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Abstract 15 

To better understand the role of terrestrial ecosystems in the global carbon cycle and their 16 

feedbacks to the global climate system, process-based biogeochemistry models need to be 17 

improved with respect to model parameterization and model structure. To achieve these 18 

improvements, the spin-up time for those differential equation-based models needs to be 19 

shortened. Here, an algorithm for a fast spin-up was developed by finding the exact solution of a 20 

linearized system representing cyclo-stationary state of a model and implemented in a 21 

biogeochemistry model, the Terrestrial Ecosystem Model (TEM).  With the new spin-up 22 

algorithm, we showed that the model reached a steady state in less than 10 years of computing 23 

time, while the original method requires more than 200 years on average of model run.  For the 24 

test sites with five different plant function types, the new method saves over 90% of the original 25 

spin-up time in site-level simulations. In North America simulations, average spin-up time 26 

saving for all grid cells is 85% for either daily or monthly version of TEM.  The developed spin-27 

up method shall be used for future quantification of carbon dynamics at fine spatial and temporal 28 

scales. 29 

  30 



 3 

1. Introduction 31 

Biogeochemistry models contain state variables representing various pools of carbon and 32 

nitrogen and a set of flux variables representing the element and material transfers between 33 

different state variables. Model spin-up is a step to get biogeochemistry models to a steady state 34 

for those state and flux variables (McGuire et al., 1992; King, 1995; Johns et al., 1997; 35 

Dickinson et al., 1998). Spin-up normally uses cyclic forcing data to force the model run, and 36 

reach a steady state, which will be used as initial conditions for model transient simulations. The 37 

steady state is reached when modeled state variables show a cyclic pattern or a constant and 38 

often requires a significant amount of computation time, which needs to be accelerated for 39 

regional and global simulations at fine spatial and temporal scales. 40 

Spin-up is normally achieved by running model repeatedly using one or several decades of 41 

meteorological or climatic data, until a steady state is reached. The step could require model 42 

repeatedly run for more than 2000 annual cycles in some extreme cases.  Specifically, the model 43 

will check the stability of the simulated carbon and nitrogen fluxes as well as state variables with 44 

specified threshold values. For instance, the model will check if the simulated annual net 45 

ecosystem production (NEP) is less than 1 g C m-2 yr-1 (McGuire et al. ,1992). Another method 46 

to reach a steady state is to obtain the analytical solutions (King et al, 1995; Comins, 1997), 47 

which might also take a significantly long time. 48 

For different biogeochemistry models, spin-up could take hundreds and thousands of years to 49 

reach a stability, normally longer than the model projection period (Thornton et al., 2005). 50 

Therefore, a more efficient method to reach the steady state will speed up the entire model 51 

simulation. Recently, a semi-analytical method (Xia et al., 2012) has been adapted to a carbon-52 

nitrogen coupled model to speed up the spin-up process. The idea is to get an analytical solution 53 
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very close to a steady condition, then start spin-up from the solution, which could significantly 54 

reduce spin-up time. This technique did not reach a cyclic pattern for state and flux variables and 55 

required an additional spin-up process to achieve the steady state. However, Lardy et al (2011) 56 

and Martin et al (2007) have implemented their spin-up methods for a linear problem of soil 57 

carbon dynamics including their seasonal cycles. 58 

 Here we developed a method to accelerate the spin-up process in a non-linear model.  We 59 

tested the method for representative plant function types and the North America with both daily 60 

and monthly versions of TEM (Zhuang et al., 2003). In addition, we compared the performance 61 

of our algorithms with the semi-analytical version of Xia et al. (2012).  The new algorithms shall 62 

help us conduct very high spatial and temporal resolution simulations with process-based 63 

biogeochemistry models in the future.    64 

 65 

2. Method 66 

2.1 TEM description 67 

We used a process-based biogeochemistry model, the Terrestrial Ecosystem Model (TEM; 68 

Zhuang et al. 2003) as testbed to demonstrate the performance of the new algorithms of spin-up.  69 

TEM simulates the dynamics of ecosystem carbon and nitrogen fluxes and pools (McGuire et al., 70 

1992; Zhuang et al., 2010, 2003). It contains five state variables: carbon in living vegetation ( vC
), 71 

nitrogen in living vegetation ( vN
), organic carbon in detritus and soils ( sC

), organic nitrogen in 72 

detritus and soils ( sN
), and available inorganic soil nitrogen ( avN

). Carbon and nitrogen 73 

dynamics in TEM are governed by following equations: 74 
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Where GPP is gross primary production, AR
 is autotrophic respiration, CL

is carbon in 76 

litterfall, NUPTAKE is nitrogen uptake by vegetation, NL
 is nitrogen in litterfall, HR

 is 77 

heterotrophic respiration, NETNMIN is net rate of mineralization of soil nitrogen, NINPUT is 78 

nitrogen input from outside ecosystem, NLOST is nitrogen loss from ecosystem.  Key carbon 79 

fluxes are defined as: 80 
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 81 

For detailed GPP definition, see Zhuang et al. (2003). NEP will be near zero when the 82 

ecosystem reaches a steady state.  Therefore, the spin-up goal is to keep running the model 83 

driven with repeated climate forcing data until NEP is close to zero with a certain tolerance value 84 

(e.g., 0.1 g C m-2 yr-1).  85 

2.2 Spin-up acceleration method 86 

TEM can be re-formulated as: 87 
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( ) ( ), .....................................................................(9)
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g x t h t
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        89 

Where x  is a vector of state variables (e.g., CV); ( )h t  is the vector of carbon/nitrogen input 90 

from the atmosphere (such as nitrogen input), independent on x ; ( ),g x t  is the process rate 91 

function of element pools (e.g., GPP).   92 

By linearizing the model in term of pools, we could get: 93 

( ) ( ) ( )0 0, , ............................................(10)g x t g x t J x x= + −        94 

 Where 
0x is initial pool sizes, J is the Jacobian matrix of the process rate: 95 
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where g represents ( ),g x t .  
nx  represents each of state variables in the TEM (e.g., VC). The 97 

numerical discretization of eq. (9) is: 98 
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where  is time step (month), ,i kx  is the pool 
ix size at time k, 

1

2
k

J
−

 is a Jacobian matrix at 101 

time step 

1

2
k −

. Here ½ refers to the half time step in the middle of a month, at which values 102 

of J are calculated as the mean value at time steps k and k-1.  ,0ix  refers to the initial pool 
ix  size. 103 

We introduce: 104 

( ) ( )1 0 1 0, 1 1

2

, 1 ......................................... 13k k k
k
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−
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The eq. (12) can then be written as: 106 
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Where  
1

2
k

J
−

 is a Jacobian matrix at the time step 

1

2
k −

.  After running a large number of 108 

annual cycles, the model approaches a cyclo-stationary state, which can be expressed by 109 

condition T i ix x+ =
 , where T is the number of time steps in one cycle.  For example, when spin 110 

up is made at monthly time step using monthly climatology of temperature, precipitation and 111 

other forcing data, T equals 12, and 1x  is the size of carbon pools on January 1st, while 
1.5J is 112 

the matrix of mean process rate constants for January.   113 

By introducing:  114 

1 1

2

, , ,k k k k k
k

A J y f B I C I A  −
−

=  = = = +  115 

where I  is an identity matrix. 116 
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Eq. (12) can be further written as: 117 

( ), 1 , ...................................................... 15k i k k i k kC x B x y−−  +  =                          118 

The cyclic boundary condition is: 1 1Tx x +=
 119 

Then Eq. (13) will become:  120 

1 , 1 ,1 1........................................................(15 )i T iC x B x y a−  +  =   121 

Thus eq. (15) and (15a) become a formulation of a linear problem with T unknown vectors122 

Tx , which can be solved using LU (lower and upper) decomposition or Gaussian elimination 123 

(Martin et al., 2007).  Xia et al (2012, see Eq. 4) and Kwon and Primeau (2006) also had linear 124 

equations for a steady state, but conducted the model simulation at annual time step.  Going for 125 

annual average form reduces the size of the problem and prevents Xia et al (2012) from 126 

obtaining the exact solution of the problem including seasonal cycle (see their Eq. 15, 15a). 127 

While our new approach runs the model at monthly time step with the cyclic boundary 128 

conditions for state variables x, it still targets a steady state for the ecosystem at annual time step 129 

instead of monthly time step.   130 

2.3 Numerical implementation 131 

Eq. (15a) is explicitly expressed as: 132 
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Eq. (16) can be shown in form Mx Y= . 134 

We apply the Gaussian elimination to upper block that reduces M to a lower triangular form 135 

(Figure 1). The resulting matrix is lower diagonal:  136 

……………….(17) 137 

The eq. (16) is thus reduced to form ' 'M x Y= , where  𝑀′ is lower diagonal, and solution of eq. 138 

(15a and 16) will be readily obtained for x.  139 

2.4 Algorithm implementation for TEM  140 

In the original TEM, carbon fluxes can be defined as: 141 

( )

................................................................(19)
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 Where net primary production (NPP) is defined as the difference of GPP and plant maintenance 143 

respiration (MR) and growth respiration (GR).  MR is assumed as a function of  CV and 144 

temperature (KT).  Here we revised MR calculation:  145 

,
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The net ecosystem production (NEP) is defined as the difference between NPP and 147 

heterotrophic respiration (RH).  148 

The basic workflow to implement the method is: 1) linearizing TEM first to get a sparse 149 

matrix with n-variable (for TEM, n=5) system; 2) performing Gaussian elimination for the linear 150 

system; 3) solving the sparse matrix to acquire the state variable values (Figure 1). To adapt this 151 

method to a daily version of TEM, we changed the cyclic condition T from 12 to 365. The other 152 

steps are the same as monthly version. We tested the new method for carbon only version and 153 

carbon-nitrogen coupled version of TEM for different plant functional types (PFTs) (Table 1).  154 

Specifically, for the carbon only version, we only solved the differential equations that govern 155 

the carbon dynamics, while for the carbon-nitrogen coupled version, we solved the differential 156 

equations that govern both carbon and nitrogen dynamics in the system.  For the both versions, 157 

the spin-up process strives to reach a steady state for carbon pools and fluxes.  158 

3. Results and Discussion 159 

At Harvard Forest site, the traditional spin-up method took 564 years to get the steady state 160 

for both the carbon-only and coupled carbon–nitrogen simulations with annual NEP less than 0.1 161 

g C m−2 yr−1 (Figure 2). In contrast, the improved method took 72 years for the carbon only and 162 

122 for the coupled carbon–nitrogen simulations, respectively.  For carbon and nitrogen pools, it 163 

took another 45 years (equivalent cyclic time) to reach a steady state with NEP less than 0.1 g C 164 

m−2 yr−1.  In comparison with the traditional spin-up method (Zhuang et al., 2003), the new 165 

method saved 65% of computational time to get the steady state in the carbon-only simulations 166 

(Table 2). The differences in steady-state carbon pools between using the new method and 167 

traditional spin-up methods were small (less than 0.85%).  Similarly, for the coupled carbon–168 

nitrogen simulations, the new method saves a similar amount of time to reach the steady state.  169 



 11 

   For all seven test sites, the original spin-up method in TEM takes 204-564 years (1.1-2.5 170 

seconds of computing time) to reach the steady state at different sites. In contrast, our new 171 

method only takes 0.3-0.6 seconds, while the semi-analytical method (Xia et al., 2012) will need 172 

0.5-0.9 seconds to reach the steady state at different sites (Table 2). Compared to the original 173 

spin-up method, the new method is not only faster, but also computationally stable. 174 

The time of spin-up to reach a steady state of NEP varied for different PFT grids using the 175 

original method (Figure 2).  In general, to allow 98% grid cells reach their steady states of NEP, 176 

it will take 250 annual model runs.  While the new method will only need on average 0.6 seconds 177 

(equivalent to 60-year annual model runs with the original method) (Figure 3). For regional tests 178 

in North America, we found that the average saving time with the new method with monthly 179 

TEM is 25%, 32%, and 22%, for Alaska, Canada, and the conterminous US, respectively. 180 

To compare the performance of the new method with other existing methods, we adapted the 181 

semi-analytical method (Xia et al., 2012) to TEM model. To do that, we first revised the TEM 182 

model structure to:   183 

( )
( ) ( )................................ 22

dP t
ACP t

dt
=

 184 

Where P(t) is a vector of pools in TEM (e.g., CV and CS).  is a scalar. A is a pool transfer matrix 185 

(in which Aij represents the fraction of carbon transfer from pool j to i). C is a diagonal matrix 186 

with pool components (where diagonal components quantify the fraction of carbon left from the 187 

state variables after each time step).  With this method, we obtained an analytical solution for the 188 

intermediate state. We then kept running TEM with the traditional spin-up process. Specifically, 189 

we started TEM simulation to estimate the state variable values. Based on these values, the spin-190 

up runs were conducted to reach the final steady state. We found that the semi-analytical solution 191 
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is better than the original spin-up method, but slower than the new method proposed in this study 192 

(Table 2). 193 

The TEM model has a relatively small set of state variables for carbon and nitrogen.  The 194 

version we used is TEM 5.0, which has only five state variables (Zhuang et al., 2003).  Thus, the 195 

linearization process is relatively easy and the matrix size is relatively small, consequently, the 196 

computing is not a burden.  To accelerate the spin-up for multiple soil carbon pool models with 197 

relatively simple and linear decomposition processes, implementing our method shall be still 198 

relatively easy, but will take a great amount of computing time to equilibrate. For models such as 199 

CLM, multiple methods have been tested to accelerate their spin-up process (e.g., Fang et al., 200 

2015), the direct analytical solution method introduced in this study might be time-consuming to 201 

achieve. 202 

4. Summary  203 

We developed a new method to speed up the spin-up process in process-based 204 

biogeochemistry models. We found that the new method shortened 90% of the spin-up time 205 

using the traditional method.  For regional simulations in North America, average spin-up time 206 

saving is 85% for either daily or monthly version of TEM.  We consider our method is a general 207 

approach to accelerate the spin-up process for process-based biogeochemistry models. As long as 208 

the governing equations of the models can be formulated as the form in eq. (9), the algorithm 209 

could be adopted accordingly. Our method will significantly help future carbon dynamics 210 

quantification with biogeochemistry models at fine spatial and temporal scales.  211 

212 
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 223 

Table 1. Test sites for new spin-up algorithms  224 

Site Name Location PFT Reference 

1. Fort Peck 48.3N, 105.1W Grassland Gilmanov et al. [2005] 

2. Bartlett Exp Forest 44.1N, 71.3W Deciduous broadleaf Ollinger et al. [2005] 

3. UCI_1850 55.9N, 98.5W Evergrenn needle-leaf Goulden et al. [2006] 

4. Vaira Ranch 38.4N, 121.0W Grassland Baldocchi et al. [2004] 

5. Missouri Ozark 38.7N, 92.2 Deciduous broadleaf Gu et al. [2007, 2012] 

6. Niwot Ridge 40.0N, 105.5W Evergrenn needle-leaf Turnipseed et al. [2003, 2004] 

7. Harvard Forest 43.5N, 72.2W Deciduous broadleaf Van Gorsel et al. [2009] 

 225 

 226 



 14 

 227 

Table 2. Spin-up time comparison for different methods for seven study sites, seconds represent 228 

real computation time, years refer to the spin-up annual cycles 229 

Site No. 

Original Spin-up 

Year 

Spin-up computation time 

(Seconds) 

New method 

computation time 

(Seconds) 

Semi-analytical method 

(equivalent annual cycles) 

1 231 1.3 0.5 0.7s (+76) 

2 305 1.7 0.3 0.8s (+101) 

3 245 1.5 0.4 0.9s (+52) 

4 443 2.2 0.4 0.5s (+118) 

5 304 1.8 0.4 0.8s (+86) 

6 204 1.1 0.3 0.7s (+43) 

7 564 2.5 0.6 0.9s (+45) 

 230 

 231 
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 232 

      Fig. 1. Algorithms and procedures of the new spin-up method 233 

 234 

  235 
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 236 

Fig. 2. The time for NEP (g C yr-1m-2) reached a steady state with the original spin-up method at 237 

Harvard forest site. x represents model simulation years.  238 

 239 

 240 

  241 
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 242 

Fig. 3. Simulated NEP (g C m-2 yr-1) with the original spin-method after different spin-up years 243 

of (a) 50, (b) 100, (c) 150, and (d) 200 years, respectively. After these spin-up years, 63%, 89%, 244 

93%, and 98% grids will reach their steady states, respectively.  245 

  246 
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