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Abstract 21 

Tropical forest degradation from logging, fire, and fragmentation not only alters carbon stocks and 22 

carbon fluxes, but also impacts physical land-surface properties such as albedo and roughness 23 

length. Such impacts are poorly quantified to date due to difficulties in accessing and maintaining 24 

observational infrastructures, and the lack of proper modeling tools for capturing the interactions 25 

among biophysical properties, ecosystem demography, canopy structure, and biogeochemical 26 

cycling in tropical forests.  As a first step to address these limitations, we implemented a selective 27 

logging module into the Functionally Assembled Terrestrial Ecosystem Simulator (FATES) by 28 

mimicking the ecological, biophysical, and biogeochemical processes following a logging event. 29 

The model can specify the timing and aerial extent of logging events, splitting the logged forest 30 

patch into disturbed and intact patches, determine the survivorship of cohorts in the disturbed 31 

patch, and modifying the biomass and necromass (total mass of coarse woody debris and litter) 32 

pools following logging. We parameterized the logging module to reproduce a selective logging 33 

experiment at the Tapajós National Forest in Brazil and benchmarked model outputs against 34 

available field measurements.  Our results suggest that the model permits the coexistence of early 35 

and late successional functional types and realistically characterizes the seasonality of water and 36 

carbon fluxes and stocks, the forest structure and composition, and the ecosystem succession 37 

following disturbance. However, the current version of FATES overestimates water stress in the 38 

dry season therefore fails to capture seasonal variation in latent and sensible heat fluxes.  39 

Moreover, we observed a bias towards low stem density and leaf area when compared to 40 

observations, suggesting that improvements are needed in both carbon allocation and 41 

establishment of trees.  The effects of logging were assessed by different logging scenarios to 42 

represent reduced impact and conventional logging practices, both with high and low logging 43 

intensities. The model simulations suggest that in comparison to old-growth forests the logged 44 

forests rapidly recover water and energy fluxes in one to three years. In contrast, the recovery times 45 

for carbon stocks, forest structure and composition are more than 30 years depending on logging 46 

practices and intensity.  This study lays the foundation to simulate land use change and forest 47 

degradation in FATES, which will be an effective tool to directly represent forest management 48 

practices and regeneration in the context of Earth System Models.  49 
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1 Introduction 50 

Land cover and land use in tropical forest regions are highly dynamic, and nearly all tropical forests 51 

are subject to significant human influence (Martínez-Ramos et al., 2016;Dirzo et al., 2014).  While 52 

old-growth tropical forests have been reported to be carbon sinks that remove carbon dioxide from 53 

the atmosphere through photosynthesis, these forests could easily become carbon sources once 54 

disturbed (Luyssaert et al., 2008). Using data from forest inventory and long-term ecosystem 55 

carbon studies from 1990 to 2007, Pan et al. (2011) suggested a net tropical forest can be a net 56 

source of carbon source of 1.3 ± 0.7 Pg C yr–1 from land use change, consisting of a gross tropical 57 

deforestation loss of 2.9 ± 0.5 Pg C yr–1 that is partially offset by a carbon uptake by tropical 58 

secondary forest regrowth of 1.6 ± 0.5 Pg C yr–1.  These estimates, however, do not account for 59 

tropical forest that has been degraded through the combined effects of selective logging (cutting 60 

and removal of merchantable timber), fuelwood harvest, understory fires, and fragmentation 61 

(Nepstad et al., 1999;Bradshaw et al., 2009). To date, the effects of forest degradation remain 62 

poorly quantified. Recent studies suggested that degradation may contribute to carbon loss 40% as 63 

large as clear cut deforestation (Berenguer et al., 2014), and the emission from selective logging 64 

alone could be equivalent to ~10% to 50%  of that from deforestation in the tropical countries 65 

(Pearson et al., 2014;Huang and Asner, 2010;Asner et al., 2009).  Selective logging of tropical 66 

forests is an important contributor to many local and national economies, and correspond to 67 

approximately one-eighth of global timber (Blaser et al., 2011).   The integrated impact of timber 68 

production and other forest uses has been posited as the cause of up to ~30% of the difference 69 

between potential and actual biomass stocks globally, comparable in magnitude to the effects of 70 

deforestation (Erb et al. 2017).  Selective logging includes cutting large trees and additional 71 

degradation through widespread damage to remaining trees, sub-canopy vegetation, and soils 72 

(Asner et al., 2004;Asner et al., 2005).  Selective logging accelerates gap-phase regeneration 73 

within the degraded forests (Huang et al., 2008). 74 

Over half of all tropical forests have been cleared or logged, and almost half of standing 75 

old-growth tropical forests are designated by national forest services for timber production 76 

(Sist et al., 2015). Disturbances that result from logging are known to cause forest 77 

degradation at the same magnitude as deforestation each year in terms of both geographic 78 

extent and intensity, with widespread collateral damage to remaining trees, vegetation and 79 
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soils, leading to disturbance to water, energy, and carbon cycling, as well as ecosystem 80 

integrity (Keller et al., 2004b;Asner et al., 2004;Huang and Asner, 2010).  81 

In most Earth system models (ESMs) that couple terrestrial and atmospheric processes to 82 

investigate global change (e.g., the Community Earth System Model or the Energy Exascale Earth 83 

System Model), selective logging is typically represented as simple fractions of affected area or 84 

an amount of carbon to be removed on a coarse grid (e.g., 0.5 degree).  One exception is the 85 

representation of wood harvest in the LM3V land model that explicitly accounts for post-86 

disturbance land age distribution, as part of the Geophysical Fluid Dynamics Laboratory (GFDL) 87 

Earth system model (Shevliakova et al., 2009). In the ESMs, grid cell fractional areas are typically 88 

based on timber production rates estimated from sawmill, sales, and export statistics (Hurtt et al., 89 

2011;Lawrence et al., 2012). This approach, while practical, does not effectively differentiate 90 

selective logging that retains forest cover from deforestation.  91 

The realistic representation of wood harvest was absent in most ESMs because the models 92 

generally did not represent the demographic structure of forests (tree size and stem number 93 

distributions) (Bonan, 2008).  But progress over the past two decades in ecological theory and  94 

observations (Bustamante et al., 2015;Strigul et al., 2008;Hurtt et al., 1998;Moorcroft et al., 2001) 95 

has made it feasible to include vegetation demography more directly into Earth system models 96 

through individual to cohort-based vegetation in land models (Sato et al., 2007;Watanabe et al., 97 

2011;Smith et al., 2001;Smith et al., 2014;Weng et al., 2015; Roy et al., 2003;Hurtt et al., 98 

1998;Fisher et al., 2015).  These vegetation demography modules are relatively new in land 99 

models, so efforts are still under way to improve their parameterizations of resource competition 100 

for light, water, and nutrients, recruitment, mortality, and disturbance including both natural and 101 

anthropogenic components (Fisher et al., 2017).   102 

In this study, we aim to (1) describe the development of a selective logging module 103 

implemented into The Functionally Assembled Terrestrial Ecosystem Simulator (FATES), for 104 

simulating anthropogenic disturbances of various intensities to forest ecosystems and their short-105 

term and long-term effects on water, energy, and carbon cycling, and ecosystem dynamics;  (2) 106 

assess the capability of FATES in simulating site-level water, energy, and carbon budgets, as well 107 

as forest structure and composition; (3) benchmark the simulated variables against available 108 

observations at the Tapajós National Forest in the Amazon, thus identifying potential directions 109 

for model  improvement; and (4) assess the simulated recovery trajectory of tropical forest 110 
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following disturbance under various logging scenarios. In section 2, we provide a brief summary 111 

of FATES, introduce the new selective logging module, and describe numerical experiments 112 

performed at two sites with data from field survey and flux towers. In section 3, FATES-simulated 113 

water, energy, and carbon fluxes and stocks in intact and disturbed forests are compared to 114 

available observations, and the effects of logging practice and intensity on simulated forest 115 

recovery trajectory in terms of carbon budget, size structure and composition in plant functional 116 

types are assessed. Conclusions and future work are discussed in section 4. 117 

2 Model description and study site 118 

2.1 The Functionally Assembled Terrestrial Ecosystem Simulator 119 

The Functionally Assembled Terrestrial Ecosystem Simulator (FATES) has been developed as a 120 

numerical terrestrial ecosystem model based on the ecosystem demography representation in the 121 

community land model (CLM), formerly known as CLM (ED) (Fisher et al., 2015). FATES is an 122 

implementation of the cohort-based Ecosystem Demography (ED) concept (Hurtt et al., 123 

1998;Moorcroft et al., 2001) that can be called as a library from an ESM land surface scheme, 124 

currently including CLM (Oleson et al., 2013) or Energy Exascale Earth system model (E3SM) 125 

land model (ELM) (https://climatemodeling.science.energy.gov/projects/energy-exascale-earth-126 

system-model). In FATES, the landscape is discretized into spatially implicit patches each of 127 

which represents land areas with a similar age since last disturbance. The discretization of 128 

ecosystems along a disturbance/recovery axis allows the deterministic simulation of successional 129 

dynamics within a typical forest ecosystem. Within each patch, individuals are grouped into 130 

cohorts by plant functional types (PFTs) and size classes (SCs), so that cohorts can compete for 131 

light based on their heights and canopy positions. Following disturbance, a patch fission process 132 

splits the original patch into undisturbed and disturbed new patches. A patch fusion mechanism is 133 

implemented to merge patches with similar structures, which helps prevent the number of patches 134 

from growing too big. In addition to the ED concept, FATES also adopted a modified version of 135 

the Perfect Plasticity Approximation (PPA) (Strigul et al., 2008) concept by splitting growing 136 

cohorts between canopy and understory layers as a continuous function of height designed for 137 

increasing the probability of co-existence (Fisher et al., 2010). An earlier version of FATES, 138 
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CLM(ED), has been applied regionally to explore the sensitivity of biome boundaries to plant trait 139 

representation (Fisher et al., 2015).   140 

In this study, we specified two plant functional types (PFTs) in FATES corresponding to 141 

early successional and late successional plants, representative of the primary axis of variability in 142 

tropical forests (Reich 2014).  The early successional PFT is light-demanding, and grows rapidly 143 

under high light conditions common prior to canopy closure. This PFT has low density woody 144 

tissues, shorter leaf and root lifetimes, and a higher background mortality compared to the late 145 

successional PFT that has dense woody tissues, longer leaf and root lifetimes, and lower 146 

background  mortality (Brokaw, 1985;Whitmore, 1998) and thus can survive under deep shade and 147 

grow slowly under closed canopy.  148 

The key parameters that differentiate the two PFTs in FATES are listed in Table 1, including 149 

specific leaf area at the canopy top (SLA0), the maximum rate of carboxylation at 25 oC (Vcmax25), 150 

specific wood density, background mortality, leaf and fine root longevity, and leaf C:N ratio.  The 151 

parameter ranges were selected based on literature for tropical forests. Specifically, it has been 152 

reported that SLA values ranges from 0.007-0.039 m2 gC-1 (Wright et al., 2004) and Vcmax25 ranges 153 

between 10.1 and 105.7 µmol m-2 s-1 (Domingues et al., 2005).  The specific wood densities were 154 

set to be  0.5 and 0.9 g cm3 , and the background mortality rates were set to 0.035 and 0.014 yr-1 155 

for early and late succession PFTs respectively, consistent with those used in the Ecosystem 156 

Demography Model version 2 for Amazon forests (Longo et al., 2019) . For simplicity, leaf 157 

longevity and root longevity were set to be the same for each PFT (i.e., 0.9 yr and 2.6 yr for early 158 

and late successional PFTs) following the range in Trumbore and Barbosa De Camargo (2009).  159 

Given that both SLA0 and Vcmax25 span wide ranges, and have been identified as the most 160 

sensitive parameters in FATES in a previous study (Massoud et al., 2019), we performed one-at-161 

a-time sensitivity tests by perturbing them within the reported ranges.  Based on these tests, it is 162 

evident that these parameters not only affect water, energy, carbon budget simulations, but also 163 

the coexistence of the two PFTs. In the version of FATES used in this study (Interested readers 164 

are referred to the Code Availability section for details), coexistence of PFTs is not assured for all 165 

parameter combinations, even if they are both within reasonable ranges, on account of competitive 166 

exclusion feedback processes that prevent coexistence in the presence of large discrepancies in 167 

plant growth and reproduction rates (Fisher et al. 2010; Bohn  et al. 2011). In order to demonstrate 168 

FATES’ capability in simulating water, energy, carbon budgets as well as forest structure and 169 
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composition in a holistic way, we chose to report results based on a set of parameter values that 170 

produces reasonable, stable fractions of two PFTs, as reported in Table 1. Nevertheless, we have 171 

included a summary of all sensitivity tests performed in the supplementary material for 172 

completeness. The sensitivity tests demonstrated that by tuning SLA0 and Vcmax25 for the different 173 

PFTs, FATES is not only capable of capturing coexistence of PFTs, but also capable of 174 

reproducing observed water, energy, and carbon cycle fluxes in the tropics.   175 

 176 

2.2 The selective logging module 177 

The new selective logging module in FATES mimics the ecological, biophysical, and 178 

biogeochemical processes following a logging event.  The module  (1) specifies the timing and 179 

areal extent of a logging event; (2) calculates the fractions of trees that are damaged by direct 180 

felling, collateral damage, and infrastructure damage, and adds these size-specific plant mortality 181 

types to FATES; (3) splits the logged patch into disturbed and intact new patches; (4) applies the 182 

calculated survivorship to cohorts in the disturbed patch;  and (5) transports harvested logs off-site 183 

by reducing site carbon pools, and adds remaining necromass to coarse woody debris and litter 184 

pools.  185 

The logging module structure and parameterization is based on detailed field and remote 186 

sensing studies (Putz et al., 2008;Asner et al., 2004;Pereira Jr et al., 2002;Asner et al., 187 

2005;Feldpausch et al., 2005).  Logging infrastructure including roads, skids, trails, and log decks 188 

are conceptually represented (Figure 1).  The construction of log decks used to store logs prior to 189 

road transport leads to large canopy openings but their contribution to landscape-level gap 190 

dynamics is small. In contrast, the canopy gaps caused by tree felling are small but their coverage 191 

is spatially extensive at the landscape scale. Variations in logging practices significantly affect the 192 

level of disturbance to tropical forest following logging (Pereira Jr et al., 2002;Macpherson et al., 193 

2012;Dykstra, 2002;Putz et al., 2008). Logging operations in the tropics are often carried out with 194 

little planning, and typically use heavy machinery to access the forests accompanied by 195 

construction of excessive roads and skid trails, leading to unnecessary tree fall and compaction of 196 

the soil.  We refer to these typical operations as conventional logging (CL).   In contrast, reduced 197 

impact logging (RIL) is a practice with extensive pre-harvest planning, where trees are inventoried 198 

and mapped out for the most efficient and cost-effective harvest and seed trees are deliberately left 199 
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on site to facilitate faster recovery. Through planning, the construction of skid trails and roads, soil 200 

compaction and disturbance can be minimized.  Vines connecting trees are cut and tree-fall 201 

directions are controlled to reduce damages to surrounding trees.  Reduced impact logging results 202 

in consistently less disturbance to forests than conventional logging (Pereira Jr et al. 2002; Putz 203 

et al. 2008).  204 

The FATES logging module was designed to represent a range of logging practices in field 205 

operations at a landscape level. Both CL and RIL can be represented in FATES by specifying 206 

mortality rates associated direct felling, collateral damages, and  mechanical damages as follows: 207 

once logging events are activated, we define three types of mortality associated with logging 208 

practices: direct-felling mortality (lmortdirect), collateral mortality (lmortcollateral), and 209 

mechanical mortality (lmortmechanical).  The direct felling mortality represents the fraction of trees 210 

selected for harvesting that are greater or equal to a diameter threshold (this threshold is defined 211 

by the diameter at breast height (DBH) = 1.3 m denoted as DBHmin); collateral mortality denotes 212 

the fraction of adjacent trees that killed by felling of the harvested trees; and the mechanical 213 

mortality represents the fraction of trees killed by construction of log decks, skid trails and roads 214 

for accessing the harvested trees, as well as storing and transporting logs offsite (Figure 1a). In a 215 

logging operation, the loggers typically avoid large trees when they build log decks, skids, and 216 

trails by knocking down relatively small trees as it is not economical to knock down large trees. 217 

Therefore, we implemented another DBH threshold, DBHmax_infra, so that only a fraction of trees ≤ 218 

DBHmax_infra (called mechanical damage fraction) are removed for building infrastructure 219 

(Feldpausch et al., 2005).  220 

To capture the disturbance mechanisms and degree of damage associated with logging 221 

practices at the landscape level, we apply the mortality types following a workflow designed to 222 

correspond to field operations. In FATES, as illustrated in Figure 2, individual trees of all plant 223 

functional types (PFTs) in one patch are grouped into cohorts of similar-sized trees, whose size 224 

and population sizes evolve in time through processes of recruitment, growth, and mortality.  For 225 

the purpose of reporting and visualizing the model state, these cohorts are binned into a set of 13 226 

fixed size classes in terms of the diameter at the breast height (DBH) (i.e.,  0 – 5,  5 – 10, 10 – 15, 227 

15 – 20, 20 – 30 , 30 – 40, 40 –  50, 50 – 60, 60 – 70, 70 – 80, 80 – 90, 90 – 100, and ≥100 cm). 228 

Cohorts are further organized into canopy and understory layers, which are subject to different 229 

light conditions (Figure 2a). When logging activities occur, the canopy trees and a portion of big 230 
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understory trees lose their crown coverage through direct felling for harvesting logs, or as a result 231 

of collateral and mechanical damages (Figure 2b). The fractions of the canopy trees affected by 232 

the three mortality mechanisms are then summed up to specify the areal percentages of an old 233 

(undisturbed) and a new (disturbed) patch caused by logging in the patch fission process as 234 

discussed section 2.1 (Figure 2c).   After patch fission, the canopy layer over the disturbed patch 235 

is removed, while that over the undisturbed patch stays untouched (Figure 2d). In the undisturbed 236 

patch, the survivorship of understory trees is calculated using an understory death fraction 237 

consistent with the default value corresponds to that used for natural disturbance (i.e., 0.5598). To 238 

differentiate logging from natural disturbance, a slightly elevated, logging-specific understory 239 

death fraction is applied in the disturbed patch instead at the time of the logging event. Based on 240 

data from field surveys over logged forest plots in southern Amazon (Feldpausch et al., 2005), 241 

understory death fraction corresponding to logging  is now set to be 0.65 as the default, but can be 242 

modified via the FATES parameter file (Figure 2e). Therefore, the logging operations will change 243 

the forest from the undisturbed state shown in Figure 2a to a disturbed state in Figure 2f in the 244 

logging module. It is worth mentioning that the newly generated patches are tracked according to 245 

age since disturbance and will be merged with other patches of similar canopy structure following 246 

the patch fusion processes in FATES in later time steps of a simulation, pending the inclusion of 247 

separate land-use fractions for managed and unmanaged forest.  248 

Logging operations affect forest structure and composition, and also carbon cycling (Palace et 249 

al., 2008) by modifying the live biomass pools and flow of necromass (Figure 3). Following a 250 

logging event, the logged trunk products from the harvested trees are transported off-site (as an 251 

added carbon pool for resource management in the model), while their branches enter the coarse 252 

woody debris (CWD) pool, and their leaves and fine roots enter the litter pool. Similarly, trunks 253 

and branches of the dead trees caused by collateral and mechanical damages also become CWD, 254 

while their leaves and fine roots become litter. Specifically, the densities of dead trees as a result 255 

of direct felling, collateral, and mechanical damages in a cohort are calculated as follows: 256 

𝐷𝐷direct          =  lmortdirect ×
𝑛𝑛
𝐴𝐴

𝐷𝐷collateral    =  lmortcollateral ×
𝑛𝑛
𝐴𝐴

𝐷𝐷mechanical  =  lmortmechanical ×
𝑛𝑛
𝐴𝐴

                                                                      (1) 257 
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where 𝐴𝐴 stands for the area of the patch being logged, and n is the number of individuals in the 258 

cohort where the mortality types apply (i.e., as specified by the size thresholds, DBHmin and 259 

DBHmax_infra). For each cohort, we denote 𝐷𝐷indirect =  𝐷𝐷collateral +  𝐷𝐷mechanical and 𝐷𝐷total =260 

𝐷𝐷direct + 𝐷𝐷indirect. 261 

Leaf litter (Litterleaf, [kg C]) and root litter (Litterroot, [kg C]) at the cohort level are then 262 

calculated as: 263 

Litterleaf = 𝐷𝐷total × 𝐵𝐵𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 × 𝐴𝐴                                                                             (2) 264 

Litterroot = 𝐷𝐷total × (𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝐵𝐵𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙) × 𝐴𝐴                                                       (3)      265 

where 𝐵𝐵𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 , 𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, and 𝐵𝐵𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙  are live biomass in leaves and fine roots, and stored biomass in 266 

the labile carbon reserve in all individual trees in the cohort of interest. 267 

Following the existing CWD structure in FATES (Fisher et al., 2015), CWD in the logging 268 

module is first separated into two categories: above-ground CWD and below-ground CWD. 269 

Within each category, four size classes are tracked based on their source, following Thonicke et 270 

al. (2010): trunks, large branches, small branches and twigs. Above-ground CWD from trunks 271 

(CWDtrunk_agb, [kg C]) and large branches/small branches/twig (CWDbranch_agb, [kg C]) are 272 

calculated as follows: 273 

𝐶𝐶𝐶𝐶𝐷𝐷trunk_agb = 𝐷𝐷indirect × 𝐵𝐵stem_agb × 𝑓𝑓trunk × 𝐴𝐴                                                 (4) 274 

𝐶𝐶𝐶𝐶𝐷𝐷branch_agb = 𝐷𝐷total × 𝐵𝐵stem_agb × 𝑓𝑓branch × 𝐴𝐴                                                  (5) 275 

where 𝐵𝐵stem_agb is the amount of above ground stem biomass in the cohort, 𝑓𝑓trunk and 𝑓𝑓branch 276 

represent the fraction of trunks and large branches/small branches/twig. Similarly, the below-277 

ground CWD from trunks (CWDtrunk_bg, [kg C]) and branches/twig (CWDbranch_bg, [kg C]) are 278 

calculated as follows: 279 

𝐶𝐶𝐶𝐶𝐷𝐷trunk_bg = 𝐷𝐷total × 𝐵𝐵root_bg × 𝑓𝑓trunk × 𝐴𝐴                                                            (6) 280 

𝐶𝐶𝐶𝐶𝐷𝐷branch_bg = 𝐷𝐷total × 𝐵𝐵root_bg × 𝑓𝑓branch × 𝐴𝐴                                                        (7) 281 

where 𝐵𝐵croot [kg C] is the amount of coarse root biomass in the cohort. Site-level total litter and 282 

CWD inputs can then be obtained by integrating the corresponding pools over all the cohorts in 283 

the site. To ensure mass conservation, the total loss of live biomass due to logging, ∆B (i.e., 284 
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carbon in leaf, fine roots, storage, and structural pools), needs to be balanced with increases in 285 

litter and CWD pools and the carbon stored in harvested logs shipped offsite as follows: 286 

∆𝐵𝐵 =  ∆𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 + ∆𝐶𝐶𝐶𝐶𝐷𝐷 + 𝐿𝐿𝐿𝐿𝑡𝑡𝑛𝑛𝑡𝑡_𝑝𝑝𝐿𝐿𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝𝐿𝐿                                                             (8) 287 

where ∆litter  and ∆CWD are the increments in litter and CWD pools, and trunk_product 288 

represents harvested logs shipped offsite. The reduction in live biomass pools (e.g.,  289 

Following the logging event, the forest structure and composition in terms of cohort 290 

distributions, as well as the live biomass and necromass pools are updated.  Following this logging 291 

event update to forest structure, the native processes simulating physiology, growth and 292 

competition for resources in and between cohorts resume. Since the canopy layer is removed in 293 

the disturbed patch, the existing understory trees are promoted to the canopy layer, but, in general, 294 

the canopy is incompletely filled in by these newly-promoted trees, and thus the canopy does not 295 

fully close. Therefore, more light can penetrate and reach the understory layer in the disturbed 296 

patch, leading to increases in light-demanding species in the early stage of regeneration, followed 297 

by a succession process in which shade tolerant species dominate gradually.   298 

 299 

2.3 Study site and data  300 

In this study, we used data from two evergreen tropical forest sites located in the Tapajós National 301 

Forest (TNF), Brazil (Figure 1b).  These sites were established during the Large-Scale Biosphere-302 

Atmosphere Experiment in Amazonia (LBA), and are selected because of data availability 303 

including those from forest plot surveys and two flux towers established during the LBA period  304 

(Keller et al., 2004a). These sites were named after distances along the BR-163 highway from 305 

Santarém: km67 (54°58’W, 2°51’S) and km83 (54°56’W, 3°3’S). They are situated on a flat 306 

plateau and were established as a control-treatment pair for a selective logging experiment.  Tree 307 

felling operations were initiated at km83 in September 2001 for a period of about two months.  308 

Both sites are similar with mean annual precipitation of ~2000 mm, and mean annual temperature 309 

of 25 °C, on nutrient-poor clay oxisols with low organic content (Silver et al., 2000).  310 

Prior to logging, both sites were old-growth forests with limited previous human disturbances 311 

caused by hunting, gathering Brazil nuts, and similar activities. A comprehensive set of 312 

meteorological variables, as well as land-atmosphere exchanges of water, energy, and carbon 313 

fluxes have been measured by an eddy covariance tower at a hourly time step over the period of 314 
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2002 to 2011, including precipitation, air temperature, surface pressure, relative humidity, 315 

incoming shortwave and longwave radiation, latent and sensible heat fluxes, and net ecosystem 316 

exchange (NEE) (Hayek et al., 2018).  Another flux tower was established at km83, the logged 317 

site, with hourly meteorological and eddy covariance measurements in the period of 2000-2003 318 

(Miller et al., 2004;Goulden et al., 2004;Saleska et al., 2003).  The towers are listed as BR-Sa1 319 

and BR-Sa3 in the AmeriFlux network (https://ameriflux.lbl.gov).  320 

These tower and biometric based observations were summarized to quantify logging-induced 321 

perturbations on old-growth Amazonian forests in Miller et al. (2011) and are used in this study to 322 

benchmark the model simulated carbon budget. Over the period of 1999 to 2001, all trees ≥ 35cm 323 

in DBH in 20 ha of forest in four 1-km long transects within the km67 footprint were inventoried, 324 

as well as trees ≥ 10 cm in DBH on subplots with an area of ~4 ha. At km83, inventory surveys on 325 

trees ≥ 55 cm in DBH were conducted in 1984 and 2000, and another survey on trees > 10 cm in 326 

DBH was conducted in 2000 (Miller et al., 2004). Estimates of above ground biomass (AGB) were 327 

then derived using allometric equations for Amazon forests (Rice et al., 2004;Chambers et al., 328 

2004;Keller et al., 2001). Necromass (≥2 cm diameter) production was also measured 329 

approximately every six months in a 4.5-year period from November 2001 through February 2006 330 

in logged and undisturbed forest at km83 (Palace et al., 2008).  Field measurements of ground 331 

disturbance in terms of number of felled trees, areas disturbed by collateral and mechanical 332 

damages were also conducted at a similar site in Pará state along multitemporal sequences of post-333 

harvest regrowth of 0.5–3.5 yr (Asner et al., 2004;Pereira Jr et al., 2002).  334 

Table 2 provides a summary of stem density and basal area distribution across size classes at 335 

km83 based on the biomass survey data (Menton et al. 2011; de Sousa et al., 2011). To facilitate 336 

comparisons with simulations from FATES, we divided the inventory into early and late 337 

succession PFTs using threshold of 0.7 g cm-3 for specific wood density, consistent with the 338 

definition of these PFTs in Table 1. As shown in Table 2, prior to the logging event in year 2000, 339 

this forest was composed of 399, 30 & 30 trees per hectare in size classes of 10-30 cm, 30-50 cm, 340 

and ≥50 cm respectively; Following logging, the numbers were reduced to 396, 29, and 18 trees 341 

per hectare, losing ~1.3%  of trees ≥10 cm in size. The changes in stem density (SD) were caused 342 

by different mechanisms for different size classes. The reduction in stem density of 2 ha-1 in the 343 

≥50 cm size class was caused by timber harvest directly, while the reductions of 3 ha-1 and 1 ha-1 344 

in the 10-30 cm and 30-50 cm size classes were caused by collateral and mechanical damages. 345 
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Corresponding to the loss of trees in logging operations, basal area (BA) decreased from 3.9, 4.0, 346 

and 12.9 m2 ha-1 to 3.8, 3.9, and 10.8 m2 ha-1, and above ground biomass (AGB) decreased from 347 

3.8, 2.3, and 10.4 kg C m-2 to 3.8, 2.2, 8.7 kg C m-2 in the 10-30 cm, 30-50 cm, and ≥50 cm size 348 

class, respectively. 349 

2.4 Numerical Experiments 350 

In this study, the gap-filled meteorological forcing data for Tapajós National Forest processed by 351 

Longo (2014)  are used to drive the CLM(FATES) model.  Characteristics of the sites, including 352 

soil texture, vegetation cover fraction, and canopy height, were obtained from the LBA-Data 353 

Model Intercomparison Project (de Gonçalves et al., 2013). Specifically, soil at km 67 contains 354 

90% clay and 2% sand, while soil at km 83 contains 80% clay and 18% sand. Both sites are covered 355 

by tropical evergreen forest at ~ 98% within their footprints, with the remaining 2% assumed to 356 

be covered by bare soil. As discussed in Longo et al. (2018), who deployed the Ecosystem 357 

Demography model version 2 at this site, soil texture and hence soil hydraulic parameters are 358 

highly variable even with the footprint of the same eddy covariance tower, and could have 359 

significant impacts on not only water and energy simulations, but also simulated forest 360 

composition and carbon stocks and fluxes. Further, generic pedo-transfer functions designed to 361 

capture temperate soils typically perform poorly in clay-rich Amazonian soils (Fisher et al. 2008, 362 

Tomasella and Hodnett, 1998).  Because we focus on introducing the FATES-logging, we leave 363 

for forthcoming studies the exploration of the sensitivity of the simulations to soil texture and other 364 

critical environmental factors. 365 

CLM(FATES) was initialized using soil texture at km83 (i.e., 80% clay and 18% sand) from 366 

bare ground and spun up for 800 years until the carbon pools and forest structure (i.e., size 367 

distribution) and composition of PFTs reached equilibrium, by recycling the meteorological 368 

forcing at km67 (2001-2011) as the sites are close enough. The final states from spin-up were 369 

saved as the initial condition for follow-up simulations. An intact experiment was conducted by 370 

running the model over a period of 2001 to 2100 without logging by recycling the 2001-2011 371 

forcing using the parameter set in Table 1. The atmospheric CO2 concentration was assumed to be 372 

a constant of 367 ppm over the entire simulation period, consistent with the CO2 levels during the 373 

logging treatment (Dlugokencky et al., 2017). 374 
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We specified an experimental logging event in FATES on 1 September 2001 (Table 3). It 375 

was reported by Figueira et al. (2008) that following the reduced impact logging event in 376 

September 2001, 9% of the trees greater or equal to DBHmin = 50 cm were harvested, with an 377 

associated collateral damage fraction of 0.009 for trees ≥ DBHmin.  DBHmax_infra is set to be 30 cm, 378 

so that only a fraction of trees ≤ 30 cm are removed for building infrastructure (Feldpausch et al., 379 

2005). This experiment is denoted as the RILlow experiment in Table 2 and is the one that matches 380 

the actual logging practice at km83.  381 

We recognize that the harvest intensity in September 2001 at km83 was extremely low.   382 

Therefore, in order to study the impacts of different logging practices and harvest intensities, three 383 

additional logging experiments were conducted as listed in Table 3: conventional logging with 384 

high intensity (CLhigh), conventional logging with low intensity (CLlow), and reduced impact 385 

logging with high intensity (RILhigh). The high intensity logging doubled the direct felling fraction 386 

in RILlow and CLlow, as shown in the RILhigh and CLhigh experiments. Compared to the RIL 387 

experiments, the CL experiments feature elevated collateral and mechanical damages as one would 388 

observe in such operations. All logging experiments were initialized from the spun-up state using 389 

site characteristics at km83 previously discussed and were conducted over the period of 2001-2100 390 

by recycling meteorological forcing from 2001- 2011. 391 

3 Results and discussions 392 

3.1 Simulated energy and water fluxes  393 

Simulated monthly mean energy and water fluxes at the two sites are shown and compared to 394 

available observations in Figure 4. The performances of the simulations closest to site conditions 395 

were compared to observations and summarized in Table 4 (i.e., intact for km67 and RILlow for 396 

km83). The observed fluxes as well as their uncertainty ranges noted as Obs67 and Obs83 from 397 

the towers were obtained from Saleska et al. (2013), consistent with those in Miller et al. (2011).   398 

As shown in Table 4, the simulated mean (±standard deviation) latent heat (LH), sensible heat 399 

(SH), and net radiation (Rn) fluxes at km83 in RILlow over the period of 2001-2003 are 90.2 ± 400 

10.1, 39.6 ± 21.2 and 112.9 ± 12.4 W m-2, compared to tower-based observations of 101.6 ± 8.0, 401 

25.6 ± 5.2 and 129.3 ± 18.5 W m-2.  Therefore, the simulated and observed Bowen ratios are 0.35 402 

and 0.20 at km83, respectively.  This result suggests that at an annual time step, the observed 403 
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partitioning between LH and SH are reasonable, while the net radiation simulated by the model 404 

can be improved. At seasonal scales, even though net radiation is captured by CLM (FATES), the 405 

model does not adequately partition sensible and latent heat fluxes. This is particularly true for 406 

sensible heat fluxes as the model simulates large seasonal variabilities in SH when compared to 407 

observations at the site (i.e., standard deviations of monthly-mean simulated SH are ~ 21.2 W m-408 
2, while observations are ~ 5.2 W m-2). As illustrated in figures 4(c) and 4(d), the model 409 

significantly overestimates SH in the dry season (June-December), while it slightly underestimates 410 

SH in the wet season.  It is worth mentioning that incomplete closure of the energy budget is 411 

common at eddy covariance towers (Wilson et al., 2002;Foken, 2008) and has been reported to be 412 

~87% at the two sites (Saleska et al., 2003).  413 

Figure 4(j) shows the comparison between simulated and observed (Goulden et al., 2010) 414 

volumetric soil moisture content (m3m-3) at top 10 cm. This comparison reveals another model 415 

structural deficiency, that is, even though the model simulates higher soil moisture contents 416 

compared to observations (a feature generally attributable to the soil moisture retention curve), the 417 

transpiration beta factor, the down-regulating factor of transpiration from plants, fluctuates 418 

significantly over a wide range, and can be as low as 0.3 in the dry season. In reality flux towers 419 

in the Amazon generally do not show severe moisture limitations in the dry season (Fisher et al. 420 

2007). The lack of limitation is typically attributed to the plant’s ability to extract soil moisture 421 

from deep soil layers, a phenomenon that is difficult to simulate using a classical beta function 422 

(Baker et al. 2008), and potentially is reconcilable using hydrodynamic representation of plant 423 

water uptake (Powell et al. 2014; Christoffersen et al. 2016) as are in the final stages of 424 

incorporation into the FATES model.  Consequently, the model simulates consistently low ET 425 

during dry seasons (figures 4(e) and 4(f)), while observations indicate that canopies are highly 426 

productive owing to adequate water supply to support transpiration and photosynthesis, which 427 

could further stimulate coordinated leaf growth with senescence during the dry season (Wu et al. 428 

2016; 2017). 429 

 430 

3.2 Carbon budget, and forest structure and composition in the intact forest 431 

Figures 5, 6, and 7 show simulated carbon pools and fluxes, which are tabulated in Table 5 as well. 432 

As shown in Figure 5, prior to logging, the simulated above ground biomass and necromass (CWD 433 

+ litter) are 174Mg C ha-1 and 50 Mg C ha-1, compared to 165 Mg C ha-1 and 58.4 Mg C ha-1 based 434 
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on permanent plot measurements.  The simulated carbon pools are generally lower than 435 

observations reported in Miller et al. (2011)  but are within reasonable ranges, as errors associated 436 

with these estimates could be as high as 50% due to issues related to sampling and allometric 437 

equations, as discussed in Keller et al. (2001). The lower biomass estimates are consistent with the 438 

finding of excessive soil moisture stress during the dry season, and low LAI in the model.     439 

Combining forest inventory and eddy covariance measurements, Miller et al. (2011) also 440 

provides estimates for net ecosystem exchange (NEE), gross primary production (GPP), net 441 

primary production (NPP), ecosystem respiration (ER), heterotrophic respiration (HR), and 442 

autotrophic respiration (AR). As shown in Table 5, the model simulates reasonable values in GPP 443 

(30.4 Mg C ha-2 yr-1) and ER (29.7 Mg C ha-2 yr-1), when compared to values estimated from the 444 

observations (32.6 Mg C ha-2 yr-1 for GPP and 31.9 Mg C ha-2 yr-1 for ER) in the intact forest. 445 

However, the model appears to overestimate NPP (13.5 Mg C ha-2 yr-1 as compared to the 446 

observation-based estimate of 9.5 Mg C ha-2 yr-1) and HR (12.8 Mg C ha-2 yr-1 as compared to the 447 

estimated value of 8.9 Mg C ha-2 yr-1), while underestimate AR (16.8  Mg C ha-2 yr-1  as compared 448 

to observation-based estimate of 23.1 Mg C ha-2 yr-1 ). Nevertheless, it is worth mentioning that 449 

we selected the specific parameter set to illustrate the capability of the model in capturing species 450 

composition and size structure, while the performance in capturing carbon balance is slightly 451 

compromised given the limited number of sensitivity tests performed. 452 

Consistent with the carbon budget terms, Table 5 lists the simulated and observed values of 453 

stem density (ha-1) in different size classes in term of DBH. The model simulates 471 trees per 454 

hectare with DBHs greater than or equal to 10 cm in the intact forest, compared to 459 trees per 455 

hectare from observed inventory. In terms of distribution across the DBH classes of 10-30 cm, 30-456 

50 cm, and ≥50 cm, 339, 73, and 59 N ha-1 of trees were simulated, while 399, 30, and 30 N ha-1 457 

were observed in the intact forest. In general, this version of FATES is able to reproduce the size 458 

structure and tree density in the tropics reasonably well. In addition to size distribution, by 459 

parametrizing early and late successional PFTs (Table 1), FATES is capable of simulating the co-460 

existence of the two PFTs, therefore the PFT-specific trajectories of stem density, basal area, 461 

canopy and understory mortality rates. We will discuss these in section 3.4.   462 

 463 

 464 
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3.3 Effects of logging on water, energy, and carbon budgets 465 

The response of energy and water budgets to different levels of logging disturbances are illustrated 466 

in Table 4 and Figure 4. Following the logging event, the LAI is reduced proportionally to the 467 

logging intensities (-9%, -17%, -14% and -24% for RLlow, RLhigh, CLlow, and CLhigh respectively 468 

in September 2001, see figure 4h).  Leaf area index recovers within three years to its pre-logging 469 

level, or even to slightly higher levels as a result of the improved light environment following 470 

logging leading to changes in forest structure and composition (to be discussed in section 3.4). In 471 

response to the changes in stem density and LAI, discernible differences are found in all energy 472 

budget terms. For example, less leaf area leads to reductions in LH (-0.4%, -0.7%, -0.6%, -1.0%) 473 

and increases in SH (0.6%, 1.0%, 0.8%, and 2.0%) proportional to the damage levels (i.e., RLlow, 474 

RLhigh, CLlow, and CLhigh) in the first three years following the logging event when compared to 475 

the control simulation. Energy budget responses scale with the level of damage, so that the biggest 476 

differences are detected in the CLhigh scenario, followed by RILhigh, CLlow and RILlow. The 477 

difference in simulated water and energy fluxes between the RILlow (i.e., the scenario that is the 478 

closest to the experimental logging event) and intact cases is the smallest, as the level of damage 479 

is the lowest among all scenarios.  480 

As with LAI, the water and energy fluxes recover rapidly in 3-4 years following logging. 481 

Miller et al. (2011) compared observed sensible and latent heat fluxes between the control (km67) 482 

and logged sites (km83). They found that in the first three years following logging, the between-483 

sites difference (i.e., logged – control) in LH reduced from 19.7 ± 2.4 to 15.7 ± 1.0 W m2, and that 484 

in SH increased from 3.6 ± 1.1 to 5.4 ± 0.4 W m2. When normalized by observed fluxes during the 485 

same periods at km83, these changes correspond to a -4% reduction in LH and a 7% increase in 486 

SH, compared to the -0.5% and 4% differences in LH and SH between RLlow and the control 487 

simulations. In general, both observations and our modelling results suggest that the impacts of 488 

reduced impact logging on energy fluxes are modest and that the energy and water fluxes can 489 

quickly recover to their pre-logging conditions at the site.  490 

Figures 6 and 7 show the impact of logging on carbon fluxes and pools at a monthly time 491 

step, and the corresponding annual fluxes and changes in carbon pools are summarized in Table 5. 492 

The logging disturbance leads to reductions in GPP, NPP, AR, and AGB, and increases in ER, 493 

NEE, HR, and CWD.  The impacts of logging on the carbon budgets are also proportional to 494 

logging damage levels. Specifically, logging reduces the simulated AGB from 174 Mg C ha-1 495 
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(intact) to 156 Mg C ha-1 (RILlow), 137 Mg C ha-1 (RILhigh), 154 Mg C ha-1 (CLlow) and 134 (CLhigh), 496 

while increases the simulated necromass pool (CWD + litter) from 50.0 Mg C ha-1 in the intact 497 

case to 73 Mg C ha-1 (RILlow), 97 Mg C ha-1 (RILhigh), 76 Mg C ha-1 (CLlow) and 101 (CLhigh). For 498 

the case closest to the experimental logging event (RILlow), the changes in AGB and necromass 499 

from the intact case are -18 Mg C ha-1 (10%) and 23.0 Mg C ha-1 (46%), in comparison to observed 500 

changes of -22 Mg C ha-1 in AGB (12%) and 16 Mg C ha-1 (27%) in necromass from Miller et al. 501 

(2011), respectively.  The magnitudes and directions of these changes are reasonable when 502 

compared to observations (i.e., decreases in GPP, ER, and AR following logging).  On the other 503 

hand, the simulations indicate that the forest could be turned from a carbon sink (-0.69 Mg C ha-1 504 

yr-1) to a larger carbon source in 1-5 years following logging, consistent with observations from 505 

the tower suggested that the forest was a carbon sink or a modest carbon source (-0.6 ± 0.8 Mg C 506 

ha-1 yr-1) prior to logging. 507 

The recovery trajectories following logging are also shown in figures 6, 7, and Table 5. It 508 

takes more than 70 years for AGB to return to its pre-logging levels, but the recovery of carbon 509 

fluxes such as GPP, NPP, and AR is much faster (i.e., within five years following logging). The 510 

initial recovery rates of AGB following logging are faster for high-intensity logging because 511 

increased light reaching the forest floor, as indicated by the steeper slopes corresponding to the 512 

CLhigh and RILhigh scenarios compared to those of CLlow and RILlow (figure 9h). This finding is 513 

consistent with previous observational and modelling studies (Mazzei et al., 2010; Huang and 514 

Asner, 2010) in that the damage level determines the number of years required to recover the 515 

original AGB, and the AGB accumulation rates in recently logged forests are higher than that in 516 

intact forest. For example, by synthesizing data from 79 permanent plots at 10 sites across the 517 

Amazon basin, Ruttishauser et al. (2016) and Piponiot et al. (2018) show that it requires 12, 43, 518 

and 75 years for the forest to recover with initial losses of 10, 25, or 50% in AGB. Corresponding 519 

to the changes in AGB, logging introduces a large amount of necromass to the forest floor, with 520 

the highest increases in the CLhigh and RILhigh scenarios. As shown in Figure 7(d) and Table 5, 521 

necromass and CWD pools return to the pre-logging level in ~15 years. Meanwhile, HR in RILlow 522 

stays elevated in five years following logging but converges to that from the intact simulation in 523 

~10 years, which is consistent with observation (Miller et al. 2011; Table 5).   524 

 525 
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3.4 Effects of logging on forest structure and composition 526 

The capability of the CLM(FATES) model to simulate vegetation demographics, forest structure 527 

and composition, while simulating the water, energy, and carbon budgets simultaneously (Fisher 528 

et al. 2017) allows interrogation of the modelled impacts of alternative logging practices on forest 529 

size structure. Table 6 shows forest structure in terms of stem density distribution across size 530 

classes from the simulations compared to observations from the site, while figures 8 and 9 further 531 

break it down into early and late succession PFTs and size classes in terms of stem density and 532 

basal areas. As discussed in section 2.2 and summarized in Table 3, the logging practices, reduced 533 

impact logging and conventional logging, differ in terms of pre-harvest planning and actual field 534 

operation to minimize collateral and mechanical damages, while the logging intensities (i.e., high 535 

and low) indicate the target direct felling fractions. The corresponding outcomes of changes in 536 

forest structure in comparison to the intact forest, as simulated by FATES, are summarized in 537 

tables 6 and 7. The conventional logging scenarios (i.e., CLhigh and CLlow), feature more losses in 538 

small trees less than 30 cm in DBH, when compared to the smaller reduction in stem density in 539 

size classes less than 30 cm in DBH in the reduced impact logging scenarios (i.e., RILhigh and 540 

RILlow).  Scenarios with different logging intensities (i.e., high and low) result in different direct 541 

felling intensity. That is, the numbers of surviving large trees (DBH ≥ 30 cm) in RILlow and CLlow 542 

is 117 ha-1 and 115 ha-1 but those in RILhigh and CLhigh are 106 ha-1 and 103 ha-1.   543 

In response to the improved light environment after removal of large trees, early successional 544 

trees quickly establish and populate the tree fall gaps following logging in 2-3 years as shown 545 

Figure 8a).  Stem density in the <10 cm size classes is proportional to the damage levels (i.e., 546 

ranked as CLhigh > RILhigh > CLlow > RILlow), followed by a transition to late successional trees in 547 

later years when the canopy is closed again (Figure 8b). Such a successional process is also evident 548 

in figures 9(a) and 9(b) in terms of basal areas. The number of early successional trees in the <10 549 

cm size classes then slowly declines afterwards but is sustained throughout the simulation as a 550 

result of natural disturbances. Such a shift in the plant community towards light-demanding species 551 

following disturbances is consistent with observations reported in literature (Baraloto et al., 2012; 552 

Both et al., 2018).  Following regeneration in logging gaps, a fraction of trees wins the competition 553 

within the 0-10 cm size classes and is promoted to the 10-30 cm size classes in about 10 years 554 

following the disturbances (figures 8d and 9d).  Then a fraction of those trees subsequently enter 555 

the 30-50 cm size classes in 20-40 years following the disturbance (figures 8f and 9f) and so on 556 
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through larger size classes afterwards (figures 8h and 9h). We note that despite the goal of 557 

achieving a deterministic and smooth averaging across discrete stochastic disturbance events using 558 

the ecosystem demography approach (Moorcroft et al., 2001) in FATES, the successional process 559 

described above, as well as the total numbers of stems in each size bin, shows evidence of episodic 560 

and discrete waves of population change.  These arise due to the required discretization of the 561 

continuous time-since-disturbance heterogeneity into patches, combined with the current 562 

maximum cap on the number of patches in FATES (10 per site).   563 

As discussed in section 2.4, the early successional trees have a high mortality (figure 564 

10a,c,e,g) compared to the mortality (figure 10b,d,f,h) of late successional trees as expected given 565 

their higher background mortality rate. Their mortality also fluctuates at an equilibrium level 566 

because of the periodic gap dynamics due to natural disturbances, while the mortality of late 567 

successional trees remains stable. The mortality rates of canopy trees (figures 11a,c,e,g) remain 568 

low and stable over the years for all size classes, indicating that canopy trees are not light-limited 569 

or water-stressed. In comparison, the mortality rate small understory trees (figure 11b) shows a 570 

declining trend following logging, consistent with the decline in mortality of the small early 571 

successional tree (Figure 10a). As the understory trees are promoted to larger size classes (figure 572 

11d,f), their mortality rates stays high. It is evident that it is hard for the understory trees to be 573 

promoted to the largest size class (figure 11h), therefore the mortality cannot be calculated due to 574 

the lack in population.  575 

4 Conclusion and Discussions 576 

In this study, we developed a selective logging module in FATES and parameterized the model to 577 

simulate different logging practices (conventional and reduced impact) with various intensities. 578 

This newly developed selective logging module is capable of mimicking the ecological, 579 

biophysical, and biogeochemical processes at a landscape level following a logging event in a 580 

lumped way by (1) specifying the timing and areal extent of a logging event; (2) calculating the 581 

fractions of trees that are damaged by direct felling, collateral damage, and infrastructure damage, 582 

and adding these size-specific plant mortality types to FATES ; (3) splitting the logged patch into 583 

disturbed and intact new patches; (4) applying the calculated survivorship to cohorts in the 584 

disturbed patch; and (5) transporting harvested logs off-site and adding the remaining necromass 585 

from damaged trees into coarse woody debris and litter pools.  586 
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We then applied FATES coupled to CLM to the Tapajós National Forest by conducting 587 

numerical experiments driven by observed meteorological forcing, and benchmarked the 588 

simulations against long-term ecological and eddy covariance measurements. We demonstrated 589 

that the model is capable of simulating site-level water, energy, and carbon budgets, as well as 590 

forest structure and composition holistically, with responses consistent with those documented in 591 

the existing literature as follows: 592 

1. The model captures perturbations on energy and water budget terms in response to different 593 

levels of logging disturbances. Our modelling results suggest that logging leads to reductions 594 

in canopy interception, canopy evaporation and transpiration, as well as elevated soil 595 

temperature and soil heat fluxes in magnitudes proportional to the damage levels. 596 

2. The logging disturbance leads to reductions in GPP, NPP, AR, and AGB, and increases in ER, 597 

NEE, HR, and CWD.  The initial impacts of logging on the carbon budget are also proportional 598 

to damage levels as results of different logging practices.  599 

3. Following the logging event, simulated carbon fluxes such as GPP, NPP, and AR recover 600 

within five years, but it takes decades for AGB to return to its pre-logging levels. Consistent 601 

with existing observational based literature, initial recovery of AGB is faster when the logging 602 

intensity is higher in response to improved light environment in the forest but the time to full 603 

AGB recovery in higher intensity logging is longer. 604 

4. Consistent with observations at Tapajós, the prescribed logging event introduces a large 605 

amount of necromass to the forest floor proportional to the damage level of the logging event, 606 

which returns to pre-logging level in ~15 years. Simulated HR in low-damage reduced impact 607 

logging scenario stays elevated in five years following logging and declines to be the same as 608 

the intact forest in ~10 years. 609 

5. The impacts of alternative logging practices on forest structure and composition were assessed 610 

by parameterizing cohort-specific mortality corresponding to direct felling, collateral damage, 611 

mechanical damage in the logging module to represent different logging practices (i.e., 612 

conventional logging and reduced impact logging) and intensity (i.e., high and low). In all 613 

scenarios, the improved light environment after removal of large trees facilitates establishment 614 

and growth of early successional trees in the 0-10 cm DBH size class proportional to the 615 

damage levels in the first 2-3 year.  Thereafter there is a transition to late successional trees in 616 
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later years when the canopy is closed. The number of early successional trees then slowly 617 

declines but is sustained throughout the simulation as a result of natural disturbances.  618 

Given that the representation of gas exchange processes is related to, but also somewhat 619 

independent of the representation of ecosystem demography, FATES shows great potential in its 620 

capability to capturing ecosystem successional processes in terms of gap-phase regeneration, 621 

competition among light-demanding and shade-tolerant species following disturbance, as well as 622 

responses of energy, water, and carbon budget components to disturbances. The model projections 623 

suggest that while most degraded forests rapidly recover energy fluxes, the recovery times for 624 

carbon stocks, forest size structure and forest composition are much longer. The recovery 625 

trajectories are highly dependent on logging intensity and practices, the difference between which 626 

can be directly simulated by the model. Consistent with field studies, we find through numerical 627 

experiments that reduced impact logging leads to more rapid recovery of the water, energy, and 628 

carbon cycles, allowing forest structure and composition to recover to their pre-logging levels in a 629 

shorter time frame.  630 

5 Future work 631 

Currently, the selective logging module can only simulate single logging events.  We also assumed 632 

that for a site such as km83, once logging is activated, trees will be harvested from all patches. For 633 

regional-scale applications, it will be crucial to represent forest degradation as a result of logging, 634 

fire, and fragmentation and their combinations that could repeat over a period. Therefore, structural 635 

changes in FATES has been made by adding prognostic variables to track disturbance histories 636 

associated with fire, logging, and transitions among land use types. The model also needs to 637 

include the dead tree pool (snags and standing dead wood) as harvest operations (especially 638 

thinning) can lead to live tree death from machine damage and windthrow. This will be more 639 

important for using FATES in temperate, coniferous systems and the varied biogeochemical legacy 640 

of standing versus downed wood is important (Edburg et al. 2011; 2012).  To better understand 641 

how nutrient limitation or enhancement (e.g., via deposition or fertilization) can affect the 642 

ecosystem dynamics, a nutrient-enabled version of FATES is also under testing and will shed more 643 

lights on how biogeochemical cycling could impact vegetation dynamics once available. 644 

Nevertheless, this study lays the foundation to simulate land use change and forest degradation in 645 
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FATES, leading the way to direct representation of forest management practices and regeneration 646 

in Earth System Models.  647 

We also acknowledge that as a model development study, we applied the model to a site using 648 

a single set of parameter values and therefore we ignored the uncertainty associated with model 649 

parameters.  Nevertheless, the sensitivity study in the supplement material shows that the model 650 

parameters can be calibrated with a good benchmarking dataset with various aspects of ecosystem 651 

observations. For example, Koven et al. (2019) demonstrated a joint team effort of modelers and 652 

field observationist toward building field-based benchmarks from Barro Colorado Island, Panama 653 

and a parameter sensitivity test platform for physiological and ecosystem dynamics using FATES. 654 

We expect to see more of such efforts to better constrain the model in future studies.  655 

 656 

  657 
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Code and data availability 672 

FATES-CLM has two separate repositories for FATES and CLM at: 673 
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http://sites.fluxdata.org/BR-Sa13.. 677 
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be made available from the open-source repository 679 
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 681 
  682 

https://github.com/NGEET/fates/releases/tag/sci.1.27.2_api.7.3.0
http://sites.fluxdata.org/BR-Sa1
http://sites.fluxdata.org/BR-Sa13


25 
 

References 683 

Asner, G. P., Keller, M., Pereira, J. R., Zweede, J. C., and Silva, J. N. M.: Canopy damage and recovery after selective logging in 684 
amazonia: field and satellite studies, Ecological Applications, 14, 280-298, 10.1890/01-6019, 2004. 685 
Asner, G. P., Knapp, D. E., Broadbent, E. N., Oliveira, P. J. C., Keller, M., and Silva, J. N.: Selective Logging in the Brazilian 686 
Amazon, Science, 310, 480, 2005. 687 
Asner, G.P., M. Keller, R. Pereira, and J.C. Zweed. 2008. LBA-ECO LC-13 GIS Coverages of Logged Areas, Tapajos Forest, Para, 688 
Brazil: 1996, 1998. ORNL DAAC, Oak Ridge, Tennessee, USA. http://dx.doi.org/10.3334/ORNLDAAC/893. 689 
Asner, G. P., Rudel, T. K., Aide, T. M., Defries, R., and Emerson, R.: A Contemporary Assessment of Change in Humid Tropical 690 
Forests Una Evaluación Contemporánea del Cambio en Bosques Tropicales Húmedos, Conservation Biology, 23, 1386-1395, 691 
10.1111/j.1523-1739.2009.01333.x, 2009. 692 
Baidya Roy, S., Hurtt, G. C., Weaver, C. P., and Pacala, S. W.: Impact of historical land cover change on the July climate of the 693 
United States, Journal of Geophysical Research: Atmospheres, 108, n/a-n/a, 10.1029/2003JD003565, 2003. 694 
Baker, I.T., Prihodko, L., Denning, A.S., Goulden, M., Miller, S. and Da Rocha, H.R.. Seasonal drought stress in the Amazon: 695 
Reconciling models and observations. Journal of Geophysical Research: Biogeosciences, 113(G1), 696 
https://doi.org/10.1029/2007JG000644, 2008. 697 
Baraloto, C., B. Hérault, C. E. T. Paine, H. Massot, L. Blanc, D. Bonal, J.-F. Molino, E. A. Nicolini, and D. Sabatier. Contrasting 698 
taxonomic and functional responses of a tropical tree community to selective logging. J. Appl. Ecol., 49(4):861–870, Aug 2012. 699 
doi:10.1111/j.1365-2664.2012.02164.x.  700 
Berenguer, E., Ferreira, J., Gardner, T. A., Aragão, L. E. O. C., De Camargo, P. B., Cerri, C. E., Durigan, M., Oliveira, R. C. D., 701 
Vieira, I. C. G., and Barlow, J.: A large-scale field assessment of carbon stocks in human-modified tropical forests, Global Change 702 
Biology, 20, 3713-3726, 10.1111/gcb.12627, 2014. 703 
Blaser, J., Sarre, A., Poore, D., and Johnson, S.: Status of Tropical Forest Management 2011. , International Tropical Timber 704 
Organization, Yokohama, Japan, 2011. 705 
Bohn, K., Dyke, J.G., Pavlick, R., Reineking, B., Reu, B. and Kleidon, A.: The relative importance of seed competition, resource 706 
competition and perturbations on community structure. Biogeosciences, 8(5), 1107-1120, https://doi.org/10.5194/bg-8-1107-2011, 707 
2011. 708 
Bonan, G. B.: Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests, Science, 320, 1444, 2008. 709 
Bradshaw, C. J. A., Sodhi, N. S., and Brook, B. W.: Tropical turmoil: a biodiversity tragedy in progress, Frontiers in Ecology and 710 
the Environment, 7, 79-87, 10.1890/070193, 2009. 711 
Both, S., T. Riutta, C. E. T. Paine, D. M. O. Elias, R. S. Cruz, A. Jain, D. Johnson, U. H. Kritzler, M. Kuntz, N. Majalap-Lee, N. 712 
Mielke, M. X. Montoya Pillco, N. J. Ostle, Y. Arn Teh, Y. Malhi, and D. F. R. P. Burslem. Logging and soil nutrients independently 713 
explain plant trait expression in tropical forests. New Phytol., 2018. doi:10.1111/nph.15444. 714 
Brando, P. M., Goetz, S. J., Baccini, A., Nepstad, D. C., Beck, P. S. A., and Christman, M. C.: Seasonal and interannual variability 715 
of climate and vegetation indices across the Amazon, Proceedings of the National Academy of Sciences, 107, 14685-14690, 716 
10.1073/pnas.0908741107, 2010. 717 
Brokaw, N.: Gap-Phase Regeneration in a Tropical Forest, Ecology, 66, 682-687, 10.2307/1940529, 1985. 718 
Bustamante, M. M. C., Roitman, I., Aide, T. M., Alencar, A., Anderson, L., Aragão, L., Asner, G. P., Barlow, J., Berenguer, E., 719 
Chambers, J., Costa, M. H., Fanin, T., Ferreira, L. G., Ferreira, J. N., Keller, M., Magnusson, W. E., Morales, L., Morton, D., 720 
Ometto, J. P. H. B., Palace, M., Peres, C., Silvério, D., Trumbore, S., and Vieira, I. C. G.: Towards an integrated monitoring 721 
framework to assess the effects of tropical forest degradation and recovery on carbon stocks and biodiversity, Global Change 722 
Biology, n/a-n/a, 10.1111/gcb.13087, 2015. 723 
Chambers, J. Q., Tribuzy, E. S., Toledo, L. C., Crispim, B. F., Higuchi, N., Santos, J. d., Araújo, A. C., Kruijt, B., Nobre, A. D., 724 
and Trumbore, S. E.: RESPIRATION FROM A TROPICAL FOREST ECOSYSTEM: PARTITIONING OF SOURCES AND 725 
LOW CARBON USE EFFICIENCY, Ecological Applications, 14, 72-88, 10.1890/01-6012, 2004. 726 
Christoffersen, B. O., Gloor, M., Fauset, S., Fyllas, N. M., Galbraith, D. R., Baker, T. R., Kruijt, B., Rowland, L., Fisher, R. A., 727 
Binks, O. J., Sevanto, S., Xu, C., Jansen, S., Choat, B., Mencuccini, M., McDowell, N. G., and Meir, P.: Linking hydraulic traits 728 
to tropical forest function in a size-structured and trait-driven model (TFS v.1-Hydro), Geosci. Model Dev., 9, 4227-4255, 729 
10.5194/gmd-9-4227-2016, 2016. 730 
de Gonçalves, L. G. G., Borak, J. S., Costa, M. H., Saleska, S. R., Baker, I., Restrepo-Coupe, N., Muza, M. N., Poulter, B., 731 
Verbeeck, H., Fisher, J. B., Arain, M. A., Arkin, P., Cestaro, B. P., Christoffersen, B., Galbraith, D., Guan, X., van den Hurk, B. J. 732 
J. M., Ichii, K., Imbuzeiro, H. M. A., Jain, A. K., Levine, N., Lu, C., Miguez-Macho, G., Roberti, D. R., Sahoo, A., Sakaguchi, K., 733 
Schaefer, K., Shi, M., Shuttleworth, W. J., Tian, H., Yang, Z.-L., and Zeng, X.: Overview of the Large-Scale Biosphere–734 
Atmosphere Experiment in Amazonia Data Model Intercomparison Project (LBA-DMIP), Agricultural and Forest Meteorology, 735 
182-183, 111-127, https://doi.org/10.1016/j.agrformet.2013.04.030, 2013. 736 
de Sousa, C.A.D., J.R. Elliot, E.L. Read, A.M.S. Figueira, S.D. Miller, and M.L. Goulden. 2011. LBA-ECO CD-04 Logging 737 
Damage, km 83 Tower Site, Tapajos National Forest, Brazil. ORNL DAAC, Oak Ridge, Tennessee, USA. 738 
https://doi.org/10.3334/ORNLDAAC/1038Dirzo, R., Young, H. S., Galetti, M., Ceballos, G., Isaac, N. J. B., and Collen, B.: 739 
Defaunation in the Anthropocene, Science, 345, 401-406, 10.1126/science.1251817, 2014. 740 
Dlugokencky, E.J., Hall, B.D., Montzka, S.A., Dutton, G., Mühle, J., Elkins, J.W. 2018. Atmospheric composition [in State of the 741 
Climate in 2017]. Bulletin of the American Meteorological Society, 99(8), S46–S49. 742 



26 
 

Domingues, T. F., Berry, J. A., Martinelli, L. A., Ometto, J. P. H. B., and Ehleringer, J. R.: Parameterization of Canopy Structure 743 
and Leaf-Level Gas Exchange for an Eastern Amazonian Tropical Rain Forest (Tapajós National Forest, Pará, Brazil), Earth 744 
Interactions, 9, 1-23, 10.1175/ei149.1, 2005. 745 
Doughty, C. E., and Goulden, M. L.: Seasonal patterns of tropical forest leaf area index and CO2 exchange, Journal of Geophysical 746 
Research: Biogeosciences, 113, n/a-n/a, 10.1029/2007JG000590, 2008. 747 
Dykstra, D. P.: Reduced impact logging: concepts and issues, Applying Reduced Impact Logging to Advance Sustainable Forest 748 
Management, 23-39, 2002. 749 
Edburg, S. L., J. A. Hicke, P. D. Brooks, E. G. Pendall, B. E. Ewers, U. Norton, D. Gochis, E. D. Gutmann, and A. J. H. Meddens. 750 
2012. Cascading impacts of bark beetle-caused tree mortality on coupled biogeophysical and biogeochemical processes. Frontiers 751 
in Ecology and the Environment 10:416-424.  752 
Edburg, S. L., J. A. Hicke, D. M. Lawrence, and P. E. Thornton. 2011. Simulating coupled carbon and nitrogen dynamics following 753 
mountain pine beetle outbreaks in the western United States. Journal of Geophysical Research-Biogeosciences 116. 754 
Erb, K.-H., Kastner, T., Plutzar, C., Bais, A. L. S., Carvalhais, N., Fetzel, T., Gingrich, S., Haberl, H., Lauk, C., Niedertscheider, 755 
M., Pongratz, J., Thurner, M., and Luyssaert, S.: Unexpectedly large impact of forest management and grazing on global vegetation 756 
biomass, Nature, 553, 73, 10.1038/nature25138, https://www.nature.com/articles/nature25138#supplementary-information, 2017. 757 
Feldpausch, T. R., Jirka, S., Passos, C. A. M., Jasper, F., and Riha, S. J.: When big trees fall: Damage and carbon export by reduced 758 
impact logging in southern Amazonia, Forest Ecology and Management, 219, 199-215, 759 
https://doi.org/10.1016/j.foreco.2005.09.003, 2005. 760 
Figueira, A. M. e. S., Miller, S. D., de Sousa, C. A. D., Menton, M. C., Maia, A. R., da Rocha, H. R., and Goulden, M. L.: Effects 761 
of selective logging on tropical forest tree growth, Journal of Geophysical Research: Biogeosciences, 113, n/a-n/a, 762 
10.1029/2007JG000577, 2008. 763 
Fisher, R., McDowell, N., Purves, D., Moorcroft, P., Sitch, S., Cox, P., Huntingford, C., Meir, P., and Ian Woodward, F.: Assessing 764 
uncertainties in a second-generation dynamic vegetation model caused by ecological scale limitations, New Phytologist, 187, 666-765 
681, 10.1111/j.1469-8137.2010.03340.x, 2010. 766 
Fisher, R. A., Muszala, S., Verteinstein, M., Lawrence, P., Xu, C., McDowell, N. G., Knox, R. G., Koven, C., Holm, J., Rogers, B. 767 
M., Spessa, A., Lawrence, D., and Bonan, G.: Taking off the training wheels: the properties of a dynamic vegetation model without 768 
climate envelopes, CLM4.5(ED), Geosci. Model Dev., 8, 3593-3619, 10.5194/gmd-8-3593-2015, 2015. 769 
Fisher, R. A., Koven, C. D., Anderegg, W. R. L., Christoffersen, B. O., Dietze, M. C., Farrior, C. E., Holm, J. A., Hurtt, G. C., 770 
Knox, R. G., Lawrence, P. J., Lichstein, J. W., Longo, M., Matheny, A. M., Medvigy, D., Muller-Landau, H. C., Powell, T. L., 771 
Serbin, S. P., Sato, H., Shuman, J. K., Smith, B., Trugman, A. T., Viskari, T., Verbeeck, H., Weng, E., Xu, C., Xu, X., Zhang, T., 772 
and Moorcroft, P. R.: Vegetation demographics in Earth System Models: A review of progress and priorities, Global Change 773 
Biology, n/a-n/a, 10.1111/gcb.13910, 2017. 774 
Foken, T.: THE ENERGY BALANCE CLOSURE PROBLEM: AN OVERVIEW, Ecological Applications, 18, 1351-1367, 775 
10.1890/06-0922.1, 2008. 776 
Goulden, M. L., Miller, S. D., da Rocha, H. R., Menton, M. C., de Freitas, H. C., e Silva Figueira, A. M., and de Sousa, C. A. D.: 777 
DIEL AND SEASONAL PATTERNS OF TROPICAL FOREST CO2 EXCHANGE, Ecological Applications, 14, 42-54, 778 
10.1890/02-6008, 2004. 779 
Goulden, M.L., S.D. Miller, and H.R. da Rocha. 2010. LBA-ECO CD-04 Soil Moisture Data, km 83 Tower Site, Tapajos National 780 
Forest, Brazil. ORNL DAAC, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/979 781 
Hayek, M. N., Wehr, R., Longo, M., Hutyra, L. R., Wiedemann, K., Munger, J. W., Bonal, D., Saleska, S. R., Fitzjarrald, D. R., 782 
and Wofsy, S. C.: A novel correction for biases in forest eddy covariance carbon balance, Agricultural and Forest Meteorology, 783 
250-251, 90-101, https://doi.org/10.1016/j.agrformet.2017.12.186, 2018. 784 
Huang, M., Asner, G. P., Keller, M., and Berry, J. A.: An ecosystem model for tropical forest disturbance and selective logging, 785 
Journal of Geophysical Research: Biogeosciences, 113, n/a-n/a, 10.1029/2007JG000438, 2008. 786 
Huang, M., and Asner, G. P.: Long-term carbon loss and recovery following selective logging in Amazon forests, Global 787 
Biogeochemical Cycles, 24, n/a-n/a, 10.1029/2009GB003727, 2010. 788 
Hurtt, G. C., Moorcroft, P. R., And, S. W. P., and Levin, S. A.: Terrestrial models and global change: challenges for the future, 789 
Global Change Biology, 4, 581-590, 10.1046/j.1365-2486.1998.t01-1-00203.x, 1998. 790 
Hurtt, G. C., Chini, L. P., Frolking, S., Betts, R. A., Feddema, J., Fischer, G., Fisk, J. P., Hibbard, K., Houghton, R. A., Janetos, 791 
A., Jones, C. D., Kindermann, G., Kinoshita, T., Klein Goldewijk, K., Riahi, K., Shevliakova, E., Smith, S., Stehfest, E., Thomson, 792 
A., Thornton, P., van Vuuren, D. P., and Wang, Y. P.: Harmonization of land-use scenarios for the period 1500–2100: 600 years 793 
of global gridded annual land-use transitions, wood harvest, and resulting secondary lands, Climatic Change, 109, 117, 794 
10.1007/s10584-011-0153-2, 2011. 795 
Keller, M., Palace, M., and Hurtt, G.: Biomass estimation in the Tapajos National Forest, Brazil: Examination of sampling and 796 
allometric uncertainties, Forest Ecology and Management, 154, 371-382, https://doi.org/10.1016/S0378-1127(01)00509-6, 2001. 797 
Keller, M., Alencar, A., Asner, G. P., Braswell, B., Bustamante, M., Davidson, E., Feldpausch, T., Fernandes, E., Goulden, M., 798 
Kabat, P., Kruijt, B., Luizão, F., Miller, S., Markewitz, D., Nobre, A. D., Nobre, C. A., Priante Filho, N., da Rocha, H., Silva Dias, 799 
P., von Randow, C., and Vourlitis, G. L.: ECOLOGICAL RESEARCH IN THE LARGE-SCALE BIOSPHERE– ATMOSPHERE 800 
EXPERIMENT IN AMAZONIA: EARLY RESULTS, Ecological Applications, 14, 3-16, 10.1890/03-6003, 2004a. 801 
Keller, M., Palace, M., Asner, G. P., Pereira, R., and Silva, J. N. M.: Coarse woody debris in undisturbed and logged forests in the 802 
eastern Brazilian Amazon, Global Change Biology, 10, 784-795, 10.1111/j.1529-8817.2003.00770.x, 2004b. 803 



27 
 

Keller, M., Varner, R., Dias, J. D., Silva, H., Crill, P., Jr., R. C. d. O., and Asner, G. P.: Soil–Atmosphere Exchange of Nitrous 804 
Oxide, Nitric Oxide, Methane, and Carbon Dioxide in Logged and Undisturbed Forest in the Tapajos National Forest, Brazil, Earth 805 
Interactions, 9, 1-28, 10.1175/ei125.1, 2005. 806 
Knox, R. G., Longo, M., Swann, A. L. S., Zhang, K., Levine, N. M., Moorcroft, P. R., and Bras, R. L.: Hydrometeorological effects 807 
of historical land-conversion in an ecosystem-atmosphere model of Northern South America, Hydrol. Earth Syst. Sci., 19, 241-808 
273, 10.5194/hess-19-241-2015, 2015. 809 
Koven, C. D., Knox, R. G., Fisher, R. A., Chambers, J., Christoffersen, B. O., Davies, S. J., Detto, M., Dietze, M. C., Faybishenko, 810 
B., Holm, J., Huang, M., Kovenock, M., Kueppers, L. M., Lemieux, G., Massoud, E., McDowell, N. G., Muller-Landau, H. C., 811 
Needham, J. F., Norby, R. J., Powell, T., Rogers, A., Serbin, S. P., Shuman, J. K., Swann, A. L. S., Varadharajan, C., Walker, A. 812 
P., Wright, S. J., and Xu, C.: Benchmarking and Parameter Sensitivity of Physiological and Vegetation Dynamics using the 813 
Functionally Assembled Terrestrial Ecosystem Simulator (FATES) at Barro Colorado Island, Panama, Biogeosciences Discuss., 814 
https://doi.org/10.5194/bg-2019-409, in review, 2019. 815 
Longo, M., Knox, R. G., Levine, N. M., Swann, A. L. S., Medvigy, D. M., Dietze, M. C., Kim, Y., Zhang, K., Bonal, D., Burban, 816 
B., Camargo, P. B., Hayek, M. N., Saleska, S. R., da Silva, R., Bras, R. L., Wofsy, S. C., and Moorcroft, P. R.: The biophysics, 817 
ecology, and biogeochemistry of functionally diverse, vertically and horizontally heterogeneous ecosystems: the Ecosystem 818 
Demography model, version 2.2 – Part 2: Model evaluation for tropical South America, Geosci. Model Dev., 12, 4347–4374, 819 
https://doi.org/10.5194/gmd-12-4347-2019, 2019. 820 
Lawrence, P. J., Feddema, J. J., Bonan, G. B., Meehl, G. A., O’Neill, B. C., Oleson, K. W., Levis, S., Lawrence, D. M., Kluzek, 821 
E., Lindsay, K., and Thornton, P. E.: Simulating the Biogeochemical and Biogeophysical Impacts of Transient Land Cover Change 822 
and Wood Harvest in the Community Climate System Model (CCSM4) from 1850 to 2100, Journal of Climate, 25, 3071-3095, 823 
10.1175/jcli-d-11-00256.1, 2012. 824 
Leng G, LY Leung, and M Huang : Significant impacts of irrigation water sources and methods on modeling irrigation effects in 825 
the ACME Land Model. J. Adv. Model. Earth Syst. 9(3):1665 - 1683.  doi:10.1002/2016MS000885. 2017. 826 
Lloyd, J., Patiño, S., Paiva, R. Q., Nardoto, G. B., Quesada, C. A., Santos, A. J. B., Baker, T. R., Brand, W. A., Hilke, I., Gielmann, 827 
H., Raessler, M., Luizão, F. J., Martinelli, L. A., and Mercado, L. M.: Optimisation of photosynthetic carbon gain and within-828 
canopy gradients of associated foliar traits for Amazon forest trees, Biogeosciences, 7, 1833-1859, https://doi.org/10.5194/bg-7-829 
1833-2010, 2010. 830 
Longo, M., R. G. Knox, N. M. Levine, L. F. Alves, D. Bonal, P. B. Camargo, D. R. Fitzjarrald, M. N. Hayek, N. Restrepo-Coupe, 831 
S. R. Saleska, R. da Silva, S. C. Stark, R. P. Tapaj ́os, K. T. Wiedemann, K. Zhang, S. C. Wofsy, and P. R. Moorcroft. Ecosystem 832 
heterogeneity and diversity mitigate Amazon forest resilience to frequent extreme droughts. New Phytol., 219(3):914–931, Aug 833 
2018. doi:10.1111/nph. 834 
Luyssaert, S., Schulze, E. D., Borner, A., Knohl, A., Hessenmoller, D., Law, B. E., Ciais, P., and Grace, J.: Old-growth forests as 835 
global carbon sinks, Nature, 455, 213-215, http://www.nature.com/nature/journal/v455/n7210/suppinfo/nature07276_S1.html, 836 
2008. 837 
Macpherson, A. J., Carter, D. R., Schulze, M. D., Vidal, E., and Lentini, M. W.: The sustainability of timber production from 838 
Eastern Amazonian forests, Land Use Policy, 29, 339-350, https://doi.org/10.1016/j.landusepol.2011.07.004, 2012. 839 
Martínez-Ramos, M., Ortiz-Rodríguez, I. A., Piñero, D., Dirzo, R., and Sarukhán, J.: Anthropogenic disturbances jeopardize 840 
biodiversity conservation within tropical rainforest reserves, Proceedings of the National Academy of Sciences, 113, 5323-5328, 841 
10.1073/pnas.1602893113, 2016. 842 
Massoud, E. C., Xu, C., Fisher, R., Knox, R., Walker, A., Serbin, S., Christoffersen, B., Holm, J., Kueppers, L., Ricciuto, D. M., 843 
Wei, L., Johnson, D., Chambers, J., Koven, C., McDowell, N., and Vrugt, J.: Identification of key parameters controlling 844 
demographicallystructured vegetation dynamics in a Land Surface Model [CLM4.5(ED)], Geosci. Model Dev. Discuss., 845 
https://doi.org/10.5194/gmd-2019-6, in review, 2019. 846 
Mazzei, L., Sist, P., Ruschel, A., Putz, F. E., Marco, P., Pena, W., and Ferreira, J. E. R.: Above-ground biomass dynamics after 847 
reduced-impact logging in the Eastern Amazon, Forest Ecology and Management, 259, 367-373, 848 
https://doi.org/10.1016/j.foreco.2009.10.031, 2010. 849 
Medvigy, D., Wofsy, S. C., Munger, J. W., Hollinger, D. Y., and Moorcroft, P. R.: Mechanistic scaling of ecosystem function and 850 
dynamics in space and time: Ecosystem Demography model version 2, Journal of Geophysical Research: Biogeosciences, 114, n/a-851 
n/a, 10.1029/2008JG000812, 2009. 852 
Menton, M.C., A.M.S. Figueira, C.A.D. de Sousa, S.D. Miller, H.R. da Rocha, and M.L. Goulden. 2011. LBA-ECO CD-04 853 
Biomass Survey, km 83 Tower Site, Tapajos National Forest, Brazil. ORNL DAAC, Oak Ridge, Tennessee, USA. 854 
https://doi.org/10.3334/ORNLDAAC/990 855 
Miller, S. D., Goulden, M. L., Menton, M. C., da Rocha, H. R., de Freitas, H. C., Figueira, A. M. e. S., and Dias de Sousa, C. A.: 856 
BIOMETRIC AND MICROMETEOROLOGICAL MEASUREMENTS OF TROPICAL FOREST CARBON BALANCE, 857 
Ecological Applications, 14, 114-126, 10.1890/02-6005, 2004. 858 
Miller, S. D., Goulden, M. L., Hutyra, L. R., Keller, M., Saleska, S. R., Wofsy, S. C., Figueira, A. M. S., da Rocha, H. R., and de 859 
Camargo, P. B.: Reduced impact logging minimally alters tropical rainforest carbon and energy exchange, Proceedings of the 860 
National Academy of Sciences of the United States of America, 108, 19431-19435, 10.1073/pnas.1105068108, 2011. 861 
Moorcroft, P. R., Hurtt, G. C., and Pacala, S. W.: A METHOD FOR SCALING VEGETATION DYNAMICS: THE ECOSYSTEM 862 
DEMOGRAPHY MODEL (ED), Ecological Monographs, 71, 557-586, 10.1890/0012-9615(2001)071[0557:AMFSVD]2.0.CO;2, 863 
2001. 864 



28 
 

Morton, D. C., Nagol, J., Carabajal, C. C., Rosette, J., Palace, M., Cook, B. D., Vermote, E. F., Harding, D. J., and North, P. R. J.: 865 
Amazon forests maintain consistent canopy structure and greenness during the dry season, Nature, 506, 221, 10.1038/nature13006 866 
https://www.nature.com/articles/nature13006#supplementary-information, 2014. 867 
Nepstad, D. C., Verssimo, A., Alencar, A., Nobre, C., Lima, E., Lefebvre, P., Schlesinger, P., Potter, C., Moutinho, P., Mendoza, 868 
E., Cochrane, M., and Brooks, V.: Large-scale impoverishment of Amazonian forests by logging and fire, Nature, 398, 505-508, 869 
1999. 870 
Oleson, K. W., Lawrence, D. M., Bonan, G. B., Drewniak, B., Huang, M., Koven, C. D., Levis, S., Li, F., Riley, W. J., Subin, Z. 871 
M., Swenson, S. C., Thornton, P. E., Bozbiyik, A., Fisher, R., Kluzek, E., Lamarque, J.-F., Lawrence, P. J., Leung, L. R., Lipscomb, 872 
W., Muszala, S., Ricciuto, D. M., Sacks, W., Sun, Y., Tang, J., and Yang, Z.-L.: Technical Description of version 4.5 of the 873 
Community Land Model (CLM), National Center for Atmospheric Research, Boulder, CONcar Technical Note NCAR/TN-874 
503+STR, 2013. 875 
Palace, M., Keller, M., and Silva, H.: NECROMASS PRODUCTION: STUDIES IN UNDISTURBED AND LOGGED AMAZON 876 
FORESTS, Ecological Applications, 18, 873-884, 10.1890/06-2022.1, 2008. 877 
Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., Phillips, O. L., Shvidenko, A., Lewis, S. L., Canadell, 878 
J. G., Ciais, P., Jackson, R. B., Pacala, S. W., McGuire, A. D., Piao, S., Rautiainen, A., Sitch, S., and Hayes, D.: A Large and 879 
Persistent Carbon Sink in the World’s Forests, Science, 333, 988-993, 2011. 880 
Pearson, T., Brown, S., and Casarim, F.: Carbon emissions from tropical forest degradation caused by logging, Environmental 881 
Research Letters, 9, 034017, 2014. 882 
Pereira Jr, R., Zweede, J., Asner, G. P., and Keller, M.: Forest canopy damage and recovery in reduced-impact and conventional 883 
selective logging in eastern Para, Brazil, Forest Ecology and Management, 168, 77-89, http://dx.doi.org/10.1016/S0378-884 
1127(01)00732-0, 2002. 885 
Piponiot C, Derroire G, Descroix L, Mazzei L, Rutishauser E, Sist P, Hérault B. 2018. Assessing timber volume 886 
recovery after disturbance in tropical forests – a new modelling framework. Ecol. Model., 384: 353–369. 887 
doi:10.1016/j.ecolmodel.2018.05.023. 888 
Powell, T.L., Galbraith, D.R., Christoffersen, B.O., Harper, A., Imbuzeiro, H.M., Rowland, L., Almeida, S., Brando, P.M., da 889 
Costa, A.C.L., Costa, M.H. and Levine, N.M., 2013. Confronting model predictions of carbon fluxes with measurements of Amazon 890 
forests subjected to experimental drought. New Phytologist, 200(2), pp.350-365. 891 
Putz, F. E., Sist, P., Fredericksen, T., and Dykstra, D.: Reduced-impact logging: Challenges and opportunities, Forest Ecology and 892 
Management, 256, 1427-1433, https://doi.org/10.1016/j.foreco.2008.03.036, 2008. 893 
Reich, P. B: The world‐wide ‘fast–slow’plant economics spectrum: a traits manifesto, Journal of Ecology, 102(2), 275-301, 894 
https://doi.org/10.1111/1365-2745.12211, 2014. 895 
Rice, A. H., Pyle, E. H., Saleska, S. R., Hutyra, L., Palace, M., Keller, M., de Camargo, P. B., Portilho, K., Marques, D. F., and 896 
Wofsy, S. C.: CARBON BALANCE AND VEGETATION DYNAMICS IN AN OLD-GROWTH AMAZONIAN FOREST, 897 
Ecological Applications, 14, 55-71, 10.1890/02-6006, 2004. 898 
Rutishauser, E., Hérault, B., Baraloto, C., Blanc, L., Descroix, L., Sotta, E.D., Ferreira, J., Kanashiro, M., Mazzei, L., d’Oliveira, 899 
M.V. and De Oliveira, L.C., 2015. Rapid tree carbon stock recovery in managed Amazonian forests. Current Biology, 25(18), 900 
pp.R787-R788.Saleska, S. R., Miller, S. D., Matross, D. M., Goulden, M. L., Wofsy, S. C., da Rocha, H. R., de Camargo, P. B., 901 
Crill, P., Daube, B. C., de Freitas, H. C., Hutyra, L., Keller, M., Kirchhoff, V., Menton, M., Munger, J. W., Pyle, E. H., Rice, A. 902 
H., and Silva, H.: Carbon in Amazon Forests: Unexpected Seasonal Fluxes and Disturbance-Induced Losses, Science, 302, 1554, 903 
2003. 904 
Saleska, S.R., H.R. da Rocha, A.R. Huete, A.D. Nobre, P. Artaxo, and Y.E. Shimabukuro. 2013. LBA-ECO CD-32 Flux Tower 905 
Network Data Compilation, Brazilian Amazon: 1999-2006. Data set. Available on-line [http://daac.ornl.gov] from Oak Ridge 906 
National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, 907 
USA http://dx.doi.org/10.3334/ORNLDAAC/1174. 908 
Saleska, S. R., Wu, J., Guan, K., Araujo, A. C., Huete, A., Nobre, A. D., and Restrepo-Coupe, N.: Dry-season greening of Amazon 909 
forests, Nature, 531, E4, 10.1038/nature16457, 2016. 910 
Sato, H., Itoh, A., and Kohyama, T.: SEIB–DGVM: A new Dynamic Global Vegetation Model using a spatially explicit individual-911 
based approach, Ecological Modelling, 200, 279-307, https://doi.org/10.1016/j.ecolmodel.2006.09.006, 2007. 912 
Shevliakova, E., Pacala, S. W., Malyshev, S., Hurtt, G. C., Milly, P. C. D., Caspersen, J. P., Sentman, L. T., Fisk, J. P., Wirth, C., 913 
Crevoisier, C., Carbon cycling under 300 years of land use change: Importance of the secondary vegetation sink, Global 914 
biogeochemical cycles , 2009, 23(2), https://doi.org/10.1029/2007GB003176. 915 
Silver, W. L., Neff, J., McGroddy, M., Veldkamp, E., Keller, M., and Cosme, R.: Effects of Soil Texture on Belowground Carbon 916 
and Nutrient Storage in a Lowland Amazonian Forest Ecosystem, Ecosystems, 3, 193-209, 10.1007/s100210000019, 2000. 917 
Sist, P., Rutishauser, E., Peña-Claros, M., Shenkin, A., Hérault, B., Blanc, L., Baraloto, C., Baya, F., Benedet, F., da Silva, K. E., 918 
Descroix, L., Ferreira, J. N., Gourlet-Fleury, S., Guedes, M. C., Bin Harun, I., Jalonen, R., Kanashiro, M., Krisnawati, H., Kshatriya, 919 
M., Lincoln, P., Mazzei, L., Medjibé, V., Nasi, R., d'Oliveira, M. V. N., de Oliveira, L. C., Picard, N., Pietsch, S., Pinard, M., 920 
Priyadi, H., Putz, F. E., Rodney, K., Rossi, V., Roopsind, A., Ruschel, A. R., Shari, N. H. Z., Rodrigues de Souza, C., Susanty, F. 921 
H., Sotta, E. D., Toledo, M., Vidal, E., West, T. A. P., Wortel, V., and Yamada, T.: The Tropical managed Forests Observatory: a 922 
research network addressing the future of tropical logged forests, Applied Vegetation Science, 18, 171-174, 10.1111/avsc.12125, 923 
2015. 924 



29 
 

Smith, B., Prentice, I. C., and Sykes, M. T.: Representation of vegetation dynamics in the modelling of terrestrial ecosystems: 925 
comparing two contrasting approaches within European climate space, Global Ecology and Biogeography, 10, 621-637, 926 
10.1046/j.1466-822X.2001.t01-1-00256.x, 2001. 927 
Smith, B., Wårlind, D., Arneth, A., Hickler, T., Leadley, P., Siltberg, J., and Zaehle, S.: Implications of incorporating N cycling 928 
and N limitations on primary production in an individual-based dynamic vegetation model, Biogeosciences, 11, 2027-2054, 929 
10.5194/bg-11-2027-2014, 2014. 930 
Strigul, N., Pristinski, D., Purves, D., Dushoff, J., and Pacala, S.: SCALING FROM TREES TO FORESTS: TRACTABLE 931 
MACROSCOPIC EQUATIONS FOR FOREST DYNAMICS, Ecological Monographs, 78, 523-545, 10.1890/08-0082.1, 2008. 932 
Thonicke, K., Spessa, A., Prentice, I. C., Harrison, S. P., Dong, L., and Carmona-Moreno, C.: The influence of vegetation, fire 933 
spread and fire behaviour on biomass burning and trace gas emissions: results from a process-based model, Biogeosciences, 7, 934 
1991-2011, 10.5194/bg-7-1991-2010, 2010. 935 
Tomasella, J. and Hodnett, M.G., 1998. Estimating soil water retention characteristics from limited data in Brazilian Amazonia. 936 
Soil science, 163(3), pp.190-202. 937 
Trumbore, S., and Barbosa De Camargo, P.: Soil carbon dynamics, Amazonia and global change, 451-462, 2009. 938 
Watanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T., Okajima, H., Nozawa, T., Kawase, H., Abe, M., Yokohata, T., 939 
Ise, T., Sato, H., Kato, E., Takata, K., Emori, S., and Kawamiya, M.: MIROC-ESM 2010: model description and basic results of 940 
CMIP5-20c3m experiments, Geosci. Model Dev., 4, 845-872, 10.5194/gmd-4-845-2011, 2011. 941 
Weng, E. S., Malyshev, S., Lichstein, J. W., Farrior, C. E., Dybzinski, R., Zhang, T., Shevliakova, E., and Pacala, S. W.: Scaling 942 
from individual trees to forests in an Earth system modeling framework using a mathematically tractable model of height-structured 943 
competition, Biogeosciences, 12, 2655-2694, 10.5194/bg-12-2655-2015, 2015. 944 
Whitmore, T. C.: An Introduction to Tropical Rain Forests, OUP Oxford, 1998. 945 
Wilson, K., Goldstein, A., Falge, E., Aubinet, M., Baldocchi, D., Berbigier, P., Bernhofer, C., Ceulemans, R., Dolman, H., Field, 946 
C., Grelle, A., Ibrom, A., Law, B. E., Kowalski, A., Meyers, T., Moncrieff, J., Monson, R., Oechel, W., Tenhunen, J., Valentini, 947 
R., and Verma, S.: Energy balance closure at FLUXNET sites, Agricultural and Forest Meteorology, 113, 223-243, 948 
http://dx.doi.org/10.1016/S0168-1923(02)00109-0, 2002. 949 
Wright, I. J., Reich, P. B., Westoby, M., and Ackerly, D. D.: The worldwide leaf economics spectrum, Nature, 428, 821, 2004. 950 
Wu, J., Albert, L.P., Lopes, A.P., Restrepo-Coupe, N., Hayek, M., Wiedemann, K.T., Guan, K., Stark, S.C., Christoffersen, B., 951 
Prohaska, N. and Tavares, J.V., 2016. Leaf development and demography explain photosynthetic seasonality in Amazon evergreen 952 
forests. Science, 351(6276), pp.972-976 953 
Wu, J. K. Guan, M. Hayek, N. Restrepo-Coupe, K.T. Wiedemann, X. Xu, R. Wehr, B.O. Christoffersen, G. Miao, R. da Silva, A.C. 954 
de Araujo, R.C. Oliviera. P. B. Camargo, R. K. Monson, A.R. Huete, S.R. Saleska, Partitioning controls on Amazon forest 955 
photosynthesis between environmental and biotic factors at hourly to interannual timescales, Global change biology, 23(3), 1240-956 
1257, https://doi.org/10.1111/gcb.13509, 2017. 957 
 958 
 959 

  960 



30 
 

Tables and Figures 961 

 962 

Table 1. FATES Parameters that define early and late successional PFTs  963 
 

Parameter names 
 

Units 
 

Early successional 
PFT 

 
Late successional 

PFT 
Specific leaf area m2 gC-1 0.015 0.014 

Vcmax at 25°C µmol m-2 s-1 65 50 

Specific wood density g cm-3 0.5 0.9 

Leaf longevity yr 0.9 2.6 

Background mortality rate yr-1 0.035 0.014 

Leaf C:N gC gN-1 20 40 

root longevity yr 0.9 2.6 

  964 
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Table 2. Distributions of stem density (N ha-1), basal area (m2 ha-1) and above ground biomass (Kg C m-2) 965 
before and after logging at km83, separated by diameter of breast height (normal text) and aggregated across 966 
all sizes (bold text).  967 

Time Before logging After Logging 

Variables Early Late Total Early Late Total 

Stem Density (N ha-1) 264 195 459 260 191 443 

Stem Density (10-30 cm, N ha-1) 230 169 399 229 167 396 

Stem Density (30-50 cm, N ha-1) 18 12 30 17 12 29 

Stem Density (≥50 cm, N ha-1) 16 14 30 14 12 18 

Basal Area (m2 ha-1) 11.6 9.2 21.0 10.3 8.3 18.5 

Basal Area (10-30 cm, m2 ha-1) 2.2 1.7 4.2 2.2 1.7 3.8 

Basal Area (30-50 cm, m2 ha-1) 2.4 1.6 4.2 2.4 1.6 3.9 

Basal Area (>=50 cm, m2 ha-1) 7.0 5.9 12.6 5.8 5.1 10.8 

AGB (Kg C m-2) 7.6 8.9 16.5 6.8 7.9 14.7 

AGB (10-30 cm, Kg C m-2) 1.8 2.0 3.8 1.8 2.0 3.8 

AGB (30-50 cm, Kg C m-2) 1.1 1.1 2.3 1.1 1.1 2.2 

AGB ((>=50 cm, Kg C m-2) 4.6 5.8 10.4 3.8 4.9 8.7 

* based on inventory during the LBA period (Menton et al., 2011; de Sousa et al., 2011)  968 
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 969 

Table 3. Cohort-level fractional damage fractions in different logging scenarios  970 
 
Scenarios 

Conventional Logging Reduced Impact Logging 
High Low High  

(KM83×2) 
Low 

(KM83) 
Experiments CLhigh CLlow RILhigh RILlow 

Direct felling fraction 
(DBH ≥ DBHmin

1) 
0.18 0.09 0.24 0.12 

Collateral damage fraction 
(DBH ≥ DBHmin) 

0.036 0.018 0.024 0.012 

mechanical damage fraction 
(DBH < DBHmax_infra

2) 
0.113 0.073 0.033 0.024 

Understory death fraction3 0.65 0.65 0.65 0.65 

1DBHmin  = 50 cm 971 
2DBHmax_infra = 30 cm 972 
3Applied to the new patch generated by direct felling and collateral damage  973 
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Table 4. Comparison of energy fluxes (Mean ± Standard Deviation) between eddy covariance 974 
tower measurements and FATES simulations. 975 

Variables LH (W m-2) SH (W m-2) 
 

Rn (W m-2) 
 

Observed (km83) 101.6 ± 8.0 25.6 ± 5.2 129.3 ± 18.5 

Simulated (Intact) 87.6±13.2 39.4±21.2 112.8±12.3 

Simulated (RILlow) 87.3±13.3 39.6±21.2 112.9±12.4 

Simulated (RILhigh) 87.0±13.3 39.8±21.3 112.9±12.4 

Simulated (CLlow) 87.1±13.3 39.7±21.3 112.8±12.4 

Simulated (CLhigh) 86.8±13.3 39.7±21.2 112.9±12.4 

  976 
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 977 

Table 5. Comparison of carbon budget terms between observation-based estimates* and 978 
simulations at km83 979 
 
Variable 

Obs. 
 

Simulated 

Pre-
logging 

3-yr Post-
logging 

Intact Disturb 
level 

0 yr 1 yr 3 yr 15 yr 30 yr 50 yr 70 yr 

AGB 

(MgC ha-1) 
165 
 

147 174  RILlow 
RILhigh 
CLlow 
CLhigh 

156 
137 
154 
134 

157 
138  
155  
135 

159 
142 
157  
139 

163 
152 
163 
150 

167 
158  
167  
156 

169 
163 
168 
163 

173 
168 
164  
162 

Necromass 

(MgC ha-1) 
58.4 
 

74.4 
 

50 RILlow 
RILhigh 
CLlow 
CLhigh 

73 
97    
76 
101 

67 
84 
69 
87 

58 
67 
59 
68 

50 
48 
50 
48 

50 
49 
50 
49 

53 
52 
54 
51 

51 
51 
54 
54 

NEE  
(MgC ha-1 yr-1) 

-0.6±0.8    
 

-1.0±0.7 -0.69 RILlow 
RILhigh 
CLlow 
CLhigh 

-0.50 
-0.43  
-0.47      
-0.39 

1.65      
3.91      
2.02      
4.53 

1.83      
3.84      
2.04      
4.17 

-0.24      
-0.33      
-0.27      
-0.37 

0.27     
0.13      
0.27      
0.14 

-0.23      
-0.35      
0.04      
-0.55  

-0.16      
-0.27      
0.3      
0.23 

GPP  
(MgC ha-1 yr-1) 

32.6±1.3    
 

32.0±1.3    30.4  RILlow 
RILhigh 
CLlow 
CLhigh 

30.0   
29.5 
29.7 
29.5 

29.5    
28.5     
29.2 
27.8 

30.5     
30.0 
30.3 
29.7 

30.0 
30.0 
30.0 
30.0 

30.4     
30.3 
30.4 
30.5 

30.1    
30.1 
29.8 
30.4 

29.,9    
30.0     
30.0     
30.0 

NPP  
(MgC ha-1 yr-1) 

9.5 
 

9.8 13.5  RILlow 
RILhigh 
CLlow 
CLhigh 

13.5 
13.5      
13.5      
13.6 

13.5      
13.3      
13.5      
13.2 

14.0      
13.8      
13.9      
13.8 

13.3      
13.2    
13.2      
13.2 

13.6      
13.6      
13.6      
13.6 

13.4      
13.4      
13.2      
13.5 

13.2      
13.2      
13.1      
13.1 

ER  
(MgC ha-1 yr-1) 

31.9±1.7   
 

31.0±1.6    29.7  RILlow 
RILhigh 
CLlow 
CLhigh 

29.5     
29.2 
29.4     
29.1 

31.2 
32.4 
31.2 
32.4 

32.3 
33.9 
32.3 
33.8 

29.8 
29.7 
29.7 
29.7 

30.7 
30.4 
30.7 
30.6 

29.8 
29.7 
29.8 
29.9 

29.8     
29.7     
30.2     
30.1 

HR  
(MgC ha-1 yr-1) 

8.9 
 

10.4 12.8  RILlow 
RILhigh 
CLlow 
CLhigh 

13.0     
13.1      
13.0     
13.2 

15.2   
17,2 
15.5 
17,7 

15.8     
17,7 
16.0 
17.9 

13      
12.9      
13.0      
12.9 

13.9      
13.7      
13.9      
13.77 

13.2      
13.1      
13.2      
12.9 

13.0      
12.9      
13.4      
13.4 

AR  
(MgC ha-1 yr-1) 

23.1 
 

20.1 16.8  RILlow 
RILhigh 
CLlow 
CLhigh 

16.5      
16.2      
16.3      
15.9 

16.0      
15.2      
15.7      
14.6 

16.6      
16.2      
16.4      
15.9 

16.8     
16.8      
16.8      
16.8 

16.8     
16.8      
16.8      
16.8 

16.7      
16.7      
16.6      
17.0 

16.7      
16.8      
16.7      
16.7 

*Source of observation-based estimates: Miller et al. (2011), Uncertainty in carbon fluxes (GPP, ER, NEE) are based 980 
on u*-filter cutoff analyses described in the same paper.  981 
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 982 

Table 6. Simulated Stem Density (N ha-1) Distribution at km83. 983 
Years 
following 
logging 

 
Disturbance 
level  

Size classes (DBH, cm) 

< 10 cm 
 

10-30 cm 
 

30-50 cm 
 

≥ 50   cm 

Pre-
logging 

Intact 21799 339 73 59 

0-yr  RILlow 
RILhigh 
CLlow 
CLhigh  

19101 
17628 
18031 
15996 

316 
306 
299 
280 

68 
65 
66 
62 

49 
41 
49 
41 

1-yr RILlow 
RILhigh 
CLlow 
CLhigh 

22518 
22450 
23673 
23505 

316 
306 
303 
279 

67 
66 
66 
63 

54 
46 
54 
46 

3-yr RILlow 
RILhigh 
CLlow 
CLhigh 

23699 
25960 
25048 
28323 

364 
368 
346 
337 

68 
66 
68 
64 

50 
43 
51 
43 

15-yr RILlow 
RILhigh 
CLlow 
CLhigh 

21105 
20618 
22886 
22975 

389 
389 
323 
348 

63 
67 
61 
66 

56 
53 
57 
55 

30-yr RILlow 
RILhigh 
CLlow 
CLhigh 

22979 
21332 
23140 
23273 

291 
288 
317 
351 

82 
87 
66 
77 

62 
59 
66 
53 

50-yr RILlow 
RILhigh 
CLlow 
CLhigh 

22119 
23369 
24806 
26205 

258 
335 
213 
320 

84 
61 
60 
72 

62 
66 
76 
58 

70-yr RILlow 
RILhigh 
CLlow 
CLhigh 

20594 
22143 
19705 
19784 

356 
326 
326 
337 

58 
63 
55 
56 

64 
61 
63 
62 

  984 
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Table 7. Simulated Basal Area (m2 ha-1) Distribution at km83. 985 
Years 
following 
logging 

 
Disturbance 
level  

Size classes (DBH, cm) 

< 10 cm 
 

10-30 cm 
 

30-50 cm 
 

≥ 50   cm 

Pre-
logging 

Intact 3.2 
 

8.1 
 

8.5 
 

44.0 
 

0-yr  RILlow 
RILhigh 
CLlow 
CLhigh  

3.1 
3.0 
2.9 
2.7 

8.0 
7.7 
7.6 
7.1 

8.3 
8.0 
8.1 
7.8 

38.3 
31.8 
37.9 
31.7 

1-yr RILlow 
RILhigh 
CLlow 
CLhigh 

3.3 
3.3 
3.1 
3.0 

7.7 
7.5 
7.4 
6.8 

7.7 
7.6 
7.6 
7.4 

38.8 
32.8 
38.8 
32.7 

3-yr RILlow 
RILhigh 
CLlow 
CLhigh 

3.3 
3.4 
3.2 
3.2 

8.4 
8.5 
8.0 
7.9 

8.4 
8.2 
8.3 
8.0 

38.4 
32.4 
38.3 
32.5 

15-yr RILlow 
RILhigh 
CLlow 
CLhigh 

3.1 
3.4 
3.4 
3.5 

9.4 
9.5 
8.9 
9.1 

7.6 
8.1 
7.4 
7.8 

40.1 
35.3 
40.2 
35.4 

30-yr RILlow 
RILhigh 
CLlow 
CLhigh 

3.3 
3.4 
3.2 
3.1 

7.0 
7.2 
7.7 
8.7 

9.0 
9.8 
7.7 
7.8 

42.0 
37.9 
42.5 
38.1 

50-yr RILlow 
RILhigh 
CLlow 
CLhigh 

3.2 
3.2 
3.4 
3.3 

6.6 
7.6 
5.3 
7.1 

9.1 
7.0 
6.8 
9.8 

42.9 
41.8 
45.4 
38.4 

70-yr RILlow 
RILhigh 
CLlow 
CLhigh 

3.2 
3.3 
3.8 
3.7 

8.4 
7.9 
7.6 
7.0 

7.3 
7.8 
5.8 
7.0 

44.9 
42.7 
42.8 
41.6 

 986 
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 988 

Figure 1. (a) Landscape components of selective logging; (b) location of the Tapajos National Forest in the 989 
Amazon; and (c) a typical logging block showing tree-fall location, skid trail, road, and log deck coverages. 990 
Panels (b) and (c) are from Asner et al. (2008). 991 
 992 
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 993 

Figure 2. The mortality types (direct-felling, mechanical, and collateral) and patch generating process in 994 
the FATES logging module. The white fraction in (c), (d), (f) indicates mortality associated with other 995 
disturbances in FATES. (a) Canopy and understory layers in each cohort in FATES; (b) Mortality applied 996 
at the time of a logging event; (c) the patch fission process following a given logging event; (d) canopy 997 
removal in the disturbed patch following the logging event; (e) calculate the understory survivorship based 998 
on the understory death fraction in each patch; (d) the final states of the intact and disturbed patches.  999 
 1000 
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 1001 

 1002 

Figure 3. The flow of necromass following logging.  1003 
 1004 
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 1005 

Figure 4. Simulated energy budget terms and leaf area indices in intact and logged forests compared to 1006 
observations from km67 (left) and km83 (right) (Miller et al., 2011). The dashed vertical line indicates the 1007 
timing of the logging event. The shaded area in panel (a)-(f) are uncertainty estimates based on based on 1008 
u*-filter cutoff analyses in Miller et al. (2011). 1009 
 1010 
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 1011 
Figure 5. Simulated (a) Above Ground Biomass; and (b) Coarse Woody Debris in intact and logged forests 1012 
in a one-year period before or after the logging event in the four logging scenarios listed in Table 3. The 1013 
observations (Obsintact and Obslogged) were derived from inventory (Menton et al., 2011; de Sousa et al., 1014 
2011). 1015 
 1016 
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 1017 

Figure 6. Simulated carbon fluxes in intact and logged forests compared to observed fluxes from km67 1018 
(left) and km83 (right). The dashed black vertical line indicates the timing of the logging event, while the 1019 
red dashed horizontal line indicates estimated fluxes derived based on eddy covariance measurements and 1020 
inventory (Miller et al., 2011). The shaded area in panels (a)-(f) are uncertainty estimates based on based 1021 
on u*-filter cutoff analyses in Miller et al. (2011). Panels (g)-(i) show comparisons between annual fluxes 1022 
as only annual estimates of these fluxes are available from Miller et al. (2011). 1023 
 1024 
 1025 
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 1026 

 1027 

Figure 7. Trajectories of carbon pools in intact (left) and logged (right) forests. The dashed black vertical 1028 
line indicates the timing of the logging event. The red dashed horizontal line indicates observed pre- (left) 1029 
and post-logging (right) inventories respectively (Menton et al., 2011; de Sousa et al., 2011). 1030 
 1031 
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 1032 
Figure 8. Changes in total stem densities and the fractions of the early successional PFT in different size 1033 
classes following a single logging event on 1 September 2001 at km83. The black dashed vertical line 1034 
indicates the timing of the logging event, while the red solid line and the cyan dashed horizontal line indicate 1035 
observed pre- and post-logging inventories respectively (Menton et al., 2011; de Sousa et al., 2011). 1036 
 1037 
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 1038 
Figure 9. Changes in basal area of the two PFTs in different size classes following a single logging event 1039 
on 1 September 2001 at km83. The black dashed vertical line indicates the timing of the logging event, 1040 
while the red solid line and the cyan dashed horizontal line indicates observed pre- and post-logging 1041 
inventories respectively (Menton et al., 2011; de Sousa et al., 2011). Note that for the size class 0-10 cm, 1042 
observations are not available from the inventory.1043 
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 1044 
Figure 10. Changes in mortality (5-yr running average) of the (a) early and (b) late successional trees in 1045 
different size classes following a single logging event on 1 September 2001. The black dashed vertical 1046 
line indicates the timing of the logging event.  1047 
 1048 
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 1049 
Figure 11. Changes in mortality (5-yr running average) of the (a) canopy and (b) understory trees in different 1050 
size classes following a single logging event on 1 September 2001. The black dashed vertical line indicates 1051 
the timing of the logging event. 1052 
 1053 
 1054 
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