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Abstract 

The current assessments of the carbon turnover in the Arctic tundra are subject to large un-10 

certainties. This problem can (inter alia) be ascribed to both the general shortage of flux data 

from the vast and sparsely inhabited Arctic region, as well as the typically high spatiotem-

poral variability of carbon fluxes in tundra ecosystems. Addressing these challenges, carbon 

dioxide fluxes on an active flood plain situated in the Siberian Lena River Delta were studied 

during two growing seasons with the eddy covariance method. The footprint exhibited a het-15 

erogeneous surface, and the mixed flux signal associated therewith could extensively be de-

composed: respiratory loss and photosynthetic gain were not only modelled for the overall 

footprint, but also for each of two vegetation classes. This downscaling of the observed fluxes 

unveiled a differing seasonality in the net uptakes of bushes (-0.89 μmol m-2 s-1) and sedges 

(-0.38 μmol m-2 s-1) in 2014. That discrepancy, which was concealed in the net signal, resulted 20 

from a comparatively warm spring in conjunction with an early snow melt and a varying can-

opy structure. Thus, the representativeness of footprints may adversely be affected in response 

to prolonged unusual weather conditions. In 2015, when air temperatures on average corre-

sponded to climatological means, both vegetation class-specific flux rates were of similar mag-

nitude (-0.69 μmol m-2 s-1). A comprehensive set of measures (e.g. phenocam) approved the 25 

reliability of the partitioned fluxes, and hence confirmed the utility of the flux decomposition 

for enhanced flux data analysis. This scrutiny encompassed insights into both the phenological 

dynamic of individual vegetation classes, plus their respective functional flux to flux driver re-

lationships with the aid of ecophysiologically interpretable parameters. For the purpose of 

comparison with other sites, the decomposed fluxes were employed in a vegetation class area-30 

weighted upscaling that was based on a classified high-resolution orthomosaic of the flood 

plain. In this way, robust budgets that take the heterogeneous surface characteristics into ac-

count were estimated. In relation to the average sink strength of various Arctic flux sites, the 

flood plain constitutes a distinctly stronger carbon dioxide sink. Roughly 42 % of this net up-

take, however, was on average offset by methane emissions lowering the sink strength for 35 

greenhouse gases. With growing concern about rising greenhouse gas emissions in high-latitude 

regions, providing robust carbon budgets from tundra ecosystems is critical in view of the 

thawing permafrost, whose released carbon can impact the global climate for centuries. 

  

Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-10
Manuscript under review for journal Biogeosciences
Discussion started: 19 February 2019
c© Author(s) 2019. CC BY 4.0 License.



2 

 

1. Introduction 

 

Permafrost underlies between 12.8 % and 17.8 % of the exposed land area in the northern 

hemisphere (Zhang et al., 2000). Large parts of this area coincide with the Arctic tundra, 

which is situated north of the boreal treeline and covers roughly 8 % of the global land surface 5 

(McGuire et al., 2012). As a consequence of the historical carbon sink function, the underlying 

permafrost forms a carbon stock of global relevance: approximately 1300 Gt soil organic car-

bon are stored in the circumpolar permafrost region (Hugelius et al., 2014). However, large 

fractions of this carbon pool may be remobilised in response to a warming climate making the 

tundra a key ecosystem for climate change (Schuur et al., 2008). 10 

The Arctic north of 60° N has warmed at a rate of 1.36 °C per century since 1875, i.e. roughly 

twice as fast as the global average (Masson-Delmotte et al., 2013). And the rapid warming 

trend is projected to continue (Collins et al., 2013). However, due to ambiguous results and 

large confidence intervals, it currently remains unclear, whether the permafrost areas maintain 

their long-term sink function or convert into a carbon source in the future (Heimann and 15 

Reichstein, 2008; Schuur et al., 2015). These uncertainties do not only arise from the limited 

knowledge on the physical thawing rates, the fraction of released carbon after thawing and the 

time scales of release, but also from the general shortage of flux data in Arctic ecosystems 

(Ciais et al., 2013). The scarce data availability particularly applies to the extensive Siberian 

tundra, which covers around 3 million km2, i.e. more than half of northern high-latitude tun-20 

dra ecosystems (Chapin III et al., 2005; Sachs et al., 2010). The low density of flux observation 

sites is due to both harsh environmental conditions as well as challenging logistics in these re-

mote and sparsely inhabited areas often without line power. Consequently, current estimates 

of the tundra’s sink strength for carbon dioxide are associated with large 

ties: -103 ± 193 Tg C yr-1 (McGuire et al., 2012). The same issue applies to estimates that 25 

suggest a shift to a source for carbon dioxide: 462 ± 378 Tg C yr-1 (Belshe et al., 2013). The 

reduction of these discrepant uncertainties (concerning sign and magnitude) can be achieved 

via providing more carbon budgets from the Siberian tundra as well as a more reliable charac-

terisation of the variation in habitats (e.g. bogs, fens,) plus their associated surface heterogene-

ity (e.g. tussocks, hummocks). 30 

Tundra ecosystems are frequently characterised by a pronounced vegetation patchiness with 

sharply defined boundaries between differing vegetation classes (Shaver et al., 2007). The con-

sequently high spatial variability in carbon fluxes aggravates the estimation of robust carbon 

budgets that are accurate and precise. Therefore, a better understanding of the effects of sur-

face heterogeneity on these budgets, e.g. through a better characterisation of both flux varia-35 

bility and associated environmental controls such as vegetation composition and structure, is 

necessary (Kade et al., 2012; Kwon et al., 2006). 

Chamber measurements operate on the microscale (10-2-102 m2), and hence form a suitable 

approach to differentiate the carbon dioxide exchange of multiple microforms with the atmos-

phere (McGuire et al., 2012). However, chamber measurements are associated with several 40 

drawbacks such as (i) a disturbance of the studied system, (ii) a mostly discontinuous sam-

pling, (iii) a limited spatial representativeness, (iv) a decoupling of the sampled surface from 

the atmosphere that causes a modification of the environmental conditions (e.g. temperature, 

Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-10
Manuscript under review for journal Biogeosciences
Discussion started: 19 February 2019
c© Author(s) 2019. CC BY 4.0 License.



3 

 

humidity, radiation, wind speed, air pressure) in the headspace, and (v) an alteration of the 

concentration gradient across the soil-atmosphere interface that inherently impacts on the dif-

fusive soil gas transport during chamber deployment (Fox et al., 2008; Kade et al., 2012; 

Kutzbach et al., 2007a; Livingston et al., 2006; Riederer et al., 2014; Sachs et al., 2008; 

Wagner and Reicosky, 1992). 5 

Alternatively, non-intrusive and continuous eddy covariance measurements, which operate on 

the mesoscale (104-106 m2), yield turbulent fluxes that integrate across multiple microforms 

(Aubinet et al., 2012). The size and location of the sampled surface constantly shifts according 

to wind direction, wind speed, atmospheric stability, crosswind velocity and surface roughness 

(Detto et al., 2006). In the presence of a heterogeneous landscape, the temporal variability in 10 

the observed fluxes is not only a result of the varying uptake/release rates of the individual 

microforms, but also an outcome of the varying fractions of microforms in the sampled area. In 

addition, the footprint budgets may lack representativeness since the fractional composition of 

microforms within the footprint is likely to deviate from the microform distribution in the area 

of interest. In such an environment, budgets strongly depend on tower location, sensor height 15 

and wind field conditions, and are thus likely to exhibit a sensor location bias (Schmid and 

Lloyd, 1999). Moreover, heterogeneous flux signals also aggravate an appropriate determina-

tion of model parameters, e.g. the light response curve of a vegetation type, if the correspond-

ing microforms exhibit strongly deviating characteristics (Lasslop et al., 2010). Despite these 

challenges in signal interpretation, a heterogeneous surface also provides the opportunity to 20 

conduct a concurrent sampling of multiple microforms and the study of their carbon dioxide 

fluxes utilising only one eddy covariance instrumentation (Forbrich et al., 2011; Morin et al., 

2017). Exploiting this potentially valuable information source requires the partitioning of the 

integrated flux into its microform-specific fluxes. Such a successful flux decomposition routine 

yields microform-specific budgets that, in conjunction with a precise determination of the mi-25 

croforms’ spatial coverages in the area of interest, enable the estimation of robust carbon diox-

ide budgets for a heterogeneous surface. 

Addressing the problems of balancing carbon fluxes in a Siberian tundra ecosystem with both 

a heterogeneous surface and an unknown greenhouse gas sink/source strength, the objectives 

of this study are as follows: (i) analysing the spatiotemporal variability of carbon dioxide flux-30 

es utilising both the eddy covariance technique and footprint modelling, (ii) elucidating the 

heterogeneity of the footprint and its impact on the flux dynamics, (iii) estimating robust car-

bon dioxide budgets that account for the heterogeneity of the landscape, and (iv) combining 

these budgets with previously estimated methane budgets in order to determine the 

sink/source strength for greenhouse gases. 35 

 
2. Material and Methodology 

2.1. Site description 

The Lena River Delta, one of the largest deltas in the world, is located within the zone of con-

tinuous permafrost in northern Siberia (Fig. 1). One of its numerous islands is Samoylov Is-40 

land (72° 22’ N, 126° 28’ E), which covers an area of 4.8 km2 and features two geomorphologi-

cal units: the late-Holocene river terrace in the eastern part and the active flood plain in the 
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western part. The carbon dioxide exchange on the river terrace, which is characterised by ice-

wedge polygonal tundra with sedges and mosses, has been repeatedly studied (Eckhardt, 2018; 

Kutzbach et al., 2007b; Runkle et al., 2013). In contrast to the river terrace, the flood plain 

has to date received scarce attention in terms of greenhouse gas fluxes although active flood 

plain levels represent roughly 40 % of the soil-covered area of the Lena River Delta (Zubrzycki 5 

et al., 2013). Aside from the period of the annual spring flood, whose associated inundation is 

very variable in magnitude and duration, the flood plain on Samoylov Island stretches over an 

area between 1 km2 (spring) and 2 km2 (autumn). More importantly, the surface of the flood 

plain exhibits, in opposition to the river terrace, a distinct heterogeneity on the mesoscale. 

The central delta region is situated in a continental Arctic climate, which is characterised by 10 

very low temperatures and a low annual precipitation. In the distant town of Tiksi, located 

around 120 km southeast of Samoylov Island, a mean annual air temperature of -12.8 °C was 

measured during 1936-2016 and a mean annual precipitation of 329 mm was gauged during 

1956-2016 (AARI, 2017). Additional information on this study site can be found in Rößger et 

al. (2018). 15 

 
2.2. Experimental setup and data recording 

An eddy covariance system was installed in the southern part of the flood plain, and the 

measurements covered two periods: 18th June to 2nd October 2014 (107 days) and 9th June to 

24th September 2015 (108 days). 20 

The flux tower was equipped with a sonic anemometer (CSAT3, Campbell Scientific, UK) and 

a gas analyser for water vapour and carbon dioxide (LI-7500A, LI-COR Biosciences, USA). 

Both instruments were mounted at a height of 2.83 m, and sampled with a frequency of 20 Hz. 

In addition, another eddy covariance system with the same instrumentation has already been 

deployed at a central position on the adjacent river terrace (Holl et al., 2018). 25 

Supplementary measurements on the flood plain involved acquiring data of both air tempera-

ture (HMP45, Campbell Scientific, UK) and photosynthetic photon flux density (SKP215, 

Skye Instruments, UK), These environmental variables were recorded on a logger (CR1000, 

Campbell Scientific, UK) in a quarter-hourly interval. Furthermore, a time lapse camera 

(TLC200, Brinno, Taiwan) was mounted on the flux tower pointing towards northeast for 30 

monitoring the phenology during spring 2014 with the same interval of an quarter of an hour. 

 
2.3. Flux processing 

The flux computation was carried out with the software EddyPro version 6.0.0 (LI-COR 

Biosciences, 2016) for 30-min flux intervals, and followed the standard procedure. Detailed in-35 

formation on the executed (i) raw data processing (spike removal, tilt correction, block averag-

ing, time lag compensation), and the implemented (ii) flux correction scheme (WPL correc-

tion, spectral correction in low and high frequency range, flux error estimation), and the con-

ducted (iii) quality assessment routine (stationarity test, integral turbulence characteristics 

test, skewness and kurtosis examination, energy flux quality verification, signal strength con-40 

trol, percentile removal) is provided in Rößger et al. (2018). 
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For the footprint modelling, an analytical model for non-neutral stratification was employed 

(Kormann and Meixner, 2001). This model is based on a stationary gradient diffusion formula-

tion with height-independent crosswind dispersion (Leclerc and Foken, 2014). Applying the 

solution of the resulting two-dimensional advection-diffusion equation for solving the power 

law profiles of both eddy diffusivity and mean wind velocity, it yielded a source weight func-5 

tion for each flux interval. 

 
2.4. Surface structure 

For studying the impact of the heterogeneous surface on the flux variability, the entire flood 

plain was mapped in August 2014 employing helicopter-based visible aerial imagery. The re-10 

sulting geo-referenced orthomosaic exhibited a resolution of 8.5 cm, and hence provided a very 

high spatial information density, sufficient to resolve the pronounced heterogeneity of the sur-

face. Based on maximum likelihood classification tools, the vegetation was classified employing 

a supervised classification routine on the orthomosaic (Fig. 2). In this process, four different 

land cover classes were utilised, two of which represent the vegetation. 15 

Vegetation class 1 (“bushes”) refers to sites, which were densely vegetated by large dwarf 

shrubs of the willow family such as Salix pulchra, Salix lanata, Salix hastata, Salix glauca, 

growing to a maximum height of around 1 m. This shrubby vegetation was located on a sandy 

ridge aligned in the north-south-axis. The elevated area enabled, in conjunction with a spatial-

ly averaged maximum thaw depth of 0.93 m, a good drainage. Since the ground water table 20 

remained at depths around 50 cm, the surface was mostly dry, forming favourable growing 

conditions for willow shrubs and a sparse cover of thin moss. 

Vegetation class 2 (“sedges”) represents areas, which were dominated by sedges including 

Carex aquatilis, Carex chordorrhiza, Carex concolor as well as species of Eriophorum and Eq-

uisetum. Also, small willow shrubs growing to a height of about 0.3 m were occasionally to be 25 

found. This predominantly graminoid vegetation was located in depressions around the dry 

ridge with a mean active layer depth of 0.69 m. Accordingly, the soil moisture conditions al-

ternated between moist surfaces and wet patches with water levels up to 40 cm. The ample 

moisture attracted many mosses forming a dense cover of tick moss. 

The two other classes, which do not occur in the 90 % contribution footprint around the flux 30 

tower, denote a large area of bare sand along the waterfront and some small water bodies 

mainly situated in the northern part of the flood plain (Fig. 2). The former class was not con-

sidered in the budget estimation since its carbon dioxide flux rates were (in comparison to the 

two vegetation classes) assumed negligible. The latter class was appended to vegetation class 2 

as the few small water bodies surrounded by sedges were presumed to have similar flux rates. 35 

Further information on the classification routine are given in Rößger et al. (2018). 

 
2.5. Flux modelling 

The model structure is based on the computation of the two components of the carbon dioxide 

flux. 40 

���� = ��� = ��	 − ���                                                                                           (1) 
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FCO2 is the net carbon dioxide flux observed at the flux tower, and equals NEE, the net eco-

system exchange. Its two components TER and GPP describe, respectively, the total ecosys-

tem respiration and the gross primary productivity, both of which can be modelled simultane-

ously (Runkle et al., 2013). 

��� = 	
��� ∙ ����
���������� � − � �!∙"∙��#$� �!%"∙��#$                                                                                 (2) 5 

The parameter Rbase denotes the basal respiration at the reference temperature (Tref), which 

was set to 15 °C, and a scaling factor (γ) was held constant at 10 °C (Mahecha et al., 2010). 

Q10 indicates the temperature sensitivity; i.e. this parameter is a value by which respiration 

multiplies/divides, when the temperature rises/drops by 10 °C. The parameter Pmax refers to 

the maximum photosynthetic potential and quantifies the theoretical maximum of photosyn-10 

thesis at infinite irradiance. α represents the light sensitivity and states, as the initial quantum 

efficiency, the slope of the light response curve at irradiance being zero. All of the four (physi-

ologically interpretable) parameters are best-fit parameters, which were estimated via non-

linear ordinary least-squares regression utilising both air temperature (Tair) and photosynthetic 

photon flux density (PPFD) as explanatory variables. In order to take the heterogeneous sur-15 

face structure into account, footprint information were included forming the final model em-

ployed for carbon dioxide flux modelling. 
 

��� = ∑ '( ∙ )	
���,( ∙ ���,(�
���������� � −	 � �!,�∙"�∙��#$� �!,�%"�∙��#$,(-.(-�                                                               (3) 

Another explanatory variable is the relative contribution of each vegetation class to the flux 20 

(Ω) that weights the two computed vegetation-specific fluxes. This variable was obtained 

through (i) computing the source weight function for a flux interval, (ii) spatially discretising 

this continuous function with a resolution of 1 m, (iii) adjusting the vegetation map to a reso-

lution of 1 m, (iv) assigning each value of the source weight function to its spatially corre-

sponding vegetation class, and (v) summing the values in each vegetation class. 25 

The fitting procedure, in which only half-hourly quality-controlled flux data was employed, 

required the estimation of a large number of fitting parameters: Rbase, Q10, Pmax, α for each 

vegetation class (Fig. 3). In order to avoid overparameterisation and equifinality problems, the 

model structure was gradually simplified along four different steps. These alterations in the 

parametrisation enabled the desired estimation of (i) reasonable seasonal courses of the fitting 30 

parameters, i.e. courses that displayed a predominantly smooth evolution with elevated values 

during the growing season and low values in the shoulder seasons, and (ii) meaningful and sig-

nificant values for the fitting parameters, i.e. values that were not negative as well as within 

an acceptable range and their 95 % confidence interval did not overlap zero. Achieving both 

objectives provided the possibility to interpret the fitting parameters ecophysiologically. 35 

In each of the four parameterisation steps, the respectively parametrised model was recalibrat-

ed for every day applying a moving window with fixed/flexible window sizes and a step size of 

one day. In the initial step 1, which served the computation of representative Q10 values, all of 

the eight fitting parameters were estimated in the model (4-4-p). Through its output, which 

encompassed eight best-fit time series, a representative Q10 value was obtained for each vege-40 
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tation class by determining the median out of the best-fit Q10 values that fulfilled two re-

quirements: statistical significance and an associated coefficient of determination (between ob-

served NEE and modelled NEE) of 0.75 or greater. These two Q10 values were held constant in 

the further fitting procedure. In the subsequent step 2, the simplified model (3-3-p) was run 

with six fitting parameters to be estimated, and a Gaussian bell curve was fitted to the time 5 

series of significant best-fit α values for each vegetation class. By adding/subtracting 30 % of 

the function values to/from these two replacement function itself, a pair of encompassing 

threshold functions was respectively appended. These intervals around the replacement func-

tions formed a range, inside which best-fit α values were accepted. In the following step 3, the 

model (3-3-p) was run with the same parametrisation of the previous step. The model output 10 

was checked for α values inside the acceptable interval as well as significant values for Rbase, 

Pmax and α. If these criteria were satisfied, the accordingly modelled NEE was approved and 

the fitting procedure proceeded to the next day. Alternatively, several models (3-2-p/2-3-p/2-

2-p) were run employing α value(s) from the replacement function(s) for one or both vegeta-

tion classes, depending on which vegetation class insignificant and/or implausible best-fit pa-15 

rameters were in. The output was tested again, and in case of significant best-fit parameters, 

the modelled NEE was accepted and the fitting procedure continued with the next day. Last-

ly, a replacement function for Pmax was created by fitting a Gaussian bell curve to the time 

series of significant best-fit Pmax values in both vegetation classes. In the final step 4, two 

greatly simplified models (2-1-p/1-2-p) were run with only three fitting parameters to be esti-20 

mated as well as a Pmax value from the replacement function. Here, if not before, all fitting pa-

rameters have taken on meaningful and significant values, which ensured the computation of 

reliable NEE values. In addition to this brief explanation, a detailed description of the entire 

fitting process is attached in the appendix. 

Since the model was designed to simultaneously compute the component fluxes in both vegeta-25 

tion classes, it provided the capability for the decomposition of the observed fluxes into their 

separate flux contributions by the two vegetation classes. The reliability of this downscaling, 

however, was dependent on the restrictive acceptance of meaningful and significant values for 

the fitting parameters. The temporal integration of these partitioned fluxes, and the subse-

quent projection of the resulting budgets on their corresponding areas on the flood plain 30 

formed the upscaling. The summation of both vegetation class budgets finally yielded a robust 

budget of the entire flood plain, which was designated as the area of interest. This budget, as 

opposed to the directly estimated footprint budget, did not exhibit a sensor location bias, and 

hence allowed an unbiased appraisal of both the interannual variability and the sink/source 

strength. For the sake of comparability of the budgets between the years and with already es-35 

timated methane budgets, carbon dioxide budgets were calculated for the comparison period 

18th June to 24th September, where data was available in both years. 
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3. Results 

3.1. Meteorological conditions 

The mean air temperatures during the measurement periods in 2014 and 2015 amounted to 

7.7 °C and 7.1 °C, respectively. Furthermore, the respective precipitation sums totalled 

92.3 mm and 130.4 mm. The assessment of these values was based on their comparison with 5 

long-term averages that were obtained for Samoylov Island with records from 1998 to 2018 

(Fig. 4). The measurement period in 2014 was on average distinctively warmer and slightly 

drier, while the measurement period in 2015 featured the same mean temperature as the base-

line, but considerably more rain. The largest differences in air temperature between both 

measurement periods occurred in spring. Accordingly, the snow melt in 2014 took place in a 10 

prolonged manner during mid-May already, whereas in 2015, the snow melt was completed 

within a couple of days in early June, as usual. 

 
3.2. Dynamics of observed fluxes 

The carbon dioxide fluxes exhibited both a diurnal and a seasonal course with the following 15 

mean fluxes that were obtained by averaging half-hourly flux data for the sub-seasons in both 

years 2014 and 2015 (Fig. 5). Between the snow melt and the vegetative phase, the mean car-

bon dioxide fluxes remained slightly positive, indicating a dominating respiration while the 

vegetation largely remained dormant (0.26 μmol m-2 s-1). With the onset of the growing season 

in late June, stalks and foliage began to develop, and the uptake of carbon dioxide during day-20 

time outweighed the release of carbon dioxide during nighttime (-1.06 μmol m-2 s-1). The in-

tensity of this oscillation increased towards the onset of the reproduction phase in mid-July, 

where flowers and seeds developed. During this phase, the most negative fluxes occurred fea-

turing a relatively constant magnitude (-1.77 μmol m-2 s-1). With the onset of the ripening 

phase in early August, bushes and sedges verged on full maturity, and the flux amplitude of 25 

the diurnal cycle began to be progressively attenuated (-0.78 μmol m-2 s-1). During the nights 

of this period, the most positive fluxes occurred. Towards late August, the respiration exceed-

ed photosynthesis again indicating the onset of the senescence phase, which was associated 

with both colouration and shedding of leaves (0.39 μmol m-2 s-1). After the end of the growing 

season in early September, when abscission was completed, the dominance of respiration con-30 

tinued to grow, leading to more positive mean carbon dioxide fluxes (0.55 μmol m-2 s-1). 

 
3.3. Model calibration and performance 

While the Q10 values were optimised at constant values of 1.42 for vegetation class 1 and 1.48 

for vegetation class 2, the other fitting parameters Rbase, Pmax and α displayed a seasonal 35 

course for each vegetation class in 2014 and 2015 (Fig. 6 and Fig. 7). The temporal evolution 

of α values could be well approximated with replacement functions, whose application reduced 

the noise not only in the seasonal courses of α, but also in the seasonal courses of both Rbase 

and Pmax. In contrast to the replacement functions of α, which were created for both vegeta-

tion classes in both years, a replacement function for Pmax was created only for vegetation 40 

class 1 in 2015 and for vegetation class 2 in 2014. 
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The slightly simplified 3-3-p model, which was run at the start of step three, yielded meaning-

ful and significant values for the fitting parameters in 49 % of the modelled days including 

2014 and 2015 (Fig. 3). In the further course of step three, these goals were achieved by the 

gradually simplified 3-2-p/2-3-p/2-2-p models in 47 % of the modelled days. During the re-

maining 4 %, the greatly simplified 2-1-p/1-2-p models of step four were deployed. While the 5 

3-3-p model was mainly employed during the summer season, the 3-2-p/2-3-p/2-2-p models 

were applied throughout the measurement periods with a focus on the shoulder seasons. The 

2-1-p/1-2-p models were solely deployed during the shoulder seasons and more often during 

spring than during autumn. Hence, larger fluxes during the growing season could be more easi-

ly modelled in comparison to the remaining time, when lower fluxes associated with a less fa-10 

vourable signal-to-noise ratio prevailed. 

Rbase was the fitting parameter that could be estimated most confidently as this parameter ac-

counted for only 19 % of the insignificant values obtained during the fitting procedure in 2014 

and 2015. While Pmax caused 31 % of the insignificances, α appeared to be the least certain fit-

ting parameter representing the remaining 50 %. Furthermore, the best-fit Pmax values of both 15 

vegetation classes featured most of the significant differences between each other, i.e. the con-

fidence intervals of both vegetation classes rarely overlapped, whereas best-fit α values exhibit-

ed the fewest significant differences. 

On account of both the coinciding variabilities of explanatory variables and explained variable 

as well as the recalibration for each day, the model was able to reproduce the observed fluxes 20 

very well (Fig. 5). This performance is expressed by coefficients of determination (R2) of 0.88 

for 2014 and 0.95 for 2015. Furthermore, the mean absolute errors (MAE) amounted to 

0.49 μmol m-2 s-1 and 0.35 μmol m-2 s-1 for 2014 and 2015, respectively, while the root mean 

square errors (RMSE) amounted to 0.75 μmol m-2 s-1 and 0.52 μmol m-2 s-1. The model per-

formed better during the summer season and less good during the shoulder seasons, where au-25 

tumn displayed a slightly better performance than spring. 

 
3.4. Downscaling and upscaling of fluxes 

The assignment of individual parameter sets in the model allowed the decomposition of the 

observed net fluxes. This downscaling yielded fluxes of NEE plus their component fluxes TER 30 

and GPP accounting for both vegetation classes in both years (Fig. 8). For the comparison pe-

riod in 2014, the mean NEE amounted to -0.89 μmol m-2 s-1 and -0.38 μmol m-2 s-1 for vegeta-

tion class 1 and vegetation class 2, respectively, and for the comparison period in 

2015, -0.71 μmol m-2 s-1 and -0.69 μmol m-2 s-1 (Table 1). In contrast to the similar mean net 

uptakes in 2015, the mean net uptakes in 2014 distinctly differed from each other. This dis-35 

crepancy originated from the first half of the growing season (mid-June to early August), when 

the net uptake of vegetation class 1 was considerably larger relative to vegetation class 2. Dur-

ing the second half of the growing season (early August to late September), both net uptakes 

were rather similar again. Furthermore, the differences in the net uptakes between both years 

were governed by changes in GPP rather than in TER. In vegetation class 1, NEE in 2014 was 40 

only slightly greater in comparison to 2015, which can be attributed to a greater TER and a 

distinctly greater GPP. And in vegetation class 2, NEE in 2014 was smaller compared to 2015, 

which can be ascribed to a smaller TER and a clearly smaller GPP. 
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The aggregation of the decomposed fluxes over the comparison period yielded individual budg-

ets, whose multiplication with the corresponding fractional coverages on the flood plain formed 

the upscaling (Table 1). The subsequent summation of both vegetation class-specific net up-

takes returned the net uptake of the entire flood plain for the comparison period: -4.42 ± 

0.49 Mmol in 2014 and -6.17 ± 0.66 Mmol in 2015. The stated uncertainties were obtained by 5 

means of standard error propagation techniques including both cumulative flux error and clas-

sification error, where the former was one magnitude smaller than the latter. Dividing these 

budgets by the total area of the flood plain yielded mean flood plain budgets of -4.22 ± 

0.47 mol m-2 and -5.89 ± 0.63 mol m-2 (Table 2). These budgets consider the surface heteroge-

neity, i.e. they are corrected for the sensor location bias, plus they contain an areal reference, 10 

and thus enable an appropriate comparison with other sites. 

 
3.5. Greenhouse gas balances 

The evaluation of the flood plain’s sink/source strength for greenhouse gases required the cor-

responding methane emission budgets and their conversion to carbon dioxide equivalents 15 

(Rößger et al., 2018). Despite the methane’s minor percentage of roughly 3 % in the entire 

greenhouse gas exchange (specified in molar units), its carbon dioxide equivalents diminished 

the greenhouse gas sink strength (given by the carbon dioxide net uptake) by half in 2014 and 

by one third in 2015. Accordingly, the greenhouse gas balances specify that the flood plain 

formed a moderate sink of -2.21 ± 0.61 mol CO2 eq m-2 and a stronger sink of -3.81 ± 20 

0.74 mol CO2 eq m-2 during the warm season in 2014 and 2015, respectively (Table 2). The 

lower sink strength in 2014 was a result of a reduced carbon dioxide net uptake rather than an 

augmented methane efflux. And this reduced carbon dioxide net uptake in turn was caused by 

a lowered net uptake in vegetation class 2 that effectively counteracted the elevated early sea-

son net uptake in vegetation class 1. This class constituted a stronger greenhouse gas sink 25 

than vegetation class 2 in both years, which is mainly due to the fact that methane emissions 

were only present in vegetation class 2. Since these emissions hardly changed between the 

years as well as the negligible methane release in vegetation class 1, the interannual variability 

in the greenhouse gas sink strength was governed by the carbon dioxide net uptake. 

These balances are the first greenhouse gas budgets of a flood plain in the Lena River Delta. 30 

Based on these budgets, the sink strength of the adjacent river terrace, where another eddy 

covariance system has been in operation for many years, could finally be put in context within 

the domain of the Lena River Delta (Table 2). In 2014 and 2015, the flood plain sequestered 

per square metre roughly 20 % and 60 % more carbon dioxide, respectively, but it also emitted 

approximately 70 % more methane. Hence, the flood plain constituted a sink for greenhouse 35 

gases that resembled (2014) or was 1.5 times (2015) the sink strength of the polygonal tundra 

on the river terrace. 

 
4. Discussion 

4.1. Assessment of the flux decomposition model 40 

The partitioning of carbon dioxide fluxes was conducted during the Arctic summer, when fully 

dark conditions during the nights are absent. Consequently, a partitioning approach that is 

Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-10
Manuscript under review for journal Biogeosciences
Discussion started: 19 February 2019
c© Author(s) 2019. CC BY 4.0 License.



11 

 

based on fitting parameters to nighttime respiration followed by extrapolating these fits to 

daytime and subsequently subtracting the estimated daytime respiration flux from the ob-

served net flux to obtain the photosynthesis flux is confronted with elevated uncertainties 

(Reichstein et al., 2005). The partitioning approach of the present study avoids this problem 

since the parameter fitting employs the entire dataset. However, the model may have a short-5 

coming in the small number of environmental driving parameters, which may oversimplify the 

complex biogeochemical processes involved in the carbon dioxide exchange between soils, 

plants and the atmosphere. While the entire temperature sensitivity of NEE is manifested 

through changes in TER, the effect of temperature on the biochemical reactions in GPP is ne-

glected (Haraguchi and Yamada, 2011). At the same time, no correlation between air tempera-10 

ture and model residuals (between observed and modelled NEE) could be detected, which in-

dicates that the temperature-induced variability was sufficiently considered. The confounding 

effect of a high vapour pressure deficit (VPD), which tends to take place in the afternoon lead-

ing to a limited photosynthetic activity, was not taken into account (Lasslop et al., 2010). 

However, only very few days with low humidity (VPD>10 hPa) occurred, and the typically 15 

asymmetric diurnal cycle of NEE could not be found on these days. A missing linkage of the 

model with potential flux limitations through a low soil moisture is deemed appropriate given 

the constantly high moisture availability in the permafrost-affected soils at the study site (Gao 

et al., 2017; Minkkinen et al., 2018). The diverse effect of direct and indirect radiation on pho-

tosynthetic efficiency was also not taken into consideration (Williams et al., 2014). This effect 20 

plays a tangential role for the low sedges, but adds uncertainty to the light-response curves 

calculated for the larger shrubs. Further uncertainty may also be appended by a potential in-

accuracy in both surface classification and footprint model. While the former is deemed appro-

priate due to extensive ground truthing, the latter is difficult to assess. However, the employed 

footprint model is a widely applied tool within the flux community, and it constitutes a suita-25 

ble model for this study site in a flat tundra landscape with low roughness lengths (Foken, T., 

personal communication, 2015). More importantly, the flux decomposition method, as carried 

out in the present study, may approach methodical limits, if the surface classes in the foot-

print are too uniformly distributed and/or their individual flux rates are too similar. Whether 

the assignment of flux rates from a mixed signal to individual surface classes is still possible 30 

under these circumstances may be an objective of further studies at other sites. 

 
4.2. Validation of the decomposed fluxes 

The flux decomposition yielded insights into the flux dynamics of both investigated vegetation 

classes. The validity of these dynamics and hence the reliability of the employed model is ex-35 

amined utilising four approaches. 

Firstly, it has been demonstrated that the photosynthetic cycle of a canopy during a growing 

season is linked to its seasonal changes in greenness (Peichl et al., 2014; Sonnentag et al., 

2012). The evolution of canopy greenness can be examined by determining the green chromatic 

coordinates (gcc) of a target area in images obtained by digital repeat photography 40 

(Richardson, 2012). Employing the images from the time lapse camera on the flux tower, this 

method yielded gcc values for vegetation class 1 with a central tendency that is significantly 

greater than the one of the gcc values for vegetation class 2 (P<0.05). These differences in 
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greenness substantiate the most prominent result of the flux decomposition: the greater photo-

synthesis of vegetation class 1 at the onset of the growing season 2014 (Fig. 9). 

Secondly, during periods with a certain wind direction and atmospheric stability, the fetches of 

some observed fluxes were strongly dominated by only one vegetation class as opposed to the 

commonly mixed signals. Thus, observed fluxes that are accompanied with a large contribu-5 

tion of one vegetation class (Ω>0.7) were compared to fluxes that were modelled for the same 

vegetation class. The choice of an Ω of 70 % rested in the desire to identify a trade-off between 

both applying many fluxes for a broad statistical basis (low Ω) and utilising many fluxes with-

out a mixed fetch for an accurate evaluation (large Ω). Both observed and modelled fluxes 

match very well as indicated by a mean R2 of 0.88 and a mean RMSE of 0.82 μmol m-2 s-1. 10 

Putting these values in context, in a study, where NEE of shrubs and sedges in tundra land-

scapes was modelled with non-linear regression, a mean R2 and mean RMSE of 0.69 and 

2.15 μmol m-2 s-1 was respectively obtained (Shaver et al., 2007). The decomposed fluxes of the 

present study are, when MAE is applied as an intuitive error metric, associated with a mean 

error of roughly 0.56 μmol m-2 s-1. The frequent similarity of the vegetation-class specific flux 15 

rates, however, reduces the effectivity of this validation test. Therefore, the observed fluxes 

governed by one vegetation class were also compared to fluxes modelled for the other class. 

This counter-check caused a rise in mean RMSE and MAE by 89 % and 99 %, respectively, 

thus lending further credibility to the modelled flux rates. It can be assumed that this rise 

would be far greater, if the flux rates of both vegetation classes were less similar. 20 

Thirdly, closed chamber measurements have been carried out with an opaque chamber during 

mid-June 2014 in vegetation class 2 east of the flux tower (Runkle, B. and Sabrekov, A., per-

sonal communication, 2016). Similar to the respiration modelled for this class, a mean carbon 

dioxide flux with a standard deviation of 2.1 ± 0.9 μmol m-2 s-1 was observed. This mean, how-

ever, is based on 5 chamber measurements, and thus conclusive to only a limited extent since 25 

taking the spatial variability into account is crucial, when fluxes are scaled between eddy co-

variance and chamber measurements (Oechel et al., 1998). A great deal of the studies, which 

are concerned with upscaling chamber-derived fluxes in heterogeneous environments, are chal-

lenged (besides the typical downsides during the measurement) by the following problems: (i) 

a subjectivity in the selection of chamber locations, (ii) a low spatial representativeness due to 30 

both the small sampled size and only a few replicate sites as a result of a high labour intensi-

ty, (iii) a lacking acquisition of a pronounced temporal flux variability on account of a usual 

confinement to discrete sampling, and (iv) the accordingly numerous gaps in the time series 

that are dominated by modelled instead of observed values after the gap filling (Fox et al., 

2008; Heikkinen et al., 2002; Kade et al., 2012; Laine et al., 2006; Marushchak et al., 2013). 35 

Fourthly, the discussion and comparison of the obtained fitting parameters with values esti-

mated at other sites gives further confidence in the validity of the decomposed fluxes (Fig. 6 

and Fig. 7): 

� The estimated Rbase values follow a temperature-driven seasonal cycle, in which Rbase,2 is 

mostly lower than Rbase,1. A smaller autotrophic respiration can be attributed to the lesser 40 

biomass of the sedges, and a smaller heterotrophic respiration can be ascribed to both in-

creased soil moisture and decreased soil temperature, which in turn hamper microbial ac-
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tivity in the depressions (Hobbie et al., 2000; Walz et al., 2017). For comparison with val-

ues found at other sites, a mean peak season TER was computed for vegetation class 1 

(2.8 μmol m-2 s-1) and vegetation class 2 (2.3 μmol m-2 s-1). While the latter respiratory rate 

corresponds to the mean mid-growing season TER of 2.2 μmol m-2 s-1, which was estimated 

for northern peatlands, the former rate is greater (Frolking et al., 1998; Laurila et al., 5 

2001). The comparatively large respiration in vegetation class 1 is likely due to both the 

large willow shrubs (fostering autotrophic respiration) and the large active layer depth (fa-

cilitating heterotrophic respiration). 

� The estimated Q10 values of 1.42 and 1.48 are well within the range of 1.3 ≲ Q10 ≲ 1.5, 

which was retrieved across different ecosystems and climates (Mahecha et al., 2010). Fur-10 

thermore, the fact that Q10,1 was lower than Q10,2 is in accordance with a concept, which 

suggests a correlation between a lower/greater soil temperature sensitivity and a dri-

er/wetter tundra (Olefeldt et al., 2013). 

� The estimated Pmax values also follow a seasonal course reflecting the growth and senes-

cence of the canopy. The value of Pmax,1 being greater than Pmax,2 is due to the larger bio-15 

mass of the bushes relative to the sedges. The values agree well to the maximum assimila-

tion rates of approximately 15.9 μmol m-2 s-1 and 11.1 μmol m-2 s-1 that are respectively 

found for Salix pulchra and Carex aquatilis during the peak of the Arctic growing season 

(Oberbauer and Oechel, 1989; Tieszen, 1975). Given a mean mid-growing season Pmax of 

8.6 μmol m-2 s-1 for northern peatlands, Pmax,2 (8.9 μmol m-2 s-1) constitutes a representa-20 

tive uptake capacity, whereas Pmax,1 (12.3 μmol m-2 s-1) suggests a comparatively large po-

tential for sequestering carbon dioxide (Frolking et al., 1998; Laurila et al., 2001). Another 

aspect that indicates the reliability of the estimated Pmax values is their correlation with 

the normalised difference vegetation index (NDVI) as seen at many other tundra ecosys-

tems (Mbufong et al., 2014; Shaver et al., 2007). Regarding both growing seasons, the foot-25 

print’s NDVI was greater in 2015 suggesting a more active vegetation than in 2014 

(ORNL, 2017). Similarly, the Pmax values of both vegetation classes, in particular the val-

ues of the more abundant vegetation class 2, were greater during 2015. Satellite records for 

tundra landscapes are, however, often confounded by various effects that are particularly 

profound in high-latitude regions (Stow et al., 2004). Therefore, satellite-derived NDVI 30 

values of tundra ecosystems may need to be double-checked with optical sampling in the 

field, if they are applied to resolve interannual differences (Gamon et al., 2013). 

� The estimated α values amount to 0.042 (α1) and 0.04 (α2), and are thus greater than the 

mean mid-growing season α of northern peatlands amounting to 0.023 (Frolking et al., 

1998; Laurila et al., 2001). The high light sensitivity indicates an efficient physiology ena-35 

bling a considerable photosynthetic activity at low irradiance levels. A similar ratio be-

tween both vegetation classes was found by compiling numerous quantum yields that were 

obtained during the Arctic peak season: 0.038 for Salix spp. and 0.03 for Carex spp. 

(Shaver et al., 2007). 

 40 

 

 

 

Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-10
Manuscript under review for journal Biogeosciences
Discussion started: 19 February 2019
c© Author(s) 2019. CC BY 4.0 License.



14 

 

4.3. Interpretation of diurnal, seasonal and interannual flux variabilities 

On the diurnal scale, the temporal variability in the carbon dioxide fluxes was controlled by 

meteorological conditions. For comparison among climate-relevant trace gases at this site, the 

methane fluxes exhibited a larger temporal variability, which was rather governed by the spa-

tial variability, i.e. the constantly varying source area composition in the fetch (Rößger et al., 5 

2018). On the interannual scale, the carbon dioxide fluxes displayed, in contrast to methane 

fluxes, a larger variability, which was driven by abiotic factors such as snow melt timing and 

initial growing season temperatures (Aurela et al., 2004; Groendahl et al., 2007). In the case of 

this heterogeneous area, however, biotic factors such as canopy structure and distribution also 

provide explanatory power. 10 

In 2015, the rapid snow melt coincided with the spring flood, thus enabling a mutual start of 

canopy development for both vegetation classes in early June. The growing season was initial-

ised in mid-June by mosses, which are much more abundant in vegetation class 2 (Fig. 8). 

Mosses are, in contrast to vascular plants, able to start assimilating right after snow melt since 

their photosynthetically active tissue can be maintained over winter (Oechel, 1976). From this 15 

point until late September/early October, mosses formed a basal net uptake. Considerable 

moss activity until late autumn has also been observed on the nearby river terrace (Eckhardt, 

2018; Kutzbach et al., 2007b). Furthermore, mosses can account for distinctly more than half 

of total photosynthesis as demonstrated for graminoid areas with high moss cover (Douma et 

al., 2007; Sommerkorn et al., 1999). However, it is possible that mosses did not fully photosyn-20 

thesise throughout the growing season due to their tendency to lower their photosynthetic ca-

pacity under high irradiance (Murray et al., 1993). This light stress depends on cloudiness, sun 

angle, moss structure and shadowing by vascular plants, altogether promoting a late-season 

activity of mosses while other plants went already dormant (Zona et al., 2011). On top of the 

basal moss activity, the shrubs of vegetation class 1 exhibited a larger net uptake until the 25 

growing season peak around late July/early August, after which the sedges of vegetation class 

2 dominated the carbon dioxide exchange. The fact that Carex spp. started growing earlier 

than Salix spp. has also been observed at other sites; however, considerable variation exists in 

the timing of phenological events both among and within species (Chapin III et al., 1992; 

Wielgolaski, 2012). 30 

In 2014, air temperatures were higher than the monthly long-term means throughout the 

measurement period (Fig. 4). During the early and slow snow melt in mid-May, the low sedges 

and mosses remained buried in the depressions with accumulated snow longer than the large 

bushes on the elevated ridge with less snow. Thereby, the willow twigs were exposed to day-

time temperatures above freezing leading to the development of catkins in late May already. 35 

Hence, vegetation class 1 was more advanced in its phenology than vegetation class 2 at the 

onset of the growing season. The consequence was the substantially larger net uptake of the 

shrubs until the seasonal peak in early August. Apparently, the shrubs largely benefitted from 

elevated early growing season temperatures, an effect that has also been found favourable for 

shrub encroachment in the Arctic (Myers-Smith et al., 2011). Incidentally, shrubs have been 40 

growing on Samoylov Island only since the 1960s (Pfeiffer, E.-M., personal communication, 

2017). Besides the delayed phenological development, the low carbon sequestration of vegeta-

tion class 2 during that period can also be attributed to a soil moisture deficit-induced decline 

Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-10
Manuscript under review for journal Biogeosciences
Discussion started: 19 February 2019
c© Author(s) 2019. CC BY 4.0 License.



15 

 

in net assimilation of mosses as they are prone to desiccation due to both missing roots and 

the absent ability to actively regulate their internal water content (Turetsky et al., 2012). Af-

ter the growing season peak and similar to the other year, vegetation class 2 dominated the 

net uptake, in particular during late August, which can likely be ascribed to enhanced moss 

activity. 5 

 
4.4. Appraisal of the budgets’ representativeness 

The spatial representativeness of the observed fluxes can be assessed with the sensor location 

bias (Schmid and Lloyd, 1999). If the flux rates of the considered surface classes are similar, as 

in 2015, the deviation between the respective surface class compositions in footprint and area 10 

of interest plays a minor role (Table 1). In 2014, the sensor location bias came into effect as 

the flux decomposition unveiled a varying seasonality between both vegetation classes that 

was concealed in the net signal. In this case, a quantitative comparison of the flux budgets 

with other sites lacks validity due to a potentially non-representative surface class composi-

tion, i.e. the comparison of the flood plain’s greenhouse gas budgets with the budgets of the 15 

river terrace must remain restricted to Samoylov Island and cannot be extended on the Lena 

River Delta (Table 2). The revealing outcome of the flux decomposition proofs its utility for 

an enhanced interpretation of eddy covariance data by gaining insights into the phenological 

dynamic of individual vegetation classes. It also demonstrates that climatologically unusual 

conditions can adversely affect the representativeness of the footprint, resulting in the poten-20 

tial need to regularly examine the representativeness of apparently homogeneous footprints, in 

particular during prolonged unusual weather conditions as biased budgets may otherwise be 

estimated. 

The temporal representativeness of the obtained budgets may thus be constrained on the in-

terannual scale. As the air temperatures in 2015 better correspond to long-term means than in 25 

2014, the 2015 budgets are better suited for an inter-site comparison (Table 3). Moreover, the 

obtained budgets also possess a confined validity on the annual scale since they only cover a 

period that is similar to the growing season. Outside this period, no uptake of carbon dioxide 

occurs, implying a lower year-round sink strength for greenhouse gases. This assumption is 

based on the accumulating evidence that the release of carbon dioxide and methane is not neg-30 

ligible during the very cold winter – in contrast to the traditional view of a wintertime inactiv-

ity in Arctic ecosystems (van der Molen et al., 2007). For instance, at multiple sites in Alaska, 

the cold season release of carbon was found to equal 1-2 times the warm season net uptake 

(Euskirchen et al., 2012; Oechel et al., 2014; Zona et al., 2016). 

 35 

4.5. Comparison of the budgets with other Arctic sites 

Across various Arctic flux sites, the flood plain of Samoylov Island exhibits a carbon dioxide 

sink strength being distinctly greater than the average (Fig. 1 and Table 3). This aspect ap-

pears noteworthy, when local conditions are taken into consideration: the mean net radiation 

during the growing season is lower than for most Arctic sites, and the underlying permafrost 40 

displays one of the lowest ground temperatures in the world (Boike et al., 2013; Obu et al., 

2018; Romanovsky et al., 2010). The diminishing effects of these climate factors are counter-

balanced by the deposition of nutrients in the course of spring flooding (van Huissteden et al., 
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2005). Among the three great Siberian rivers draining into the Arctic Ocean (Ob, Yenisei, Le-

na), the Lena river ranks first in terms of total suspended matter (Cauwet and Sidorov, 1996). 

A large portion of this matter is transported during the annual spring flood, thereby regularly 

mitigating the nutrient limitation that affects many Arctic ecosystems (Beermann et al., 2014; 

Fedorova et al., 2015). 5 

More specifically, the net uptake of the flood plain on Samoylov Island is distinctly weaker 

compared to flood plains of the Siberian rivers Kolyma and Indigirka (Kittler et al., 2017; 

Parmentier et al., 2011). Other Siberian sites encompass Seida and Lavrentiya, which exhibit a 

similar and stronger net uptake, respectively (Marushchak et al., 2013; Zamolodchikov et al., 

2003). Furthermore, the flood plain’s net uptake is considerably stronger than budgets of high 10 

Arctic sites in Svalbard, Greenland and Canada (Lafleur et al., 2012; López-Blanco et al., 

2017; Lüers et al., 2014; Lund et al., 2012). In comparison to sites in either low Arctic or sub-

Arctic, no general conclusions can be drawn, which is likely due to the ubiquitously high spa-

tiotemporal flux variability in the Arctic region. Also, no uniform picture emerges in the com-

parison with Scandinavian peatlands (Aurela et al., 2002, 2009; Fox et al., 2008). When com-15 

paring with sites in the northern part of the north slope of Alaska, the flood plain exhibits a 

substantially stronger net uptake (Oechel et al., 2014; Raz-Yaseef et al., 2017); in the southern 

part, however, similar net uptakes seem to prevail (Euskirchen et al., 2016). 

 
5. Conclusion 20 

The core of the present study are the advanced scaling options of the demonstrated flux de-

composition methodology, i.e. fitting a set of area-weighted, surface class-specific flux models 

to the observed flux. In this way, two major advantages could be gained. Firstly, downscaling 

net flux signals from the mesoscale to the microscale yielded flux rates for homogeneous land-

scape units, therefore generating valuable insights into seasonal variability and functional flux 25 

to flux driver relationships of major tundra vegetation types. Moreover, these unbiased flux 

rates offer the possibility to aid the calibration of macro-scale models or the validation of their 

sub-grid variability. Secondly, upscaling the decomposed flux rates to a larger area circum-

vented the sensor location bias of the study site, and thus yielded defensible flux budgets, 

which take the pronounced surface heterogeneity into account. Moreover, the values estimated 30 

for the fitting parameters (in particular Pmax) provide the opportunity to contribute to the es-

timation of carbon dioxide budgets on the macroscale (e.g. pan-Arctic) based on their relation-

ships with remote sensing-derived parameters such as NDVI. 

While the aggregated seasonal flux rates of both pre-defined classes (bushes and sedges) were 

mostly similar, the flux decomposition revealed a varying seasonality that was hidden in the 35 

net signal during a comparatively warm spring period. Accordingly, a seasonal difference be-

tween locally observed and regionally estimated fluxes can emerge in response to climatologi-

cally unusual conditions. This aspect may gain importance against the projected rise in weath-

er extremes in the course of climate change. Beyond such anomalous situations, the flux de-

composition may also be important in a general context as footprints are frequently assumed 40 

homogeneous, but surfaces are seldom entirely homogeneous (depending on the desired scale 

and the examined greenhouse gas). In this context, the flux decomposition methodology can be 

adopted in other tundra ecosystems as well as regions outside periglacial environments, and 
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hence may be supportive in the fields of landscape ecology, experimental agronomy, catchment 

hydrology and biogeochemical modelling. 

 

Information on data availability and author contributions will be handed in later. 
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Figures 

 

 

Fig. 1. Location of the Lena River Delta in northern Siberia indicated by the square. The dots 

point out sites that were utilised for the pan-Arctic comparison of carbon dioxide budgets 5 

(Table 3). The classification of the Arctic zones was based on vegetation occurrence (modified 

from AMAP, 1998). Accordingly, the treeline delimits the (terrestrial) Arctic, i.e. it corre-

sponds with the boundary between sub-Arctic and low Arctic. 

Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-10
Manuscript under review for journal Biogeosciences
Discussion started: 19 February 2019
c© Author(s) 2019. CC BY 4.0 License.



28 

 

 

Fig. 2. Vegetation map of the flood plain on Samoylov Island obtained through supervised 

classification of a high-resolution orthomosaic. The flux tower was situated in the centre of the 

footprint isolines, which indicate the averaged area from which 10 - 90 % (increment of 10 %) 

of the flux originated during both measurement periods 2014 and 2015 (footprint climatology). 5 

The small inset illustrates Samoylov Island being composed of flood plain (grey) and river ter-

race (white) plus the location of their respective flux towers. 
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Fig. 3. Schematic overview of the model calibration, which contains four steps within different 

parameterisations were applied to obtain significant fitting parameters (Rbase, Q10, Pmax, α). 

The values (e.g. 3-2-p model) denote the number of parameters to be fitted. 
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Fig. 4. Annual course of air temperature on Samoylov Island for the years 2014 and 2015 as 

well as the recent 20-years baseline (Boike et al., 2013, 2018). In each boxplot, the central 

mark denotes the monthly median, and the bottom and top edges indicate the 25th and 75th 

percentiles, respectively. The whiskers extend to the most extreme data points excluding outli-5 

ers. During the warm season, when flux data was available (June to September), 2014 was 

mostly warmer than 2015. 

 

 

Fig. 5. Time series of observed carbon dioxide fluxes (after conducting the quality assessment) 10 

and modelled fluxes. During the growing season, which is indicated by an elevated variability 

between late June and early September, the daytime uptake directly followed the diurnal cycle 

of PPFD while the nighttime release was dependent on air temperature. 
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Fig. 6. Time series of fitting parameters in 2014 for vegetation class 1 (index 1 and green con-

fidence intervals) and vegetation class 2 (index 2 and yellow confidence intervals). The circles 

represent acceptable fits while the respective reasons for reparameterisation such as insignifi-

cance or out-of-valid-range are signified by plus signs and squares. The triangles denote the 5 

fitting parameter(s), which caused a refit in the corresponding vegetation class. 
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Fig. 7. Time series of fitting parameters in 2015 with the same symbols and colours as utilised 

in the previous figure. 
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Fig. 8. Time series of decomposed fluxes with 95 % confidence intervals accounting for both 

vegetation classes. The width of the confidence intervals varied depending on both the flux 

magnitude and the number of fitting parameters in the chosen model. The decomposition re-

vealed a distinct difference in NEE between both vegetation classes during the first half of the 5 

growing season in 2014, while the flux dynamics of both vegetation classes were rather similar 

during the remaining time. 
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Fig. 9. Daily means of photosynthesis, obtained for both vegetation classes between 18th June 

and 7th July 2014, versus their corresponding green chromatic coordinates (gcc), acquired from 

time lapse images of the footprint. Employing these images, the gcc values depict the fraction 

of the green colour in relation to the three primary colours in the RGB colour space. The sig-5 

nificantly greater greenness in vegetation class 1 is associated with larger photosynthetic rates, 

while vegetation class 2 is characterised by a less green canopy and thus a lower photosynthet-

ic activity (P<0.05). 
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Table 2. Comparison of the sink/source strengths between flood plain and river terrace for the 

comparison periods in 2014 and 2015 (Holl et al., 2018; Rößger et al., 2018). Accounting for 

the methane’s radiative efficiency as a potent greenhouse gas, the methane budgets were con-

verted to carbon dioxide equivalents with a factor of 34, which corresponds to methane’s glob-

al warming potential based on a time horizon of 100 years including climate carbon feedbacks 5 

(Myhre et al., 2013). The flood plain budgets are given for each vegetation class and for the 

total area. These budgets are the result of a scaling procedure, which included fairly large clas-

sification errors that caused distinctly greater uncertainties in comparison to the river terrace 

budgets, which derived from a representative footprint and hence did not undergo any scaling 

processes. In comparison to the flood plain, the polygonal tundra on the river terrace took up 10 

less carbon dioxide per square metre, but also released less methane resulting in a similar 

(2014) and weaker (2015) sink strength for greenhouse gases. 

Geo- 

morpho- 

logical 

unit 

Vegetation 

class 

FCO2 

(mol CO2 m
-2) 

FCH4 

(mol CH4 m
-2) 

Greenhouse gases 

(mol CO2 eq m-2) 

2014 2015 2014 2015 2014 2015 

Flood 

plain 

1 
-7.51 ± 

1.43 

-5.99 ± 

1.15 

0.004 ± 

0.001 

0.002 ± 

0.001 

-7.45 ± 

1.43 

-5.98 ± 

1.15 

2 
-3.18 ± 

0.42 

-5.86 ± 

0.74 

0.213 ± 

0.042 

0.221 ± 

0.042 

-0.55 ± 

0.66 

-3.12 ± 

0.91 

Total 
-4.22 ± 

0.47 

-5.89 ± 

0.63 

0.163 ± 

0.032 

0.169 ± 

0.032 

-2.21 ± 

0.61 

-3.81 ± 

0.74 

River 

terrace 
Total 

-3.47 ± 

0.03 

-3.74 ± 

0.03 

0.096 ± 

0.001 

0.099 ± 

0.001 

-2.29 ± 

0.03 

-2.52 ± 

0.03 
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Appendix 

The modelling of carbon dioxide fluxes was based on a fitting procedure that comprised four 

steps (Fig. 3). 

Step №1: The procedure first fitted the final model to the observed fluxes of each day utilising 

a moving window with a fixed size of 14 days. The choice of a suitable window size was based 5 

on identifying an optimum between two conflicting demands: the window size ought to have 

been as small as possible to capture most of the variability in fluxes, whereas the window size 

ought to have been as large as possible to obtain less noisy time series of preferably significant 

values of the eight fitting parameters. In general, the target of each fitting process comprised 

the estimation of reasonable seasonal courses of meaningful and non-negative best-fit values, 10 

whose 95 % confidence interval did not overlap zero. Running the model with varying window 

sizes and counting the number of significant values for each model run revealed the following: 

increasing the window size caused the number of significant values to rise, soon to level off, 

and eventually at a window size of 14 days, to remain at similar values. Prior to calibrating 

the model, the following requirements needed to be satisfied for every window: flux samples 15 

were available for at least 80 % of the period, the air temperature spread did not fall below 

12 °C, and the mean air temperature did not drop below -10 °C. Imposing these requirements 

was meant to ensure robust and representative fits. 

The purpose of this step involved the fixation of Q10 in order to prevent overparameterisation, 

and moreover, alterations in temperature sensitivity were thought to be less plausible and 20 

hence expected to be negligible. This assumption was confirmed by the time series of estimat-

ed Q10 values displaying an implausible variability, whereas the other fitting parameters pre-

sented a rather seasonal course. Based on the deliberation of negligible alterations in tempera-

ture sensitivity during both years, the model was run for 2014 and 2015 together during this 

step, whereas the model was respectively run for the measurement periods 2014 and 2015 dur-25 

ing the next steps. The application of a larger period provided more data points, with the aid 

of which Q10 could be fixed at a more representative value. Two final Q10 values were deter-

mined for each vegetation class by calculating the median out of all estimated best-fit Q10 val-

ues, which met the following two requirements: statistical significance and an associated coeffi-

cient of determination of at least 0.75 between observed NEE and modelled NEE. 30 

Step №2: The model was run with Q10 being fixed throughout the measurement periods 2014 

and 2015 applying a moving window with a fixed size of 14 days and a step size of 1 day 

again. The requirements laid down in the previous step prior to fitting had to be met again 

except the requirement of a sufficient air temperature spread. 

The aim of this step comprised the creation of two replacement functions for α after six best-35 

fit parameters were estimated. The necessity for replacement functions arose through large 

peaks in the time series of α. These peaks tended to occur at the onset of the growing season 

and were hence deemed spurious. Large α values would have promoted photosynthesis, which 

was of rather minor magnitude at that time of the year. In order to reproduce the low ob-

served NEE, the erroneously elevated GPP was counteracted by a mistakenly enhanced TER 40 
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utilising a large Rbase. The resulting problem of equifinality would thus hamper the interpreta-

tion of the fitting parameters. 

To prevent this adverse circumstance, the two replacement functions, one for each vegetation 

class, were calculated by fitting a Gaussian bell curve to the time series of significant α values. 

In addition, two threshold functions were computed for each replacement function by add-5 

ing/subtracting 30 % of the function values to/from the replacement function. Hence, the 

threshold functions formed an interval around the replacement function within the estimated α 

values were accepted during the further procedure. The threshold of 30 % was visually selected 

since this value generated an interval, outside of which only the peaks were situated, i.e. spu-

rious and meaningful α values could be reliably separated. 10 

Step №3: The model was initially run with the same parameterisation as in the previous run, 

but employing a moving window with a flexible size for every day. The application of a flexi-

ble window allowed a closer reproduction of the variability in the observed data through ad-

justing its size. However, since small windows were in conjunction with a small amount of flux 

samples, which increased the risk of estimating insignificant parameters, every fit required a 15 

minimum of 240 flux samples, which equals 5 days with 48 fluxes per day. Based on this set-

ting, the model was run and the estimated parameters were checked for significance. If one 

best-fit parameter was insignificant, the window size was increased by one day and the model 

was run again. This procedure was repeated until a maximum window size of 20 days, if all 

fitting parameters were not significantly estimated before utilising a preferably smaller window 20 

size. 

The objective of this step included the bulk of model calibration within the fitting procedure. 

Hence, after the initial model run of this step, its output was inspected in two respects: the 

significance of the remaining fitting parameters (Rbase, Pmax, α) and the location of α (inside or 

outside the acceptance interval). In case of all six fitting parameters being significant and the 25 

two fitted α were situated between the respective thresholds, the estimated NEE was accepted 

and appended to the modelled time series. If one criterion/both criteria was/were not fulfilled, 

another model with less parameters was run employing, again, a moving window with a flexi-

ble size for every day. This simplification comprised the application of α values adopted from 

the previously defined replacement function. The model choice depended on the vegetation 30 

class, where the criterion/criteria was/were not satisfied. Hence, α values from the replacement 

function were employed for either one or both vegetation classes. For instance, if the fitting 

parameters of only one vegetation class were insignificant, only this vegetation class was refit-

ted applying a replacement α whilst reutilising the retained significant fitting parameters of 

the other vegetation class. Subsequently, the significance of the re-fitted parameters was exam-35 

ined. If all parameters were significant, the correspondingly estimated NEE was added to the 

modelled time series. Any remaining insignificances were otherwise addressed in the next step. 

In preparation for the next step, two replacement functions for Pmax were created. This fitting 

parameter was chosen over Rbase since Pmax featured more insignificant values than Rbase. Once 

again, a Gaussian bell curve was fitted to the time series of significant Pmax values of each veg-40 

etation class. 
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Step №4: Towards the end of the procedure, a greatly simplified model was run for each day 

applying a moving window with a fixed size. This size corresponded to the average of all win-

dow sizes found during the previous step. 

The goal of this step encompassed the remaining model calibrations for a complete time series 

of modelled NEE. To achieve this target, the model included only three best-fit parameters: 5 

Rbase twice and Pmax once. The second Pmax for the other vegetation class was adopted from its 

previously calculated replacement function. This confined parameterisation was, given a con-

stant amount of observed flux samples, associated with an elevated number of degrees of free-

dom, which in turn allowed a more precise estimation of the remaining fitting parameters, i.e. 

their confidence intervals were smaller. In this way, all best-fit parameters were significant and 10 

could be utilised for a reliable modelling of NEE. 
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