesian infer-
ence.

L147-148: (1) Propose initial NKNOTS design points in the parameter
space

(2) Run full model with each parameter vector (parallelizable over NKNOTS)

L155: (5a) Propose a new vector of process-model parameter values
(each parameter vector defines a point in multivariate parameter space)

L177: The second step (2) is to evaluate the full model using the proposed
design points in parameter space (knots), and it is the only step where we
run the full model.

L189: This allows us to not only accept/reject a proposed parameter vector
(5e) but also sample the τ conditional on that parameter vector (step 5f).

L214: In the MCMC, we use the GP to estimate T for both the current and
proposed parameter vector (5b).

L216: To propagate this interpolation uncertainty, it is important to draw the
T stochastically from the GP, and draw new values for both the current and
proposed parameter vector at each iteration.

L221: This is in contrast with traditional optimization and MCMC algorithms
that only leverage the current vector of parameter values when proposing
new parameters.

L61: As opposed to piecewise evaluation of different parts of the model
against different data sets, a Bayesian framework allows the evaluation of
the whole model at once against all data sources, reflecting the connections
between variables and the covariances among parameters (Dietze, 2017a).
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RC 1 - Can you elaborate on the limitations of your approach? What is the maxi-
mum number of parameters (p) that can be calibrated in general, and for your two
models in particular? You set the number of model-runs at p3. Does that mean
that calibrating 100 parameters is unfeasible because it would require 106 model
evaluations just to build the emulator?

AC - With the current (p3) scheme calibrating 100 parameters would be infeasible as it
would require 106 model evaluations just to build the emulator. With ED2, running the
model 106 times is not feasible at all, unless iterative emulator rounds are massively
parallelized. With SIPNET, the Cholesky decomposition within the GP, rather than the
model evaluations, would become limiting for 106 design points. In that case, emulators
other than GP (e.g. NNGP) could be considered as we discuss in the manuscript.

That said, the (p3) scheme is just the rule-of-thumb that we employed in these experi-
ments, and not an inherent limit of the emulator approach itself. The calibration of 100
parameters might be possible with a much smaller number of knots (�106) depending
on the model. For example, our scaling experiment (Figure 7b) shows that, in terms
of deviance, it was possible to constrain 6 SIPNET parameters to a reasonable extent
with 120 knots in total (likewise, 8 and 10 SIPNET parameters with 240 parameters in
total). A common recommendation in computer experiments with GP is to use a sam-
ple size about 10 times (n = 10d) the input dimension (Loeppky, Sacks Welch, 2009).
Others found this is often too small and suggest 20 times (n = 20d) larger sample size
(Erickson, Ankenman Sanchez, 2018).

Therefore, calibrating 100 model parameters with 100 x 20 design points could be pos-
sible in theory. In practice, we would advocate for performing an uncertainty analysis to
reduce the dimensionality of the problem to the subset these 100 parameters that con-
tribute most to model uncertainty. In addition, the data would need to be strong enough
to actually constrain 100 parameters. We would be happy to extend the discussion in
section 4.6 to explicitly report these numbers (about sample sizes) with references.
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RC 1 - How exactly does PEcAn calculate the contributions of different parame-
ters to overall uncertainty, i.e. what was the screening algorithm?

AC - The uncertainty analysis in PEcAn uses a one-at-a-time (OAT) approach. An
OAT approach involves multiple model runs while holding all parameters at their me-
dian except one each time, and evaluating how it translates to differences in model
outputs. The parameters are varied at their parameter data assimilation (PDA) analy-
sis priors’ (which could be original priors or, if the parameter was constrained by the
meta analysis, they could be meta analysis posteriors in PEcAn) median and at six
PDA prior quantiles equivalent to ±[1, 2, 3]σ in the standard normal. Details are given
in previous papers as cited (LeBauer et al., 2013; Dietze et al., 2014). Plans are in
place to develop a more general multivariate uncertainty analysis in the future once the
multivariate version of our trait meta-analysis is in place (Shiklomanov et al in review).

RC 1 - There are linguistic errors (plural subjects with singular verbs, missing
definite articles etc.) on lines 54, 55, 92, 93, 100, 183, 201, 248, 294, 306 (twice),
309, 323, 351, 372, 418, 434, 436, 443, 454-455, 482 (twice), 483, 484, 485, 507,
511, 520, 539 (twice), 581.

We thank the reviewer for noticing and noting these errors. We went through the text
more carefully and believe we have corrected these errors.

L54: In Bayesian calibration it is possible to use more than one type of data
to simultaneously constrain multiple output variables in a model.

L55: Using multiple data constraints is particularly helpful because model
errors can compensate for each other and single variables often do not
provide robust constraints.

L92-93: Thus, it is particularly advantageous to consider techniques that
are both parallel in nature and which have substantial “memory”

L100: Next, we fit a statistical approximation through the design points
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where we evaluated the model.

L183: In this case, T for a Gaussian likelihood would be the sum of squared
residuals, Σ(y − µ)2, where y is the observation and µ is the model predic-
tion.

L201: GP assumes that the covariance between any set of points
in parameter space is multivariate Gaussian, and that the correlation
between points decreases as the distance between them increases

L248: The error distribution of flux data is known to be both heteroskedastic,
with variance increasing with the magnitude of the flux, and to have a double
exponential distribution rather than a normal (Richardson et al., 2006).

L294: Unlike SIPNET, it is possible to run ED2 simulations with more than
one competing PFT.

L306: The use of literature constraints ensures that the posterior pa-
rameter estimates fall within underlinea biologically plausible range, and
reduces the problem of equifinality, as parameters that are already well
constrained cannot vary much, and thus cannot trade-off with poorly con-
strained parameters.

L309: The scaling factors used for common ED2 PFT parameters all have
Beta(1,1) prior distributions.

L323: In the end, 9 and 10 parameters were targeted in SIPNET and ED2,
respectively (i.e. in the case of ED2, 9 model parameters are shown in Fig.
2, plus the multiplicative bias parameter)

L351: In our scaling experiment, we evaluate the trade-off between the
number of model runs and the approximation error by comparing the 8-
parameter SIPNET bruteforce calibration to emulator calibrations with vary-
ing numbers of k knots (k = 120, 240, 480, 960).
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L372: Shaded distributions are the posteriors obtained after each round of
emulation.

L418: While root-mean-square-error (RMSE) scores evaluate the devia-
tions of model predictions from data, deviance (-2 x log-likelihood) scores
evaluate predictive ability.

L434: However, the time-series plot of LE for SIPNET (Fig. 4, middle
panel) shows that SIPNET largely overestimates the winter moisture fluxes
whereas ED2 does not (Fig. 6, middle panel).

L436: Both pre- and post-PDA ED2 performance for SoilResp were better
than SIPNET (bottom panels).

L443: As expected, the post-PDA ensemble CI approaches the bruteforce
post-PDA CI. In other words, the RCI asymptotically converges to zero,
while the clock time increases with the number of knots.

L454-455: With a lower number of knots fewer parameters
were well-constrained, but with too few parameters we traded-off the
ability to get a good fit.

L482-485: First, we ran the full MCMC in between the adaptive sampling
steps, and on the final response surface, instead of an optimization search.
Hence, we were able to provide full posterior probability distributions of the
parameters targeted for calibration, instead of point estimates of optimum
values as Li et al. (2018). The ASMO scheme has also been recently
updated for distribution estimation using full MCMC runs (ASMO-PODE)
and has been tested with Common Land Model (Gong and Duan, 2017).

L507: In addition to just fitting the model, emulators make it practical to
implement different hypotheses within a model, re-calibrate the model, and
test them against data repeatedly.
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L511: For example, it is a known issue that site-level calibrations are not
easily transferable to new sites or to larger scales (Post et al., 2017).

L520: A lack of independence in observation errors causes overfitting of
the model parameters and underestimates prediction uncertainty.

L539: This experiment showed that the emulator method with SFs could
constrain ED2 PFT parameters and improve model predictions.

L581: Future directions may include exploring alternative emulators, such
as the Nearest-Neighbor Gaussian Process model (which takes advantage
of the fact that nearest neighbors contribute the most information while fit-
ting a GP model), and could help reduce computational costs substantially
for bigger datasets and larger numbers of parameters.

RC 1 - The last sentence of the Abstract (l. 34-36) can be deleted without loss of
content.

AC - We can delete this sentence.

RC 1 - How is the "Euclidean distance between confidence intervals" deter-
mined?

AC - Please also see the previously posted short comment for more details. Realizing
that this was not clear in the manuscript, we added the following text:

L354:

To do this, we compared the post-emulator PDA ensemble confidence inter-
val errors relative (RCI) to the post-bruteforce PDA ensemble CI in terms of
mean Euclidean distance between their 2.5% - 97.5% CIs. For each exper-
iment with k different knots and variable (CIE,L,k − CIB,L,k)2 values were
calculated where E stands for emulator, B stands for bruteforce ensemble
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and L stands for lower CI limit. The same is calculated for upper CI limit
and sum of their mean is used as a score for relative confidence interval
(RCI) coverage per variable:

RCIV AR,k = mean((CIE,L,k − CIB,L,k)2) +mean(CIE,U,k − CIB,U,k)2)]

Next, each RCI vectors (RCIV AR = RCIV AR,960, RCIV AR,480, RCIV AR,240, RCIV AR,120)
are normalized by dividing by their mean to obtain values independent
of the units. Then, the sum over variables (in our case, RCIFINAL =
RCINEE +RCILE +RCISoilResp) gives us the final RCI score.

L443: As expected, the post-PDA ensemble CI approaches to bruteforce post-PDA
CI, in other words the RCI asymptotically converges to zero, while the clock time to
increases with the number of knots (Fig. 7a; also see Fig. S6 for time-series plot that
shows emulator CI coverage approaching the bruteforce CI coverage with increasing
number of knots).

We also include additional supplementary figures showing coverage convergence, sim-
ilar to the one we presented in the short comment.

RC 1 - Why were 729 knots used for p = 8 parameters of SIPNET, given that you
state the need for p3 knots (729 = 93, not 83)?

AC - Because we counted the multiplicative bias parameter in the p. So, 8 SIPNET
parameters plus the multiplicative bias parameter, p = 9 for SIPNET. 9 ED2 parameters
(6 of 9 being scaling factors for common PFT parameters) plus the multiplicative bias
parameter, p = 10 for ED2. Thank you for pointing this out. We will state this in the text
more explicitly and add figures for bias parameter posteriors as well.

L323: In the end, 9 and 10 parameters were targeted in SIPNET and ED2,
respectively. To be more specific, the 8 (9) model parameters for SIPNET
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(ED2) that are shown in Fig. 2, plus the multiplicative bias parameter were
targeted in the PDA, therefore 93 (103) knots were proposed iteratively with
the emulator approach.

RC 1 - Two of the references are not placed in their proper alphabetical position,
and the reference to Hartig et al. (2012) is missing.

AC - We corrected these in the revised manuscript.

RC 1 - Can you explain the results shown in Tables A2 and A5? How can poste-
rior distributions for parameters following MCMC neatly fall into parameterised
probability distributions (which also are often of different type than their priors)?
And what were the posterior covariances?

AC - As explained in the short comment, the results reported in Tables S2 and S5 are
fitted parametric distributions to the marginal MCMC samples. We wanted to provide
an approximate parametric distribution for the reader for ease of use. Otherwise, all
the raw MCMC samples are accessible via PEcAn for more interested readers. We will
now extend the explanation before Table S6 to:

Table S6 caption:

Links to the Workflow IDs. The input/output files associated
with each workflow can be accessed via the history table at
https://pecan2.bu.edu/pecan/history.php. Or each workflow can be ac-
cessed directly by replacing the workflowID in the following link:

https://pecan2.bu.edu/pecan/08-finished.php?workflowid=1000008503
(please note that this takes a while to load)

The left frame on the page can be used to navigate through PEcAn settings,
input and output files. If you wish to conduct further visualization or analysis
on the MCMC samples, you can first select the “mcmc.list.pda***.Rdata” file
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(*** being the ensemble IDs given by the workflow) under the “PEcAn Files”
dropdown menu on the left frame. By clicking “Show File” button you can
download the raw MCMC outputs to your own machines.

If you would like to display posterior density distributions, first select ei-
ther soil or plant physiology the under the “PFTs/PFT” menu on the left
frame. Next, under the “PFTs/Output” dropdown menu select “posteri-
ors.pda.***.pdf” files and click “Show PFT Output”. The red line would
be the posterior density plot and the black line would be the approxi-
mated parametric distributions (such as the ones reported in Table S2 and
S5) fitted by PEcAn’s approx.posterior function that can be found under
pecan/modules/meta.analysis/R/approx.posterior.R

L428: Fitted parametric posterior distributions of ED2 are given in the
supplement (Fig. S1, Table S5.) In addition all raw MCMC sam-
ples (“mcmc.list.pda***.Rdata”) and posterior distribution plots (“posteri-
ors.pda.***.pdf”) are available from the respective workflow directories (see
Table S6).

L397: The strongest correlations between leaf growth and leaf turnover
rate, and soil respiration rate and soil respiration Q10 parameters were also
detectable in emulator posteriors (emulator Fig S4, bruteforce Fig S5).

Important note on an improvement/fix from the authors: Before, we were using these
fitted parametric distributions to i) propose new knots in an iterative round, ii) produce
post-PDA ensembles. In other words, we were sampling from the marginal distribu-
tions, and missing further constraint from covariances. We are now sampling the joint
posterior distributions for both proposing new knots and generating post-PDA ensem-
bles. At the end of responses, some of our figures are redrawn with new results (please
note that other figures will also be redrawn in the revised manuscript). We also include
the following explanation at the end of section 2.1 Emulator-based calibration:
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L226: In this study, new points were added by proposing 20% of the new
knots from the original prior distribution and 80% from the joint posterior
of the previous emulator round (via re-sampling the MCMC samples in be-
tween rounds).

Enhancing Literature references:

RC 1 - Missing references to the literature include the following.

AC - We thank the reviewer for going the extra mile and briefly summarizing relevant
aspects in all these references. We will include most of them in the manuscript in
regarding places.

RC 1 - Further, as perhaps an unmentioned predecessor of calibrating data-
scaling parameters, see the ecosystem model Bayesian calibration approach of
Van Oijen et al. (2011), where every separate data stream came with its own bias
parameter.

L276-278: The bias term is included to account for the scaling from the dis-
crete soil collars to the stand as a whole (Van Oijen et al., 2011). This term
was also introduced because observed soil chamber fluxes were typically
over twice the ecosystem respiration estimated from the eddy-covariance
tower (Phillips et al., 2017). As in previous studies, this parameter is also
estimated in the calibration (Van Oijen et al., 2011).

RC 1 - Jandarov et al. (2014) used the same refinement employed in the present
paper, of emulating sufficient statistics instead of the overall likelihood directly.

AC - If we understood their study correctly, Jandarov et al.’s (2014) approach is related
but different than ours. As the spatiotemporal data they were dealing with was high di-
mensional, likelihood-based inference for their model was becoming intractable. Their
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approach consists of obtaining summary statistics from forward simulator runs, and
emulating the Euclidean distances between the summary statistics of their simulated
data and the summary statistics of the real data. In other words, they compared model
and data on a more aggregated level in their calibration. They chose these key sum-
mary statistics by expert opinion to capture important characteristics of their modeled
process (disease dynamics). The emulated Euclidean distances is then treated as the
likelihood function in their study. Whereas in this study, we compared model and data
directly, and emulated sufficient statistics of the likelihood. Here, sufficient statistics
has a formal mathematical definition (Fisher, 1992; Mikusheva, 2011).

L179: Next (step 3), a sufficient statistic (T ) is calculated by comparing each
model output to each data set (Fig. 1). Statistic T is sufficient for the job
of estimating the unknown parameters “when no other statistic calculated
from the same sample provides any additional information” (Fisher, 1992).

RC 1- Oakley Youngman (2017) showed many of the same methods as the
present authors do.

L113-115: Instead of constructing an emulator for the raw model output,
we adopt the approach of constructing an emulator of the likelihood – the
statistical assessment of the probability of the data given a set of model
parameters which forms the basis for both frequentist and Bayesian infer-
ence. Emulating the likelihood has the advantage that likelihood surfaces
are generally smooth and univariate (Oakley and Youngman, 2017).

L471-473: The efficiency of this workflow could potentially be increased
further by other adaptive sampling designs, and this remains an important
area for further research. For example, Oakley and Youngman (2017) used
an initial set of simulator runs to screen-out low likelihood regions to re-
duce the parameter space before the calibration. For a review of adaptive
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sampling methods, and emulator design methodologies in general, see For-
rester and Keane (2009).

RC 1 - For many examples of likelihood-emulation using Gaussian processes
etc. in cosmology, see Aslanyan et al. (2015) and references 7-24 therein (which
also tend to focus on how much computations are made faster by likelihood-
emulation).

L476-480 (section 4.2): In this study, we focused on calibrating process-
based mechanistic simulators (ecosystem models) using computationally
cheaper emulators. Variations of emulator approach are many, and can
be found in Jandarov et al., (2014); Aslanyan et al. (2015), Huang et al.
(2016), Oakley and Youngman (2017) and the references therein. Here
we adopted the version which emulates the likelihood surface with a Gaus-
sian process, similar to previous studies including applications with a cos-
mological likelihood function (Aslanyan et al., 2015), a stochastic natural
history model (Oakley and Youngman, 2017), the Hartman function and a
hydrologic model (Wang et al., 2014) and two land surface models (Li et
al., 2018). Our scheme also resembles the adaptive surrogate modelling-
based optimization approach (ASMO; Wang et al., 2014; Li et al., 2018)
in terms of both the nature of the problem (calibration of a process-based
mechanistic simulator) and the general scheme of the calibration algorithm.
However, aside from differences in initial sampling designs and error char-
acterizations in these studies, there are two main differences of our scheme
from ASMO.

RC 1 - Kandasamy Schneider show that instead of emulating the likelihood, it is
also possible to emulate the product of prior and likelihood (i.e. the posterior up
to a constant), an approach not mentioned by the present authors.
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AC - We might be looking at the wrong paper (because we found a paper from Kan-
dasamy, Schneider and Poczos by the same name and year, not from Kandasamy
Schneider), but this paper also emulates the likelihood surface (they estimate posteri-
ors through emulated likelihoods). However, a paper we are already citing (Gong and
Duan, 2017) does emulate posterior surface. Both papers are now cited (see next
comment).

(this is a comment by R2, included here as well for completeness) RC 2 - The
argumentation behind the sufficient statistics is not sustained by the experiment.

AC - We thank the reviewer for pointing this out. We will now extend the following
section in the discussion. Please also see our next response.

L493-496: A second addition to our scheme was that we included a fur-
ther generalization of emulation of the sufficient statistics (T) surface. T is,
by definition, sufficient to estimate the simulator (process model) parame-
ters in the MCMC. Unlike emulating the likelihood (this study, Oakley and
Youngman, 2017; Kandasamy, Schneider and Poczos, 2015) or the posteri-
ors (Gong and Duan, 2017), emulating T allows us to estimate parameters
that are not part of the process model but are part of the statistical data
model (the likelihood) as well. In this study, we tested the sufficient statistics
emulation for the SoilResp data and updated Gaussian likelihood precision
parameter in the MCMC together with other process model parameters.
This residual parameter includes both data error and model structural error,
and it is not possible to distinguish one from the other with this approach
(Van Oijen, 2017). However, when we apply the same calibration scheme
to different process models at the same site, because the observation error
in the data are the same, the difference in the posteriors of this residual pa-
rameter (Fig. S2)* could give us clues about the model structural errors of
models relative to each other, as we demonstrate in this study as a proof-of-
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concept. However, in our study, use of multiplicative bias parameter further
obscures the difference between observation and model structural error.

*Please note that Fig S2 will be redrawn with the revised workflow and will be men-
tioned explicitly in the results section.

RC 1 - Published methods for Bayesian calibration increasingly take into ac-
count that models are imperfect. There is a discrepancy between model output
and reality, even at the best possible setting of model parameter values. This
discrepancy is often modeled as a Gaussian Process for which - in the Bayesian
calibration - the hyperparameters are estimated together with the regular model
parameters. Likelihood-emulation precludes including discrepancy-estimation
because model outputs are not calculated during the MCMC. Please add a dis-
cussion of this limitation of your approach.

AC - This is an important point. First, it is worth noting that our current scheme does
allow the inclusion of this discrepancy in terms of a bias and variance terms that are
estimated together with the regular model parameters. Indeed, the ability to fit the vari-
ance term at the same time as the parameters is precisely why we switched to emulat-
ing summary statistics. That said, it is true that in the current implementation the bias
term is assumed to be a fixed constant, not varying dynamically, and the soil respiration
variance is assumed to be homoskedastic (though the tower fluxes are not). Second,
we would argue that our approach does not preclude a more flexible bias specification.
Indeed, while beyond the scope of the current paper, conceptually it should be possible
to use a bias-variance decomposition to separate our single emulator of the error sur-
face into two separate emulators for bias and variance terms. Similarly, our approach
does not preclude specifying a likelihood with a temporally autocorrelated error (which
is functionally equivalent to a GP error model in the time dimension), and augment-
ing the emulator with the autocorrelation parameter similar to how we augmented the
emulator with the bias term. As discussed in the paper we instead chose to approxi-
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mate this as an effective sample size correction, both for computational efficiency and
because accounting for autocorrelation in an asymmetric heteroskedastic Laplace is
more complicated than doing so in a multivariate Normal. Finally, in PEcAn, we are
working towards a more general framework for model-data integration that takes into
account initial condition / driver / parameter / model structural uncertainty in calibration
and prediction. However, this is still work in progress.

We will include the following in the discussion, at the end of section 4.2 after the para-
graph in the response above:

L497: Indeed, implementation of a more formal way of accounting for model
structural error (also called the discrepancy between model output and re-
ality) in our emulator scheme is one of our planned next steps. Explic-
itly specifying a model discrepancy term and estimating it through MCMC
would allow us to account for all sources of model predictive uncertainty
(Van Oijen, 2017). However, determining the expected form of discrep-
ancy in order to learn about model parameters realistically could be dif-
ficult due to lack of mechanistic knowledge of the underlying processes
(Brynjarsdottir and O’Hagan, 2014). In that sense, accounting for discrep-
ancy in model calibration is not an emulator approach specific issue. For
a novel approach investigating model structural uncertainty through a mod-
ular modeling framework see Walker et al. (2018), which could be useful
for modeling prior knowledge about discrepancy in ecosystem models in
the future. Because of the unknowns about the discrepancy functions, it is
common to use Gaussian processes to model the discrepancy (Kennedy
and O’Hagan, 2001). Even then, only with realistic prior constraints about
the process, calibrated model predictions will be unbiased (Brynjarsdottir
and O’Hagan, 2014). For an example of addressing discrepancy in cali-
bration that combines likelihood-emulation approach with importance sam-
pling, see Oakley and Youngman (2017) where they inflated simulator un-
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certainty to account for simulator discrepancy instead of explicitly specifying
a prior for it in order to make the likelihood tractable. When likelihood func-
tion becomes intractable, techniques using likelihood-free inference could
also be a remedy (Gutmann and Corander, 2016).
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