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Response to Associate Editor’s comments: 
Interactive comment on “Inferring the effects of sink strength on plant carbon balance 
processes from experimental measurements” by Mahmud et al. 
 
Associate Editor Decision: Publish subject to minor revisions (review by editor) (04 Jun 
2018) by Sönke Zaehle 
 
Response to Associate Editor: 
Overall Review 
Many thanks for your revised manuscript, which does satisfactorily address all concerns 
raised by the reviewers. Based on my own reading of the revised manuscript, I have a small 
range of minor, editorial suggestions to help improve the clarity of the manuscript. Looking 
forward to receiving a final version of the manuscript in short time. 
 We appreciate the Associate Editor’s comments and careful reading of our 
manuscript. 
 
Minor editorial comments: 
L 56: is the “and” necessary here? In my view the implementation in models is solely 
discussed because of the multiple roles NCSs are assumed to play in plants. 
 The “and” is now removed (line 56). 
 
L110-113. I would avoid mixing hypotheses and the justification of your approach here. 
Maybe having these added sentences after the added sentence in L107, and then continuing 
“Therefore, we tested … “ would be clearer? 
 The sentences are reorganised as suggested (line 110-116). 
 
L209: Am I to deduce from this that you assume that the tissue-specific dark respiration rate 
of leaves rate of used to estimate maintenance respiration rates also for woody and root 
tissues? What’s the justification for this simplification? 
 This assumption is based on work by Drake et al. (2017) showing tissue-specific 
dark respiration rates of different organs are similar in Eucalyptus tereticornis seedlings. We 
have added this reference in the text (line 206-209).  
 
eq 7: Does not use a_r. This makes it inconsistent with the text in 223-227 and the figure 1. 
Why not use a_r in the equation, but add to caption and L223-227 that a_r is defined as 1-af-
aw. This would avoid introducing an inline equation (which should be avoided) in line 247 
 All these are adjusted according to the comment (eq 7, line 226, 233, 254). 
 
L231 (eq 8-10): Probably hair-splitting, but actually these equations should read 
Ct,f = k_n,f * C_n + C_s,f, etc 
for consistency with eq 4-7 and you probably should repeat the partitioning now mentioned in 
L178.  
 The equations are modified according to the suggestion (eq 8-10, line 235). 
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L443: I think that the use of the term “one at a time” is misleading here, because this term 
strictly means keeping all other parameters at their standard values (corresponding to your 
individual scheme). From reading this text, I would assume that Figure 5 shows exactly what 
happens if each parameter is change once to “free” while all the others are kept at 5L, which 
is not what you’ve done nor what figure 5 shows.  
 The confusion is now clarified in line 451.  
 
L444-5: I wonder if this would be clearer if you stated explicitly that you change from the 
parameter set derived from DA on the 5L observations to that of the parameters obtained 
when using the free seedlings as constraint of the model? Please design and label table 4 such 
that it is not necessary to refer to “columns” of the Table in the text. 
 The text (line 459-462) and the table are refined. 
 
L453: This sentence reads repetitive from the preceding ones. Please make sure that the 
newly added text is better integrated 
 The paragraph is reorganised and the problem of repetition is now resolved. 
 
L448 remove (+/-) 
 Removed from line 454. 
 
L448: rather remove “both”, and add “, respectively” in the end?  
 Modified (line 454-455). 
 
L563: add “in seedlings”. 
 Added in line 575.  
 
Figure 3 caption. remind the reader that ar is implied from af and aw, for instance by putting 
this explicit in the Yaxis label. Simply to avoid the reader assuming you have 6 free 
parameters- 
 Figure 3 caption and Y-axis label are modified. 
 
Table 1: Be more explicit to state “leaf area feedback on photosynthesis and Rm”?  
 Stated explicitly.  
 
Table 1: Simset C better “5L and free seedlings treatment considered” 
 Altered. 
 
Table 1: I am not sure that “parameters changes one at a time” describes what you do here 
when you change an increasing number of parameters from the DA result of 5L to free 
 Corrected. 
 
Figure 4 caption: Add “Simulated” (or similar) to the beginning of the first sentence. 
Assuming this is what is shown. Remove duplicate bracket in “Container size (L))”  
 Amended. 
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Figure 5 caption: I am unsure about the term “input” parameters, as these plots describe the 
prescribed change in model parameters, but they are not really the “input”, which are 
temperature and ?  
 Changed to “inferred” parameters. 
 
Figure 5 caption: Please reminder the reader that you are sequentially changing the parameter 
values from 5L to free.  
 Repeated the simulation scenario in figure caption. 
 
Figure 5 caption: I think this figure would be much easier to follow if panels A-F used always 
the same colours for 5L and free. The link between the colours in A-F and G-I is not evident, 
certainly not for daltonians.  
 The colours of the panels A-F are now adapted having the same colours for 5 L and 
free seedlings in all 6 panels.  
 
SI: Unclear what “optimum” parameter settings are. Do you mean the DA posterior? 
  Yes, indeed. The text is now clarified in S1 figure caption. 
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Abstract 13 

The lack of correlation between photosynthesis and plant growth under sink-limited 14 

conditions is a long-standing puzzle in plant ecophysiology that currently severely 15 

compromises our models of vegetation responses to global change. To address this puzzle, 16 

we applied data assimilation to an experiment where sink strength of Eucalyptus tereticornis 17 

seedlings were manipulated by restricting root volume. Our goals were to infer which 18 

processes were affected by sink limitation, and to attribute the overall reduction in growth 19 

observed in the experiment, to the effects on various carbon (C) component processes. Our 20 

analysis was able to infer that, in addition to a reduction in photosynthetic rates, sink 21 

limitation reduced the rate of utilization of non-structural carbohydrate (NSC), enhanced 22 

respiratory losses, modified C allocation and increased foliage turnover. Each of these effects 23 

was found to have a significant impact on final plant biomass accumulation. We also found 24 

that inclusion of a NSC storage pool was necessary to capture seedling growth over time, 25 

particularly for sink limited seedlings. Our approach of applying data assimilation to infer C 26 

balance processes in a manipulative experiment enabled us to extract new information on the 27 

timing, magnitude, and direction of the internal C fluxes from an existing dataset. We suggest 28 
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this approach could, if used more widely, be an invaluable tool to develop appropriate 29 

representations of sink-limited growth in terrestrial biosphere models.  30 

 31 

Keywords: Non-structural carbohydrate, carbon allocation, data assimilation, mass-balance, 32 

photosynthesis, plant growth, sink regulation 33 

 34 

1 Introduction 35 

Almost all mechanistic models of terrestrial vegetation function are based on the carbon (C) 36 

balance: plant growth is represented as the difference between C uptake (through 37 

photosynthesis) and C loss (through respiration and turnover of plant parts). This approach to 38 

modeling plant growth dates back to early crop and forest production models (McMurtrie and 39 

Wolf, 1983; de Wit and van Keulen, 1987; de Wit, 1978) and now provides the fundamental 40 

quantitative framework to integrate our scientific understanding of plant ecosystem function 41 

(Makela et al., 2000). 42 

However, C balance models have been criticized for being “source-focused” (Fatichi et al., 43 

2014). Most C balance models predict growth from the environmental responses of 44 

photosynthesis (“source limitation”). In contrast to this assumption, many experimental 45 

studies demonstrate that growth is directly limited by environmental conditions (“sink 46 

limitation”) rather than the availability of photosynthate. For example, growth is more 47 

sensitive to water limitation than is photosynthesis (Bradford and Hsiao, 1982; Müller et al., 48 

2011; Mitchell et al., 2014); low temperatures are considerably more limiting to cell division 49 

than to photosynthesis (Körner et al., 2014); nutrient limitation may slow growth without 50 

reducing photosynthesis (Reich, 2012; Crous and Ellsworth, 2004); and, physical sink-51 

limitation may reduce growth with a decline in photosynthetic capacity and an accumulation 52 

of leaf starch (Arp, 1991; Campany et al., 2017; Poorter et al., 2012a; Paul and Foyer, 2001).  53 

How can we move to models that include both source- and sink-limitation? There is ongoing 54 

discussion about realistic implementations of non-structural carbohydrates (NSC) in 55 

vegetation models because of their multiple roles in plant functioning, such an 56 

implementation provides a buffer against discrepancies in source and sink activity. Some C 57 
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balance models include a “storage” pool of NSC (Running and Gower, 1991; Bossel, 1996; 58 

Thornley and Cannell, 2000), but most of these models make the assumption that the NSC 59 

pool acts merely as a buffer between C sources and sinks, balancing out seasonally or at least 60 

over several seasons (Fatichi et al., 2014; Friend et al., 2014; De Kauwe et al., 2014; Schiestl-61 

Aalto et al., 2015). There is mounting evidence that the NSC plays a more active role in tree 62 

physiology (Buckley, 2005; Sala et al., 2012; Wiley and Helliker, 2012; Hartmann et al., 63 

2015). For example, NSC accumulation can lead to down-regulation of photosynthesis 64 

(Nikinmaa et al., 2014). Therefore, the need to quantify the NSC pool and to better 65 

understand the prioritisation of storage vs. growth is of great importance.  66 

An understanding of the dynamics of storage is also essential to correctly represent the C 67 

balance in models (Hartmann and Trumbore, 2016). If, for example, a direct growth 68 

limitation is implemented into models, how should the surplus of accumulated photosynthates 69 

be treated? In their proof-of-concept sink-limited model, Fatichi et al. (2014) allowed 70 

reserves to accumulate indefinitely. Alternatively, some models (e.g. CABLE (Law et al., 71 

2006), O-CN (Zaehle and Friend, 2010)) increase respiration rates when excess labile C 72 

accumulates. Both approaches can be seen as model-oriented solutions to maintain C balance 73 

that are unsatisfactory because they are not based on empirical data. Experiments where sink 74 

strength is manipulated may provide the key to improve our understanding of C balance 75 

processes under direct growth limitation.  76 

Efforts have been made to understand the physiological and morphological changes in 77 

response to belowground C sink limitation by manipulating rooting volume in tree seedlings 78 

(Arp, 1991; Campany et al., 2017; Poorter et al., 2012a). These experiments often reveal 79 

photosynthetic down-regulation and accumulation of leaf starch, and reductions in growth 80 

(Arp, 1991; McConnaughay and Bazzaz, 1991; Gunderson and Wullschleger, 1994; Sage, 81 

1994; Poorter et al., 2012a; Robbins and Pharr, 1988; Maina et al., 2002; Campany et al., 82 

2017). In a recent study with Eucalyptus seedlings, Campany et al. (2017) showed that the 83 

reduction in seedling growth when rooting volume was restricted could not be completely 84 

explained by the negative effects of sink limitation on photosynthesis, suggesting that other 85 

components of the C balance were affected in the process. However, Campany et al. (2017) 86 

could not accurately quantify all components of tree C balance, i.e. photosynthesis, 87 

carbohydrate storage, biomass partitioning and respiration.  88 
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Quantifying all components of C balance is not an easy task, given that not all processes are 89 

measured with equal fidelity, and data gaps will always occur. Klein and Hoch (2015) used a 90 

C mass balance approach with a tabular process flowchart to decipher C components and 91 

provide a full description of tree C allocation dynamics. Here, rather than using a manual 92 

process, we used a data assimilation (DA)-modelling framework, which has been proven to 93 

be a powerful tool in analyzing complex C balance problems (Williams et al., 2005; 94 

Richardson et al., 2013). For example, Richardson et al. (2013) use DA to discriminate 95 

among alternative models for the dynamics of non-structural carbon (NSC), finding that a 96 

model with two NSC pools, fast and slow, performed best; Rowland et al. (2014) applied DA 97 

to experimental observations of ecosystem C stocks and fluxes to infer seasonal shifts in C 98 

allocation and plant respiration in an Amazon forest; and Bloom et al. (2016) used DA to 99 

constrain a C balance model with satellite-derived measurements of leaf C, to simulate 100 

continental-scale patterns in C cycle processes.  101 

Our goal in this paper was to use DA to quantify the impact of sink limitation on C balance 102 

processes. We utilized data from an experiment in which sink limitation was induced by 103 

restricting the rooting volume of Eucalyptus tereticornis seedlings over the course of 4 104 

months (Campany et al., 2017). We assimilated photosynthesis and growth measurements 105 

from the experiment into a simple C balance model, to infer the effects of sink limitation on 106 

the main C balance processes, namely: respiration, carbohydrate utilization, allocation, and 107 

turnover.  108 

Although in reality plants do have a storage component, it is not necessarily the case that 109 

including such a storage component in the model leads to model improvement. Hence, it is 110 

important to test whether or not adding the storage component improves the performance of 111 

the model enough to justify the additional complexity. Therefore, we first tested two null 112 

hypotheses:  113 

H1: There is no need to consider storage in the model: growth can be adequately predicted 114 

from current day photosynthate.  115 

H2: There is no effect of sink limitation on C balance processes other than via a reduction of 116 

photosynthesis.  117 

We were then interested to test the following specific hypotheses about the impact of sink 118 

limitation on C balance:  119 
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H3: We hypothesized that the rate of utilization of carbohydrate for plant growth would be 120 

lower under sink limitation, causing growth rates to slow and non-structural carbohydrate to 121 

accumulate.  122 

H4: We hypothesized that under sink limitation a larger proportion of C would be lost to 123 

growth respiration and less used for production. We have dubbed this the “wasteful plant” 124 

hypothesis; this hypothesis corresponds to the assumption embedded in some models that 125 

respiration is up-regulated when labile C accumulates e.g. CABLE, O-CN (Law et al., 2006; 126 

Zaehle and Friend, 2010).  127 

H5: We hypothesized that foliage and root C allocation fractions would be reduced, in favour 128 

of wood allocation. Sink limitation induced by nutrient and/or water stress often results in a 129 

shift in C allocation away from foliage and towards fine roots (Poorter et al., 2012b). 130 

However, for this experiment, the physical restriction of root growth limits the potential for 131 

root allocation. Hence, we predicted that both foliage and fine root allocation would decrease. 132 

 133 

2 Materials and Methods 134 

2.1 Experiment description 135 

The site and experimental setup have been described in detail by Campany et al. (2017), so 136 

we only provide a brief description here. The experiment was carried out at the Hawkesbury 137 

Forest Experiment site (33°37'S 150°44'E) in Richmond, NSW, Australia. The site is located 138 

in the sub-humid temperate region and experiences warm summers and cool winters. The 139 

seedlings were planted on 21st January 2013 (mid-summer) and harvested on 21st May 2013 140 

(late autumn).  Mean daily temperatures ranged from 22.8 to 46.4 °C (monthly mean of 32.1 141 

°C) in January 2013, which was the warmest month of the year, and cooled down in May 142 

2013 with an average of 21 °C  (BoM, 2017).  143 

Twenty-week old Eucalyptus tereticornis seedlings in tube stock were chosen from a single 144 

local Cumberland plain cohort. Ten seedlings were harvested at the start of the experiment to 145 

measure initial leaf area and dry mass of foliage, woody components and roots. Forty-nine 146 

seedlings were used in the main experiment, allocated to seven treatments. The plants were 147 

grown in containers of differing volume set into the ground (5, 10, 15, 20, 25 or 35 L), or 148 
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were planted directly into soil (free seedlings, used as the control). All plants were grown in 149 

the open under field conditions, but were watered regularly to avoid moisture stress.  150 

2.2 Experimental data acquisition 151 

Full details of all measurements are given in Campany et al. (2017). The mass of each pool 152 

(foliage, wood, root, storage) was estimated over time as follows. The initial dry mass of 153 

leaves, woods and roots was measured for 10 seedlings at the start of the experiment using 154 

the harvesting procedure described in Campany et al. (2017). The dry mass of all 155 

experimental plants was measured at the end of the experiment following the same procedure.  156 

Seedling growth was tracked during the four months of the experiment, by measuring stem 157 

height (h), diameter at 15 cm height (d) and number of leaves on a weekly basis. These 158 

measurements were used to estimate the time course of wood and foliage biomass: for root 159 

total C we used only initial and final harvest measurements. Initial root C was estimated by 160 

averaging all 10 harvested seedlings.   161 

We estimated weekly total C in wood (Cs,w) from the measurements of stem height and 162 

diameter, by using an allometric model fitted to initial and final harvest data. 163 

 log 𝐶%,' = 	𝑏+ + 𝑏- log 𝑑 + 𝑏/	log	(ℎ) (1) 

For each seedling, the total leaf area (LA) and foliage total C (Ct,f) over time (t) were 164 

estimated based on harvested data (T = time of harvest) and weekly leaf counts (LC) over 165 

time.  166 

 167 

 
𝐿𝐴	 𝑡 = 	

𝐿𝐴	 𝑇
𝐿𝐶	 𝑇 	𝐿𝐶	(𝑡) 

(2) 

 
𝐶%,7	 𝑡 =

𝑀7	(𝑇)
𝐿𝐶	(𝑇) 	𝐿𝐶	(𝑡) 

(3) 

Fully expanded new leaves were sampled for total non-structural carbohydrate (NSC) 168 

concentration on a fortnightly basis. These concentrations were multiplied by leaf biomass to 169 

estimate the foliage TNC pool (Cn,f) at each time point. The partitioning of the non-structural 170 

C amongst foliage, wood and root tissues, according to empirically-determined fractions, was 171 

then used to estimate the wood and root components of the total TNC pool. Structural C mass 172 

for each component was estimated by subtracting non-structural C mass from total C mass. 173 
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Only foliage non-structural C (Cn,f) was measured, so to estimate the partitioning of the non-174 

structural C among different organs, we used data from a different experiment on similar-175 

sized seedlings of a related species (Eucalyptus globulus), which were grown in 5L pots until 176 

four months of age (Duan et al., 2013). We used data from the ambient well-watered control 177 

treatments. In that experiment, foliage, wood and root NSC were measured repeatedly over 178 

two months. There was no statistically significant change over time in the NSC distribution, 179 

so we used the mean distribution for mass-specific Cn over time, which was calculated to be a 180 

ratio of 75:16:9 among foliage, wood and root pools.  181 

We estimated daily GPP from leaf-level gas exchange measurements and a simple canopy 182 

scaling scheme as described in Campany et al. (2017), and summarized below. Measurements 183 

of photosynthesis were made fortnightly throughout the experiment on one fully expanded 184 

leaf per plant (Campany et al., 2017). Photosynthetic CO2 response (ACi) curves and leaf 185 

dark respiration rates (R) were measured on two occasions, 13-14th March 2013 (when new 186 

leaves were first produced) and 14-15th May 2013 (prior to the final harvest). The ACi curves 187 

were used to estimate photosynthetic parameters (the maximum rate of Rubisco 188 

carboxylation, Vcmax and the maximum rate of electron transport for RuBP regeneration under 189 

saturating light, Jmax) using the biochemical model of Farquhar et al. (1980) and fit with the 190 

‘plantecophys’ package (Duursma, 2015) in R. The parameter g1, reflecting the sensitivity of 191 

stomatal conductance (gs) to the photosynthetic rate, was estimated by fitting the optimal 192 

stomatal conductance model of Medlyn et al. (2011) to measured stomatal conductance data.  193 

Treatment effects on photosynthesis were detected immediately on newly produced (fully 194 

expanded) leaves and Campany et al. (2017) did not observe variation over time in 195 

photosynthetic rates. Hence, the photosynthesis parameters were assumed not to change over 196 

time but were specific for each treatment. Therefore, daily net C assimilation per unit leaf 197 

area (Cday) was estimated by using a coupled photosynthesis–stomatal conductance model 198 

(Farquhar et al., 1980; Medlyn et al., 2011) using mean photosynthetic parameters (Jmax, 199 

Vcmax, g1 and Rd) for each treatment and meteorological data from the onsite weather station. 200 

The daily GPP was estimated by multiplying Cday, total leaf area (LA) and a self-shading 201 

factor. The self-shading factor, which is a linear function of LA, is calculated by via 202 

simulation with a detailed radiative transfer model, the ‘YplantQMC’ R package of Duursma 203 

(2014) for individual treatment. The leaf maintenance respiration rate (Rm, g C g-1 C plant d-1) 204 

was calculated for each seedling by scaling the measured rate (R) to air temperature using a 205 
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Q10 value of 1.86 (Campany et al., 2017). The daily total maintenance respiration, Rm,tot is 206 

calculated as a temperature-dependent respiration rate, Rm, multiplied by plant biomass. We 207 

assumed the same tissue-specific dark respiration rates for leaf, woody and root tissues for 208 

these seedlings, as was observed for seedlings of this species by Drake et al. (2017). 209 

2.3 Carbon Balance Model (CBM) 210 

We used a DA-modelling framework, similar to that used by Richardson et al. (2013). This 211 

approach uses a simple carbon balance model shown in Figure 1. The model is driven by 212 

daily input of gross primary production (GPP), which directly enters into a non-structural C 213 

pool (Cn). The daily total maintenance respiration, Rm,tot, is subtracted from Cn pool. The pool 214 

is then utilized for growth at a rate k (i.e. kCn). Of the utilization flux, a fraction Y is used in 215 

growth respiration (Rg), and the remaining fraction (1-Y) is allocated to structural C pools 216 

(Cs): among foliage, wood and root (Cs,f, Cs,w, Cs,r). The foliage pool is assumed to turn over 217 

with rate sf. We assume there is neither wood or root turnover as the seedlings in the 218 

experiment were young. 219 

 220 

Figure 1: Structure of the Carbon Balance Model. Pools, shown as boxes: Cn, non-structural 221 

storage C; Cs,f, structural C in foliage; Cs,r, structural C in roots; Cs,w, structural C in wood. 222 

Fluxes, denoted by arrows, include: GPP, gross primary production; Rm,tot, total maintenance 223 

respiration; Rg, growth respiration; Ct,lit, structural C in leaf litterfall. Fluxes are governed by 224 

six key parameters: k, storage utilization coefficient; Y, growth respiration fraction; af, 225 

allocation to foliage; aw, allocation to wood; ar, allocation to roots; sf, leaf turnover rate. ar is 226 

defined as 1 - af - aw. 227 
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The dynamics of the four carbon pools are described by four difference equations:  228 

 𝛥𝐶: = 𝐺𝑃𝑃 − 𝑅? 𝐶%,7 + 𝐶%,' + 𝐶%,@ − 	𝑘	𝐶: (4) 

 𝛥𝐶B,7 = 	𝑘	𝐶:	 1 − 𝑌 	𝑎7 − 𝑠7	𝐶B,7 (5) 

 𝛥𝐶B,' = 	𝑘	𝐶:	 1 − 𝑌 	𝑎' (6) 

 𝛥𝐶B,@ = 	𝑘	𝐶:	 1 − 𝑌 	𝑎@ (7) 

Where GPP is the gross primary production (g C plant-1 d-1); Rm is the maintenance 229 

respiration rate (g C g-1 C d-1); Ct,f, Ct,w, and Ct,r are the total C in foliage, wood and root 230 

respectively (g C plant-1); k is the storage utilization coefficient (g C g-1 C d-1); Y is the 231 

growth respiration fraction; af, aw, ar are the allocation to foliage, wood and root respectively; 232 

and sf is the leaf turnover rate (g C g-1 C d-1). ar is defined as 1 - af - aw. 233 

The non-structural (storage) C pool (Cn) is assumed to be divided amongst foliage, wood and 234 

root tissues (Cn,f, Cn,w, Cn,r) according to an empirically-determined ratio of 75:16:9. Total 235 

carbon in each tissue (Ct) is then calculated as the sum of non-structural carbon (Cn) and 236 

structural carbon (Cs) for that tissue. 237 

 𝐶%,7 = 0.75×𝐶: + 𝐶B,7 (8) 

 𝐶%,' = 0.16×𝐶: + 𝐶B,' (9) 

 𝐶%,@ = 0.09×𝐶: + 𝐶B,@ (10) 

2.4 Application of Data Assimilation (DA) algorithm 238 

DA was used to estimate the six parameters (k, Y, af, aw, ar, sf) of the CBM for this 239 

experiment. All parameters were allowed to vary quadratically with time, i.e. each parameter 240 

was represented as:  241 

 𝑝 = 	𝑝++	𝑝-𝑡	+	𝑝/𝑡- (4) 

Quadratic variation over time was found to yield significantly better model fits than either 242 

constant parameter values or linear variation over time (see supplementary section S1). We 243 

executed three distinct sets of model simulations (Table 1), with the goals of (1) testing the 244 

need for a storage pool; (2) determining the effect of sink limitation on model parameters; 245 

and (3) attributing the overall effect of sink limitation on growth to the change in individual 246 

parameters.  247 
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For each set of model simulations, GPP and Rm were used as inputs to the DA framework, 248 

and the measurements of total C mass of each of the plant components and foliage NSC 249 

concentrations were used to constrain the parameter values. The set of constraints included 18 250 

measurements of Ct,f and Ct,w, two measurements of Ct,r (start and end of the experiment), and 251 

six measurements of foliage NSC. There were 5 quadratically-varying parameters to 252 

determine for each treatment, summing to a total of 15 (3x5) coefficients to determine, 253 

compared with total 44 data measurements available, for each treatment.  254 

We used the Metropolis algorithm (Metropolis et al., 1953) as implemented by Zobitz et al. 255 

(2011), with broad prior Probability Density Functions (PDFs) for the parameters (Table 2). 256 

Values of k, af, ar and sf were allowed to vary within the maximum possible range, while 257 

parameter Y was constrained according to the literature on growth respiration (Villar and 258 

Merino, 2001) . Parameter ar was calculated from af and aw with a check on ar to ensure that 259 

it had reasonable values (0 < ar < 1). Standard Error (SE) was used as an estimate of 260 

uncertainty on the assimilated data (Rowland et al., 2014; Richardson et al., 2010), and was 261 

calculated based on six replicate measurements. When combining errors, the errors were 262 

assumed to be uncorrelated (Hughes and Hase, 2010).  263 

Model parameters were assumed to be real, positive and to have a lognormal probability 264 

distribution (Rowland et al., 2014). Therefore, all processes of parameter selection, and 265 

acceptance and rejection of parameters in relation to prior ranges were performed in 266 

lognormal space (Knorr and Kattge, 2005). We performed the first iteration starting from the 267 

prior set of parameters. To generate subsequent values for each parameter, a new point was 268 

generated by varying all vector elements by some step, chosen with a Gaussian distributed 269 

random number generator having a mean of 0 and a SD of 0.005 in log-normal space. We 270 

adjusted the step length for each parameter to values which lead to an average acceptance rate 271 

of the new points around 35–40%. We confirmed the chain convergence, having 3000 272 

iterations to adequately explore the posterior parameter space, by visual inspection of the 273 

trace plots of different parameters as suggested by Van Oijen (2008). The trace plots show 274 

how the chain moves through parameter space for each individual parameter. The parameter 275 

vectors sampled during the first phase of the chain were not representative and therefore the 276 

first 10% of the chain was discarded from the posterior sample. 277 

Table 1: Summary of the three model simulation sets  278 
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Simulation 
Set Goal  Features  Addressing 

hypothesis 
A Test importance 

of storage pool 
• DA applied to estimate parameters for 

model without storage pool and model 
with storage pool  

• Three treatment groups 
• Not constrained with NSC data 
• No leaf area feedback 

H1 

B Identify effect of 
sink limitation on 
model parameters 

• DA applied to estimate parameters for 
model with storage pool  

• Data divided into one, two, three or seven 
treatment groups 

• Constrained with NSC data  
• No leaf area feedback 

H2-H5 

C Attribute overall 
effect on growth 
to changes in 
individual 
parameters 

• Forward model runs to quantify impact of 
individual processes on overall plant 
growth 

• 5L and free seedlings treatments 
considered  

• Parameters changed individually and 
sequentially 

• Leaf area feedback on photosynthesis and 
Rm 

 

Table 2: Prior parameter PDFs (with uniform distribution) and the starting point of the 279 
iteration for all parameters  280 

Parameter Minimum Maximum Starting value 

k 0 1 0.5 

Y 0.2 0.4 0.3 

af 0 1 0.5 

aw 0 1 0.5 

sf 0 0.01 0.005 

ar = 1 - (af  + aw), where 0 < ar < 1 
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2.4.1 Importance of storage pool 281 

We tested the hypothesis (H1) on the importance of including a non-structural C storage pool 282 

in CBM by contrasting fits of the full model with fits of a simplified model without the non-283 

structural C pool (Simulation Set A, Table 1). The simplified model omits the non-structural 284 

C pool (Cs) from the full model (Figure 1) and assumes that all available C is utilized for 285 

growth each day. We applied the DA framework to both model options and calculated the 286 

Bayesian Information Criterion, BIC (Schwarz, 1978) to determine the better model structure. 287 

BIC measures how well the model predicts the data based on a likelihood function and 288 

compare model performance taking into account the number of fitted parameters, with the 289 

lowest BIC number indicating the best model setting. For this comparison, both models were 290 

fit to the biomass data only, not leaf NSC data, in order to ensure that both models were fit to 291 

the same number of data points. 292 

2.4.2  Effects of sink limitation on model parameters 293 

The effects of sink limitation on C balance were investigated by applying the DA framework 294 

to data from all treatments combined, and then subsets of treatments (Simulation Set B, Table 295 

1). Considering all treatments pooled together gives same parameters for all the treatments 296 

and effectively assumes no effect of sink limitation. On the other hand, taking more subsets 297 

of treatments produces more parameter sets (one for each subset) and allows for parameters 298 

to vary according to the degree of sink limitation. We first fitted the model to all data, 299 

ignoring treatment differences; then considered 2 treatment groups (free seedling / 5-35 L 300 

containerized seedlings), 3 groups (free / 5–15 L / 20–35 L) and 4 groups (free / 5-10 L / 15-301 

20 L / 25-35 L). We also fitted the model to each of the 7 treatments individually, where the 302 

parameter set for each treatment is unique. The BIC values were compared across treatment 303 

groupings.  304 
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2.4.3 Attribution analysis 305 

We performed a sensitivity analysis to quantify the impact of the response of each individual 306 

process to sink limitation on overall plant growth (Simulation Set C, Table 1). This analysis 307 

consisted of forward runs of the model, including a leaf area feedback to GPP. That is, rather 308 

than taking GPP based on measured LA (Eq. 9) as input, in this version of the model we 309 

calculated daily GPP using the modelled LA, the photosynthesis rate and corresponding self-310 

shading factor. Adding the LA feedback to the model was necessary to quantify how the 311 

treatment effect on individual model parameters affects final seedling biomass through its 312 

effect on foliage mass, and consequently GPP, over time.  313 

LA in each time step is estimated from NSC-free specific leaf area (SLAnonsc) and the 314 

predicted foliage structural carbon (Cs,f) in that time step. SLAnonsc is calculated at harvest 315 

discarding the foliage NSC portion and is assumed to be constant for a given treatment 316 

throughout the experiment.  317 

 𝐿𝐴 = 𝑆𝐿𝐴:P:BQ×𝐶B,7 (12) 

Once the LA feedback was implemented in the CBM, we ran the model with the inputs and 318 

modelled parameters from the smallest pot seedling (5 L), then changed the parameters to 319 

those for the free seedling sequentially in order to quantify the effect of each parameter on the 320 

final seedling biomass. The parameters we considered for this attribution analysis were: daily 321 

photosynthetic rate per unit leaf area (Cday), maintenance respiration rate (Rm), C allocation 322 

fractions to biomass (af, aw, ar), growth respiration rate (Y), foliage turnover rate (sf) and 323 

utilization coefficient (k). We additionally carried out a sensitivity analysis in which we 324 

varied each parameter from its baseline value separately.   325 
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 326 

3 Results 327 

3.1 Importance of storage pool 328 

First, we tested the null hypothesis (H1) that there is no need for a non-structural 329 

carbohydrate storage pool in the carbon balance model. We compared BIC values for model 330 

structures with and without a storage pool. Table 3 (Simulation Set A) shows the results for 331 

model fits with the optimal grouping strategy (three treatment groups). BIC values were 332 

consistently lower for the model including the storage pool; the improvement in model fit is 333 

most noticeable for the containerized seedlings. This analysis demonstrates that the model 334 

does need to include a storage pool to correctly represent the experimental data. In all 335 

remaining analyses, the full CBM (with non-structural C pool) is applied to data from all four 336 

plant C pools (NSC, foliage, wood and root biomass). 337 

Table 3: BIC values from model fits. The lowest BIC values indicate the best performing 338 

parameter settings for any particular simulation. Note that, for Sim A, leaf NSC data were not 339 

used to constrain either model, to ensure that both models were fit to the same dataset, 340 

resulting in lower BICs compared to Sim B. Treatment groups are: ‘Small’ - 5 L, 10 L and 15 341 

L containers; ‘Large’ - 20 L, 25 L and 25 L containers; ‘Free’ – freely rooted seedlings; ‘All’ 342 

- all data; ‘Containerized’ - all plants in containers. 343 

Simulation 
Set 

Model Setting Treatment groups BIC 

Sim A Model without storage pool Small 459 
Large 550 
Free 182 

Model with storage pool Small 215 
Large 338 
Free 167 

Sim B 7 treatments combined All 2768 
2 groups Containerized 1813 

Free 170 
Total 1983 

3 groups Small 683 
Large 457 
free 170 

Total 1310 
7 treatments individually 5 L 85 
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3.2 Sink limitation effect on C balance processes 344 

We addressed our second null hypothesis (H2), that there is no effect of sink limitation on 345 

carbon balance processes, by comparing BIC values obtained for model fits when all 346 

treatments were combined vs separating the treatments into sub-groups. If there was no effect 347 

of sink limitation, the BIC value when all treatments are fit together would be similar to that 348 

obtained when treatments are separated into groups. The BIC values shown in Table 3 349 

(Simulation Set B) decrease strongly as number of treatment groups increases, indicating a 350 

clear effect of sink limitation on carbon balance processes. Although the BIC values continue 351 

to decrease as more treatment groups are considered, we also found that interpreting 352 

parameter changes became more difficult as the number of groups increased. Hence, further 353 

analyses in this paper used unique parameter sets for three treatment groups: small containers, 354 

large containers, and free seedlings.  355 

3.3 Analysis of carbon stock dynamics 356 

Figure 2 shows the correspondence between modeled C pools and data. The model 357 

reproduced the key features of biomass growth over time in response to treatment. Biomass 358 

growth (Figure 2A, B and C) and the foliage storage pool (Figure 2D) were very clearly 359 

impacted by sink limitation: biomass growth was strongly reduced for containerised 360 

seedlings, which was very well mimicked by the model. Foliage growth in the free seedlings 361 

slowed towards the end of the experiment. Wood and root growth continued throughout the 362 

experiment in freely-rooted seedlings but slowed down during the second half of the 363 

experiment in containerized seedlings. NSC concentrations (Cn,f / Ct,f) in seedlings in small 364 

containers were higher compared those in free seedlings at the beginning of the season but all 365 

treatments had similar concentrations after four months (Figure 2D). In March, at the time of 366 

the first leaf NSC measurements, the foliage storage pool (Supplementary Figure S1) was 367 

similar in size across all treatments, but it increased over time in the free seedlings as these 368 

plants continued to grow, and decreased over time in the plants in small containers. 369 

10 L 98 
15 L 60 
20 L 63 
25 L 106 
35 L 152 
Free 170 
Total 734 
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Modelled C stocks for all 7 treatments closely tracked their corresponding observations 370 

(Figure 2) as most of the predicted biomass values were within one standard error of the 371 

measurements. The exception is the 35 L container treatment, which is underestimated 372 

slightly because the grouping of 20, 25 and 35 L treatments into one group makes it difficult 373 

for the model to fit all treatments in this group.  374 

 375 

Figure 2: C stocks (lines) with the inferred parameter set and corresponding observations 376 

(symbols): (A) total C mass in foliage Ct,f, (B) total C mass in wood Ct,w, (C) total C mass in 377 

root Ct,r and (D) foliage NSC concentration (Cn,f/Ct,f).  Note that the carbon pools and foliage 378 

NSC concentration (y-axes) are plotted on log scale to visualize the changes at the beginning 379 

of the experiment.  Error bars (1 SE, n = 6) are shown for each observation.  380 
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 381 

3.4 Parameter estimates  382 

Data assimilation indicated significant treatment effects on all five fitted parameters (Figure 383 

3). There was a large effect of sink limitation on the utilization coefficient (k). In agreement 384 

with our hypothesis H3, the free seedling had the highest k, and the seedlings in small 385 

containers (most sink limited) had the lowest k (Figure 3A). As the experiment progressed, 386 

the utilization rate of free seedlings began to decrease (Figure 3A). In contrast to the free 387 

seedlings, the potted seedlings had relatively low utilization rates initially (k close to 0.5) and 388 

the utilization rates slowed down abruptly with time, most significantly in the smallest 389 

container treatments (Figure 3A).  390 

In agreement with hypothesis H4, the estimated growth respiration rate (Y) varied according 391 

to the sink strength of the treatment groups, and was highest in the lowest sink strength 392 

treatments (Figure 3B). Moreover, Y did not vary significantly over time for the sink limited 393 

treatment groups. However, the rate of growth respiration for the free seedling slowed down 394 

over time.   395 

The data assimilation process also indicated that the growth allocation fractions vary among 396 

treatments and over time. Consistent with hypothesis H5, wood allocation fraction was 397 

highest in the smallest container treatments, and lowest in the free seedlings (Figure 3D). For 398 

the free seedlings, allocation was initially highest to foliage and roots (Figure 3C-E); over 399 

time, the plants reduced allocation to foliage and increased it to wood and roots. In the 400 

containerized seedlings, allocation was initially highest to wood and foliage; over time, 401 

foliage allocation decreased to almost zero and root allocation increased.   402 

The estimated leaf turnover rate, sf was also notably higher for sink-limited treatments 403 

compared to free seedlings (Figure 3F). The large value of modelled leaf litterfall for sink-404 

limited treatments is consistent with observations during the experiment that containerized 405 

seedlings had relatively large leaf litterfall, beyond normal senescence. Estimated sf increased 406 

over time for all treatment groups (most notably in free seedlings), due to a combination of 407 

ontogeny, seasonal change, and growth restriction in the sink-limited seedlings.  408 
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 409 

Figure 3: Modelled final parameters for three groups of treatments during the experiment 410 

period (21st Jan to 21st May 2013): (A) storage utilization coefficient, k; (B) growth 411 

respiration fraction, Y; (C) allocation to foliage, af; (D) allocation to wood, aw; (E) allocation 412 

to roots, ar and (F) leaf turnover rate, sf. ar is defined as 1 - af - aw. The grey shaded area 413 

shows the 95% confidence intervals of modelled parameters. 414 

 415 

3.5 Carbon budget 416 

The model was used to partition total GPP (g C plant-1) from the entire experiment period 417 

into different C pools (growth respiration, maintenance respiration, non-structural carbon, 418 

structural foliage, wood, and root carbon, and litterfall) for all 7 treatments (Figure 4). Total 419 
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GPP was considerably lower for the containerized seedlings, owing to lower photosynthetic 420 

rates per unit leaf area, Cday (Figure 5A), and lower total leaf area (LA) per plant. Though 421 

starting with the same total LA of 0.016 m2, the 5 L containerized and free seedlings had total 422 

LA of 0.031 and 0.516 m2 respectively after four months of treatment. Simultaneously, the 423 

partitioning of GPP changed considerably across different treatments.  424 

Small container seedlings (5, 10, 15 L) had a higher fraction of GPP lost in leaf litterfall 425 

compared to other seedlings (Figure 4), consistent with observations during the experiment. 426 

The proportion of GPP in final foliage mass was extremely low in sink limited treatments 427 

(also shown in Figure 2A). Allocation of GPP to final foliage and root biomass were highest 428 

in the free seedlings, although interestingly allocation to final wood biomass was similar 429 

across treatments. The final allocation to storage was also higher in free seedlings. The sink 430 

limited seedlings had a higher proportional C lost through maintenance respiration. Tissue 431 

specific respiration rates were similar in free and containerized seedlings, so the ~35% 432 

reduction in photosynthetic rate for the smallest containerized seedling, led to a higher overall 433 

Rm.tot/GPP fraction. In summary, the estimated total respiration (Rm.tot + Rg) to GPP ratio was 434 

considerably lower for the free seedlings compared to the sink limited treatments. The carbon 435 

use efficiency (CUE) remained relatively constant and high over time for free seedlings 436 

(~0.65), whereas CUE in the smallest container treatments showed a sharp reduction over 437 

time down to ~0.25 (Supplementary Figure S2).  438 
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 439 

Figure 4: Simulated proportional C partitioning for the whole experimental period. The total 440 

accumulated GPP (g C plant-1) for individual treatments is shown (in red) at the top of each 441 

column. Free stands for free seedling. Different C partitions are in the colour legend: total 442 

litterfall, Ct,lit; foliage structural C, Cs,f, wood structural C, Cs,w, root structural C, Cs,r; non-443 

structural C pool, Cn; total maintenance respiration, Rm,tot and growth respiration, Rg. 444 

 445 

3.6 Attribution analysis 446 

Sink limitation affected biomass growth via a range of processes, namely reduction in 447 

photosynthesis, and variation in the utilization rate, growth respiration, leaf litterfall, and C 448 

allocations to foliage, wood and root across various treatment groups. We quantified the 449 

contribution of each of these process responses separately by running the CBM with 450 

parameter inputs changing both sequentially and individually (one at a time). Table 4 presents 451 

the effect of the parameters changing individually from the value of the smallest container 452 

treatment (5 L) to that of free seedling (FS) and other way around, resetting the previous 453 

parameter to the baseline value. The final biomass values in Table 4 indicate the contribution 454 

of each individual parameter separately and sequentially. Photosynthetic capacity had the 455 

largest individual effect on total plant growth (+15.28 and -71.9 g C) compared to the rest of 456 
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the parameters. However, allocation pattern and the utilization rate also had a sizeable effect 457 

on final biomass (Table 4).  458 

Figure 5 shows how biomass (Mf, Mw and Mr) is predicted to change when each parameter is 459 

changed sequentially from the parameter set derived from DA on the 5L observations (gray 460 

line, Figure 5) to that of the parameters obtained when using the free seedlings as constraint 461 

of the model (red line, Figure 5). Daily net C assimilation per unit leaf area (Cday), which was 462 

30% higher for free seedling compared to 5 L container treatment (Figure 5A), had a large 463 

impact on plant growth (final total biomass was increased by 11 g, Table 4 and Figure 5G-I, 464 

gray to orange). Maintenance respiration rate (Rm) did not vary significantly across 465 

treatments (Figure 5B), in line with the data presented in Campany et al. (2017), and 466 

consequently its impact was insignificant (the final total biomass is reduced by only 0.24 g, 467 

Table 4 and Figure 5G-I, orange to light blue). The modelled biomass allocation fractions (af, 468 

aw and ar) in Figure 5C had important, but mixed, effects on C stocks. The final foliage mass 469 

was increased from 3.4 g to 9.6 g due to the increase in C allocation to foliage (Figure 5G, 470 

light blue to green), which has a positive feedback on GPP. Concomitant changes in C 471 

allocation to wood and root resulted in smaller changes to these biomasses as shown in 472 

Figure 5H-I (2.5 g and 7.0 g rise respectively). Overall, the change in allocation pattern 473 

resulted in an increase in final total biomass by 15.74 g (Table 4). Growth respiration rate (Y) 474 

was ~20% lower in free seedlings (Figure 5D), which had a considerable impact on C 475 

budgets (the final total biomasses were increased by 9.56 g, Table 4 and green to yellow, 476 

Figure 5G-I). Leaf turnover, sf was low in the free seedlings compared to the 5 L container 477 

treatment (Figure 5E) which had a large positive effect on final C pools (Figure 5G-I, yellow 478 

to blue). The foliage mass was increased by 5.6 g; the wood and root masses were also 479 

further increased (3.4 g and 5.8 g respectively) due to the increase in GPP when foliage is 480 

retained for longer. Finally, the utilization coefficient, k was higher in free seedlings (Figure 481 

5F) causing a 20-30% positive feedback on C budgets (total biomass increased by 23.08 g, 482 

Table 4 and Figure 5G-I, blue to red).  483 
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Figure 5: Attribution analysis. Left column (A-F): changes in inferred parameters; Right 485 

column (G-I): associated impacts on C budgets due to sequential parameter changes from 5 L 486 

container treatment to that of free seedling (right column, G-I). Different colours in the figure 487 

indicate the parameter shifts (left column, A-F) and their associated impacts on C budgets 488 

(right column, G-I). Legend: 5L, highly sink-limited treatment with container size of 5 L; FS, 489 

Free Seedling without any sink limitation. Note that the orange line is overlain by the light 490 

blue line: the small change in maintenance respiration results in a very minor effect on 491 

biomass growth.  492 

Table 4: Estimates of final biomass due to parameter change (individual and sequential), 493 

showing the contribution of each parameter separately and successively to biomass changes. 494 

All values in g C plant-1. +/- indicates biomass increase or decrease due to particular 495 

parameter change. The final column corresponds to the changes shown in Figure 5. 496 

Parameter change Individually Sequentially 
 5 L » FS FS » 5 L 5 L » FS 

Baseline Ct 5.81 83.99 5.81 
Cday +15.28 -71.9 +15.28 
Rd -0.08 +1.1 -0.24 

(af + aw + ar) +1.53 -45.5 +15.74 
Y +0.41 -19.22 +9.56 
sf +1.13 -19.17 +14.77 
k +0.44 -23.08 +23.08 

FS total observed Ct 83.99 
 497 

4 Discussion 498 

4.1 Effects of sink limitation on C balance 499 

Our DA-model analysis of this root volume restriction experiment provided significant new 500 

insights in the response of key C balance processes to sink limitation. We were able to infer 501 

that, in addition to a reduction in photosynthetic rates, sink limitation reduced NSC utilization 502 

rates, increased growth respiration, modified allocation patterns and enhanced senescence. 503 

Our attribution analysis indicated that all of these process responses contributed significantly 504 

to the overall reduction in biomass observed under low rooting volume.  505 
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We first tested the null hypothesis (H1) that seedling growth rates could be adequately 506 

predicted from current-day photosynthate. This hypothesis was rejected, with a storage pool 507 

being necessary to simulate growth, particularly for containerized seedlings (Sim A, Table 3). 508 

The approach of simulating growth from current-day photosynthate is commonly used in 509 

models, particularly for evergreen plants (e.g. (Jain and Yang, 2005; Law et al., 2006; 510 

Thornton et al., 2007)), but several authors have proposed the need for a storage pool to 511 

balance the C sources and sinks in the short term, as well as simulate the effects of 512 

photosynthetic down-regulation in the long-term (Pugh et al., 2016; Richardson et al., 2013; 513 

Fatichi et al., 2016). Our results support the need for an NSC pool in CBMs.  514 

We then tested the second null hypothesis (H2) that there was no effect of treatment on the 515 

parameters of the C balance model. This hypothesis was also rejected: fitting the DA-model 516 

framework simultaneously to all treatments with one set of parameters (ignoring sink 517 

limitation effect) gave a low goodness of fit (Sim B, Table 1). This result is consistent with 518 

the finding of Campany et al. (2017) that the observed effects of sink limitation on 519 

photosynthesis in this experiment were insufficient to explain the large reduction in biomass. 520 

Instantaneous photosynthetic rates were reduced 20-30% by sink limitation. Our DA analysis 521 

indicated that several other processes contributed to the reduction in biomass growth, 522 

including carbohydrate utilization, growth respiration, allocation patterns, and turnover.  523 

Our results suggested a significant effect of sink limitation on the carbohydrate utilization 524 

rate, k (Figure 3A). The modelled k values were approximately twice as large in free 525 

seedlings compared to the small containers. This result supports the hypothesis (H3) that 526 

plants would have the lowest utilization rate under sink-limited conditions. At the start of the 527 

measurement period, the free seedlings were utilizing almost all C produced immediately in 528 

growth (k close to 1.0, Figure 3A). The utilization coefficient of the free seedlings decreased 529 

over time, causing a build-up in C storage (Figure 2D). This decrease in utilization rate could 530 

potentially be an ontogenetic effect, with free seedlings initially allocating all carbon to 531 

growth during establishment but increasing storage with increasing size. However, 532 

ontogenetic effects are confounded with season in this experiment, such that decreasing 533 

utilization rates over time could also be a result of decreasing temperatures moving into 534 

autumn. There is a real need to quantify how the carbohydrate utilization rate varies with 535 

environmental conditions and ontogeny; data assimilation of experiments in which 536 

photosynthesis and growth rates have been monitored over time offer one means to do so.  537 
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Although the carbohydrate utilization rate was highest in the free seedlings, leaf carbohydrate 538 

concentrations were not lower in these plants at the end of the experiment. As shown in the 539 

final C budget analysis (Figure 4), there was a higher total C allocation to the NSC pool in 540 

free seedlings than sink-limited treatments. Final carbohydrate storage was high in free 541 

seedlings despite high k because the carbohydrate pool was recharged throughout the 542 

experiment (Figure 2D), as the free seedlings had high photosynthetic rates but no higher 543 

maintenance respiration requirement. In contrast, NSC was depleted for the smallest pot 544 

treatments after mid-March (Figure 2D) when demand exceeded supply due to both limited 545 

production of photoassimilates and enhanced leaf litterfall (Figure 3F).  546 

The modelled rate for growth respiration, Y was larger for sink limited treatments than the 547 

free seedling (Figure 3B). Overall, there was lower C utilization (i.e. CUE) in plant structural 548 

growth in sink-limited treatments (~45%) compared to free seedlings (~60%). This finding 549 

supports the “wasteful plant” hypothesis H4.  Inferred Y remained constant over time for the 550 

containerized treatments, implying a fixed portion of C loss due to growth respiration despite 551 

seasonal variation. However, a reduction in Y over time was inferred for the free seedling, 552 

suggesting a possible ontogenetic effect. However, it is important to note that we have 553 

inferred growth respiration from the CBM framework. Therefore, these estimates could 554 

possibly also include C losses via other pathways. Direct measurements of growth respiration 555 

rates would be useful to confirm the inferred effects of sink limitation and investigate 556 

potential underlying mechanisms.  557 

We also demonstrated that the allocation fractions among organs change in sink-limited 558 

conditions, with sizeable consequences for plant growth rates. Previous analyses of pot-size 559 

experiments have generally only been able to estimate changes in final biomass partitioning 560 

(e.g. Poorter et al. 2012a). Campany et al. (2017) analysed final biomass partitioning in the 561 

experiment and did not find any significant difference in biomass partitioning in sink-limited 562 

seedlings compared to free seedlings, once ontogenetic drift was taken into account. Our 563 

analysis adds to that of Campany et al. (2017) by calculating the dynamics of allocation over 564 

time and taking estimated foliage loss into account. Our analysis showed that modelled 565 

allocation fractions vary significantly over time (Figure 3C, D and E). In the free seedlings, 566 

allocation to foliage decreased, and allocation to both wood and roots increased, reflecting 567 

the ontogenetic effects mentioned by Campany et al. (2017). However, our analysis also 568 

highlights significant variations among treatments in the modelled C allocation fractions to 569 
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foliage, wood and root that are not ontogenetic. At the beginning of the experiment, foliage 570 

allocation fractions were similar for all treatment groups, but wood allocation was higher, and 571 

root allocation lower, in the containerized seedlings compared to the free seedlings. For the 572 

containerized seedlings, changes over time also differed from those in the free seedlings: 573 

wood allocation decreased marginally, rather than increasing, foliage allocation declined 574 

steeply over time, and root allocation increased steeply. These allocation patterns in seedlings 575 

supported our hypothesis H5 that sink limitation due to root restriction would favour 576 

allocation to wood over foliage or fine roots. Calculating dynamic allocation patterns over the 577 

course of an experiment thus provides additional insights beyond analysis of the final 578 

biomass outcome. 579 

4.2 Application of DA to infer C balance processes 580 

We have demonstrated that the DA approach can be an invaluable tool for quantifying C 581 

fluxes in experimental systems, enabling us to extract important new information from 582 

existing datasets to inform carbon balance models, such as the rate and timing of the transfer 583 

of photosynthate to and from storage pools. The DA-modelling approach is able to draw 584 

together the experimental data to estimate all the components of C balance, including 585 

photosynthesis, respiration, NSC, biomass partitioning and turnover. This approach could 586 

readily be applied to other experiments to derive new information allowing better 587 

representation of C balance processes in vegetation models.  588 

Applying this approach requires a range of measurements to constrain the key C balance 589 

processes. Here, we used estimated daily C assimilation and maintenance respiration rate as 590 

model inputs and constrained the model with measurements of biomass pools (foliage, wood, 591 

root) and foliage NSC concentrations. We used fortnightly foliage and wood biomass 592 

measurements; the DA framework would work with fewer data observations, but parameters 593 

would be estimated with less accuracy. Informal exploration of the model suggested that 594 

measurements of foliage turnover would have been particularly useful to better constrain the 595 

model. Any experiment having estimates of GPP, maintenance respiration, and structural 596 

biomass could potentially be investigated with this framework. However, additional 597 

measurements of storage and turnover would be highly beneficial for the performance of the 598 

simulation. Repeated observations over time are also useful, particularly for young plants, to 599 

account for variations in parameter values over time. We found significant changes in 600 
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parameter values during the course of the 4-month experiment, which may be linked to both 601 

ontogeny and seasonal variation in temperature.  602 

One major caveat on our results is that below-ground carbon cycling processes were not well 603 

characterized. For practical reasons, processes such as root growth, respiration, turnover, and 604 

exudation are rarely well quantified in empirical studies. Here, we had access to initial and 605 

final estimates of root biomass. Root respiration was estimated; root turnover and exudation 606 

were assumed to be zero. There is evidence that stress can increase rates of root exudation: 607 

for example, Karst et al. (2016) demonstrate increased exudation rates in seedlings exposed 608 

to cold soils. They also showed that stressed plants may exude C beyond that predicted by 609 

simple concentration gradients in NSC between root and soil. The loss of C independent of 610 

NSC in roots suggests that exudation may be actively enhanced once plant growth is limited 611 

(Hamilton et al., 2008; Karst et al., 2017). As our CBM does not include this process, it 612 

would attribute any C loss through root exudation to another process removing C from the 613 

plant, such as growth respiration. The increase in growth respiration that we inferred may 614 

thus potentially include root exudation. We have reasonable confidence, from the 615 

combination of measurements available, in our inference that the C loss term was increased 616 

with sink limitation. However, direct measurements of one or both processes would be 617 

required to determine the role of root exudation.  618 

In addition, we did not have access to estimates of root or wood NSC. We used data 619 

measured in a previous experiment on 4-month old E. globulus seedlings (Duan et al. 2013) 620 

to estimate these values from foliage NSC. It would have been useful to obtain these values, 621 

particularly since wood and root tissue can act as storage organs, and the timing of storage 622 

development would be extremely useful to quantify. The concentration of NSC in plant roots 623 

measured by Duan et al. (2013) was relatively small compared to that of foliage (mean 624 

2.15%). However, fine root NSC values in a nearby experiment on 17-month-old E. 625 

parramattensis saplings were even lower (0.78%) (Morgan E. Furze et al. unpublished data). 626 

It is possible that these very fast-growing Eucalypt species only start to accumulate root 627 

reserves when they are established. Further research is needed to quantify the trade-off 628 

between allocation to growth and storage during establishment.  629 
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4.3 Implications for modelling plant growth under sink limited conditions 630 

The goal of our study was to examine how carbon balance models should be modified to 631 

represent sink limitation of growth, whilst maintaining mass balance. Our results demonstrate 632 

that several process representations need to be modified. Firstly, we demonstrate a clear need 633 

to incorporate a carbohydrate storage pool, with a dynamic utilization rate for growth. We 634 

demonstrate that the utilization rate is slowed by sink limitation, and may also vary with 635 

ontogeny. Targeted experimental work is needed to better quantify this variation in utilization 636 

rates. Secondly, in addition to a feedback on photosynthetic rates, other plant processes 637 

including growth respiration, turnover and allocation are also affected by sink limitation. 638 

Applying a DA-modelling framework to experimental data with rooting volume restriction 639 

has allowed us to quantify these effects in this experiment. Applying this approach more 640 

broadly would potentially allow us to identify general patterns that could then be formulated 641 

for inclusion into models.  642 

The inferences on carbohydrate dynamics from seedling studies could be used to infer mature 643 

tree responses that can subsequently be integrated at ecosystem level and beyond using the 644 

concepts of Hartmann et al. (2018). We are enthusiastic to see the approach applied to other 645 

experiments, but there are likely to be gaps in the datasets to constrain the key C balance 646 

processes. Fortunately, the DA approach does not require continuous measurements of all of 647 

the C stocks and fluxes. In the absence of measurements, the model can be relied upon to 648 

project the time evolution of missing stocks and fluxes, although of course, the precision of 649 

model estimates and insights that can be gained, increases with data availability. DA can also 650 

be applied at ecosystem scale. There are several successful examples of DA being applied to 651 

forest growth, albeit without a focus on storage (e.g. Van Oijen (2008); Williams et al. 652 

(2005); Bloom et al. (2016); Quaife et al. (2008); Pinnington et al. (2016)). Overall, this 653 

approach provides important insights into the regulation of carbohydrate storage and would 654 

significantly advance our ability to predict the impacts of environmental changes on plant 655 

growth and vulnerability to stress. 656 
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Supplementary Information 

Supplementary Section S1: Time dependent parameters 

Supplementary Table S1: BIC values from time dependent parameter fit. The lowest BIC 

values indicate the best performing parameter setting. Treatment groups are: ‘Small’ - 5 L, 10 

L and 15 L containers; ‘Large’ - 20 L, 25 L and 25 L containers; ‘Free’ – freely rooted 

seedlings. 

Supplementary Figure S1: Total C mass in foliage NSC Cn,f (lines) with inferred parameter 

settings and corresponding observations (symbols). Note that the NSC pool (y-axes) are 

plotted on log scale to visualize the changes at the beginning of the experiment.  Error bars (1 

SE, n = 6) are shown for each observation. 

Supplementary Figure S2: Temporal evolution of carbon use efficiency (CUE) for various 

treatments.  

 

Supplementary material 

S1. Time dependent parameters 

This section tests the time-dependency of CBM parameters (k, Y, af, aw, ar, sf) due to 

ontogenetic or seasonal effects. We considered two alternative parameter sets to allow this 

variation from the default constant parameter setup with one set of parameters, p that does 

not change with time: 

a) Linear (p = p1 + p2 * t): Two sets of parameters representing linear variation over time,  

b) Quadratic (p = p1 + p2 * t + p3 * t2): Three sets of parameters that result in quadratic 

variation with time.  

We examined whether parameters varied over time by comparing the BIC values for 

constant, linear, and quadratic parameter settings. The results are illustrated in Table S1 

(Simulation Set D), which shows the effect of time dependency. Changing from constant to 

linear time-dependences improved BIC values for every treatment, indicating that there is 

significant variation over time in at least some parameters. Changing from linear to quadratic 



variation in parameter values also improved the goodness of fit, although to a smaller but 

significant extent. For example, with the optimum treatment grouping option (3 groups), BIC 

values indicate that the quadratic variation over time in parameters is the best option; BIC 

numbers are reduced by around 16%, 2% and 20% for small container, large container and 

free seedlings respectively from linear to quadratic parameter settings (Table S1). We also 

tested 3rd degree polynomial equations for parameter variation (not shown), but it increased 

model complexity without improving the fit.  

Supplementary Table S1: BIC values from time dependent parameter fit. The lowest BIC 

values indicate the best performing parameter setting. Treatment groups are: ‘Small’ - 5 L, 10 

L and 15 L containers; ‘Large’ - 20 L, 25 L and 25 L containers; ‘Free’ – freely rooted 

seedlings. 

Simulation set Model settings Treatment groups BIC 

D Constant parameter variation Small 1391 

Large 646 

free 332 

Linear parameter variation Small 826 

Large 462 

free 217 

Quadratic parameter variation Small 683 

Large 457 

free 170 

 



 
Supplementary Figure S1: Total C mass in foliage NSC Cn,f (lines) with inferred parameter 

settings and corresponding observations (symbols). Note that the NSC pool (y-axes) are 

plotted on log scale to visualize the changes at the beginning of the experiment.  Error bars (1 

SE, n = 6) are shown for each observation. 

 

 
Supplementary Figure S2: Temporal evolution of carbon use efficiency (CUE) for various 

treatments.  
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