We would like to express our gratitude to both referees and the associate editor once more for
carefully handling of our manuscript. We found the comments very helpful.

The two biggest changes in the revised manuscript from the previous version are: 1) We are
now sampling the joint posterior distributions for both proposing new knots in iterative rounds
and generating post-PDA ensembles. 2) We now use a synthetic data with noise in our
synthetic data experiment.

We repeated our experiments, and revised the text and figures in the light of referee
suggestions. We believe both our manuscript and workflow is now improved.

Below please find our point-by-point responses, some of which are reproduced from our
previous responses here for completeness. The page (p) and line numbers (L) refer to the
marked-up version of the manuscript.

Referee’s Comment (RC) 1 - Contrary to statements made in the paper, the techniques
used by the authors are for the most part not novel. There is in fact a substantial
literature on replacing the likelihood function with more efficient calculation methods,
and | shall give pointers to the literature below. Overall it seems that the literature is very
poorly referenced in this paper. However, in the field of ecosystem modelling, several
techniques described by the authors have been used hardly at all, so the paper can be
valuable in introducing the ideas to a new audience.

RC 2 - The methods are not novel, but application of the method in the field of
biogeosciences is in its infancy and the example experiment provided here may be useful
in designing further approaches.

Authors’ Comment (AC) - We thank the reviewers for this remark. In terms of our novelty
statements, we wanted to explain that this paper is the culmination of work that has started
approximately 12 years ago (please see AGU talk abstract by Dietze et al., 2009) and it was
rather novel even across disciplines back then. We acknowledge the fact that this is not the
case anymore and offer our apologies for missing key papers. We have revised the novelty
statements accordingly: p1.L6, p1.L8-10, p4.L10, p4.L12, p8.L22, p14.L10-18

However, as both reviewers highlighted, a decade after they were first introduced, the
techniques described in this paper have been used hardly at all in the field of ecosystem
modeling. This is not surprising given that applications of these techniques require a non-trivial
amount of computational and statistical expertise, not to mention a steep debugging curve of
both models and algorithms. In this paper, we report the integration of a standardized ecological
application of these methods in an open-source ecological informatics toolbox for the general
use of the ecosystem modeling community. It is exactly our hope that the experiments and the
implementations provided here may foster more use and development of novel types of model
emulators.



RC 1 - To introduce new methodological ideas to people, the language should be clear
and consistent, and that is not the case here. There is a worrying lack of understanding
of the difference between the concepts of ’error’ and ’uncertainty’. The first refers to
deviation from truth, the second to incomplete knowledge, but in this paper the terms are
occasionally treated as synonyms, which makes the Introduction highly unclear. Proper
terminology for these concepts and others can, for example, be found in the review of
Bayesian methods by Van Oijen (2017), where also additional references on MCMC,
emulation and hierarchical modelling in ecosystem modelling can be found.

The Introduction mentions that "Parameter error refers to the uncertainty about the true
values of the model parameters”, which is quite wrong. Parameter error means assigning
a value to a parameter which differs from reality, e.g. stating that the light- use efficiency
is 1 g MJ-1 when in reality it is 2 g MJ-1. Not knowing whether it is 1 or 2 or anything else
is uncertainty. It is therefore also incorrect to state, as the authors do, that "parameter
error asymptotically goes to zero with enough data". It is the conditional uncertainty that
goes to zero, not the error. Every experimentalist knows that having any number of
biased measurements makes no parameter converge to its correct value - and all
measurements have their hidden or unhidden biases. There is no safe way to "estimate
observation error from data".

AC - We completely agree with reviewer’s definitions of error and uncertainty, and revised these
sections in the introduction: p2.L.24-L.33, p3.L1-L18

RC 1 - The treatment of the subject matter in the Introduction is further hampered by poor
terminology regarding parameters. Terms like "parameter”, "parameter vector",
"parameter set[s]" are used arbitrarily and inconsistently. [As an exercise for the reader:
show that lines 98 and 147 cannot both apply.] Note that a set is unordered and a vector
is ordered, so a point in parameter space can not be a "parameter set". And "covariances
among parameters" are not real quantities but statistical quantities that capture part of
our uncertainty and that change when more data come in. Therefore the covariances are
in no way "accounted for"”. Please note that your subject matter of Bayesian calibration
using MCMC is unfamiliar to many readers, so getting an idea of what is going on
requires using precise language. Apologies for these pedantic remarks, but in my
experience people stumble over the smallest inconsistency when learning Bayesian
methods.

AC - We are grateful for such remarks, and have revised the text accordingly: p3.L32-L34,
p4.L13, Algorithm 1: step 1-2-5a, p5.L7, p6.L4, p6.L25, p6.L31-32, p7.L3-4



RC 1 - Can you elaborate on the limitations of your approach? What is the maximum
number of parameters ($p$) that can be calibrated in general, and for your two models in
particular? You set the number of model-runs at $p*3$. Does that mean that calibrating
100 parameters is unfeasible because it would require $1026$ model evaluations just to
build the emulator?

AC - With the current ($p*3$) scheme calibrating 100 parameters would be infeasible as it
would require $1076$ model evaluations just to build the emulator. With ED2, running the model
$1076$ times is not feasible at all, unless iterative emulator rounds are massively parallelized.
With SIPNET, the Cholesky decomposition within the GP, rather than the model evaluations,
would become limiting for $1076$ design points. In that case, emulators other than GP (e.g.
NNGP) could be considered as we discuss in the manuscript.

That said, the ($p”3$) scheme is just the rule-of-thumb that we employed in these experiments,
and not an inherent limit of the emulator approach itself. The calibration of 100 parameters
might be possible with a much smaller number of knots (\Il $1076$) depending on the model.
For example, our scaling experiment (Figure 7b) shows that, in terms of deviance, it was
possible to constrain 6 SIPNET parameters to a reasonable extent with 120 knots in total
(likewise, 8 and 10 SIPNET parameters with 240 parameters in total). A common
recommendation in computer experiments with GP is to use a sample size about 10 times (n =
10d) the input dimension (Loeppky, Sacks & Welch, 2009). Others found this is often too small
and suggest 20 times (n = 20d) larger sample size (Erickson, Ankenman & Sanchez, 2018).

Therefore, calibrating 100 model parameters with 100 x 20 design points could be possible in
theory. In practice, we would advocate for performing an uncertainty analysis to reduce the
dimensionality of the problem to the subset these 100 parameters that contribute most to model
uncertainty. In addition, the data would need to be strong enough to actually constrain 100
parameters. We now extended the text in section 4.6 to include this discussion, p18.L1-12.

RC 1 - How exactly does PEcAn calculate the contributions of different parameters to
overall uncertainty, i.e. what was the screening algorithm?

AC - The uncertainty analysis in PEcAn uses a one-at-a-time (OAT) approach. An OAT
approach involves multiple model runs while holding all parameters at their median except one
each time, and evaluating how it translates to differences in model outputs. The parameters are
varied at their parameter data assimilation (PDA) analysis priors’ (which could be original priors
or, if the parameter was constrained by the meta analysis, they could be meta analysis
posteriors in PEcAn) median and at six PDA prior quantiles equivalent to \pm[1,2,3]$\sigma$ in
the standard normal. Details are given in previous papers as cited (LeBauer et al., 2013; Dietze
et al., 2014). Plans are in place to develop a more general multivariate uncertainty analysis in
the future once the multivariate version of our trait meta-analysis is in place (Shiklomanov et al
in review).



RC 1 - There are linguistic errors (plural subjects with singular verbs, missing definite
articles etc.) on lines 54, 55, 92, 93, 100, 183, 201, 248, 294, 306 (twice), 309, 323, 351, 372,
418, 434, 436, 443, 454-455, 482 (twice), 483, 484, 485, 507, 511, 520, 539 (twice), 581.

We thank the reviewer for noticing and noting these errors. We went through the text more
carefully and believe we have corrected these errors: p2.L15, p2.L16, p3.L27, p3.L34, p5.L14,
p6.L13, p7.L23, p9.L7, p9.L16-19, p10.L23-25, p13.L5, p13.L11, p13.L18, p15.L32, p16.L2,
p16.L7, p16.L27, p16.L28.

RC 1 - The last sentence of the Abstract (I. 34-36) can be deleted without loss of content.

AC - We deleted this sentence, p1.L20.

RC 1 - How is the "Euclidean distance between confidence intervals” determined?

AC - Thank you for this question. Realizing that this was not clear in the manuscript, we added
more text to the manuscript: p10.L27-30, p11.L1-4.

RC 1 - Why were 729 knots used for $p=8$% parameters of SIPNET, given that you state
the need for $p”3$ knots ($729=973$%, not $873%)?

AC - Because we counted the multiplicative bias parameter in the $p$. So, 8 SIPNET
parameters plus the multiplicative bias parameter, $p = 9% for SIPNET. 9 ED2 parameters (6 of
9 being scaling factors for common PFT parameters) plus the multiplicative bias parameter, $p
= 10$ for ED2. Thank you for pointing this out. We now state this in the text more explicitly
(p9.L28-30).

RC 1 - Two of the references are not placed in their proper alphabetical position, and the
reference to Hartig et al. (2012) is missing.

AC - We corrected these in the revised manuscript.

RC 1 - Can you explain the results shown in Tables A2 and A5? How can posterior
distributions for parameters following MCMC neatly fall into parameterised probability
distributions (which also are often of different type than their priors)?

AC - As explained previous comments, the results reported in Tables S2 and S5 are fitted
parametric distributions to the marginal MCMC samples. We wanted to provide an approximate
parametric distribution for the reader for ease of use. Otherwise, all the raw MCMC samples are



accessible via PEcAn for more interested readers (p12.L6-7). We now extended the explanation
before Table S6 as well.

Please note that we now plot the Figures 3 and 5 with the raw samples instead of the fitted
parametric distributions (previous version).

Enhancing Literature references:
RC 1 - Missing references to the literature include the following.

AC - We thank the reviewer for going the extra mile and briefly summarizing relevant aspects in
all these references. We now included them in the manuscript in regarding places.

RC 1 - As perhaps an unmentioned predecessor of calibrating data-scaling parameters,
see the ecosystem model Bayesian calibration approach of Van Oijen et al. (2011), where
every separate data stream came with its own bias parameter.

AC - p8.L20-22

RC 1 - Jandarov et al. (2014) used the same refinement employed in the present paper, of
emulating sufficient statistics instead of the overall likelihood directly.

AC - If we understood their study correctly, Jandarov et al.’s (2014) approach is related but
different than ours. As the spatiotemporal data they were dealing with was high dimensional,
likelihood-based inference for their model was becoming intractable. Their approach consists of
obtaining summary statistics from forward simulator runs, and emulating the Euclidean
distances between the summary statistics of their simulated data and the summary statistics of
the real data. In other words, they compared model and data on a more aggregated level in their
calibration. They chose these key summary statistics by expert opinion to capture important
characteristics of their modeled process (disease dynamics). The emulated Euclidean distances
is then treated as the likelihood function in their study. Whereas in this study, we compared
model and data directly, and emulated sufficient statistics of the likelihood. Here, sufficient
statistics has a formal mathematical definition, p5.L10

RC 1- Oakley & Youngman (2017) showed many of the same methods as the present
authors do.

AC - p4.L15, p14.L3-4, p14.L10, p14.L29



RC 1 - For many examples of likelihood-emulation using Gaussian processes etc. in
cosmology, see Aslanyan et al. (2015) and references 7-24 therein (which also tend to
focus on how much computations are made faster by likelihood-emulation).

AC - p14.L.8-12

RC 1 - Kandasamy & Schneider show that instead of emulating the likelihood, it is also
possible to emulate the product of prior and likelihood (i.e. the posterior up to a
constant), an approach not mentioned by the present authors.

AC - We might be looking at the wrong paper (because we found a paper from Kandasamy,
Schneider and Poczos by the same title and year, not from Kandasamy & Schneider), but this
paper also emulates the likelihood surface (they estimate posteriors through emulated
likelihoods). However, a paper we are already citing (Gong and Duan, 2017) does emulate
posterior surface. Both papers are now cited, p14.L28.

RC 2 - The argumentation behind the sufficient statistics is not sustained by the
experiment.

AC - We thank the reviewer for this important point. We now extended the text in the discussion
(p14.L27 onwards). Please also see our next response.

RC 1 - Published methods for Bayesian calibration increasingly take into account that
models are imperfect. There is a discrepancy between model output and reality, even at
the best possible setting of model parameter values. This discrepancy is often modeled
as a Gaussian Process for which - in the Bayesian calibration - the hyperparameters are
estimated together with the regular model parameters. Likelihood-emulation precludes
including discrepancy-estimation because model outputs are not calculated during the
MCMC. Please add a discussion of this limitation of your approach.

AC - We thank the reviewer for pointing this out. First, it is worth noting that our current scheme
does allow the inclusion of this discrepancy in terms of a bias and variance terms that are
estimated together with the regular model parameters. Indeed, the ability to fit the variance term
at the same time as the parameters is precisely why we switched to emulating summary
statistics. That said, it is true that in the current implementation the bias term is assumed to be a
fixed constant, not varying dynamically, and the soil respiration variance is assumed to be
homoskedastic (though the tower fluxes are not). Second, we would argue that our approach
does not preclude a more flexible bias specification. Indeed, while beyond the scope of the
current paper, conceptually it should be possible to use a bias-variance decomposition to
separate our single emulator of the error surface into two separate emulators for bias and
variance terms. Similarly, our approach does not preclude specifying a likelihood with a
temporally autocorrelated error (which is functionally equivalent to a GP error model in the time
dimension), and augmenting the emulator with the autocorrelation parameter similar to how we



augmented the emulator with the bias term. As discussed in the paper we instead chose to
approximate this as an effective sample size correction, both for computational efficiency and
because accounting for autocorrelation in an asymmetric heteroskedastic Laplace is more
complicated than doing so in a multivariate Normal. Finally, in PEcAn, we are working towards
a more general framework for model-data integration that takes into account initial condition /
driver / parameter / model structural uncertainty in calibration and prediction. However, this is
still work in progress.

We now extended our discussion, at the end of section 4.2, p15.L6 onwards.

RC 2 - Figure 3, where there is not “superior” approach across parameters: sometimes
is R3, sometimes AAO, sometimes both R2 and R3 are equally good.

AC - We have repeated this test with three changes: 1) we now sample the MCMC in the
iterative rounds (instead of drawing from marginal distributions), 2) we now directly plot the
MCMC samples (instead of fitted parametric distributions), 3) we now use the contaminated
synthetic data. Please see our other response regarding the contamination of the synthetic
dataset and new Figure 3. In the revised figure, R3 is always the best posterior distribution in
terms of resolving the true parameter.

RC - 2 Figure 5, where 50\% of the emulated SIPNET parameters are (statistically?)
different from the central moment of the distribution of the “bruteforce” model
calibrations and all of the emulated estimates have substantially higher ranges.

AC - We redrew this figure after sampling joint posterior distribution and directly plotting MCMC
samples themselves instead of using the approximated parametric distributions. Please see our
next response and the new Figure 5 in the revised manuscript.

Both these results suggest that some further developments have to be investigated in
order to rely on posteriors from emulators. It would be key to investigate why the
emulators are overall inflating uncertainty and missing the optimum in particular
parameters (equifinality? Non-linearities in model functions controlled by those
parameters?).

AC - We thank the reviewer for this remark. Both reviewers’ comments indeed helped us
investigate further developments in our workflow and visualization. With this latest
improvement/fix, the differences between emulator and bruteforce posteriors are diminished
further and the emulator medians are notably closer to the optima. Our two answers to why
emulators are overall inflating uncertainty are the following:

1) There is room for further improvement in the workflow. As re-sampling from the joint posterior
distributions rather than the marginal distributions helped with gaining more constraint, other



improvements could be thought of: e.g. adaptive sampling design could be further improved,
emulator could be passed to more effective algorithms than MH-MCMC, different settings in the
mlegp package could be tested to optimize the Gaussian Process (GP) fitting, a different GP
package could be used/written (we now added a citation comparing Gaussian process modeling
software; p17.L.25-32) etc. We discuss these in the text, and we will be actively working towards
such improvements in the future.

2) The changes to the MCMC algorithm to accommodate emulator interpolation uncertainty,
which is the source of the emulators inflating the uncertainty with respect to bruteforce, is an
important feature of our algorithm not something that needs to be fixed. As we do not run the full
model everywhere in the parameter space, it is important that the emulator not only interpolates
between the points in the response surface, but also reflects uncertainty where the model was
not run (a reason why we chose gaussian process as the emulator in the first place). If more
design points are added, the uncertainty reduces further as shown in Figure 7 in the manuscript.
Failure to formally incorporate this interpolation uncertainty (a mistake we ourselves made early
in the development of this algorithm) leads to falsely overconfident posteriors that often exclude
the ‘true’ value.

Equifinality is a problem for bruteforce methods as well. While it is possible that this is slightly
exacerbated in the emulator approach, as there is more “wiggle room” for parameter
combinations, the formal uncertainty propagation due to GP approximation errors is the main
reason for higher uncertainty in emulator posteriors here.

In terms of non-linearities in model functions, GPs are well-suited for the task of emulating
non-linear surfaces, and are shown to be performing well regardless of the degree of
non-linearities in the fitted surface (Rasmussen, 1996; Rasmussen and Williams, 2006), but are
known to have trouble with discontinuities in surfaces. That said, we have no evidence to
suggest there are discontinuities in our likelihood surfaces, and indeed the smoothness of most
likelihood surfaces is one of the reasons we emulate likelihoods / summary statistics rather than
raw model output.

Overall, we agree with the reviewer that further developments should be investigated in this
area of research. However, despite the differences, we believe it is encouraging to see emulator
posteriors do not exclude the parameter space that the bruteforce suggests, and often agree
well with bruteforce posteriors.

RC 2 - Overall | miss quantitative statistical information about the fitness (model
performance) stemming from the parameters obtained via the emulator and the
“bruteforce” method against (1) synthetic data and (2) observations (e.g. Nash Sutcfliffe
or the Kling Gupta Efficiency). This should also be illustrated by scatter plots and figures
that show not only the subdaily but also the seasonal cycle in synthetic/real-world data
against models.



AC - We thank the reviewer for pointing out NSE and KGE statistics used in the hydrology
literature. We agree with the reviewer that reporting quantitative statistical information about
model performance is important. Indeed, we provide performance metrics in the paper currently
(please see Table 2 in the manuscript). We report RMSE values, which is related to NSE. In
addition, we also report deviance values which takes into account the chosen likelihood and are
a more relevant approach regarding the Bayesian framework (Hooten & Hobbs, 2015 as cited in
the manuscript). For emulator approach, we report both these metrics against synthetic and
real-world data. For bruteforce approach, we only report these metrics against real-world data to
provide comparison to the emulator performance. As we already know the true values for
synthetic data, we did not feel the need to run bruteforce approach to evaluate emulator
performance there. But our workflow is ready to do that in case requested.

We did not present predicted vs observed scatter plots for two reasons: 1) The temporal trends
are not visible from such plots. Also, including both plots (time-series and scatter) in the main
text that essentially test for the same thing (observed vs. predicted) would be unnecessary. That
was also the reason why we provided diurnal cycle plots in the supplementary, while there is the
whole time-series plot in the main text. Therefore, we decided to go with the more informative
unsmoothed time-series plots of both predictions and observations. 2) Such scatter plots are
easier to visualize when data is plotted against single model run, while the Bayesian approach
produces an ensemble probability distribution of runs. In that case, concentration ellipses might
be useful.

Seasonal plots of the data require gapfilling the data using some other statistical or mechanistic
model, which result in a model-model comparison rather than a model-data comparison.
However, also considering the next suggestion by the reviewer (please see our next response),
we agree to provide the seasonal (monthly smoothed) time-series in the main text (please see
new Figure 4 and 6 in the revised manuscript), move the unsmoothed time series to the
appendix, and include an additional observed vs. predicted ellipses plot of the in the appendix.

RC 2 - There are a few uninformative visuals, like Figure 4 top 2 panels; Figure 3, the
som_resp_rate; that could be replaced by more informative elements (new figures, or
tables).

AC - We thank the reviewer for the suggestions. We now replaced Figure 3, som_resp_rate
panel with a more informative x-axis range, please see new Figure 3 (with contaminated
synthetic data) in the revised manuscript.

As mentioned above, we have found the previous unsmoothed time-series plot to be more
informative than smoothed ones. The smoothed figures could be drawn only with a gapfilled flux
data. However, as it was the unfilled data that the model was calibrated against, this causes
some data points to fall out of the the calibrated model Cls as an artifact of gapfilling and
smoothing.



But we also agree that top 2 panels of Figure 4 (and likewise Figure 6) in the manuscript were
“‘busy”. We now included the smoothed time-series version in the main text, and the
unsmoothed version in the supplement for the interested readers.

RC 2 - Another missing important aspect is to understand how the overall results change
when contaminating the synthetic dataset with noise (with the same characteristics such
as the real observations).

AC - We thank the reviewer for pointing this out. While it is true that our original analysis did not
contaminate the synthetic dataset with noise, our synthetic data had certain characteristics as
the real observations. Namely, it had the same gaps as the filtered flux data, and the same
coarser time-step and small sample size (n=39) as the real SoilResp data.

We agree that testing against a noisy synthetic dataset is an important test. We contaminated
the synthetic dataset with noise based on the uncertainties in the fits to field data and repeated
the experiment. Emulator approach showed similar performance with the contaminated
synthetic data (please see new Figure 3 in the revised manuscript). We believe this is a more
proper test than our previous version. Therefore, we changed the synthetic data experiment in
the main text with the one against the contaminated synthetic data, p10.L6-10.

RC 2- It is not analyzed how does the emulator performance changes by the inclusion of
more or less data streams.

AC - While we agree that effect of including more or less data streams in model calibration is an
interesting question and an active area of research, we consider it to be a more general data
assimilation question rather than being emulator specific, and out of the scope of this particular
study. We designed our framework to make assimilation of multiple data streams possible. With
more or less data streams, calibration performance of the emulator should still be proportional to
bruteforce rather than showing large independent emulator-specific differences. We now cite
two papers that are looking into this question specifically (Keenan et al., 2013; MacBean et al.,
2016) and explicitly state this in the text, p16.L20-22

RC 2 - Related to Equation 3, please see the analysis and discussion in Lasslop et al
2008.

AC - We thank the reviewer for pointing out this paper. Treatment for the asymmetric
heteroskedasticity of the flux data is critical for parameter estimation. While Lasslop et al. (2008)
argue that the double exponential distribution of fluxes is largely due to a superposition of
Gaussian distributions, they showed that distributions of all error estimates still have a Laplacian



distribution. It is also possible to assume that random errors on eddy covariance data would be
approximately normal when integrated over a day (Richardson et al., 2010), but in this study we
assimilate all fluxes at the half-hourly scale. Therefore, we think the asymmetric heteroskedastic
Laplacian distribution choice in our study is justified. We still find it useful to add a reference to
Lasslop et al. (2008), p7.L25-30.
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Abstract. Data-model integration plays a critical role in assessing and improving our capacity to predict ecosystem dynamics.
Similarly, the ability to attach quantitative statements of uncertainty around model forecasts is crucial for model assessment
and interpretation and for setting field research priorities. Bayesian methods provide a rigorous data assimilation framework for
these applications, especially for problems with multiple data constraints. However, the Markov Chain Monte Carlo (MCMC)
techniques underlying most Bayesian calibration can be prohibitive for computationally-demanding models and large data
sets. We deseribe-employ an alternative method, Bayesian model emulation of sufficient statistics, that can approximate the

full joint posterior density, is more amenable to parallelization, and provides an estimate of parameter sensitivity. Analysis

involved informative priors constructed from a meta-analysis of the primary literature, and-intredueed-novel-approaches—te

the-specification of both model and data uncertainties, ineluding-bias-and-and introduced novel approaches to autocorrelation
corrections on multiple data streams and emulating the sufficient statistics surface. We report the integration of this method

within an ecological workflow management software, Predictive Ecosystem Analyzer (PEcAn), and its application and valida-
tion with two process-based terrestrial ecosystem models: SIPNET and ED2. In a test against a synthetic dataset, the emulator
was able to retrieve the true parameter values. A comparison of the emulator approach to standard “bruteforce” MCMC involv-
ing multiple data constraints showed that the emulator method was able to constrain the faster and simpler SIPNET model’s
parameters with comparable performance to the bruteforce approach, but reduced computation time by more than two orders
of magnitude. The emulator was then applied to calibration of the ED2 model, whose complexity precludes standard (brute-
force) Bayesian data assimilation techniques. Both models are constrained after assimilation of the observational data with
the emulator method, reducing the uncertainty around their predictions. Performance metrics showed increased agreement be-

tween model predictions and data. Our study furthers efforts toward reducing model uncertainties showing that the emulator

method makes it possible to efficiently calibrate complex models.
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1 Introduction

Terrestrial ecosystems continue to be a major source of uncertainty in future projections of global carbon cycle. Model predic-
tions disagree on the size and nature of the ecosystem response to novel conditions expected under climate change (Friedling-
stein et al., 2014). This is partly due to different assumptions and representations of ecosystem processes in models (Fisher
et al., 2014; Medlyn et al., 2015), and partly due to lack of constraints on uncertainties associated with modeled processes
and parameters (Dietze, 2017b). Key to improving both model structure and calibration is to ground models in data through
parameter data assimilation (PDA) which refers to the calibration of model parameters through statistical comparisons between
models and real-world observations to improve the match between them (Richardson et al., 2010). However, despite having
more models and data than ever before, we still have not successfully reduced the uncertainties in our predictions because of
the technical difficulties of linking models and data together (Hartig et al., 2012; Fisher et al., 2014). This is particularly true for
regional- and global-scale models, which are computationally complex and need to be calibrated against large datasets. Three
specific technical challenges that need to be addressed in PDA are multiple data constraints, partitioning of uncertainties, and
model complexity.

In Bayesian calibration it is possible to use more than one type of data to simultaneously constrain multiple output vari-
ables in a modelsmodel. Using multiple data constraints is particularly helpful because model errors can compensate for each
other and single variables often do not provide a-—robust constraints (Raupach et al., 2005; Williams et al., 2009; Cameron
et al., in prep.). However, implementing multiple data constraints is challenging because data are available at different spa-
tial and temporal scales, with large differences in observational uncertainties and data volume between measurement types
MaeBean-etals2017)(MacBean et al., 2017; Keenan et al., 2013) . The calibration of model parameters is sensitive to which
data are used, how different data sources are combined, and how uncertainties are accounted for (Richardson et al., 2010;
Keenan et al., 2011). As opposed to piecewise evaluation of different parts of the model against different data sets, a Bayesian
framework allows the evaluation of the whole model at once against all data sources, accounting-for-bothreflecting the con-
nections between variables and the covariances among parameters (Dietze, 2017a).

The Bayesian approach also distinguishes between uncertainties—due—to-process;—data;—and-parameter-errors;-parametric,
model structural and data uncertainties, which is critical for ecological forecasting. Parameter error-uncertainty refers to the

uncertainty about the true values of the model parameters s)-due to data deficiency

and

model simplification (McMahon et al., 2009; van Oijen, 2017) . As models are simplified representations of reality, it is often

2

not possible to measure the true value of an ecosystem model parameter precisely in the field, regardless of the measurement
errors (van Oijen, 2017) . However, until-such—time—the-measurements can still provide estimates for parameter values that
makes the model represent the reality better (van Oijen, 2017) . Hence, it is possible to reduce parameter uncertainty with more

measurements, conditioned upon the model structure and the measurement error (van Oijen, 2017; Dietze, 2017a) . Therefore
the parameter uncertainty should alse-be-be reflected by probability distributions and propagated into model predictions. By
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reducing parameter errersuncertainties, PDA helps us identify where we need further data collection and improved model
representations.
By contrast, process ¢

many-or model structural uncertainty refers to the uncertainty about how to represent ecological processes in models. As eve
model is a simplification of reality, there will always be underrepresented processes or insufficiently modeled interactions in

eeology(Clarls2005;-MeMahon-et-al52009)-ecological models (van Oijen, 2017; McMabhon et al., 2009; Clark, 2005) . With
more observations, we can advance our theoretical understanding and better characterize process—vartability,-but-all-moedels

are-approximations—ofreality, se—proeess—error-ecological processes, but process uncertainty does not necessarily decrease

asymptotically-to-zerowith more data, the way parameter uncertainty does (Clark;2005; Dietze; 204 7a)(Dietze, 2017a; Gupta et al., 2012;

As process error-uncertainty is part of our imperfect models, it is part of the uncertainty associated with the model predictions.
Unlike process and parameter errorsuncertainties, data (observation) errer-uncertainty does not need to be propagated into
model predictions. Observation error is

are-a result of the limited precision and accuracy of the measurement instruments, hence, the uncertainty about it is not part
of the process that we are trying to model

van Oijen, 2017; McMabhon et al., 2009) . In Bayesian PDA, observation uncertainty should be treated independent of the

deviations of model predictions from data -

and-as part of the likelihood for observations to inform model predictions without biases (Dietze, 2017a). For a more in depth
terminology for these concepts in the context of process-based models and Bayesian methods, see review by van Oijen (2017) .

Despite the advantages to the Bayesian paradigm when it comes to estimating parameters for ecosystem models, most of
this research remains focused on computationally inexpensive models (such as SIPNET, Sacks et al. (2006); DALEC, Keenan
etal. (2011); Lu etal. (2017); F6BAAR, Keenan et al. (2013) ). This is largely due to the relatively high computational costs of
Markov Chain Monte Carlo (MCMC) techniques underlying most Bayesian computation. Such techniques can require models
to be evaluated 10* - 107 times, which can be prohibitively expensive for even simple models, let alone complex simulation
models that may take hours to days to complete a single evaluation. In this aspect, the Markovian nature of MCMC tech-
niques, which requires that the computation be performed sequentially, proves to be a fundamental limitation. By contrast,
high-performance computing environments are optimized for parallel computation and advances in computing power are in-
creasingly coming in terms of number of processors rather than CPU speed. Thus, it is be-particularly advantageous to consider
techniques that are both parallel in nature and which have substantial “memory” (i.e. they use the results from all previously
evaluated parameter set in proposing new parameters rather than just the previous or last few points).

One possible solution to this challenge is through model emulation (Sacks et al., 1989). An emulator (also referred as
’surrogate’ in the literature) is a statistical model that is used in place of the full model in cases where an exhaustive analysis of
the full model would be computationally prohibitive. In the emulator approach, we first propose a set of parameters-parameter
vectors according to a statistical design (Fig—teach parameter vector defines a point in multivariate parameter space). Then,

we run the full model with these-sets-ef-parametersthis set of parameter vectors, and compare the model outputs with data.
Next, we fit a statistical approximation threugheutthrough the design points where-we-evaluated-(a.k.a. knots, see black dots in
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Fig. 1) which we obtain by evaluating the model. Once built, emulators generally take far less time to evaluate than the model
itself, therefore the emulator is then used in place of the full model in subsequent analyses, i.e. it could be passed to a MCMC
algorithm. In comparison to the 10% - 107 sequential model runs required for MCMC, far fewer model runs are required to
construct the emulator, and these runs can be parallelized, as the design points in parameter space are proposed at the beginning
or iteratively in large batches.

Emulators are constructed by interpolating a response surface between the

knots where the model has been run. Previous studies on emulation of biosphere models mostly focused on emulating the
model outputs (Kennedy et al., 2008; Ray et al., 2015; Huang et al., 2016). However, comparing model outputs to ‘big data’
requires emulating a large, nonlinear multivariate output space. Furthermore, for the purpose of model calibration what we are
actually interested in is not the output space itself but the diserepaney-mismatch between the model and the data, which can
typically be summarized by much lower dimensional statistics (e.g. sum of squares).

Instead of constructing an emulator for the raw model output, we intreduee-adopt the approach of constructing an emulator
of the likelihood — the statistical assessment of the probability of the data given a set-vector of model parameters which forms
the basis for both frequentist and Bayesian inference. Emulating the likelihood has the advantage that likelihood surfaces are
generally smooth and univariate (Oakley and Youngman, 2017) . A further novel generalization we introduce in this study is
to emulate the sufficient statistics of the likelihood that contains all the information to calculate the desired likelihood, rather
than the likelihood itself. This facilitates estimating the statistical parameters in the likelihood, such as the residual error.

Overall, the goal of this study is to validate the emulator’s performance against bruteforce MCMC methods in terms of
parameter estimation, and assess the trade-offs in clock-time and emulator approximation errors. We first tested the emulator
performance with the simplified Photosynthesis and Evapotranspiration (SIPNET) model against a synthetic dataset where we
know the true values. Next, we compare both bruteforce and the emulator for calibrating SIPNET against data from the Bartlett
Experimental Forest Ameriflux site, a temperate deciduous forest in the northeastern US. Third, we use the emulator technique
to calibrate the Ecosystem Demography model (version 2, hereinafter ED2), whose computational demands preclude MCMC
calibration. Finally, we evaluate the scaling properties of the emulator method and discuss its potential limitations and future

applications.

2 Methods
2.1 Emulator-based calibration

A primary methodological focus of this paper is on the technique of parameter data assimilation using a model emulator. The
general workflow of the emulator method (Figure 1) is given in Algorithm 1.

As a first step (1), it is critical to decide carefully where in parameter space the full model will be evaluated. This step is

nontrivial because the dimensionality-of parameterspace-space encompassed increases rapidly with the number of parameters,

meaning-thatmaking exhaustive searches of parameterspaee-are-not-possiblethe parameter space impractical. Furthermore, the
total number of model evaluations is usually limited due to the computational costs of running the full model. As the emulator



Algorithm 1 Emulator workflow

(1) Propose initial Ngnots parameter sets-vectors

(2) Run full model with each parameter set-vector (parallelizable over Ngpots)

(3) For each model run (K), compare each data set to the appropriate model output variable (') and calculate a sufficient statistic (1, k)
summarizing model error
(4) Fit a separate Gaussian Process (G Py) model for each Ty to construct a response surface describing how model error varies across
parameter space (parallelizable over V')
(5) Perform MCMC using the emulators
for i =1to Nycmc do
(5a) Propose a new set-vector of process-model parameter values
(5b) Use G Py to draw both the current and proposed 73 with interpolation uncertainty (parallelizable)
(5¢) Calculate likelihoods from T
(5d) Calculate current and proposed posterior values, P; and P;_;
(5e) Accept/reject according to the Metropolis-Hastings rule, P;/P;—1
(5f) Gibbs update statistical parameters conditional on process-model parameters
end for

(6) (optional) Refine emulator by proposing new design points, goto (2)

is an approximation, adding more design points to explore the parameter space means less approximation error. However,
due to the trade-off between the accuracy and the clock time, we also do not want to propose too many knots. Therefore, we
need to choose a design that maximizes information from a limited number of runs. Proposing points at random is inefficient
because some points will be close together and thus uninformative — in practice a sampling design that is over-dispersed in
parameter space is preferable. Here, we use a Latin Hyper Cube (LHC) design whereby a sequence of values is specified
for each parameter that has the same length as the total number of samples and then each sequence is randomly permuted
independent of the others to construct the overall design matrix. In the current application, the sequences for each variable
5 are constructed to be uniform quantiles of the prior distributions (see section, Model information and priors), which results in
greater sampling in the regions of higher probability and less sampling in the tails.
The second step (2) is to evaluate the full model using the proposed parameter setsvectors, and it is the only step where
we run the full model. As these model runs are independent of each other, they can be performed in parallel. Next (step 3), a
sufficient statistic (T') is calculated by comparing each model output to each data set (Fig. 1). Statistic 1" is sufficient for the
10 job of estimating the unknown parameters "when no other statistic calculated from the same sample provides any additional
information" (Fisher, 1922) . We treat the deviations of model predictions from data in terms of sufficient statistics (1), instead

of the likelihood itself, because we want to estimate data-model parameters, such as the residual error, as part of the MCMC.

For example, assume the residuals {diserepancy-between-medel-predietion-and-data)-are distributed Gaussian. In this case, T’
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for a Gaussian likelihood would be the sum of squared residuals, 3 (y; — y1;)%, where y is the observation at-and  is the model

prediction:

& T VT ( T(yi_M)Q)
L= (yi | 1, 7) exp (1
NGl =11 752 3

n T
InL §ln(7') 5 ;(yz —p)? )
- T

From Eq. (2), if we know 7', we can calculate the likelihood without needing the full data set and the model outputs. This
allows us to not only accept/reject a proposed parameter vector (5e) but also sample the 7 conditional on that parameter set
vector (step 5f). Such 7' can be found for other likelihood functions as well.

This approach requires constructing an emulator for each data set (Step 4), instead of building one emulator on the overall
likelihood surface. For example, if carbon (C') and water (H2O) fluxes are used for constraining the model parameters, we
need to build one emulator that estimates the T and another one that estimates T yo0. Then, at each iteration of the MCMC,
we can update the model errors (7¢ and Tg20) for each response variable conditional upon the emulated 7'. However, both
the construction and evaluation of the emulator for each 7" can be done in parallel, therefore, building more than one emulator
does not defy the purpose of reducing computational costs.

In this study, we fitted a Gaussian process (GP) model as our statistical emulator, using the “mlegp” (v3.1.4) package in R
(Dancik, 2013). GP assumes that the covariance between any set of points in parameter space is multivariate Gaussian, with
and the correlation between the-peints-deereasing-points decreases as the distance between them increases (mlegp uses power
exponential autocorrelation function). We chose a GP model as our emulator because of its desirable properties: First, because
GP is an interpolator rather than a smoother it will always pass exactly through the design points. Second, GP allows for
the estimation of uncertainties associated with interpolation — uncertainty for a GP model will converge smoothly to zero at
the design points (knots, Fig. 1). Third, among non-parametric approaches, GP is shown to be the best emulator construction
method (Wang et al., 2014). The GP model is essentially the anisotropic multivariate generalization of the Kriging model
commonly employed in geostatistics (Sacks et al., 1989). Because we are dealing with a deterministic model, we assume that
the variance at a lag of distance zero, known as the nugget in geostatistics, is equal to zero, but this assumption could be relaxed
for stochastic models. We do not go into further details of GP modeling, or its comparison to other emulator methods since
both are well-documented elsewhere (e.g. Kennedy and O’Hagan (2001); Rasmussen and Williams (2006)).

Once constructed, we pass the emulator to an adaptive Metropolis-Hastings algorithm (Haario et al., 2001) with block
sampling, i.e. proposing new values for all parameters at once (Step 5). In the MCMC, we use the GP to estimate 1 for both
the current and prepesed-parameter—set-the proposed parameter vector at each iteration (5b). GP provides a mean and the
variance for the estimated values (here 1) given the parameters. To propagate this interpolation uncertainty, it is important to

draw the T stochastically from the GP, and draw new values for both the current and proposed parameter set at each iteration.
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Once the process-model parameters are updated according to the Metropolis ratio of current and proposed posteriors, statistical
parameters of the likelihood can be updated via Gibbs sampling conditional upon the updated process-model parameters (5f).
To build the emulator, the knets-parameter vectors need not be dependent on one another in a Markovian sense. This is in
contrast with traditional optimization and MCMC algorithms that only leverage the current set-vector of parameter values when
proposing new parameters. The independence of runs here allows us to efficiently leverage all previous runs, in addition to the
model evaluations from this step, to iteratively refine the emulator (step 6). Iteratively proposing additional knots over multiple
rounds can be more effective because each round refines our understanding of where the posterior is located in parameter space,
allowing new design-peintsknots to be proposed where they provide the most new information. In this study, new points-knots
were added by proposing 2610% of the new knets-parameter vectors from the original prior distribution and 8690% from the
Joint posterior of the previous emulator round (via re-sampling the MCMC samples in between the rounds). Unless otherwise

noted, all emulator calibrations in this study were run in 3 rounds, each with 100K iterations of 3 MCMC chains, using a total
of p® design-peintsknots for p parameters.

‘We compared the emulator approach to the Differential Evolution Markov Chain with snooker update algorithm (DREAMzs)
as it is one of the fastest converging algorithms known in the literature (Laloy and Vrugt, 2012). The implementation of
DREAMzs was provided by the BayesianTools package (Hartig et al., 2017) which is called within the bruteforce data as-
similation framework of PEcAn (v1.4.10), an ecosystem modeling informatics system (LeBauer et al., 2013). The emulator
framework has also been implemented in PEcAn. Both ecosystem models (see next section) used in this study were coupled
to PEcAn and the specific runs reported in this paper are given in the supplementary material, Table S6-7A6-7. All PEcAn
code is available on GitHub (https://github.com/PecanProject/pecan), and the parameter data assimilation (PDA) modules de-
veloped here are accessible via modules/assim.batch and modules/emulator. In addition, a virtual machine version of PEcAn

with model inputs, and code required to reproduce the present study is available online (http://pecanproject.org).
2.2 Multi-objective parameterization

We focus on three joint data constraints from Bartlett Experimental Forest, NH (Lee et al. (2018); also see supplement, Study
site): Net Ecosystem Exchange (NEE) and latent heat flux (LE) as measured by the eddy-covariance tower, and soil respiration
(SoilResp) as sampled within the inventory plots.

NEE and LE data were u* filtered to eliminate time periods of poor mixing. A conservative u* of 0.40 was selected, which
results in an elimination of 76% of the night-time data. Flux data was not gap-filled because this results in a model-model
comparison rather than a model-data comparison. The error distribution of flux data are-is known to be both heteroskedas-
tic, with variance increasing with the magnitude of the flux, and to have a double exponential distribution ratherthan-anermal
studies, the error distributions of high flux magnitudes and fluxes averaged over time were also argued to be approximately
Gaussian (Lasslop et al., 2008; Richardson et al., 2010) . However, as we assimilate all flux magnitudes at half-hourly time-step
and as the errors of flux data ashave heavy tails like a Laplacian distribution (i.¢. big errors are more common than they would
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be under a Gaussian distribution), we modeled the error distributions of NEE and LE fluxes as asymmetric heteroskedastic
Laplacian distribution:

Fluxdata ~ Laplace(Fluzmodela Qg + Qup * Fluzmodel) (3)

op, if Fluxmeder > 0
a1 = .
«ay,, otherwise

where Laplace(u, o) refers to the Laplace distribution that models the distribution of absolute differences between model
prediction and data. Here we accounted for the fact that flux errors scale differently for positive and negative fluxes by using
different scale parameters «, and o, respectively.

Because NEE and LE data are time-series, we cannot treat each residual as independent. To reduce the influence of error
autocorrelation on parameter estimation, we correct the likelihoods by inflating the variance terms by N/N.y; where N is
the sample size and N,y is an estimate of the effective sample size based on the autocorrelation of the residuals. However,
estimating N,y is not straightforward to do within the MCMC because, paradoxically, a poor model prediction would end
up with higher autocorrelation on the residuals, making the Ny smaller and the values producing those model outputs more
likely. We also cannot calculate the autocorrelation on the data itself, because flux data contain considerable observation error,
making the Ny larger than it should be (i.e. also paradoxically indicating that the data provide more information the larger
the observation error). To address these apparent paradoxes we propose a two-step approach to estimating effective sample
size. First, the latent unobserved “true” fluxes were estimated via a state-space time series model fitted to the flux data, which
allows separation of observation error from process variability (Dietze, 2017b). So as to not impose external structure on this
filtering, we use a random walk process model. Second, the AR(1) autocorrelation coefficient, p, was estimated on the latent

state time series and Ny y was estimated as:

(1-p)
(1+p)

For soil respiration (R : data, R,,: model), we assume a Gaussian likelihood with a multiplicative bias, k, and a variance 012%

Negs=N 4

which takes the form Rg~N(k-R,,, 012%). The bias term is included to account for the scaling from the discrete soil collars to the
stand as a whole (van Oijen et al., 2011) . This term was also introduced because observed soil chamber fluxes were typically
over twice the ecosystem respiration estimated from the eddy-covariance tower (Phillips et al., 2017). As in previous studies,

this parameter is also estimated in the calibration (van Oijen et al., 2011) , using a standard log-normal distribution as its prior.

While the introduction of the bias term makes it impossible for this data to constrain the magnitude of soil carbon fluxes, it
does provide information on the shape of the functional response (e.g. temperature dependencies). Due to the coarser time-step,
small sample size (n=39), and the introduction of the bias term, no additional autocorrelation corrections were applied to the

soil respiration data.
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2.3 Model information and priors

The two models used in this study are SIPNET (Braswell et al., 2005) and ED2 (Medvigy et al., 2009). In the main text we will
only describe the aspects of the models related to their calibration, further details of the models and their settings are given in
the Supplement. Forest inventory data collected in the tower footprint were used to set initial conditions for the models (Table
St+A1). We calibrate the models using data from 2005 and 2006. Both models provide outputs at the same half-hourly time
steps as the assimilated flux data. SIPNET is a fast model (~ 5.5 sec per execution, in this study), which makes it suitable
for application of traditional bruteforce MCMC methods. In constrast, it takes approximately 6.5 hours for ED2 to complete a
single run for this 2-year period, which precludes its bruteforce calibration.

We targeted both the plant physiological and soil biogeochemistry parameters of the models. Unlike SIPNET, it is possible
to run ED2 simulations with more than one competing PFFsPFT. To reduce the dimensionality of the calibration for ED2,
differences among PFTs were assumed to vary proportionally to the differences among their priors and a parameter scaling
correction factor (SF) was targeted by the parameter data assimilation algorithm instead of targeting each parameter per PFT.
The SF operates on the prior CDF probability space [0,1]. For instance, when the SF for a certain parameter is 0.3, it would
correspond to the 30% percentile of the parameter prior for each PFT.

We generated the priors and estimates for model parameters based on a Hierarchical Bayesian trait meta-analysis using
PEcAn’s workflow. Meta-analysis priors were specified by fitting distributions to raw data collected from literature searches,
unpublished data sets, or from expert knowledge (LeBauer et al., 2013). Direct mapping of previous information to model
parameters allows us to account for the uncertainties in measurements derived from the collective weight of a large range of
studies rather than arbitrarily choosing values from any one study (LeBauer et al., 2017). The use of literature constraints en-

a biologicall
lausible range, and reduces the problem of equifinality, as parameters that are already well constrained cannot net-change-as

sures that the posterior parameter estimates fall within

I=h

=]

muehvary much, and thus cannot trade-off with poorly constrained parameters. The parametric prior and posterior distributions
of the targeted parameters are given in Table S3-and-S4-5-A3 and A4-5 for SIPNET and ED2, respectively. The scaling factors

used for common ED2 PFT parameters always-has-a-prior-distribution-of-all have Beta(1,1) prior distributions.

2.4 Emulator experiments

To test and validate the emulator approach we conducted the following experiments: 1) a test against synthetic data using the
emulator with SIPNET, 2) comparison of emulator and bruteforce performances against real-world data using SIPNET, 3)
calibrating ED2 with emulator using real-world data, and 4) a scaling test with the emulator to evaluate how the actual clock
time varies as a number of design points (full model runs) using SIPNET.

Before these experiments, we conducted an uncertainty analysis (LeBauer et al., 2013; Dietze et al., 2014) to choose the
model parameters for calibration. The parameters that can be constrained by data are those that contribute to the model uncer-
tainty for that corresponding variable. Figure 2 shows the plant physiology and soil biogeochemistry parameters of the models

that are targeted by the calibration according to this uncertainty analysis. We chose a cut-off value of 0.5% for SIPNET, mean-
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ing we only targeted parameters that contribute more than 0.5% of the overall model uncertainty. For ED2, we lowered this
threshold to 0.1% because there are more than one PFT that shares the uncertainty. In the end, 9 and 10 parameters were tar-
geted in SIPNET and ED2, respectivelyti—e-in-theease-os EB2;-. To be more specific, the 8 (9medet-parameters-) parameters
for SIPNET (ED2) that are shown in Fig. 2, plus the multiplicative bias parameter );-therefore-were targeted in the PDA,
therefore in total 9% and-(10%) knots were proposed iteratively fortheirrespective-ealibration-with the emulator approach. For
ED2, 6 out of the 9 model parameters were plant physiological parameters that are common to all its PFTs, for which we used
the scaling factors (Fig. STAS).

We first tested the emulator performance on retrieving true values using a synthetic dataset. We generated a random parameter

set for the SIPNET parameters shown in Fig. 2, and ran the model forward with these values (Table S3)-—Then;-A3). In order

to_give the synthetic data real characteristics, model outputs were reformatted to have the same gaps, time-steps and sample
sizes as the data used in this study. Then, the likelihood parameters were calculated from the synthetic dataset, and next, further
noise was added by drawing values from their respective likelihood functions to obtain the final synthetic dataset. In addition,
the SoilResp data was multiplied by a constant (k = 1.5) to mimic the real world situation. Then, treating the model outputs as

a synthetic dataset, we tested whether emulator method posteriors converge on the true values. As this dataset was generated
by the model itself, this approach allows us to assume that we have the perfect model (Trudinger et al., 2007; Fox et al.,
2009). We compared the emulator run in three rounds to an emulator fit to the same number of knots in a single run to test
whether increasing the number of knots iteratively is more effective than proposing the same number of knots in the beginning
all-at-once.

We then tested the emulator with real-world data. As true parameter values are unknown, we assessed the emulator per-
formance by comparing it to the bruteforce MCMC. In the bruteforce, the full model is run at every iteration, whereas in the
emulator, the posteriors are approximated. Therefore, this experiment evaluates the influence of the numerical approximation
error introduced by the emulator. As the larger computation time for ED2 does not permit the use of bruteforce, we only
compared the pre- and post-calibration performance of ED2. The before and after calibration performances of both models
were determined by comparing a 500 run model ensemble to data. Ensemble runs are forward model runs, with parameter
values randomly sampled from their distributions (which is the prior distribution for the pre-PDA comparison and the posterior
distribution for the post-PDA).

In our scaling experiment, we evaluate the trade-off between the number of model runs and the approximation error by
comparing the 8-parameter SIPNET emulator-calibration—with-bruteforce calibration to emulator calibrations with varying
numbers of k different-knots (k = {120,240,480,960 } to-the-8-parameter-SIPNET bruteforce—ealibration. To do this, we
compared the post-emulator PDA ensemble confidence interval errors relative (RCI) to the post-bruteforce PDA ensemble CI
in terms of mean Euclidean distance between their 2.5% - 97.5% Cls. For each experiment with £k different knots and variable

CI — Clp 1, 5)> values were calculated where FE stands for emulator, B stands for bruteforce ensemble, and L stands

10
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Table 1. Time elapsed (in seconds) for each step of the emulator calibrations. “Model run time” refers to the computation time for running
the LHC model ensemble needed to construct the emulator. Sub-columns refer to the rounds of the emulator (15%; 243, 27%: 486, 37%: 729 =

9° knots cumulatively for SIPNET; 1°¢: 334, 2"%: 667, 37%: 1000 = 10° knots cumulatively for ED2).

Model run time GP model fitting 100K MCMC
‘ lst 2nd 37‘d ‘ lst 2nd 3rd ‘ lst an 37‘d ‘ Total
SIPNET | 1278 1335 1307 | 105 843 4940 | 2265 3898 5794 | 21765
ED2 26018 22380 22927 | 249 2171 7838 | 2207 4996 7773 | 96559

for the lower CI limit. The same is calculated for the upper CI limit () and sum of their mean is used as a score for relative

confidence interval (RCI) coverage per variable:

RCIyany = mean((Clux — Clprp)’) t mean(Clpuy — Clour)”) ®

Next, each RCI vectors (RC Iy ag ={RCIv aRr.960, RCT ,RCIy RCIT o} are normalized by dividin

by their mean to obtain values independent of the units. Then, the sum over the variables (in our case, RCI =RCI
+ RCI g + RCIs,iiResn) gives is the final RCI score.

In an additional scaling experiment, we evaluated the capacity to calibrate the model with emulator vs. actual clock time.
For this experiment, we chose m parameters (m = {4,6,8,10}) of SIPNET considering the order of their contribution to the
overall model uncertainty (Fig. 2, Table S7A7). For each calibration, we again built an emulator with k knots. After calibration,

we used overall deviance of 500-run ensemble mean as a metric to evaluate calibrated model performances.

3 Results
3.1 Test against synthetic data

The test against synthetic data showed that the emulator was able to successfully retrieve the true parameter values that were
used in creating the synthetic dataset (Fig. 3). Diagnostics showed that the chains mixed well and converged (all visual and
Gelman-Rubin MCMC diagnostics can be accessed via the links provided in the Workflow ID Table S6A6). As expected, after
each round of emulation, posteriors were resolved finer around the true values. Especially the multiplicative bias parameter was
only able to resolve in the last round (R3). The posteriors of our “all-at-once” test, where we ran a single emulator proposing
all 729 knots at once, compared less well to the true values than the iterative approach. This shows that adaptive refinement of
the parameter space exploration is more effective than screening the parameter space with the same (cumulative) number of

knots.

11



20

10

Table 2. Performance statistics of ensemble means before and after the PDA for both models and output variables. While root-mean-square-

error (RMSE) scores evaluate the absetute-deviations of model predictions than-from data, deviance (-2 x log-likelihood) scores evaluate

predietive-abilitythe goodness-of-fit under the assumed data model. For both metrics lower scores are better.

NEE LE SoilResp
pre-PDA  post-PDA | pre-PDA  post-PDA | pre-PDA  post-PDA
SIPNETE 140 43 89 79 18 26
RMSE SIPNET 43 77 32
ED2 122 68 124 89 29 18
SIPNETE 2745 976 9879 8424 -1333 -1353
Deviance  SIPNETg 944 8331 -1315
ED2 3152 1523 9914 9103 -1380 -1390

SIPNET : Emulator PDA. SIPNET 5 : Bruteforce PDA. Bold RMSE values for NEE and SoilResp were rescaled by 10 for easier

comparison.

3.2 Bruteforce vs emulator

Even with the fast SIPNET model, the gain in wall-clock time with emulator was substantial. The three emulator rounds,
cumulatively took ~6 hrs (=21765 sec, Table 1) while the bruteforce approach took 112 hours. Both metrics (RMSE and
deviance) were improved for NEE and LE after calibration with both methods (Table 2). RMSE for SoilResp got worse after
calibration with both methods, however this was expected as we informed the model for the shape of the SoilResp flux in-
stead of the absolute magnitude. Indeed, both the deviance metric (which includes the multiplicative bias parameter) and the
soil respiration-temperature curve (Fig. 4, bottom panel) improved after calibration with the emulator. However, neither the
deviance nor the curve improved after calibration with the bruteforce approach. Overall, the post-PDA ensemble spread was
reduced with both methods, while it was narrower after bruteforce-PDA (Fig. 4, A2). This was expected because the emulator
includes additional numerical approximation uncertainty in parameter estimates, which propagates into wider confidence inter-

vals in predictions. This can also be seen in the posterior distributions where bruteforce has tighter posterior distributions than

the emulator (Fig. 5). The strongest correlations between leaf growth and leaf turnover rate, andf growth and half saturation
PAR, soil respiration rate and soil respiration Q10 parameters were also detectable in emulator posteriors (emulator Fig. A3
bruteforce Fig. A4).

The effective information content of each data type in the calibration was balanced with autocorrelation correction and
effective sample size calculation. The weights of each data after correction can be seen from the deviance values (Table 2).
LE and NEE still contribute more to the overall calibration than the SoilResp. After autocorrelation correction, the effective
sample sizes for these two data sets were approximately 280 and 51, respectively. For comparison, with uncorrected sample

sizes of 7945 and 9426, the deviance values would have been 85357 and -278065 for pre-PDA SIPNET LE and NEE.
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3.3 ED2 calibration

The emulator calibration for ED2 took ~27 hrs (=96559 sec, Table 1). In contrast, a 100K iteration of Metropolis-Hastings
MCMC with ED2 would have taken approximately 74 years. Both metrics for all variables showed improvement post-PDA
(Table 2) and their ensemble spread got narrower (Fig. 6). Posteriorparametrie Fitted parametric posterior distributions of ED2
are given in the supplement (Fig. S+-Fabte-S5)—AS5, Table AS). In addition, all raw MCMC samples and posterior density
distribution plots are available in the respective workflow directories (see Table AG). While all the chains are mixed and

converged, the growth respiration factor and fine root allocation scaling factors were less well resolved, indicating that a fourth
round might improve their calibration; however, these model outputs were not too sensitive to these parameters (Fig. 2).
Post-PDA ensemble mean of ED2 shows a worse agreement with the NEE and LE data than SIPNET, and a better agreement
with the SoilResp (Table 2). However, the time-series plot of the LE for SIPNET (Fig. 4, middle panel) shows that SIPNET
largely ever-estimates-overestimates the winter moisture fluxes whereas ED2 does not (Fig. 6, middle panel). SIPNET still has
an early onset of C fluxes post-PDA whereas ED2 is late to turn off carbon fluxes (top panels). Both pre- and post-PDA ED2
performance for SoilResp was-were better than SIPNET (bottom panels). ED2 also captures summer diurnal cycle better than

SIPNET and both models were improved after emulator-PDA (Fig. S3A6)
3.4 Emulator scaling

Fig. 7 shows how the emulator method scales with more knots using the *'mlegp’ R-package and the trade-off between wall-
clock time vs. the approximation error. As expected, the post-PDA ensemble CI approaches to the bruteforce post-PDA CL-#
other-weords. In other words, the RCI asymptotically converges to zero, while the clock time to increases with the number of
knots (Fig. 7a).

The tradeoff between improved model-data agreement (lower deviance values) vs. wall-clock time suggests the more we
explore the parameter space (more knots), the lower the deviance gets in general (Fig. 7b). Deviance also lowers with number
of parameters targeted in general. However, the best fit was not always to the model with most parameters, and the number of
parameters of the best fit varied with the number of knots. With lower number of knotswe-were-able-to-wel-constrainfewer
parameters-, fewer parameters were well-constrained, but with too few parameters we trade-off-traded-off the ability to get a
good fit. The clock time is largely determined by the number of knots, with much lower sensitivity to the number of parameters

as number of knots was much greater than (>>) the number of parameters in this study.

4 Discussion

4.1 Adaptive sampling design

Our experiment against synthetic data showed that the Gaussian Process model emulator method was able to recapture the true
values successfully. While the posteriors of the emulators with few knots (initial round) could be wide, additional rounds of

emulator refinement were able to constrain the posteriors better. Our test where we proposed the cumulative number of design
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points all-at-once showed that, even though we proposed the same number of knots in the end, where you propose those points
in the parameter space is important, and iteratively refining the search is a more efficient way of exploring the parameter space.
This is because the initial proposal of parameters with LHC had no way of knowing which parts of parameter space are most
important to explore, and thus the tails of the distributions end up over sampled and the core undersampled. Furthermore,
without multiple iterations the covariances among parameters are also underconstrained, unless informative prior distributions
are chosen or previously known covariances are provided. Sampling new knots from the posteriors of the previous iteration
informs the algorithm about the posterior means and covariances and allows the GP be refined adaptively. The efficiency of

this workflow could potentially be increased further by other adaptive sampling designs, and this remains an important area for

further research. For example, Oakley and Youngman (2017) used an initial set of simulator runs to screen-out low likelihood
regions to reduce the parameter space before the calibration. For a review of adaptive sampling methods, and emulator design

methodologies in general, see Forrester and Keane (2009).
4.2 Emulator construction

Inthisstudy," of emulating the model outputs, we emulate

5 AL d . SC3 S
to-the-we focused on calibrating process-based mechanistic simulators (ecosystem models) using computationally cheaper

emulators. Variations of emulator approach are many, and can be found in Jandarov et al. (2014) , Aslanyan et al. (2015

Huang et al. (2016) , Oakley and Youngman (2017) and the references therein. Here we adopted the version which emulates
the likelihood surface with a Gaussian process, similar to previous studies including applications with a cosmological likelihood

function (Aslanyan et al., 2015) , a stochastic natural history model (Oakley and Youngman, 2017) , the Hartman function and

a hydrologic model (Wang et al., 2014) and two land surface models (Li et al., 2018) . Our scheme resembles the adaptive

surrogate modelling-based optimization

additionto-(ASMO) approach (Wang et al., 2014; Li et al., 2018) in terms of both the nature of the problem (calibration of a
rocess-based mechanistic simulator) and the general scheme of the calibration algorithm. However, aside from differences in

initial sampling designs and error characterizations in these studies, there are two main differences of our scheme from ASMO.

First, we run full MCMC in between the adaptive sampling steps, and on the final response surface, instead of optimization
search. Hence, we were able to provide full posterior probability density distribution of the parameters targeted for calibration
instead of point estimates of optimum values as Li et al. (2018). The ASMO scheme has also been recently updated for
distribution estimation using full MCMC runs (ASMO-PODE) and has been tested with Common Land Model (Gong and
Duan, 2017). An important update in our study was that we used the error estimation (variance) provided by the GP model,
instead of only using the mean estimates as Gong and Duan (2017) which allowed us to fully propagate the uncertainties to the
post-PDA model predictions. Earlier work (not shown) illustrated that failing to propagate the emulator uncertainty (step 5b)

results in overconfident posteriors that can easily miss the ‘true’ parameter in simulated data experiments.
A second addition to our scheme was that we intreduced-the-concept-of-emulating-included a further generalization of
emulation of the sufficient statistics surface;-whieh-(T) surface. T’ is, by definition, sufficient to estimate the simulator (process
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or the posteriors (Gong and Duan, 2017) , emulating 7" allows us to estimate parameters that are in-the-not part of the process
model but are part of the statistical data model (the likelihood) —in—additton—te-the-parameters-of-the-process(simutation)
meodet—Fhe-scheme-as well. In this study, we tested the sufficient statistics emulation for the SoilResp data and updated
Gaussian likelihood precision parameter in the MCMC together with other process model parameters. This residual parameter
includes both data error and model structural error, and it is not possible to distinguish one from the other with this approach
(van Oijen, 2017) . However, when we apply the same calibration scheme to different process models at the same site, because
the observation error in the data are the same, the difference in the posteriors of this residual parameter (Fig. A7) could give us
clues about the model structural errors of models relative to each other, as we demonstrate in this study as a proof-of-concept.
However, in our study. use of multiplicative bias parameter further obscures the difference between observation and model
structural error.

Indeed, implementation of a more formal way of accounting for model structural error (also called the discrepancy between
model output and reality) in our emulator scheme is one of our planned next steps. Explicitly specifying a model discrepancy.
term and estimating it through MCMC would allow us to account for all sources of model predictive uncertainty (van Oijen, 2017) .
However. determining the expected form of discrepancy in order to learn about model parameters realistically could be
difficult due to lack of mechanistic knowledge of the underlying processes (Brynjarsdottir and O”Hagan, 2014) . In that sense,
accounting for discrepancy in model calibration is not an emulator approach specific issue. For a novel approach investigating.
model structural uncertainty through a modular modeling framework see Walker etal. (2018), which could be useful for
modeling prior knowledge about discrepancy in ecosystem models in the future. Because of the unknowns about the discrepancy
functions, it is common to use Gaussian processes to model the discrepancy (Kennedy and O'Hagan, 2001) . Even then, only.

For an example of addressing discrepancy in calibration that combines likelihood-emulation approach with importance sampling,
see Oakley and Youngman (2017) where they inflated simulator uncertainty to account for simulator discrepancy instead of
explicitly specifying a prior for it in order to make the likelihood tractable. When likelihood function becomes intractable
or a sufficient statistic does not exist, techniques using likelihood-free inference (Gutmann and Corander, 2016) or computing

approximately sufficient statistics could also be a remedy (Joyce and Marjoram, 2008) .
Finally, the scheme used in this study is also compatible with various adaptive sampling designs (other than LHC), emulator

models (other than GP), and MCMC algorithms (other than adaptive Metropolis-Hastings) like the ASMO-PODE scheme
(Gong and Duan, 2017).

4.3 Bruteforce vs emulator

Both bruteforce and emulator methods reduced the uncertainty around the model predictions when real data was assimilated
with SIPNET. Bruteforce posteriors resolved finer than the emulator as expected due to the numerical approximation error in
the emulator. Therefore, when computational time allows, bruteforce methods will result in more precise posteriors and are

preferred over the emulator method. However, when the model run time or the volume of data to be assimilated does not allow

15
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running long MCMC iterations, it is possible to constrain parameters in orders of magnitude less time, with far fewer model
evaluations, and with much greater parallelization using the emulator method. This speed-up puts model calibration within
reach for large, computationally-challenging models that are currently underconstrained.

In addition to just fitting the model, emulators makes-make it practical to implement different hypotheses within a model,
re-calibrate the model, and test them against data repeatedly. Furthermore, emulators make it possible to calibrate complex
models hierarchically, which would not be computationally feasible otherwise as hierarchical Bayesian modeling involves
calibrating models many times at multiple spatial/temporal/experimental settings. For example, it is a known issue that site-
level calibrations are not easily transferable to new sites or to larger scales (Post et al., 2017). In that sense, Hierarchical
Bayesian approach is an important improvement over classical Bayesian model calibrations because it formally accounts for
the spatial and temporal variability of ecosystems and provides a structure that will help us better understand the uncertainties

involved at different levels of our study systems (Clark, 2005; Thomas et al., 2017).
4.4 Autocorrelation correction and multiple data constraints

Faek-A lack of independence in observation errors causes overfitting of the model parameters and underestimate prediction
uncertainties (Ricciuto et al., 2008; Cameron et al., in prep.). It is not uncommon for calibration against one data set that is
given a high weight (e.g. many more observations) to cause other model outputs to perform worse. Indeed, in our calibration
study, model-data agreement for NEE improved while it was reduced for the SoilResp variable after the bruteforce calibration.
The most common approaches to this problem involve arbitrary weights or ad hoc solutions to rebalance the influence of
data. We addressed this issue with a novel approach of explicitly modeling data-medel-biases—and-autocorrelation, which
provides a more objective and statistically rigorous approach to balancing the weights of different data. Although, the NEE
and LE data still influenced the calibration more than the SoilResp data, assimilating multiple data streams and balancing
their influence was important. For example, NEE is a result of both primary production and respiration processes, and the
model outputs were sensitive to parameters involved in both of these processes. If we were to assimilate only NEE, estimated
parameters contributing to NEE might have compensating errors (Post et al., 2017). However, including an additional constraint
on model parameters contributing to either primary production or respiration could help us distinguish such compensation
effects. Altogether, over-fitting of models is a common problem in Bayesian calibration, and both the autocorrelation correction
and the use of the emulator method practically proved to be a helpful strategy. Lastly, the effect of number of assimilated data
streams on emulator performance is not explicitly tested in this study, however, calibration performance of the emulator should
still be proportional to bruteforce with more or less data streams. For studies that inspect the effect of assimilating multiple
data streams on model calibration performance see Keenan et al. (2013) and MacBean et al. (2017) .

4.5 Scaling factors

In the calibration of ED2, instead of constraining the PFT parameters directly, we targeted scaling factors (SFs) for parameters
that are common among PFTs which reduces the dimensionality considerably (i.e. instead of targeting Nypqrameters X MprTs,

we only target /N parameters). This experiment showed that emulator-method-targeting-the emulator method with SFs could
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constrain PETF-parameters-of ED2-ED2 PFT parameters and improve model predictions. However, this approach assumes that
the relative differences among PFTs are approximately correct, but that overall processes may be miscalibrated, and thus that
the more likely parameter space for different PFTs will be in the similar regions of their prior distributions. For example,
if a density dependent mortality parameter is being targeted, the prior distributions for an early and a late successional type
can be defined to represent their differentiation so that the posteriors would still be different when using the SF. In our study,
PDA priors for each PFT were informed by meta-analysis, therefore accommodating for such differences amongst PFTs. By
contrast, the SF approach by itself cannot, for example, converge on values in the first quartile for a certain parameter space
for one PFT and in the third quartile for another PFT. We note that, the SF approach is not specific to the emulator method, and

could also be used with bruteforce algorithms to reduce dimensionality.
4.6 Approximation error vs clock-time

The emulator method we propose overcomes many hurdles in the Bayesian calibration of ecosystem models, especially in terms
of computation time. The main cost of running the full model sequentially for the MCMC is avoided in the emulator approach,
and the initial set of runs (or the iterative batches of runs) can be parallelized. Algorithms like Sequential Monte Carlo (or
Particle Filter) provide a partial solution since they allow parallelization, but they often require even larger number of model
evaluations than a typical MCMC, particularly for higher dimensional problems (Arulampalam et al., 2002). Nevertheless,
dimensionality can still be a problem for the emulator method as more knots will be needed to resolve the predicted surface
as the number of parameters to be constrained increases. Our scaling experiment indicates that RCI decays quickly and starts
leveling-off as the number of knots increases. In other words, one can stop increasing the number of knots at a stage where the
gain in terms of approximation error reduction being heavily traded-off with clock time is reached. Detecting such thresholds
is feasible in practice if the emulator is refined iteratively.

A similar threshold was also apparent for overall model calibration ability. While the gain, if any, in model improvement in
terms of deviance was minimal from 480 to 960 knots, the clock time required was more than doubled in our scaling experiment.
This experiment also suggested that the number of model parameters we chose to constrain was an adequate choice for our
setting. Targeting a few additional model parameters did not result in substantial differences in terms of overall deviance, which
was expected as the targeted parameters were chosen according to their contribution to the overall model uncertainty. Thus we
are confronted with the fundamental trade-off where increasing the number of parameters requires that we need to propose
more knots to explore the parameter space, which increases runtime, and at some point these additional parameters provide
diminishing returns. Understanding this trade-off is greatly facilitated by performing an uncertainty analysis before calibration,
which allows parameters to be added to the calibration in order of their contribution to model uncertainty. Finally, we note that

the shape of the clock time vs deviance trade-off curves will vary by model as they varied by number of model parameters.

To fit the Gaussian process models in this study, we used the mlegp R-package which was found to be performing well with
its default settings (Erickson et al., 2018) . The comparison by Erickson et al. (2018) shows that there are faster (such as (aG P
and computationally more stable (such as GP fit) R-packages available. However, laG P performs worse than mlegp unless

thousands of design points are provided, and G P fit is substantially slower than mlegp as it is solely written in R whereas
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mlegp is pre-compiled in C. Finally, other packages from other platforms (such as the GPy and scikit-learn modules of Python
could outperform mlegp (Erickson et al., 2018) , however, as PEcAn is mainly written in R, mlegp was an adequate choice for
our workflow. Overall, the approximation error vs clock-time trade-off is not independent of the software/code used to fit the

Gaussian process model.
In this study, we tested emulator calibration with number of parameters that are comparable to previous studies with

biosphere models, if not higher (Ray et al., 2015; Huang et al., 2016; Gong and Duan, 2017). However, running the emu-
lator can also become infeasible;eonsidering-. For example, with the current scheme calibrating 100 parameters would not be
possible with 100% knots, as O(IN3) floating point operations needed for the Cholesky decomposition in GP ean-would exceed
memory and wall clock time capacities. Future directionsmay-include-exploring alternative-emutators That said, the p® scheme
is just the rule-of-thumb that we employed in these experiments, and not an inherent limit of the emulator approach itself. The
calibration of 100 parameters might be possible with much smaller number of knots (< 10%) depending on the model. Using.
a sample size about 10 times (n=10d) the input dimension is a common recommendation in computer experiments with GP.
(Loeppky et al., 2009) . But this is considered to be too small for most of the cases and using 20 times (n = 20d) larger sample

sizes are suggested instead (Erickson et al., 2018) . Indeed, our scaling experiment also suggests calibrating the model with

fewer knots (< p>) would be possibe. In practice, we would advocate for performing an uncertainty analysis to reduce the
dimensionality of the problem. In addition, the data would need to be strong enough to actually constrain such large number
of parameters. Still, when dimensionality becomes too large, alternative emulators could be explored, such as the Nearest-

Neighbor Gaussian Process model -(which takes advantage of the fact that the nearest neighbors weuld-contribute the most

important-information while fitting the GP model, and could help reduce computational costs substantially for bigger datasets
and much larger number of parameters (Patta-et-al;20+6)Datta et al. (2016) ).

5 Conclusions

Here we introduced a framework that addresses both the computational and statistical challenges of Bayesian model calibration.
We introduced a number of novel approaches, such as: building an emulator on the sufficient statistics surface; an autocorre-
lation correction on the latent time series estimated through a state-space model; and introducing of a scaling factor to reduce
dimensionality across PFTs. We also standardized and generalized this framework in an open source ecological informatics

toolbox, PEcAn, for repeatability and use with other ecosystem models.

together—Our study furthers efforts toward reducing model uncertainties showing that the emulator method makes it possible to
efficiently calibrate complex models. Here we demonstrated examples and evaluated performances with terrestrial ecosystem
models but the application can be generalized to any “big model”. Overall, this efficient data assimilation method allows us to
conduct more calibration experiments in relatively much shorter times, enabling constraining of numerous models using the

expanding amount and types of data.
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Figure 1. Comparison of bruteforce and emulator approaches for a univariate example. The computationally costly step of running the model
is parallelizable for the emulator, whereas in the bruteforce approach it needs to be run at every MCMC iteration sequentially. Emulator is
built on the pairs of the initial parameter set (pink points on x-axis; P) and the sufficient statistics (T) values on the y-axis. These design
points in the P-T space, or knots (black dots) are obtained by evaluating the full model. Next, a Gaussian statistical process is fitted (blue
solid line) with error estimates for prediction (red dashed lines). Once the emulator is constructed, a new parameter value will be proposed
(green box on the x-axis). Finally, values that the response variable can take (green segment) given the newly proposed parameter will be

estimated using the emulator. 25
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Figure 2. Results of uncertainty analysis in PEcAn for plant physiological and soil biogeochemistry parameters of SIPNET (left) and

ED?2 (right). The longer the bar the more that parameter contributes to the model prediction uncertainty. The parameters shown above that

contribute more than 0.5% (0.1%) uncertainty were chosen to target in calibration of SIPNET (ED2) and are shown above.
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Figure 3. Emulator performance against synthetic data. Red vertical line represents the true parameter values that were used to create the

synthetic dataset. Shades-of-Shaded distributions are the posteriors obtained after each emulator rounds. Dashed lines are the posteriors after

a single emulator (all-at-once, AAO) round built with a total number of knots of all rounds (729 knots) instead of refining the emulator

iteratively (1°% round 243, 2% round 486, 3"¢ round 729). All priors were uniform for these parameters, except the multiplicative bias

arameter.
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Figure 4. SIPNET performance against real data (black dots) after emulator (orange polygon) vs bruteforce (blue) calibration. The pre-
PDA ensemble spread (green) was wider for all variables and reduced with both methods. (a) and (b) are un-smoethed—half-heurly
monthly-smoothed time series (for unsmoothed version please see Fig. Al), while (c) shows the temperature - soil respiration response
curve, plotted with locally weighted scatterplot smoothing (LOESS% 81ine, and residuals from a fitted temperature response function as a

conservative estimate of the error bars. All polygons show the 2.5% - 97.5% CI.
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design followed in this study for SIPNET with 8 model parameters and 729 knots. Underlying data for (b) can be found at Table S8AS.
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Appendix A
Al Study site

Bartlett Experimental Forest (44° 17/ N, 71° 03’ W) is a US Forest Service research forest located outside of Bartlett, NH in the
White Mountains (Lee et al., 2018). Species composition is typical of northern hardwood forests and consists predominantly of
Acer rubrum (red maple), Fagus grandifolia (American beech), Betula papyrifera (paper birch), and Tsuga canadensis (eastern
hemlock). Climate is also typical of central New England with short summers (20 °C) and long cold winters (-8 °C). The site
is generally moist, receiving approximately 1300 mm/yr of precipitation. Soils are sandy loam Spodosols and can become
saturated during spring snowmelt.

An eddy-covariance tower (26.5m) was installed in November 2003 at a lowland site (272m) within the experimental forest.
Topography near the eddy-covariance tower is flat to gently sloping but larger hills (1-3 km distant) surround the site. Canopy
height is 19m with a mean stand age of approximately 100 yr. The eddy-covariance system consists of a LI-6262 CO2/Hy0
infra-red gas analyser (LiCor, Lincoln, NE) and SAT-211/3K 3-axis sonic anemometer (Applied Technologies, Longmont,
Colo.). Measurements were made at 5 Hz and fluxes were estimated every 30 minutes. The meteorological data used in this
analysis were derived from measurements made at the eddy-covariance tower for years 2005-2006. These include air tempera-
ture above the canopy (22.3 m), soil temperature, relative humidity, precipitation, above canopy PAR and wind speed.

The Bartlett tower footprint contains twelve vegetation inventory plots that follow the Forest Inventory and Analysis (FIA)
design consisting of four circular 10 m radius subplots: one central and three evenly spaced at a radius of 36.5 meters. Veg-
etation plots were established in May 2004 and used to initialize ED2. Bradford et al. (2010) provided soil carbon and live
aboveground biomass estimates for Bartlett which we used to initialize SIPNET.

Soil respiration measurements were made manually in each plot (n=12) at permanently installed rings that are 10cm in
diameter using a soil CO2 flux chamber (LiCOR 6400-9). Soil temperature and moisture were measured concurrently using
a soil temperature probe and a TDR probe. During 2006, soil respiration censuses were made approximately every 4-5 days

from day 138 to day 325 for a total of 39 chamber censuses.
A2 SIPNET model

The simplified Photosynthesis and Evapotranspiration model (SIPNET) is a simple ecosystem model which can be used to
interpret carbon water exchange between vegetation and the atmosphere. SIPNET has been developed from the PnET family
of models to facilitate model comparisons to flux towers (Braswell et al., 2005; Sacks et al., 2006). SIPNET runs at a half-
hourly time step. It represents relatively few processes (has two vegetation carbon pools, a single aggregated soil carbon pool,
and a simple soil moisture sub-model), making it easier to evaluate which data contributes how much to the parameterization
of each process. As a result of this setup, SIPNET is a fast model (~ 5.5 sec per MCMC iteration in PEcAn including model
execution, and writing and reading model outputs), which makes it suitable for application of bruteforce methods.

Forest inventory data collected in the tower footprint were used to set initial conditions in SIPNET. We fitted Bayesian

models using the allometric equations available in the literature (Jenkins et al., 2004) to estimate the aboveground biomass
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Table Al. Initial state values used for SIPNET runs.

Pool Value Units

Above- and below-ground woody biomass | 9600 ¢C / m? ground area

Initial leaf area 0 m? leaves / m? ground area
Litter biomass 200 ¢C / m? ground area
Soil biomass 1600 ¢C / m? ground area

Table A2. The prior and posterior distributions of the constrained SIPNET parameters.

Parameter

Prior

Posterior (Emulator)

Posterior (Bruteforce)

SOM respiration rate

unif(0.001, 0.3)

weibull(1.62, 0.13)

norm(0.1, 0.009)

Soil Respiration Q10 unif(1.4, 3.0) Inorm(0.697, 0.24) Inorm(0.39, 0.046)
Soil WHC unif(0.1, 36.0) Inorm(2.95, 0.31) Inorm(2.7, 0.035)

Half saturation PAR unif(4.0, 27.0) weibull(3.74, 17.5) Inorm(2.8, 4.5e-02)
dVPDSlope unif(0.01, 0.25) | weibull(2.26, 7e-02) norm(0.08, 2.6e-03)

Seasonal leaf growth

unif(0.0, 252.0)

norm(150.6, 46.8)

norm(145, 10.8)

psnTOpt

unif(5.0, 40.0)

norm(12.07, 35.7)

weibull(336, 39.9)

Leaf turnover rate

unif(0.03, 6.0)

norm(5.14, 1.9)

Inorm(1.64, 5e-02)

at Bartlett through PEcAn’s allometry module. These values were in agreement with live aboveground biomass estimates by
Bradford et al. (2010) whose soil carbon pool estimates were also used to set the initial values in our SIPNET runs (Table
StAL).

Al Ecosystem Demography Model

The Ecosystem Demography model version 2.1 (ED2) is a terrestrial biosphere model that couples plant community dynamics
to biogeochemical models of associated soil fluxes of carbon, water, and nitrogen (Moorcroft et al., 2001; Medvigy et al.,
2009). ED2 is explicitly designed to scale from the individual to the region and to account for community processes, such
as disturbance and resource competition, in a manner analogous to forest gap models. ED2 achieves this with a size and age
structured (SAS) approximation to a forest gap model which accounts for the vertical size distribution within a stand/patch and
the distribution of different stand ages across the landscape. This hierarchical SAS allows ED to be compared to data operating
at multiple scales but in practice this means that a single ED run will simulate a large number of different patches, each with
a number of trees of different sizes and species. The resulting computational expenses and complexity of drivers and outputs
make ED2 an ideal example of the challenges of model-data fusion. The initialization of vegetation and soil for ED2 was
done using the same forest inventory data and soil carbon measurements described for SIPNET. The species occurring in the

inventory data were mapped to ED2 PFTs following Dietze and Moorcroft (2011).
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Table A3. Calibrated SIPNET parameters and the ‘true’ values used to produce the synthetic data.

Parameter Definition Units True Values
SOM Respiration rate Soil organic matter respiration rate coefficient Day ! 0.01
Optimum photosynthesis rate | Optimum temperature for photosynthesis Celcius 36.75
Soil Respiration Q10 Scalar determining effect of temperature on soil heterotrophic res- ratio 2.75
piration
Soil WHC Soil water holding capacity cm 25.75
Seasonal leaf growth Amount of leaf growth following leaf-out gC / m? 180
Leaf turnover rate Average turnover rate of leaves y! 3.2
Slope-VPD Slope of VPD-photosythesis relationship kPa~! 0.05
Half saturation PAR Photosynthetically active ratioan at which photosynthesis occurs Einsteins m 2 day ! 6.46
at 1/2 theoretical minimum
Multiplicative bias Soil respiration scaling constant unitless 1.5
Table A4. The PDA prior (meta-analysis posterior) approximated parametric distributions of the targeted ED2 parameters.
Plant Functional Type Physiological Parameters
tEH tLC tLH t.NMH tNP

stomatal slope

gamma(19.7, 2.97) weibull(2, 10) weibull(2, 10)

weibull(2, 10)

weibull(2, 10)

quantum efficiency

gamma(16.6, 279) norm(0.08, 0.014) | weibull(2.9, 0.07)

Inorm(-3.28, 0.08)

gamma(82, 1.4e+03)

Vcemax

norm(74.9, 9.8) weibull(1.7, 80) norm(60.5, 11.9)

gamma(37.8, 0.53)

weibull(2.2, 80)

cuticular conductance

Inorm(9.4, 0.7) Inorm(9.4, 0.7) Inorm(9.4, 0.7)

norm(9988, 497)

Inorm(9.4, 0.7)

growth respiration factor

beta(4.06, 7.2) beta(2.63, 6.52) beta(4.06, 7.2)

beta(2.63, 6.52)

beta(2.63, 6.52)

fine root allocation

gamma(16.59, 23.32)

Inorm(-0.25, 1) gamma(9.13, 8.22)

gamma(9.44, 8.82)

Inorm(-0.25, 1)

Soil Biogeochemistry (decomposition) parameters

r_stsc

beta(l, 1)

decay rate stsc

unif(0.005, 0.75)

resp. temperature increase

unif(0.05, 0.2)

t.EH: temperate Early Hardwood, t.LC: temperate Late Conifer, t.LH: temperate Late Hardwood, t NMH: temperate North Mid-Hardwood, t.NP: temperate Northern Pine
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Plant Functional Type Physiological Parameters

Table AS. The emulator-PDA approximated parametric posterior distributions of the targeted ED2 parameters.

t.EH

tLC

tLH

tNMH

tNP

stomatal slope

Inorm(1.48, 0.13)

gamma(4.01, 1.6)

gamma(4.01, 1.6)

gamma(4.01, 1.6)

gamma(4.01, 1.6)

quantum efficiency

Inorm(-2.8, 0.11)

norm(0.08, 6.3e-03)

gamma(35.8, 541)

Inorm(-3.3, 0.04)

Inorm(-2.8, 0.05)

Vcmax

norm(47.3, 3.45)

gamma(2.83, 1.04)

norm(27.1, 4.17)

norm(42.9, 2.85)

weibull(2.4, 6.4)

cuticular conductance

norm(9.85, 0.385)

norm(9.85, 0.385)

norm(9.85, 0.385)

norm(10308, 273)

norm(9.85, 0.385)

growth respiration factor

beta(3.59, 7.47)

beta(2.29, 6.8)

beta(3.59, 7.47)

beta(2.29, 6.8)

beta(2.29, 6.8)

fine root allocation

gamma(30.7, 7.47)

Inorm(-0.3, 0.73)

gamma(16.7, 15.6)

gamma(17.3, 16.8)

Inorm(-0.3, 0.73)

Soil Biogeochemistry (decomposition) parameters

r_stsc

beta(1, 1.98)

decay rate stsc

Inorm(-2.97, 1.02)

resp. temperature increase Inorm(-2.16, 0.28)

t.EH: temperate Early Hardwood, t.LC: temperate Late Conifer, t.LH: temperate Late Hardwood, t NMH: temperate North Mid-Hardwood, t.NP: temperate Northern Pine
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Table A6. Links to the Workflow IDs. The input/output files associated with each workflow can be accessed via the history table on the
following link "pecan2.bu.edu/pecan/history.php". Alternatively-Or each workflowtD-workflow can be replaced-with-accessed directly by
replacing the workftowtb-workflow ID at the end of the following linkte-directly—aceess—the-workilow—page: "pecan2.bu.edu/pecan/08-
finished.php?workflowid=1000008379". The left ment-frame on the page can be used to navigate through PEcAn settings, input and output

ou can first select the "mcmc.list.pda*** Rdata" file

*##* heing the ensemble IDs given by the workflow) under the "PEcAn Files" dropdown menu on the left frame. By clicking "Show File"
button you can download the raw MCMC outputs to your own machines. If you would like to display posterior density distributions, first
select either soil or plant physiology under the "PFTs/PFT" menu on the left frame. Next, under the "PFTs/Output” dropdown menu, select

"posteriors.pda.***. pdf" files and click "Show PFT Output". The red line would be the posterior density plot and the black line would be the
fitted by PEcAn’s aj

files. If you wish to conduct further visualizations or analysis on the MCMC samples,

roximated parameteric distributions (such as the ones reported in Table A2 and A5 rox.posterior function that can

be found under pecan/modules/meta.analysis/R/approx.posterior.R

Model Experiment Workflow ID
SIPNET | Pre-PDA EA/UA 1000008379
SIPNET | Emulator PDA - Synthetic Data 1000009295
SIPNET | Emulator PDA - Real Data 1000009249
SIPNET | Emulator Post-PDA EA 1000009309

SIPNET | Bruteforce PDA - Real Data (chain 1) | 1000008530
SIPNET | Bruteforce PDA - Real Data (chain 2) | 1000008531
SIPNET | Bruteforce PDA - Real Data (chain 3) | 1000008532

SIPNET | Bruteforce Post-PDA EA 1000008923
ED2 Pre-PDA EA/UA 1000009051
ED2 Emulator PDA - Real Data 1000009052
ED2 Emulator Post-PDA EA 1000009052

PDA: Parameter Data Assimilation, EA: Ensemble Analysis, UA: Uncertainty Analysis
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Table A7. Links to the Workflow IDs of scaling experiments. Parameters targeted are in this order cumulatively: som_respiration_rate,
soil_respiration_Q10, soilWHC, psnTOpt (4), leafGrowth, leaf_turnover_rate (6), half_saturation_PAR, dVPDSlope (8), AmaxFrac,
dVpdExp (10)

Model # of params | # of knots | Workflow ID
960 1000009310

SIPNET 4 480 1000009311
240 1000009312

120 1000009313

960 1000009314

SIPNET 6 480 1000009315
240 1000009316

120 1000009317

960 1000009318

SIPNET 8 480 1000009319
240 1000009320

120 1000009321

960 1000009322

SIPNET 10 480 1000009323
240 1000009324

120 1000009325
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Table A8. Scaling experiment results showing the trade-off between wall-clock time vs. the approximation error with increasing emulator

knots.

m n Model run time (sec) GP fitting (sec) 100K MCMC (sec) Deviance
15t ond 3rd 15t | ond 3rd 15t and 3rd
120 | 182 188 184 2 4 12 772 948 | 1144 9489
4 | 240 | 366 364 359 5 27 92 941 | 1340 | 1764 9255
480 | 733 748 744 28 228 707 | 1592 | 2502 | 3614 9230
960 | 1453 | 1511 | 1505 | 204 | 1736 | 6615 | 2523 | 4862 | 7815 9308
120 | 182 180 185 2 6 14 795 | 1017 | 1221 8371
6 | 240 | 365 368 366 5 27 85 1039 | 1519 | 1962 8284
480 | 735 777 737 28 215 731 | 1544 | 2488 | 3675 8310
960 | 1521 | 1471 | 1514 | 209 | 1785 | 6858 | 2360 | 4503 | 7799 8150
120 | 197 199 198 2 5 12 905 | 1116 | 1323 9825
8 | 240 | 410 392 392 7 32 109 | 1152 | 1611 | 2107 8643
480 | 745 749 754 30 236 747 | 1625 | 2596 | 3766 8100
960 | 1517 | 1532 | 1502 | 217 | 1949 | 6678 | 2532 | 4827 | 7498 8062
120 | 187 187 187 2 7 15 988 | 1254 | 1277 9573
10 | 240 | 376 368 418 5 29 92 1235 | 1610 | 2075 8682
480 | 752 769 766 26 204 787 | 1681 | 2732 | 3489 8559
960 | 1491 | 1507 | 1490 | 208 | 2015 | 6643 | 2721 | 5010 | 7831 8106

m parameters (m = {4, 6, 8, 10}), k knots (k = {120, 240, 480, 960})
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Figure A1. Un-smoothed, half-hourly time series comparison for NEE and LE predictions, before and after calibration.
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Figure A2. Predicted vs observed comparison with concentration ellipses. Top row: SIPNET, bottom row: ED2
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after emulator-PDA.
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Figure A8. Schematic diagram of emulator workflow.
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