

1	Role of Microbial Communities in the Weathering and Stalactite Formation in Karst
2	Topography
3	
4	Tung-Yi Huang ^a , Bing-Mu Hsu ^{abc #} , Cheng-Wei Fan ^{a*} , Hsin-Chi Tsai ^{de*} , Chien-Yi Tung ^{fg} ,
5	Jung-Sheng Chen ^a
6	
7	^a Department of Earth and Environmental Sciences, National Chung Cheng University
8	address: 168 University Road, Minhsiung Township, Chiayi County 62102, Taiwan
9	
10	^b Center for Innovative on Aging Society, National Chung Cheng University
11	address: 168 University Road, Minhsiung Township, Chiayi County 62102, Taiwan
12	
13	° Center for Nano Bio-detection, National Chung Cheng University
14	address: 168 University Road, Minhsiung Township, Chiayi County 62102, Taiwan
15	
16	^d Department of Psychiatry, School of Medicine, Tzu Chi University, Hualien, Taiwan
17	address: 701, Sec. 3, Jhongyang Road. Hualien 97004, Taiwan
18	
19	^e Department of Psychiatry, Tzu-Chi General Hospital, Hualien, Taiwan
20	address: 707, Sec. 3, Jhongyang Road. Hualien 97004, Taiwan
21	
22	^f Caner Progression Research Center, National Yang-Ming University
23	address: 155, Li-Nong St., Sec.2, Beitou, Taipei, 11221, Taiwan
24	
25	^g Institute of Microbiology and Immunology, National Yang-Ming University
26	address: 155, Li-Nong St., Sec.2, Beitou, Taipei, 11221, Taiwan
27	
28	* Equal contribution to first author
29	# Corresponding author
30	E-mail: bmhsu@ccu.edu.tw
31	TEL: 88652720411 #66218
32	
33	

34 Abstract

This study investigated the long-term effect of environmental physical factors on the 35 36 relative abundance of bacteria and the consequential landscape evolution in karst topography, 37 focusing mainly on the effects of limestone weathering and calcite precipitation. The Narrow-38 Sky located in the upper part of Takangshan is a small gulch of Pleistocene coralline limestone 39 formation in southern Taiwan. The landscapes were different in the karst walls between the opening and the inner of gulch due to the variation of physical parameters such as sunlight 40 penetration, humidity, and temperature. A metagenomic approach was used out to determine 41 42 the relationship of microbial community structures on the landscapes in various habitats around 43 the gulch, namely on the inner and outer limestone wall, the water collected from speleothems 44 surface, and the ground soil at the outer wall. The total organic carbon content was measured in solid samples to evaluate the biomass of the habitats. Our results showed that the biomass 45 46 of habitats in the opening of the gulch was two times higher than the that inside where light penetration was lower. We also found that speleothems only occurred at the inner wall inside 47 48 the gulch, where the environment exhibited water drips running through the surface of 49 speleothems and less light penetration. The metagenomics in each habitat were surveyed to 50 measure the sequence similarity of operational taxonomic units relative to urease-producing 51 bacteria and weathering-associated bacteria available in the National Center for Biotechnology 52 Information database. Our data revealed that the metagenomics of the inner wall and water 53 samples exhibited more sequences that were similar to those of urease-producing bacteria, 54 whereas the outer wall showed more sequences that were similar to those of weathering-55 associated bacteria, suggesting that bacteria facilitated the formation of limestone weathering 56 and calcite precipitation for various habitats. This study revealed the pivotal roles of 57 microorganisms in governing the geological evolution on the limestone landscape.

59 Introduction

60 Weathering and calcite precipitation are two opposite activities that affect the dynamic 61 changes of the karst landscape. Although weathering and calcite precipitation can occur in abiotic conditions, several lines of evidence from cave studies or laboratory data have shown 62 63 that microorganisms can accelerate the reactions that promote the formation of calcium carbonate and the breakdown of calcite in situ (Gat et al., 2014;Sulu-Gambari, 2011;Castanier 64 et al., 1999;Lian et al., 2008;Jones, 2017). During the breakdown of carbonate rocks, microbial 65 colonies build up on rock surfaces, resulting in rock decomposition by acidification and 66 67 moisturization onto the surfaces (Wu et al., 2017;Hutchens, 2009;Uroz et al., 2009). The obtainment of nutrients from the rock surface further promotes the release of organic ligands, 68 69 which in turn facilitate the release of mineral elements, thus creating a positive feedback loop (Lian et al., 2008;Uroz et al., 2007). Many studies have documented that the mineral 70 dissolution of rocks in a flow-through system was higher in the presence of microorganisms, 71 72 whereas the dissolution was enhanced in the groups of surface-attached microorganisms, 73 especially when compared with the unattached ones (Ahmed and Holmström, 2015;Seiffert et 74 al., 2014; Jacobson and Wu, 2009). Many bacterial strains have been reported to have the ability 75 to adhere to rock surfaces and establish the weatherability (Sulu-Gambari, 2011). For example, 76 Shewanella oneidensis can recognize silicate and oxide mineral surfaces and cause further 77 weathering associated reactions (Lower et al., 2001). To date, many studies have categorized the bacteria of weatherability (Uroz et al., 2009;Sulu-Gambari, 2011;Lian et al., 2008). 78

79

80 Many bacteria can induce the biomineralization processes of calcium carbonate precipitation that render the formation of stalactite. The microbial-induced reaction is mainly 81 82 carried out by urease-producing bacteria in the presence of ammonium ions in the alkaline 83 environment. The identified urease-producing bacteria have been investigated extensively (Anbu et al., 2016; Wei et al., 2015; Ercole et al., 2001; Jones, 2017; Animesh and Ramkrishnan, 84 85 2016: Abo-El-Enein et al., 2012). The microbial communities of karst habitats are diverse, and their components largely depend on the locations and composition of limestone (Barton and 86 87 Northup, 2007;Ortiz et al., 2014;Tomczyk-Żak and Zielenkiewicz, 2015;Engel, 2010). 88 Temperature, light intensity, and light penetration are important parameters that control the 89 developing orientation of microbial communities. Researchers have shown that 90 microorganisms, operating together with the local environmental conditions, play important 91 roles in remodeling the landscapes of karst (Castanier et al., 1999;Mortensen et al.,

92 2011;Qabany et al., 2012;Anbu et al., 2016). However, how physical factors affect microbial 93 communities and the consequent geological changes remains unknown. Determining how 94 microbial relative abundance shifted in response to changes in environmental factors and the 95 consequent geological evolution can enable us to better understand the effect of 96 microorganisms on the dynamic alterations of karst landscapes.

97

98 The most abundant limestone is found in warm and humid regions. Because of its porous 99 and loose property, limestone can be easily infiltrated by rainfall or groundwater to form 100 trenches, shallow concavity, or clefts. Limestone landscapes in Taiwan are scattered all over 101 the island and can be found in the Hengchun Peninsula, east coastal areas, central range, and 102 southwest of Taiwan. The tectonic studies of Takangshan revealed that the upthrow consists of 103 large lenses of Pleistocene anticline, 4 km in length and 2 km in width (Lacombe et al., 1997; 104 M.L. Hsieh and Knuepfer, 2001). The crest of Takangshan is covered with coral reef limestones 105 (with an average thickness of 40 m), which are interbedded in clastic layers. On top of the hills, 106 expanding vegetation coverages, coupled with erosion soil, are commonly observed in most of 107 these limestone landscapes. The Narrow-Sky is a nickname for a mountain crack located at a 108 limestone hill in the Tainliao district of Taiwan. The dimensions (length, width, and height) of 109 the gulch is approximately 100 m, 2 m, and 12 m, respectively. Because of vegetation 110 coverages and its topographic features, the exposure of sunlight at different spots inside the 111 gulch is different. For example, sunlight can penetrate the limestone wall of the opening 112 through the vegetation coverage, while it is relatively dim inside the path of the gulch. 113 Moreover, moisture and temperature are also different between the opening and the center of 114 the gulch. The most tangible difference between the inner and outer wall of the gulch is the 115 formation of speleothems, which are plentiful in the inner gulch and are nonexistent in the outer 116 section. Because microbial communities are sensitive to changes in environmental physical 117 factors, the microbial composition in different locations may have adapted to the environment 118 according to physical factors, which may play a role in reshaping the gulch scenery.

119

In this study, we investigated the effect of physical factors on microbial communities in the limestone landscape. With the recent advent of next-generation sequencing (NGS) platform and computational methods, we could conduct genome studies on microbes to determine the relationship between environmental factors in their habitats, such as sunlight penetration during daytime, humidity, and pH and the relative abundance of microbes. We collected samples from limestone walls at the opening and inside the gulch, from water dripping at the inner limestone

- 126 wall, and from the soil of the outer weathered limestone at the gulch opening: we collected
- 127 these samples to extract DNA. Genomic DNA extracted from these samples was further
- subjected to the PCR amplification of 16S rRNA gene sequences by using the Illumina's MiSeq
- 129 system. Bioinformatics tools were employed to explore DNA reads in operational taxonomic
- 130 units (OTUs). The DNA sequence in each OTU was blasted with the sequences which is current
- 131 weathering bacteria and urease-producing bacteria available in the National Center for
- 132 Biotechnology Information (NCBI) database.

133 **2. Materials and methods**

135	2.1 Sample Site Description and the Collection of Samples and Physical Parameters
136	We collected samples from the limestone gulch of Tainliao (120° 21'19.1" E, 22° 51'
137	00.7" N): the location is illustrated in Figure 1. For collecting the microorganisms in the
138	surface of limestone walls, sterile cotton swabs were used to wipe the surface areas of
139	sampled spots. The samples were collected in a tube and sent to the laboratory to measure
140	total organic carbon and extract DNA for subsequent metagenomics studies. The physical
141	factors in sampling spots including illumination, temperature of the air or soil, humidity, and
142	pH of soil were recorded.
143	
144	2.2 DNA Extraction and PCR for Metagenomics Analysis
145	The procedure modified from kit of Genomic DNA from soil (Macherey-Nagel) was used
146	to extract bacterial DNA from limestone samples. The detailed procedure was described in
147	detail in our previous study (Huang et al., 2018). In short, DNA in a bulk of soil fraction was
148	isolated and eluted for the PCR amplification of 16S rRNA gene sequences at V3-V4 regions
149	by using Illumina's MiSeq system to create paired-end sequencing data. The target sequence
150	was amplified through PCR by using mixed forward and reverse primers. After separation
151	through electrophoresis in agarose gel, PCR products with expected sizes were harvested.
152	
153	2.3 Metagenomics Library Construction and Analysis
154	The Illumina Nextera XT index kit was used in the second-stage PCR for the addition of
155	the index. The raw data of forward and reverse reads were aligned using CLC bio's analysis
156	platform (Genomic Workbench v.8.5) with Q20 as a threshold to generate output fasta files.
157	Fasta files were further processed using the sequence analysis tool USEARCH. All sequence
158	fills were merged together, followed by removing duplicates and clustering sequences into
159	OTUs at 97% pairwise identity with the minimum cluster size being set at 2 to construct an
160	OTU-reference library. A comparison between samples and the reference library at a level of
161	97% sequence identity was made to yield an OTU table, and the number of reads in each
162	OTU was revealed. A 16s UTAX reference database was employed for the assignment of
163	taxonomy for query sequences in the OTU-reference library. We analyzed each habitat by
164	aligning the data, relative abundance, and biodiversity with a heatmap and principal
165	coordinate analysis (PCoA).
166	

167 2.4 Functional Bacteria Analysis

- 168 To investigate urease-producing bacteria and weathering-associated bacteria in each
- 169 habitat, a bioinformatics approach was used to find functional bacteria based on the similarity
- 170 of DNA sequences. In this method, tables of urease-producing bacteria and weathering
- 171 bacteria—including bacteria for surface recognition, surface attachment, and mineral
- 172 dissolutions—were selected from previously published papers in which their corresponding
- 173 16S DNA sequences were downloaded from the NCBI database, as shown in Supplementary
- 174 Tables I and II. The DNA sequence tables were used as references to construct phylogenetic
- 175 trees by employing the Molecular Evolutionary Genetics Analysis 7 (MEGA 7) program with
- 176 the setting of parsimony, neighbor-joining, and maximum likelihood analyses. The similarity
- 177 between adjacent pairs of OTU sequences and reference sequences was tested using the
- 178 NCBI nucleotide BLAST program. DNA sequences with a similarity of more than 95% were
- 179 defined as urease-producing bacterial lineages or weathering-associated bacterial lineages of
- 180 corresponding bacteria, and their read numbers were manually selected to calculate their
- 181 populations.
- 182

184 **3. Results**

185

186 **3.1 General Description of Environmental Factors** 187 The location of the limestone gulch in Tainliao and the path to the mountain gulch are 188 demonstrated in Figure 1. The left panel of the figure shows the locations of Tainliao, and the right panel describes in detail where soil and karst samples were collected. The water samples 189 190 were collected from the drippings of stalactites in the gulch. Various environmental 191 parameters were assessed, namely, illumination, temperature, humidity in air, humidity in 192 soil, and pH in soil. The illumination in the gulch was relatively low all year around, ranging 193 from approximately 20 to 600 Lux in a location where reflected light is available, and 194 ranging from approximately 5 to 70 Lux on the wall when measured from 9 AM to 6 PM on a 195 shiny summer day. The illumination at the opening of the gulch ranged from approximately 196 100 to 800 Lux at a brighter location, but it ranged from approximately 60 to 650 (Lux) on the limestone wall. On the same day, the illumination at an open space around the gulch was 197 198 approximately 8,000 Lux, 150,000 Lux, 85,000 Lux, and 4,000 Lux at 9 AM, 12 noon, 3 PM, and 6 PM, respectively. The temperature in the inner of the gulch was $2^{\circ}C - 4^{\circ}C$ lower than 199 the temperature at the opening of the gulch. The humidity in the soil versus air was 100% 200 201 versus $70\% \pm 5\%$ at the inner gulch and $37.5\% \pm 22\%$ versus $60\% \pm 5\%$ at the opening. The 202 pH of the soil was approximately 4.4 - 5 at the inner gulch and approximately 6.2 - 6.6 at the 203 opening. The total organic carbon content in the inner karst wall, the outer karst wall, and the 204 soil of the outer ground was $3.9\% \pm 0.2\%$, $7.7\% \pm 1\%$, and $9.1\% \pm 0.5\%$, respectively. In 205 short, the inner gulch was a zone of relatively lower light penetration compared with the 206 opening of the gulch. The humidity in the air was similar in the inner and outer gulch. The 207 relative light penetration in the outer gulch may affect the level of local biosynthesis, 208 resulting in a higher total organic carbon content in the areas. 209 210 3.2 The Microbial Community Structure in Various Karst Habitats Based on Results of the NGS Platform 211 212 The metagenomic sequence data from different habitats, namely from the outer soil, the

212 The metagenomic sequence data from different habitats, namely from the outer soil, the 213 outer karst, the inner karst, and from dripping water, contained a similar level of assembled 214 reads that were clustered into OTUs, revealing a high variety in numbers, as shown in Table 215 1. The average read number was more than 400,000. The sample from the soil of the outer 216 gulch had the highest OTUs, whereas the water sample had the lowest OTUs. Because the

Shannon index of the sample from the outer gulch was the highest, the effective number ofspecies was also the highest.

219

220 Figure 2 shows the relative abundance of OTUs in different habitats, which contained 22 221 phyla in total. Our results revealed that the soil sample from the outer gulch had the highest 222 alpha diversity, whereas the water sample had the lowest alpha diversity. Four major phyla, 223 namely Proteobacteria, Acidobacteria, Actinobacteria, and Cyanobacteria, accounted for 80% 224 of total microbial species in all the groups. Moreover, Cyanobacteria was present in both 225 limestone walls and was absent in water and soil habitats. Although Actinobacteria can be 226 found in freshwater habitats, our results revealed that they accounted for only <0.4% of the 227 relative abundance in the karst dripping water. The right panel of Figure 3 shows the heatmap 228 of OTUs in various habitats. Our data revealed that microorganisms around the gulch were 229 considerably diverse, and the OTU pattern of the water sample was markedly different from 230 those of other samples. The habitats of the outer gulch, outer soil, and outer karst wall more 231 closely resembled each other than the outer and inner karst wall. These findings suggest that 232 the effect of light penetration and moisture overwhelmed the effects of chemical 233 compositions in the karst walls. The right panel of Figure 3 shows the PCoA distribution of 234 dominated OTUs in the environment, indicating that the distribution of bacteria in the karst 235 gulch was considerably diverse. Many unique OTUs were present in the water habitat (blue 236 square). Although the number of each OTU between the samples of the outer karst wall and 237 soil more closely resembled (Figure 3, right panel), the PCoA showed that the distribution of 238 many dominant OTUs in inner (orange cross) and outer (green cross) karst walls was 239 adjacent to each other, suggesting that the sequences of dominant species in these two 240 habitats were similar to each other. 241

242

3.3 Distribution of Weathering Bacteria in the Karst Gulch

243 Table 2 shows the OTUs of habitats with sequences that had >95% similarity to reference 244 sequences of weathering bacteria. Supplementary Table I shows bacteria collected in previous 245 studies, indicating that they were capable of promoting the functions of weathering in rocks. 246 Most of the weathering-associated bacteria in habitats belonged to the phyla Proteobacteria. Although 220 species of weathering-associated bacteria were used as references, only <10% 247 248 of them showed similarity to OTU sequences in the karst habitats in this study. The relative abundance of weathering-associated bacteria in each habitat is shown in Figure 4. The sample 249 250 from the inner karst gulch contains the last portions of bacteria relative to weathering-

251 associated bacteria. The dominant genus in the rock and soil of weathering-associated bacteria 252 in the karst gulch was Sphingomonas whereas Noviherbaspirillum was the unique genus in the 253 water sample. The existence of weathering-associated bacteria in water indicated that water 254 plays a role in mediating the propagation of weathering bacteria (Ahmed and Holmström, 255 2015). Because studies have revealed that microorganisms suspended in liquid can still lead to 256 the dissolution of elements from rocks, Noviherbaspirillum can facilitate the weathering 257 process of the inner karst wall. However, the relative impact of these bacteria on the weathering 258 process remains unclear.

259 260

3.4 Distribution of Urease Producing Bacteria in the Karst Gulch

Table 3 shows the OTUs of habitats with sequences that had >95% similarity to reference 261 262 sequences of urease-producing bacteria, which by definition are microbes that can synthesize 263 enzymes for urea hydrolysis, resulting in subsequent biocalcification in the presence of 264 calcium ions. The reference table of urease-producing bacteria is shown in supplementary 265 Table II. The relative abundance of urease-producing bacteria in each habitat is shown in 266 Figure 5. Urease-producing bacterial lineages in the inner karst wall were related to Bacillus 267 megaterium, B. subtilis, and B. mycoides. In water samples, urease-producing bacterial 268 lineages were closely related to B. megaterium and Halomonas denitrificans. Ureaseproducing bacteria in both the inner karst wall and dripping water can contribute to the 269 progress of biocalcification on the inner karst wall. Although the total organic carbon content 270 271 on the outer karst wall was two times higher than on the inner karst wall, the numbers of 272 urease-producing bacterial lineages might only exist in marginal amounts on the outer karst 273 wall due to the extremely low portion of relative abundance of the bacteria (0.003%, Figure 274 5). The relative abundance of urease-producing bacterial lineages on the inner wall (both in 275 water and the karst wall) was approximately 200 times higher than that on the outer karst 276 wall. The high portion in relative abundance of urease-producing bacteria on the inner wall 277 indicated that a persistent stalactite formation occurs on the habitat, which is consistent with 278 its ecological landscape. 279 280 281

283 4. Discussions

284

285 Understanding the microbial diversity in the karst landscape provides insights into how 286 bacteria survive in extreme environments and the consequence of geological evolution after 287 their interaction. Many studies focusing on the abundance of microorganisms in karst caves 288 have showed a large microbial diversity in limestone landscapes (Engel, 2010; Ortiz et al., 289 2014; Ortiz et al., 2013; Tomczyk-Żak and Zielenkiewicz, 2015; Zepeda Mendoza et al., 2016). 290 Most of these studies have confirmed that Actinobacteria and Proteobacteria were the dominant 291 species in karst samples. Our study results revealed that total OTUs distributed in the phyla of 292 Actinobacteria, Proteobacteria, Cyanobacteria, and Acidobacteria in karst habitats were 293 approximately 3500, suggesting the extreme diversity of microorganisms in karst landscapes 294 in our studied site. The bacterial communities from different geological areas exhibited 295 regional difference. For example, the majority of bacterial phyla in karst soil in Guizhou China 296 were Proteobacteria, Actinobacteria, Acidobacteria, and Planctomycetes (Zhou et al., 2009). 297 Our data of karst soil revealed that this habitat exhibited the highest microbial diversity. We 298 posit that weathering bacteria present in the outer karst wall and soil contribute to the nutrient 299 level of the soil, causing a higher total organic carbon content and Shannon index of the soil 300 habitat. Our study indicated that light penetration, together with other physical parameters, 301 specify the development of particular microbial communities as showed in Figure 3. In the 302 long run, the subtle changes of the composition of microbial communities alter the geochemical 303 reactions, rendering the variation of karst landscapes.

304

305 With the application of the NGS platform for acquiring metagenomic data in various karst 306 habitats, we could examine the effects of physical parameters on the evolution of microbial 307 communities and the consequential changes in the microenvironment. To make the most of the 308 metagenomic data, we used the sequence similarity tool, BLAST, to determine the likeness of 309 representative DNA sequences of OTUs compared with the functional bacteria available in the 310 NCBI database. Although the relative abundance in the phylum levels of karst habitats was 311 similar, the compositions of functional bacteria tested in each habitat were substantially 312 different. We set the cutting point of similarity at 95% to compare functional bacteria in various 313 habitats, which is approximately the level of the genus. However, it is still under debate 314 whether the 95% cutoff in the DNA sequence similarity is a proper setpoint to cluster a category 315 of functional bacteria. Based on this calculus, our data revealed a large difference in the final 316 results, as shown in Figures 4 and 5, suggesting that a considerable difference exists in the

relative abundance of functional bacteria in different habitats. Further confirmation of specific
functional bacteria in various habitats can be achieved through molecular cytogenetic
techniques, such as fluorescence in situ hybridization.

320

321 We hypothesized that the two primary activities of karst landscapes, namely weathering 322 and stalactite formation, might affect the dynamic changes and geographic evolution of karst 323 walls. Functional bacteria associated with these activities were analyzed based on the NGS 324 platform. Our data revealed that a drastic shift in key microorganisms, weathering bacteria and 325 urease-producing bacteria, occurred in the habitats of various physical parameters, suggesting 326 that these parameters play a role in the initiation of different paths in geological evolution. The 327 differences in functional bacterial compositions in various habitats supported the fact that the 328 speleothem formation occurred primarily in the inner karst wall in the gulch, suggesting 329 physical conditions in the inner karst wall favor the growth of urease-producing bacteria and 330 promote calcite precipitation. Studies on Cyanobacteria and calcium precipitation have shown 331 that microorganisms may highly enhance the precipitation of CaCO3 minerals in hot spring water (J. Kaźmierczak et al., 1996; Kawano and Obokata, 2007). In this study, the relative 332 333 abundance of Cyanobacteria in the inner karst wall was twice as large as the relative abundance 334 of Cyanobacteria in the outer karst wall, suggesting that the environment of the inner karst is 335 favorable for the development of Cyanobacteria and the consequential mineral precipitation.

336

337 Biocalcification has been widely applied in the ecosystem for many purposes, including 338 land consolidation, groundwater control, crack remediation, and immobilization of toxic metals 339 (Anbu et al., 2016; Kumari et al., 2016; S. Animesh and Ramkrishnan, 2016; S.A. Abo-El-340 Enein et al., 2012; Uroz et al., 2007). Various bacteria, shown in supplementary Table II, 341 effectively produce urease, resulting in the precipitation of calcite. Although many environmental factors that affect the growth conditions of urease-producing bacteria have been 342 343 tested, none of the previous studies have investigated the effects of sunlight penetration on the 344 natural selection of bacterial development. In the study of calcifying bacteria in the Stiffe cave, 345 Bacillus and Arthrobacter were isolated from natural habitats, which might have contributed 346 to speleothem formation. In this study, several distinct features were found from the data of the 347 NGS platform and the analysis of total organic carbon. First, we found that B. megaterium and H. denitrificans were the predominant species among calcifying bacteria. Second, urease-348 producing bacteria were dominant in the inner karst wall. Finally, urease-producing bacterial 349 350 lineages were also present in the dripping water of the inner wall, which possessed different

351 species of urease-producing bacteria. Most importantly, the interface between water dripping 352 and the inner karst wall was subjected to the biocalcification effects of both urease-producing 353 bacteria. Our data suggests that bacteria in the water drips of the inner karst wall play an 354 important role in facilitating speleothem formation.

355

356 Remarkably, habitats with a lower relative abundance of urease-producing bacteria 357 showed a higher value in relative abundance of weathering bacteria. Meanwhile, the TOC was 358 higher in samples at the gulch opening compared with the sample in the inner wall. We 359 concluded that sunlight and nutrient levels may be two factors affecting TOC in these habitats. 360 Sunlight is an important source providing energy for the accumulation of biomass. Light 361 penetration provided a discriminatory growth condition to heterotrophic microorganisms on 362 habitats in inner and outer walls. In the gulch, more than 90% of the luminance from sunlight 363 was filtered out by the vegetation coverage at the opening of the gulch, and the karst structure 364 of the steep wall further filtered off 0% to 85% of light penetration inside the gulch, depending 365 on the angle of the sun and the horizon, which affects the photosynthesis reaction in these areas. 366 We also noticed that the effective number of species in the soil increased drastically, suggesting 367 that an elevation of mineral nutrients, one important consequence of weathering effect on rocks, 368 caused by the weathering process could provide a favorable growth condition for many other 369 bacteria in the soil. Previous studies have documented how the dissolution of calcite can be 370 enhanced in the presence of heterotrophic microorganisms (Jacobson and Wu, 2009). Our data 371 revealed that the composition of Acidobacteria increased in the habitat of soil, which is 372 consistent with that of a previous study (Zhou et al., 2009). We propose that light penetration 373 plays a pivotal role in natural selection to promote the growth of weathering-associated bacteria, 374 which in turn increase the nutrient level in situ and favor the development of microorganisms.

375 376

Conclusion

377 Given an example of the karst landscape, we provided evidence regarding how physical 378 parameters change the microbial community and the consequential landscape evolution. 379 Furthermore, we showed that light penetration regulates the microbial population, leading to 380 the breakdown of calcite, whereas the chemical composition of limestone might deliver certain 381 conditions that limit the growth of bacterial species. These factors, namely light penetration, 382 water dripping, moisture, the chemical composition of karst, and selected bacteria that are 383 intertwined, shape the weathering process and stalactite formation. The natural selections of 384 bacteria were achieved by the preferential growth of two bacterial groups: urease-producing

- 385 bacteria in the inner karst wall and weathering bacteria in the outer karst wall. Our data reveals
- 386 a causal relationship between environmental factors that contribute to the remodeling of the
- 387 topography and are mediated by microorganisms. To the best of our knowledge, this study is
- 388 the first to address the distinct role of bacteria in the water dripping of karst in biocalcification
- 389 and the effect of light penetration in the microenvironment on the colony selection of microbial
- 390 communities.
- 391

392 Figures and tables

- 394 Figure 1. The Location of the Limestone Gulch
- 395 Figure (A) shows a series maps of increased scale pointing to the limestone gulch. Figure (B)
- 396 shows the view of the gulch. Both sides of the path opening have stairs leading to the center
- 397 of the gulch. We took samples from outer limestone wall of the gulch (OL, Figure b1), the
- 398 soil on the outer ground (OS, Figure b2), the inner limestone wall of the gulch (IL, Figure
- 399 c3), and water dripping from the wall (WA). The inner and outer limestone walls exhibit
- 400 distinct landscapes in the stalactite formation.
- 401

402

	OS	OL	L	WA
TOC	9.0 ±0.4 (%)	7.7 ±0.9 (%)	3 .9±0.1 (%)	-
Reads	296,726	433,210	477,281	448,446
OTUs	2470	831	1899	467
Phyla.	20	15	19	18
Shannon - Wiener index	6.2	4.1	3.9	3.6
Effective number of				
species	511	61	51	36

403

404

405

406

407 Table 1. The results of Total Organic Carbon, the Basic Information from the NGS Platform,

408 and the Bacterial Biodiversity in 4 Different Habitats

409 The symbols of OS, OL, IL, and WA represent sample sites of outer ground, outer limestone

410 wall, inner limestone wall and water, respectively.

411

412

413 Figure 2. The Relative Abundance of 4 Various Habitats from the Karst Landscape in Tainliao

414

- 416 417
- 418 Figure 3. (A) The Heatmap of OTUs Based on the Read Number in Different Habitats in
- 419 Tainliao. (B) The PCoA Distribution Based on the Distance Calibration from DNA
- 420 Sequences of OTUs in 4 Habitats in Tainliao.

- Table 2. The Taxonomy of OTUs and the Bacterial References with the Sequencing
- 423 Similarity Higher than 95% to Weathering-Associated Bacteria

Classification	OTU	Reference of bacteria	Sequence ID	Identities	Taxonomy
	karst949	Labrys sp.	LC372609.1	398/407(98%)	Labrys
	karst918	Sphingomonas anadarae	AB261013.1	394/405(97%)	Sphingomonas
Alphaproteobacteria	karst12	Sphingomonas sp.	AF385529.1	400/406(99%)	Sphingomonas
	karst1757	Sphingomonas sp.	AF385529.1	393/406(97%)	Sphingomonas
	karst2759	Sphingomonas sanguinis	D13726.1	385/403(96%)	Asticcacaulis
	karst1653	Aminobacter sp.	AB905480.1	391/408(96%)	Ensifer
	karst341	Aminobacter sp.	FM886907.1	401/407(99%)	Ensifer
	karst1961	Rhizobium leguminosarum	D14513.1	401/407(99%)	Rhizobium
	karst578	Janthinobacterium sp.	AM071372.1	424/433(98%)	Massilia
Betaproteobacteria	karst3282	Janthinobacterium sp.	AB252072.1	417/429(97%)	Massilia
	karst5	Collimonas sp.	FR729923.1	419/432(97%)	Noviherbaspirillum
	karst1267	Collimonas sp.	FR729923.1	413/437(95%)	Ralstonia
	karst1216	Enterobacter	AB616140.1	431/433(99%)	Enterobacter
Gammanroteobacteria	karst397	Citrobacter rodentium	AB682287.1	415/432(96%)	Escherichia/Shigella
Guillinaproteobucteria	karst3185	Shewanella morhuae	AB205576.1	421/433(97%)	Shewanella
	karst595	Pseudomonas stutzeri	AJ006107.2	431/435(99%)	Pseudomonas
	karst2678	Pseudomonas fluorescens	FJ972536.1	422/433(97%)	Pseudomonas
	karst464	Pseudomonas sp.	AJ417069.1	425/434(98%)	Pseudomonas
	karst1814	Pimelobacter simplex	AY509240.1	411/423(97%)	Nocardioides
	karst2873	Arthrobacter oxydans	LN774480.1	395/413(96%)	Arthrobacter
	karst175	Streptomyces lividans	AB184695.1	403/411(98%)	Streptomyces
Gram-positive	karst372	Mycobacterium colombiense	AM062764.1	401/423(95%)	Mycobacterium
Gram-positive	karst3247	Mycobacterium colombiense	AM062764.1	407/427(95%)	Mycobacterium
	karst1108	Mycobacterium colombiense	AM062764.1	401/424(95%)	Mycobacterium
	karst1032	Mycobacterium colombiense	AM062764.1	406/425(96%)	Mycobacterium
	karst2144	Mycobacterium ratisbonense	AJ271863.1	393/413(95%)	Mycobacterium
	karst101	Mycobacterium sp.	X84978.1	408/411(99%)	Mycobacterium
	karst1188	Bacillus subtilis	AB018487.1	417/434(96%)	Bacillus
	karst1300	Bacillus mycoides	AB547222.1	432/432(100%)	Bacillus
	karst47	Pimelobacter simplex	AY509240.1	399/411(97%)	Nocardioides
	karst886	Streptomyces lividans	AB184826.1	399/409(98%)	Streptomyces
	karst2729	Streptomyces lividans	AB184695.1	398/413(96%)	Streptomyces
	karst2914	Kocuria polaris	AJ278868.1	403/426(95%)	Arthrobacter

- 424 Table 3: The Taxonomy of OTUs and the Bacterial References with the Sequencing
- 425 Similarity Higher than 95% to Urease-Producing Bacteria

			1		
Classification	OTU	Reference of bacteria	Sequence ID	Identities	Taxonomy
Actinobacteria	karst1300	Bacillus mycoides	AB547222.1	432/432(100%)	Bacillus
	karst791	Bacillus megaterium	JX893034.1	419/433(97%)	Bacillus
Firmioutos	karst260	Bacillus megaterium	JX893034.1	416/431(97%)	Bacillus
Firmicules	karst2293	Bacillus megaterium	JX893034.1	411/430(96%)	Bacillus
	karst1188	Bacillus subtilis	AB018487.1	417/434(96%)	Bacillus
Commonwotoobootorio	karst189	Halomonas denitrificans	AM229317.1	418/432(97%)	Halomonas
Gammaproteobacteria	karst2279	Halomonas denitrificans	AM229317.1	414/432(96%)	Halomonas

428 Figure 4: The Relative Abundance of Weathering-Associated Bacterial Lineages in Each

429 Habitat

431 Figure 5: The Relative Abundance of Urease-Producing Bacterial Lineages in Each Habitat

- 432 References
- 433
- 434 Abo-El-Enein, S. A., Ali, A. H., Talkhan, F. N., and Abdel-Gawwad, H. A.: Utilization of
- 435 microbial induced calcite precipitation for sand consolidation and mortar crack remediation,
- 436 HBRC Journal, 8, 185 192, 10.1016/j.hbrcj.2013.02.001, 2012.
- 437 Ahmed, E., and Holmström, S. J. M.: Microbe mineral interactions: The impact of surface
- 438 attachment on mineral weathering and element selectivity by microorganisms, Chemical Geology,
- 439 403, 13-23, 10.1016/j.chemgeo.2015.03.009, 2015.
- 440 Anbu, P., Kang, C.-H., Shin, Y.-J., and So, J.-S.: Formations of calcium carbonate minerals by
- 441 bacteria and its multiple applications, SpringerPlus, 5, 10.1186/s40064-016-1869-2, 2016.
- 442 Animesh, S., and Ramkrishnan, R.: Study on effect of microbial induced calcite precipitates on
- strength of fine grained soils, Perspectives in Science 8, 198–202, 10.1016/j.pisc.2016.03.017,
- 444 2016.
- 445 Barton, H. A., and Northup, D. E.: Geomicrobiology in cave environments: past, current and
- 446 future perspectives, Journal of Cave and Karst Studies, 69, 163-178, 2007.
- 447 Castanier, S., Me tayer-Levrel, G. L., and Perthuisot, J. P.: Ca-carbonates precipitation and
- limestone genesis the microbiogeologist point of view, Sedimentary Geology, 126, 9 23,
 1999.
- 450 Engel, A. S.: Microbial Diversity of Cave Ecosystems, in: Geomicrobiology: Molecular and
- Environmental Perspective, edited by: Barton, L. L., Mandl, M., and Loy, A., Springer, 219-238,2010.
- 453 Ercole, C., Cacchio, P., Cappuccio, G., and Lepidi, A.: Deposition of calcium carbonate in karst
- 454 caves: role of bacteria in Stiffe's cave, International Journal of Speleology, 30A 69-79, 2001.
- 455 Gat, D., Tsesarsky, M., Shamir, D., and Ronen, Z.: Accelerated microbial-induced CaCO3
- precipitation in a defined coculture of ureolytic and non-ureolytic bacteria, Biogeosciences, 11,
 2561-2569, 10.5194/bg-11-2561-2014, 2014.
- 458 Hutchens, E.: Microbial selectivity on mineral surfaces: possible implications for weathering
- 459 processes, Fungal Biology Reviews, 23, 115-121, 10.1016/j.fbr.2009.10.002, 2009.
- 460 Jacobson, A. D., and Wu, L.: Microbial dissolution of calcite at T=28°C and ambient pCO2,
- 461 Geochimica et Cosmochimica Acta, 73, 2314-2331, 10.1016/j.gca.2009.01.020, 2009.
- 462 Jones, B.: Review of calcium carbonate polymorph precipitation in spring systems, Sedimentary
- 463 Geology, 353, 64-75, 10.1016/j.sedgeo.2017.03.006, 2017.
- Lian, B., Chen, Y., Zhu, L., and Yang, R.: Effect of Microbial Weathering on Carbonate Rocks,
- 465 Earth Science Rrontiers, 15, 90-99, 2008.
- 466 Lower, S. K., Hochella, M. F. J., and Beveridge, T. J.: Bacterial recognition of mineral surfaces:
- 467 nanoscale interactions between Shewanella and α -FeOOH, Science, 292, 1360-1363, 2001.
- 468 Mortensen, B. M., Haber, M. J., DeJong, J. T., Caslake, L. F., and Nelson, D. C.: Effects of
- 469 environmental factors on microbial induced calcium carbonate precipitation, J Appl Microbiol,
- 470 111, 338-349, 10.1111/j.1365-2672.2011.05065.x, 2011.
- 471 Ortiz, M., Legatzki, A., Neilson, J. W., Fryslie, B., Nelson, W. M., Wing, R. A., Soderlund, C. A.,
- 472 Pryor, B. M., and Maier, R. M.: Making a living while starving in the dark: metagenomic insights
- 473 into the energy dynamics of a carbonate cave, ISME J, 8, 478-491, 10.1038/ismej.2013.159, 2014.

- 474 Qabany, A., Soga, K., and Santamarina, C.: Factors affecting efficiency of microbially induced
- 475 calcite precipitation, Journal of Geotechnical and Geoenvironmental Engineering, 138, 992-1001,
- 476 10.1061/(ASCE)GT.1943-5606.0000666, 2012.
- 477 Seiffert, F., Bandow, N., Bouchez, J., von Blanckenburg, F., and Gorbushina, A. A.: Microbial
- 478 Colonization of Bare Rocks: Laboratory Biofilm Enhances Mineral Weathering, Procedia Earth
- 479 and Planetary Science, 10, 123-129, 10.1016/j.proeps.2014.08.042, 2014.
- 480 Sulu-Gambari, F.: Bacterially-induced dissolution of calcite: The role of bacteria in limestone
- 481 weathering, Master of Science, Department of Earth and Planetary Science, McGill University, 96
- 482 pp., 2011.
- 483 Tomczyk-Żak, K., and Zielenkiewicz, U.: Microbial Diversity in Caves, Geomicrobiology Journal,
- 484 33, 20-38, 10.1080/01490451.2014.1003341, 2015.
- 485 Uroz, S., Calvaruso, C., Turpault, M. P., Pierrat, J. C., Mustin, C., and Frey-Klett, P.: Effect of the
- 486 mycorrhizosphere on the genotypic and metabolic diversity of the bacterial communities involved
- in mineral weathering in a forest soil, Appl Environ Microbiol, 73, 3019-3027,
- 488 10.1128/AEM.00121-07, 2007.
- 489 Uroz, S., Calvaruso, C., Turpault, M. P., and Frey-Klett, P.: Mineral weathering by bacteria:
- 490 ecology, actors and mechanisms, Trends Microbiol, 17, 378-387, 10.1016/j.tim.2009.05.004, 2009.
- 491 Wei, S., Cui, H., Jiang, Z., Liu, H., He, H., and Fang, N.: Biomineralization processes of calcite
- 492 induced by bacteria isolated from marine sediments, Braz J Microbiol, 46, 455-464,
- 493 10.1590/S1517-838246220140533, 2015.
- 494 Wu, Y.-w., Zhang, J.-c., Wang, L.-j., and Wang, Y.-x.: A rock-weathering bacterium isolated from
- 495 rock surface and its role in ecological restoration on exposed carbonate rocks, Ecological
- 496 Engineering, 101, 162-169, 10.1016/j.ecoleng.2017.01.023, 2017.
- 497 Zhou, J. P., Huang, Y., and Mo, M. H.: Phylogenetic analysis on the soil bacteria distributed in
- 498 karst forest Brazilian Journal of Microbiology, 40, 827-837, 2009.
- 499