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RC 2 - The comparison between the results of the emulated and the real SIPNET
show that the distributions and central moments of the posteriors are different.
This is seen in:

a. Figure 3, where there is not “superior” approach across parameters: some-
times is R3, sometimes AAO, sometimes both R2 and R3 are equally good.

AC - After fixing errors in our algorithm, we have repeated this test with three changes:
1) we now sample the MCMC in the iterative rounds (instead of drawing from marginal
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distributions), 2) we now directly plot the MCMC samples (instead of fitted parametric
distributions), 3) we now use the contaminated synthetic data. Please see our other
response regarding the contamination of the synthetic dataset and Fig 1 below. In
the revised figure emulator performance improved and R3 was almost always the best
posterior distribution in terms of resolving the true parameter.

b. Figure 5, where 50% of the emulated SIPNET parameters are (statistically?)
different from the central moment of the distribution of the “bruteforce” model
calibrations and all of the emulated estimates have substantially higher ranges.

AC - We redrew this figure after sampling joint posterior distribution and directly plot-
ting MCMC samples themselves instead of using the approximated parametric distri-
butions. Please see our next response and the new figure below (Fig 2).

Both these results suggest that some further developments have to be investi-
gated in order to rely on posteriors from emulators. It would be key to investigate
why the emulators are overall inflating uncertainty and missing the optimum in
particular parameters (equifinality? Non-linearities in model functions controlled
by those parameters?).

AC - We thank the reviewer for this remark. Both reviewers’ comments indeed helped
us investigate further developments in our workflow and visualization. With this latest
improvement/fix, the differences between emulator and bruteforce posteriors are dimin-
ished further and the emulator medians are notably closer to the optima (Fig 2 below).
Our two answers to why emulators are overall inflating uncertainty are the following:

1) There is room for further improvement in the workflow. As re-sampling from the joint
posterior distributions rather than the marginal distributions helped with gaining more
constraint, other improvements could be thought of: e.g. adaptive sampling design
could be further improved, emulator could be passed to more effective algorithms than
MH-MCMC, different settings in the mlegp package could be tested to optimize the
Gaussian Process (GP) fitting, a different GP package could be used/written (we added
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a citation comparing Gaussian process modeling software; Erickson, Ankenman and
Sanchez, 2018) etc. We discuss these in the text, and we will be actively working
towards such improvements in the future.

(before the last paragraph of section 4.6): To fit the Gaussian process mod-
els in this study, we used the mlegp R-package which was found to be
performing well with its default settings (Erickson, Ankenman and Sanchez,
2018). The comparison by Erickson et al. (2018) shows that there are
faster (such as laGP ) and computationally more stable (such as GPfit)
R-packages available. However, laGP performs worse than mlegp unless
thousands of design points are provided, and GPfit is substantially slower
than mlegp as it is solely written in R whereas mlegp is pre-compiled in C.
Finally, other packages from other platforms (such as the GPy and scikit-
learn modules of Python) could outperform mlegp (Erickson, Ankenman
and Sanchez, 2018), however, as PEcAn is mainly written in R, mlegp was
an adequate choice for our workflow. Overall, we note that approximation
error vs clock-time trade-off is not independent of the software/code used
to fit the Gaussian process model.

2) The changes to the MCMC algorithm to accommodate emulator interpolation un-
certainty, which is the source of the emulators inflating the uncertainty with respect
to bruteforce, is an important feature of our algorithm not something that needs to be
fixed. As we do not run the full model everywhere in the parameter space, it is impor-
tant that the emulator not only interpolates between the points in the response surface,
but also reflects uncertainty where the model was not run (a reason why we chose
gaussian process as the emulator in the first place). If more design points are added,
the uncertainty reduces further as shown in Figure 7 in the manuscript. Failure to for-
mally incorporate this interpolation uncertainty (a mistake we ourselves made early in
the development of this algorithm) leads to falsely overconfident posteriors that often
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exclude the ‘true’ value.

Equifinality is a problem for bruteforce methods as well. While it is possible that this
is slightly exacerbated in the emulator approach, as there is more “wiggle room” for
parameter combinations, the formal uncertainty propagation due to GP approximation
errors is the main reason for higher uncertainty in emulator posteriors here.

In terms of non-linearities in model functions, GPs are well-suited for the task of emulat-
ing non-linear surfaces, and are shown to be performing well regardless of the degree
of non-linearities in the fitted surface (Rasmussen, 1996; Rasmussen and Williams,
2006), but are known to have trouble with discontinuities in surfaces. That said, we
have no evidence to suggest there are discontinuities in our likelihood surfaces, and
indeed the smoothness of most likelihood surfaces is one of the reasons we emulate
likelihoods / summary statistics rather than raw model output.

Overall, we agree that further developments should be investigated in this area of re-
search. However, despite the differences, we believe it is encouraging to see emulator
posteriors do not exclude the parameter space that the bruteforce suggests, and often
agree well with bruteforce posteriors.

RC 2 - Overall I miss quantitative statistical information about the fitness (model
performance) stemming from the parameters obtained via the emulator and the
“bruteforce” method against (1) synthetic data and (2) observations (e.g. Nash
Sutcfliffe or the Kling Gupta Efficiency). This should also be illustrated by scatter
plots and figures that show not only the subdaily but also the seasonal cycle in
synthetic/real-world data against models.

Knowing the time it takes for the calculations to get done is indeed of technical
relevance. But here the most relevant aspects (at least in the perspective of BGD)
are centered on how the different model realizations stemming from the emulator
approach against the traditional approach change the retrieval of optimal param-
eters (and posterior uncertainties) and in the eddy covariance flux predictions
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(for which many relevant information is mostly found in supplements). These
are especially important to understand the limitations and caveats of the current
proof-of-concept exercise (evaluation of the synthetic exercise).

AC - We thank the reviewer for pointing out NSE and KGE statistics used in the hydrol-
ogy literature. We agree with the reviewer that reporting quantitative statistical informa-
tion about model performance is important. Indeed, we provide performance metrics
in the paper currently (please see Table 2 in the manuscript). We report RMSE val-
ues, which is related to NSE. In addition, we also report deviance values which takes
into account the chosen likelihood and are a more relevant approach regarding the
Bayesian framework (Hooten and Hobbs, 2015 as cited in the manuscript). For emula-
tor approach, we report both these metrics against synthetic and real-world data. For
bruteforce approach, we only report these metrics against real-world data to provide
comparison to the emulator performance. As we already know the true values for syn-
thetic data, we did not feel the need to run bruteforce approach to evaluate emulator
performance there. But our workflow is ready to do that in case requested.

We did not present predicted vs observed scatter plots for two reasons: 1) The tempo-
ral trends are not visible from such plots, therefore, we decided to go with the more in-
formative unsmoothed time-series plots of both predictions and observations. 2) Such
scatter plots are easier to visualize when data is plotted against single model run, while
the Bayesian approach produces an ensemble probability distribution of runs. Model
ensemble means or medians could be used, but, we wanted to provide the CIs, in-
corporating the posterior parameter uncertainty. Concentration ellipses could also be
used, such as in the an example below (Fig 3). However, we still think temporal trends
would be missed by such plots, and including both plots in the main text that essentially
test for the same thing would be unnecessary. That is also the reason why we provided
diurnal cycle plots in the supplementary, while there is the whole time-series plot in the
main text.

Seasonal plots of the model ensembles could also easily be made, but seasonal plots
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of the data are not possible without gapfilling the data using some other statistical or
mechanistic model, which would then result in a model-model comparison rather than
a model-data comparison.

RC 2 - Another missing important aspect is to understand how the overall results
change when contaminating the synthetic dataset with noise (with the same
characteristics such as the real observations).

AC - We thank the reviewer for pointing this out. While it is true that our original analysis
did not contaminate the synthetic dataset with noise, our synthetic data had certain
characteristics as the real observations. Namely, it had the same gaps as the filtered
flux data, and the same coarser time-step and small sample size (n=39) as the real
SoilResp data.

We agree that testing against a noisy synthetic dataset is an important test. We con-
taminated the synthetic dataset with noise based on the uncertainties in the fits to field
data and repeated the experiment. Emulator approach showed similar performance
with the contaminated synthetic data. Please see Fig 1 below. We believe this is a
more proper test than our current version. Therefore, we changed the synthetic data
experiment in the main text with the one against the contaminated synthetic data.

L335: We generated a random parameter set for the SIPNET parameters
shown in Fig. 2, and ran the model forward with these values (Table S3).
In order to give the synthetic data real characteristics, model outputs were
reformatted to have the same gaps, time-steps and sample sizes as the
data used in this study. Then, the likelihood parameters were calculated
from the synthetic dataset, and next, further noise was added by drawing
values from their respective likelihood functions to obtain the final synthetic
dataset.

RC 2- It is not analyzed how does the emulator performance changes by the
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inclusion of more or less data streams.

AC - While we agree that effect of including more or less data streams in model cali-
bration is an interesting question and an active area of research, we find it to be a more
general data assimilation question rather than being emulator specific, and out of the
scope of this particular study. We cite two papers that are looking into this question
(MacBean et al., 2016; Cameron et al., in prep.). We designed our framework to make
assimilation of multiple data streams possible. With more or less data streams, calibra-
tion performance of the emulator should still be proportional to bruteforce rather than
showing large independent emulator-specific differences.

RC 2 - There are a few uninformative visuals, like Figure 4 top 2 panels; Figure
3, the som_resp_rate; that could be replaced by more informative elements (new
figures, or tables).

AC - We thank the reviewer for the suggestions. We now replaced Figure 3,
som_resp_rate panel with a more informative x-axis range, please see Fig 1 (with
contaminated synthetic data) below.

We also agree that top 2 panels of Figure 4 in the manuscript are “busy”. However,
we have found the current unsmoothed time-series plot to be more informative than
smoothed ones or predicted and observed scatter plots with a 1-1 line as it shows
the overall temporal trend without biases as mentioned above. The smoothed figures
could be drawn only with a gapfilled flux data. However, as it was the unfilled data that
the model was calibrated against, this causes some data points to fall out of the the
calibrated model CIs as an artifact of gapfilling and smoothing.

Below, we provide both a concentration ellipses version and a smoothed time-series
version of model-data comparison (Fig 3 and 4 respectively). We propose to include
the smoothed time-series version in the main text, and include the unsmoothed version
and the version with ellipses in the supplement for the interested readers, unless the
editor suggests otherwise.
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RC 2 - Related to Equation 3, please see the analysis and discussion in Lasslop
et al 2008.

AC - We thank the reviewer for pointing out this paper. Treatment for the asymmetric
heteroskedasticity of the flux data is critical for parameter estimation. While Lasslop
et al. (2008) argue that the double exponential distribution of fluxes is largely due to a
superposition of Gaussian distributions, they showed that distributions of all error esti-
mates still have a Laplacian distribution. It is also assumed that random errors on eddy
covariance data would be approximately normal when integrated over a day (Richard-
son et al., 2010), but in this study we assimilate all fluxes at the half-hourly scale.
Therefore, we think the asymmetric heteroskedastic Laplacian distribution choice in
our study is justified. We have added a reference to Lasslop et al. (2008).

L248-250: The error distribution of flux data are known to be both het-
eroskedastic, with variance increasing with the magnitude of the flux, and
to have a double exponential distribution (Richardson et al., 2006; Lasslop
et al., 2008). In previous studies, the error distributions of high flux magni-
tudes and fluxes averaged over time were modeled as Gaussian (Lasslop
et al., 2008; Richardson et al., 2010). However, as we assimilate all flux
magnitudes at half-hourly time-step we modeled the error distributions of
NEE and LE fluxes as asymmetric heteroskedastic Laplacian distribution.

RC 2 - The argumentation behind the sufficient statistics is not sustained by the
experiment.

AC - We thank the reviewer for pointing this out. We will now extend the following
section in the discussion. Please also see our next response.

L493-496: A second addition to our scheme was that we included a fur-
ther generalization of emulation of the sufficient statistics (T) surface. T is,
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by definition, sufficient to estimate the simulator (process model) parame-
ters in the MCMC. Unlike emulating the likelihood (this study, Oakley and
Youngman, 2017; Kandasamy, Schneider and Poczos, 2015) or the posteri-
ors (Gong and Duan, 2017), emulating T allows us to estimate parameters
that are not part of the process model but are part of the statistical data
model (the likelihood) as well. In this study, we tested the sufficient statistics
emulation for the SoilResp data and updated Gaussian likelihood precision
parameter in the MCMC together with other process model parameters.
This residual parameter includes both data error and model structural error,
and it is not possible to distinguish one from the other with this approach
(Van Oijen, 2017). However, when we apply the same calibration scheme
to different process models at the same site, because the observation error
in the data are the same, the difference in the posteriors of this residual
parameter (Fig. S2) could give us clues about the model structural errors of
models relative to each other, as we demonstrate in this study as a proof-of-
concept. However, in our study use of multiplicative bias parameter further
obscures the difference between observation and model structural error.

(this is a comment by R1 included here for completeness) RC 1 - Published meth-
ods for Bayesian calibration increasingly take into account that models are im-
perfect. There is a discrepancy between model output and reality, even at the
best possible setting of model parameter values. This discrepancy is often mod-
eled as a Gaussian Process for which - in the Bayesian calibration - the hyperpa-
rameters are estimated together with the regular model parameters. Likelihood-
emulation precludes including discrepancy-estimation because model outputs
are not calculated during the MCMC. Please add a discussion of this limitation
of your approach.

AC - This is an important point. First, it is worth noting that our current scheme does
allow the inclusion of this discrepancy in terms of a bias and variance terms that are
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estimated together with the regular model parameters. Indeed, the ability to fit the vari-
ance term at the same time as the parameters is precisely why we switched to emulat-
ing summary statistics. That said, it is true that in the current implementation the bias
term is assumed to be a fixed constant, not varying dynamically, and the soil respiration
variance is assumed to be homoskedastic (though the tower fluxes are not). Second,
we would argue that our approach does not preclude a more flexible bias specification.
Indeed, while beyond the scope of the current paper, conceptually it should be possible
to use a bias-variance decomposition to separate our single emulator of the error sur-
face into two separate emulators for bias and variance terms. Similarly, our approach
does not preclude specifying a likelihood with a temporally autocorrelated error (which
is functionally equivalent to a GP error model in the time dimension), and augment-
ing the emulator with the autocorrelation parameter similar to how we augmented the
emulator with the bias term. As discussed in the paper we instead chose to approxi-
mate this as an effective sample size correction, both for computational efficiency and
because accounting for autocorrelation in an asymmetric heteroskedastic Laplace is
more complicated than doing so in a multivariate Normal. Finally, in PEcAn, we are
working towards a more general framework for model-data integration that takes into
account initial condition / driver / parameter / model structural uncertainty in calibration
and prediction. However, this is still work in progress.

We will include the following in the discussion, at the end of section 4.2 after the para-
graph in the response above:

L497: Indeed, implementation of a more formal way of accounting for model
structural error (also called the discrepancy between model output and re-
ality) in our emulator scheme is one of our planned next steps. Explic-
itly specifying a model discrepancy term and estimating it through MCMC
would allow us to account for all sources of model predictive uncertainty
(Van Oijen, 2017). However, determining the expected form of discrep-
ancy in order to learn about model parameters realistically could be dif-
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ficult due to lack of mechanistic knowledge of the underlying processes
(Brynjarsdottir and O’Hagan, 2014). In that sense, accounting for discrep-
ancy in model calibration is not an emulator approach specific issue. For
a novel approach investigating model structural uncertainty through a mod-
ular modeling framework see Walker et al. (2018), which could be useful
for modeling prior knowledge about discrepancy in ecosystem models in
the future. Because of the unknowns about the discrepancy functions, it is
common to use Gaussian processes to model the discrepancy (Kennedy
and O’Hagan, 2001). Even then, only with realistic prior constraints about
the process, calibrated model predictions will be unbiased (Brynjarsdottir
and O’Hagan, 2014). For an example of addressing discrepancy in cali-
bration that combines likelihood-emulation approach with importance sam-
pling, see Oakley and Youngman (2017) where they inflated simulator un-
certainty to account for simulator discrepancy instead of explicitly specifying
a prior for it, in order to make the likelihood tractable. When likelihood func-
tion becomes intractable, techniques using likelihood-free inference could
also be a remedy (Gutmann and Corander, 2016).
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Fig. 1. New Figure 3, contaminated synthetic data version.
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Fig. 2. New Figure 5, after sampling joint posterior distribution instead of marginal distributions
in between iterative emulator rounds.
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Fig. 3. Predicted vs observed, concentration ellipses version.
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Fig. 4. Predicted vs observed, smoothed time-series version.
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