

1 Major role of ammonia-oxidizing bacteria in N₂O production in the Pearl River Estuary

- 2 Li Ma^{1,2}, Hua Lin^{1,2,3}, Xiabing Xie¹, Minhan Dai^{1,2}, Yao Zhang^{1,2}
- ³ ¹State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361101, China
- ⁴ ²College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
- 5 ³Key Laboratory of Marine Ecosystem and Biogeochemistry, State Oceanic Administration, Second
- 6 Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
- 7 Correspondence to: Yao Zhang (yaozhang@xmu.edu.cn)

Abstract. Nitrous oxide (N_2O) has significant global warming potential as a greenhouse gas. Estuarine 8 and coastal regimes are the major zones of N_2O production in the marine system. However, biological 9 sources of N_2O in estuarine ecosystems remains controversial, but is of great importance for 10 understanding the global N₂O emission patterns. Here, we measured concentrations and isotopic 11 compositions of N₂O as well as distributions and transcript levels of ammonia-oxidizing bacterial and 12 archaeal *amoA* and denitrifier *nirS* genes by quantitative polymerase chain reaction along a salinity 13 gradient in the Pearl River Estuary, and performed in situ incubation experiments to estimate N₂O 14 yields. Our results indicated that nitrification predominantly occurred, with significant N₂O production 15 during ammonia oxidation, in the hypoxic waters of the upper estuary where the maximum N₂O and 16 ΔN_2O concentrations were observed, although minor denitrification might be concurrent at the site with 17 the lowest dissolved oxygen. Ammonia-oxidizing β -proteobacteria (AOB) were significantly positively 18 19 correlated with all N_2O parameters, although their *amoA* gene abundances were distinctly lower than ammonia-oxidizing Archaea (AOA) throughout the estuary. Furthermore, the N₂O production rate and 20 21 the N_2O yield normalized to *amoA* gene copies or transcripts estimated a higher relative contribution of AOB to the N₂O production in the upper estuary. Taken together, the in situ incubation experiments, 22 23 N_2O isotopic composition and concentrations, and gene datasets suggested that the high concentration of N₂O (oversaturated) is mainly produced from strong nitrification by the relatively high abundance of 24 AOB in the upper reaches as the major source of N_2O emitted to the atmosphere in the whole estuary. 25

1 1 Introduction

Nitrous oxide (N₂O) is a potent greenhouse gas with global warming potential 298 times that of carbon 2 dioxide (CO₂) on a 100 yr timescale, and contributes to stratospheric ozone depletion as a major 3 precursor of free radicals (Ravishankara et al., 2009). N₂O emissions from soils and marine systems are 4 estimated to account for 56%-70% (6-7 Tg N₂O-N yr⁻¹) (Syakila and Kroeze, 2011; Butterbach-Bahl et 5 al., 2013; Hink et al., 2017) and 30% (4 Tg N₂O-N yr⁻¹) (Nevison et al., 2004; Naqvi et al., 2010; Voss 6 et al., 2013) of the total global N_2O emissions, respectively. The main processes responsible for N_2O 7 emissions are microbial transformation of ammonia, nitrite, and nitrate through nitrification and 8 denitrification (Butterbach-Bahl et al., 2013). It has been estimated that oceanic N_2O production is 9 dominated by nitrification, whereas only 7% is contributed by denitrification (Freing et al., 2012). 10

N₂O is released as a byproduct during nitrification via incomplete oxidation of hydroxylamine 11 (NH₂OH) to nitrite (NO₂⁻) by ammonia-oxidizing bacteria (AOB) (Stein, 2011). This process may be 12 enhanced under suboxic conditions (Naqvi et al., 2010). While no equivalent of the hydroxylamine-13 oxidoreductase that catalyzes N₂O formation through NH₂OH oxidation has been found in ammonia-14 oxidizing archaea (AOA) (Hatzenpichler, 2012), recent studies indicated that AOA possibly produces 15 hybrid N₂O via a combination of an ammonia oxidation intermediate (NH₂OH, HNO, or NO) and NO₂⁻ 16 (Stiglmeier et al., 2014; Frame et al., 2017). In addition, AOB have been shown to produce N₂O from 17 NO₂⁻ during nitrifier denitrification (Shaw et al., 2006). This process is also promoted under micro-oxic 18 and anoxic conditions (Yu et al., 2010). Denitrification by heterotrophic denitrifiers is another major 19 pathway of N₂O production in marine environments. NO₂⁻ is reduced by a copper-containing (NirK) or 20 cytochrome cd1-containing nitrite reductase (NirS) to nitric oxide (NO), and then by a heme-copper NO 21 reductase (NOR) to N_2O . 22

Biological nitrogen transformations are catalyzed by various microbial enzymes, of which ammonium monooxygenase (AMO) and nitrite reductases (NIRs) are key enzymes responsible for nitrification and denitrification, respectively (Canfield et al., 2010). The genes encoding for AMO subunit A (*amo*A) and NIRs (*nir*S and *nir*K) have been widely applied as functional marker genes to identify the distribution of ammonia oxidizers and denitrifiers. Previous studies have shown significant correlations of *amo*A with spatial variations of N₂O emissions or N₂O production rates in soils and

oceans (Avrahami and Bohanann, 2009; Santoro et al., 2011; Löscher et al., 2012). In addition,
significant relationships between *nir*K or *nir*S abundance and N₂O emissions were observed in
grassland (Čuhel et al., 2010) and arable (Clark et al., 2012; Jones et al., 2014) soils, and the ocean
(Ar évalo-Mart nez et al., 2015).

Estuarine and coastal regimes have long been recognized major zones of N₂O production in the 5 marine system (Seitzinger and Kroeze, 1998; Mortazavi et al., 2000; Usui et al., 2001; Kroeze et al., 6 2010; Allen et al., 2011). Although AOA frequently outnumber AOB and dominate in abundance, their 7 contribution to nitrification remains controversial in estuarine and coastal waters (Bernhard et al., 2010; 8 Zhang et al., 2014; Hou et al., 2018); additionally, the relative contributions of AOB and AOA to N_2O 9 production is inconclusive (Monteiro et al., 2014). Moreover, there is a potential niche overlap between 10 nitrifiers and denitrifiers in low oxygen conditions. AOB are reported to thrive in hypoxic environments, 11 and denitrification in the oxic ocean is suggested to occur within anaerobic particle interiors (Frame and 12 Casciotti, 2010; Ni et al., 2014). It is therefore of great importance to elucidate the biological sources of 13 N₂O production in estuarine ecosystems to better understanding the global N₂O emission patterns. 14

The Pearl River Estuary (PRE) is one of the world's most complex estuarine systems with runoff ranked 17^{th} of the world rivers (Dai et al., 2014). The PRE is surrounded by complex regions that supply rich nitrogen inputs and produce eutrophic waters that support active nitrification (Dai et al., 2008). Moreover, increased oxygen consumption by organic matter degradation leads to the formation of hypoxic zones in the upper reaches of the PRE (Dai et al., 2006; He et al., 2014), which support (de)nitrification and N₂O production (Lin et al., 2016).

In this study, N₂O-related biogeochemical parameters were measured, and distributions and 21 transcript levels of AOB and AOA amoA and denitrifier nirS genes were quantified by quantitative 22 polymerase chain reaction (qPCR) to investigate the relationship between N₂O production and spatial 23 distribution of AOA and AOB along a salinity gradient in the PRE (Fig. 1). Moreover, in situ incubation 24 experiments were performed in the hypoxic upper estuary to estimate (1) nitrification rates and N₂O 25 production rates, (2) whether denitrification occurred during nitrification, and (3) N₂O yield (µmol N₂O 26 produced per mol ammonia oxidized). By combining the genetic datasets and incubation estimates, this 27 study thus identified the relative contributions of AOB and AOA in producing N₂O in the PRE. 28

1 2 Materials and methods

2 2.1 Study area and sampling

A total of 22 sites along the salinity gradient of the PRE were sampled during a cruise in July 2015, 3 including 11 sites in the upper reaches (upstream of the Humen outlet) and 11 sites in the lower reaches 4 (Lingdingyang) (Fig. 1). Water samples were taken from the surface (2 m) and bottom (4–15 m) of each 5 site by using a conductivity, temperature, and depth (CTD) rosette sampling system (SBE 25; SeaBird 6 Inc, USA) fitted with 12 L Niskin bottles (General Oceanics). A total of 16 samples (from two depths at 7 eight sites) were subjected to gene analysis (Fig. 1). One liter of water for gene analysis was filtered 8 through 0.8 µm and then 0.22 µm pore size polycarbonate membrane filters (47 mm diameter, Millipore) 9 10 within 30 min at a pressure <0.03 MPa to retain the particle-associated (PA) communities ($>0.8 \mu m$) and free-living (FL) communities (0.22–0.8 µm). RNAlater solution (Ambion, Austin, Texas, USA) was 11 12 quickly added into the samples to prevent RNA degradation. All of the filters were immediately flash frozen in liquid nitrogen and then stored at -80 °C until further analysis. Water samples for nutrient 13 14 determination were filtered through 0.45 µm pore size cellulose acetate membranes and then immediately frozen at -20 °C until further analysis. Ammonia/ammonium concentrations were analyzed 15 16 onboard. Water samples for dissolved N₂O were collected into 125 mL headspace glass bottles to which 100 μ L of saturated HgCl₂ was added; the bottles were immediately closed with rubber stoppers and 17 aluminum crimp-caps and were stored in the dark at $4 \,^{\circ}$ until analysis in the laboratory. All N₂O 18 samples were collected during the July 2015 cruise except for part samples (from sites P03, P05, A01, 19 A06, and A10) intended for N₂O isotopic composition analyses, which were sampled during a cruise in 20 March 2010. Total suspended material (TSM) was collected by filtering 1–4 L of water onto pre-21 combusted and pre-weighed glass fiber filter (GF/F) membranes (Whatman), and then stored at -20 °C 22 until weighing in the laboratory. 23

24 2.2 Biogeochemical parameters, N₂O emissions, and isotopic analysis

Temperature and salinity were continuously measured with the CTD system. Dissolved oxygen (DO) concentrations were measured with a DO probe and calibrated on board by the Winkler method (Dai et al., 2006). Ammonia was measured using the indophenol blue spectrophotometric method (Pai et al.,

- 1 2001); nitrate, nitrite, and silicate were analyzed with the routine spectrophotometric methods with a 2 Technicon AA3 Auto-Analyzer (Bran-Lube, GmbH) (Han et al., 2012). N₂O concentrations were 3 analyzed by gas chromatography (Agilent 6890 μ ECD) coupled to a purge-trap system (Tekmar 4 Velocity XPT) at 25 °C (Lin et al., 2016).
- 5 The excess $N_2O(\Delta N_2O)$ and N_2O saturation were calculated with Eq. (1) and (2):
- $6 \quad \Delta N_2 O = N_2 O_{\text{aquatic}} N_2 O_{\text{equilibrium}} \tag{1}$
- 7 $S(\%) = N_2 O_{aquatic} / N_2 O_{equilibrium} \times 100\%$ (2)
- 8 where $N_2O_{aquatic}$ represents the measured concentrations of N_2O in the water, and the equilibrium values 9 of N_2O are calculated by Eq. (3) and (4) (Weiss and Price, 1980):

10
$$N_2O_{equilibrium} = xF$$
 (3)

- 11 $\ln F = A_1 + A_2(100/T) + A_3 \ln(T/100) + A_4(T/100)^2 + S[B_1 + B_2(T/100) + B_3(T/100)^2]$ (4)
- where *x* is the mole fraction of N_2O in the atmosphere. In this study, we used the global mean atmospheric N_2O (327 ppb) from 2015 (http://www.esrl.noaa.gov/gmd).
- 14 The N₂O flux (F_{N2O} , µmol m⁻² d⁻¹) through the air–sea interface was estimated based on Eq. (5):
- 15 $F_{\rm N2O} = k_{\rm N2O} \times \rho \times K_{\rm H}^{\rm N2O} \times \Delta p N_2 O = k_{\rm N2O} \times 24 \times 10^{-2} \times (N_2 O_{\rm aquatic} N_2 O_{\rm equilibrium})$ (5)
- where $k (\text{cm h}^{-1})$ is calculated using Eq. (6) and (7) (Wanninkhof, 1992) and k_{600} is used for a freshwater
- 17 system (Raymond and Cole, 2001):

18
$$k = 0.31 \times u_{av}^2 \times (S_c/600)^{-0.5}$$
 (6)

19 $S_{c N20} = 2055.6 - 137.11 t + 4.3173 t^2 - 0.05435 t^3$ (7)

To determine the isotopic composition of N₂O, the gas samples were introduced into a trace gas cryogenic pre-concentration device (PreCon, Thermo Finnigan) as described in Cao et al. (2008) and Zhu et al. (2008), and then $\delta^{15}N_{N2O}$ was analyzed using an isotope ratio mass spectrometer (IRMS, Thermo Finngan MAT-253, Bremen, Germany).

24 2.3 Nucleic acid extraction and quantitative PCR

25 DNA was extracted using the FastDNATM SPIN Kit for Soil (MP, USA) according to the manufacturers'

26 protocol with minor modifications. RNA was extracted using TRIzol reagent (Ambion, Austin, Texas,

 $\,$ 27 $\,$ USA), and then eluted with 50 μL of RNase-free water. The extracted RNA was treated with DNase I $\,$

(Invitrogen, Carlsbad, CA) to remove any residual DNA. DNA contamination was checked by
 amplifying the bacterial 16S rRNA genes before reverse transcription. Total RNA without DNA
 contamination was reverse transcribed to synthesize single-strand complementary DNA (cDNA) using
 the First-Strand cDNA Synthesis Kit (Invitrogen, Austin, Texas, USA).

The transcript and copy abundances of bacterial and archaeal *amoA* genes and bacterial *nirS* genes 5 were examined using qPCR and a CFX96 Real Time PCR system (BIO-RAD, Singapore). The β -6 proteobacterial and archaeal amoA were amplified using primer sets amoA-1F and amoA-2R (Kim et 7 al., 2008) and Arch-amoAF and Arch-amoAR (Francis et al., 2005), respectively; nirS was amplified 8 using primers nirS-1F and nirS-3R (Braker et al., 1998; Huang et al., 2011). Quantitative PCR 9 amplification for the β -proteobacterial and archaeal *amoA* were carried out as described previously 10 (Mincer et al., 2007; Hu et al., 2011). For the amplification of nirS, the qPCR reaction mixture was 11 prepared in accordance with Zhang et al. (2014) and thermal cycling conditions were applied as 12 described by Huang et al. (2011). Standards for the qPCR reactions consisted of serial 10-fold dilutions 13 $(10^7 \text{ to } 10^0 \text{ copies per uL})$ of plasmid DNA containing amplified fragments of the targeted genes 14 (accession numbers MH458281 for β -proteobacterial amoA, KY387998 for archaeal amoA, and 15 KF363351 for nirS). The amplification efficiencies of qPCR were always between 85%–95% with 16 $R^2 > 0.99$. The specificity of the qPCR reactions was confirmed by melting curve analysis, agarose gel 17 electrophoresis and sequencing analysis. Inhibition tests were performed by 2-fold and 5-fold dilutions 18 of all samples and indicated that our samples were not inhibited. 19

20 2.4 Incubation experiments

Incubation experiments were performed in the surface and bottom waters at sites P01 (2 and 5 m water depth) and P05 (2 and 12 m) upstream of the Humen outlet (Fig. 1). Water samples were collected from Niskin bottles through a clean Teflon® silicone hose, and were carefully filled into 125 mL cleaned headspace glass bottles without gas bubbles. The bottles were immediately closed with an air-tight butyl rubber stopper and aluminum crimp-cap. A total of 43 bottles were set up for either depth at sites P01 and 34 bottles for either depth at P05. Samples from four parallel bottles were taken to determine the initial (t_0) dissolved N₂O concentration, and triplicate samples were taken to measure the initial

(i) (i)

dissolved inorganic nitrogen (DIN) concentration, which included ammonium, nitrite, and nitrate. The 1 remaining 36 (P01) and 27 (P05) bottles were incubated in the dark at in situ temperatures (± 1 °C). At 2 site P01, samples from six parallel bottles were taken at 3, 6, 18, and 24 h during the incubation 3 experiment for N₂O determination after injecting saturated mercuric chloride (HgCl₂, volume ratio of 4 1:100) into the bottles; triplicate samples were also taken at the same time for DIN measurements by 5 filtering through 0.7 µm pore size GF/Fs under pressure <0.03 MPa. Concentrations of N₂O, ammonium, 6 nitrite, and nitrate were measured as described in Sect. 2.2. At site P05, samples were taken after 3, 6, 7 and 12 h incubation and the other procedures were the same as described for site P01. 8

The effect of DIN assimilation is negligible during incubation in the dark (Ward, 2008). Therefore, 9 the potential processes of nitrogen transformation and N₂O production can be determined according to 10 "mass balance" in a closed incubation system. The main processes were analyzed based on the dynamic 11 variations of DIN (Δ DIN), ammonia (Δ NH₄⁺), nitrite (Δ NO₂⁻), nitrate (Δ NO₃⁻), and N₂O (Δ N₂O) 12 concentrations during incubation. The average rates of nitrification and N₂O production were estimated 13 using the slopes of the linear regression between concentrations versus incubation time when DIN was 14 in balance (i.e. no denitrification). 15

During nitrification, NO_2^- is an intermediate product accumulated from ammonia oxidation that is 16 then further oxidized to nitrate. Thus, the N_2O yield was calculated with Eq. (8) or (9): 17

18	N_2O_{yield} (‰) = $\Delta N_{N2O} / \Delta N_{NH3}$	(8)
19	N_2O_{vield} (‰) = $\Delta N_{\text{N2O}} / \Delta N_{(\text{NO2-} + \text{NO3-})}$	(9)

 N_2O_{yield} (‰) = $\Delta N_{N2O} / \Delta N_{(NO2-+NO3-)}$ 19

2.5 Statistical analyses 20

Since normal distribution of the individual data sets was not always met, we used the non-parametric 21 Wilcoxon rank-sum tests for comparing two variables. The bivariate correlations between 22 environmental factors and functional genes were described by Spearman correlation coefficients (R 23 value) and two-tailed tests (P value). The maximum gradient length of detrended correspondence 24 analysis was shorter than 3.0, thus redundancy analysis (RDA) based on the qPCR data was used to 25 analyze variations in the communities under the environmental constraints in the software R (version 26 3.4.4) Vegan 2.5–3 package. The qPCR-based relative abundances and environmental factors were 27

normalized via Z transformation (Magalh ães et al., 2008). The null hypothesis, that the community was 1 independent of environmental parameters, was tested using constrained ordination with a Monte Carlo 2 permutation test (999 permutations). Standard and Partial Mantel tests were run in R (version 3.4.4) 3 Vegan 2.5–3 package to determine the correlations between environmental factors and ammonia 4 oxidizer compositions. Dissimilarity matrices of ammonia oxidizer communities and environmental 5 factors were based on Bray-Curtis and Euclidean distances between samples, respectively. Based on 6 Kendall's product-moment correlation, the significance of the Mantel statistics was obtained after 999 7 permutations. Statistical tests were assumed to be significant at a P value of <0.05. 8

9 3 Results

10 3.1 Distribution of nutrients, DO, and N₂O along a salinity transect of the PRE

The studied transect was divided into a northern region upstream of the Humen outlet and southern area 11 (Lingdingyang) (Fig. 1); these regions have distinct biogeochemical characteristics. Salinity exhibited 12 low values (0.1 to 4.4) upstream of the Humen outlet, and sharply increased from 0.7 to 34.2 13 downstream in Lingdingyang (Fig. 2a). The ammonium/ammonia concentrations decreased from 167.2 14 μ mol L⁻¹ (site P01 surface water) to 20.9 μ mol L⁻¹ (site P07 bottom water) upstream of the Humen outlet 15 and consistently decreased downstream in Lingdingyang (5.7 μ mol L⁻¹ to below detection limit) (Fig. 16 2b). Correspondingly, the sum of nitrate and nitrite concentrations increased from 93.6 μ mol L⁻¹ (site 17 P01 bottom water) to 172.3 µmol L⁻¹ (site P03 surface water) upstream, but it sharply decreased 18 seaward to Lingdingyang (Fig. 2c). The DO concentrations were distinctly lower upstream of the 19 Humen outlet with nearly one-half of the samples below the hypoxic threshold (63.0 µmol L⁻¹; Rabalais 20 et al., 2010). Generally, the DO concentrations increased seaward from 155.7 to 238.0 µmol L⁻¹ in the 21 surface waters of the Lingdingvang area, whereas they varied from 74.0 to 183.3 µmol L⁻¹ in the bottom 22 waters (Fig. 2d). 23

In contrast to the DO concentrations, the N₂O concentrations were distinctly higher upstream of the Humen outlet (48.9–148.2 nmol L⁻¹) than in Lingdingyang, where they decreased seaward from 24.6 to 5.4 nmol L⁻¹ (Fig. 2e). Similarly, higher ΔN_2O (42.0–141.3 nmol L⁻¹) with saturations from 701.1% to

2175.1% was observed upstream; lower ΔN_2O (-1.4–17.8 nmol L⁻¹) was present in the Lingdingvang 1 area with the saturations ranging from 86% to 363% (Fig. 2f). The estimated water-air N₂O fluxes were 2 100.4 to 344.0 μ mol m⁻² d⁻¹ upstream and decreased in Lingdingyang (42.4 to -2.6 μ mol m⁻² d⁻¹) (Fig. 3 2g). Therefore, the entire PRE acts as a N₂O source that releases to the atmosphere and, notably, a 4 significant negative relationship was observed between ΔN_2O , N₂O flux, and DO (P <0.01 for each) 5 (Fig. 2i and i). The isotopic compositions of N₂O ($\delta^{15}N_{N2O}$) showed an enrichment of ${}^{15}N_2O$ seaward. 6 varying from -27.9 to 7.1‰ (Fig. 2h). Overall, upstream of the Humen outlet was characterized by 7 hypoxic waters rich in nitrogen-based nutrients, where ammonium concentrations decreased and the 8 sum of nitrite and nitrate concentrations increased seaward, corresponding to distinctly higher N_2O 9 fluxes released to the atmosphere. 10

11 **3.2** Distributions and transcript levels of *amo*A and *nir*S genes along the salinity transect

The total abundance of AOA *amoA* (sum of FL and PA communities) varied from 3.10×10^3 to 6.87×10^5 12 copies L⁻¹ in the surface waters (Fig. 3a) and 6.40×10^4 to 4.21×10^7 copies L⁻¹ in the bottom waters; an 13 increase along the salinity transect was observed in the bottom (Fig. 3b). In contrast, the total abundance 14 of AOB amoA generally decreased seaward along the salinity transect for the surface $(4.23 \times 10^2 \text{ to})$ 15 2.13×10^4 copies L⁻¹) and bottom waters (4.49×10^3 to 8.79×10^4 copies L⁻¹) (Fig. 3c and d). Overall, the 16 abundance of AOA *amoA* was significantly higher than AOB (P < 0.01). The total abundance of *nirS* 17 varied from 9.12×10^4 to 2.00×10^7 copies L⁻¹ and was higher than both AOA (P < 0.05) and AOB amoA 18 (P < 0.01) in the surface waters and AOB *amo*A in the bottom water (P < 0.01) (Fig. 3e and f). Notably, 19 these three genes were predominantly distributed in the PA communities compared to the FL 20 communities in the PRE transect (Fig. 3). The transcripts of the three genes were analyzed in the PA 21 communities of the two incubation sites upstream of the Humen outlet. The transcript abundances of 22 AOA amoA (7.44×10³ to 4.62×10⁵ transcripts L⁻¹) were one to three orders of magnitude higher than 23 AOB *amo*A (3.62×10^2 to 5.00×10^2 transcripts L⁻¹) at PO1 (Fig. 3a–d), whereas the transcript abundances 24 of AOB *amoA* were relatively higher at P05 (AOB = 8.96×10^4 to 3.83×10^5 transcripts L⁻¹; AOA = 25 1.26×10^4 to 1.39×10^5 transcripts L⁻¹). The *nirS* gene showed a similar transcript level with AOA *amoA* 26

1 at P01 (2.20×10^4 to 6.69×10^4 transcripts L⁻¹) but one order of magnitude lower transcript level than both

2 AOA and AOB *amo*A at P05 (8.59×10^3 to 1.12×10^4 transcripts L⁻¹) (Fig. 3e and f).

3 3.3 Nitrogen transformation and N₂O production in the incubation experiments

The in situ biogeochemical conditions of the incubation experiments are shown in Fig. 2 and listed in 4 Table S1. Site P01 exhibited the lowest in situ DO concentrations (30.0 µmol L⁻¹ in the bottom water 5 and 30.9 µmol L⁻¹ in the surface water). The concentration of DIN was generally unchanged in the 6 early-to-middle (0-18 h) phase for the P01 surface water and early (0-6 h) phase for the P01 bottom 7 water, but showed a distinct decrease in the ending phase (Fig. 4a). The ammonia and nitrite 8 concentrations consistently decreased and increased, respectively, during the incubation experiments, 9 but the nitrate concentrations decreased in the ending phase after a slight increase (Fig. 4b). These 10 results clearly indicate that nitrification occurred during the entire P01 incubations, and suggest that 11 denitrification may be present in the ending phase. The rates of ammonia oxidation during the entire 12 incubations and nitrite oxidation during the early or early-to-middle phases were estimated by linear 13 regressions of ammonia and nitrate concentrations, respectively (Fig. 4a and b; Table 1). 14 Correspondingly, the estimated average N₂O production rate (24 h) was 0.62 nmol L⁻¹h⁻¹ in P01 surface 15 water and 0.70 nmol L⁻¹h⁻¹ in P01 bottom water; the estimated N₂O production rates from nitrification 16 were 0.60 nmol $L^{-1}h^{-1}$ in the surface water (18 h) and 1.61 nmol $L^{-1}h^{-1}$ in the bottom water (6 h; Fig. 4c). 17 Thus, the estimated N₂O yield in the surface and bottom waters based on nitrification was 1.28 and 1.49 18 µmol N₂O produced per mol ammonia oxidized (Table 1). 19

In the incubation experiments at site P05, the DIN concentrations remained unchanged (Fig. 4d) 20 and the ammonia concentrations consistently decreased and the nitrite and nitrate concentrations 21 increased (Fig. 4e). The rates of ammonia and nitrite oxidation were also estimated by linear regressions 22 of ammonia and nitrate concentrations, respectively (Fig. 4d and e; Table 1). The ammonia oxidation 23 rates were approximately equal to the sum of the increased nitrite and nitrate concentration rates. Thus, 24 nitrification occurred during the incubation experiments without denitrification. The estimated N₂O 25 production rates from nitrification were 1.15 nmol L⁻¹h⁻¹ in the P05 surface water and 1.41 nmol L⁻¹h⁻¹ 26 in the P05 bottom water (Fig. 4f); the estimated N₂O yields based on nitrification were 1.03 µmol N₂O 27

- 1 produced per mol ammonia oxidized (surface) and 1.58 µmol N2O produced per mol ammonia oxidized
- 2 (bottom) (Table 1).

3 4 Discussion

4 4.1 Contribution of nitrification versus denitrification to N₂O production in the hypoxic upper 5 estuary

The spatial variations of N₂O concentration, its saturation, and water-air N₂O flux along the PRE are 6 consistent with our previous study (Lin et al., 2016), indicating that higher N₂O in the upper estuary 7 makes the PRE acting as a source of atmospheric N₂O. The in situ incubation experiments clearly 8 indicated that nitrification predominantly occurred in the hypoxic waters of the upper estuary along with 9 significant N₂O production, and suggested that denitrification could be concurrent at the lowest DO site 10 (P01) where the maximum N₂O and ΔN_2O concentrations were observed. These results confirm 11 previous speculation that extreme enrichment of ammonia in the water column due to high loads of 12 anthropogenic-sourced nutrients and organic matter in the upper estuary (Dai et al., 2008; He et al., 13 2014) could result in strong nitrification under low O₂ solubility conditions (Dai et al., 2008); thus, N₂O 14 is produced as a byproduct through nitrification and is oversaturated in the PRE (Lin et al., 2016). The 15 PRE sediments also act as a source of N_2O , which is released into the overlying waters through 16 denitrification (Tan et al., 2019); however, in estuarine waters, nitrification apparently is the main 17 source of N₂O production. 18

The isotopic composition of N_2O ($\delta^{15}N_{N2O}$) was consistent with the above interpretation. 19 According to previous studies (Table S2), the $\delta^{15}N$ of N₂O produced during ammonia oxidation by 20 AOB strains ranged from -68 to -6.7‰ (Yoshida, 1988; Sutka et al., 2006; Mandernack et al., 2009; 21 Frame and Casciotti, 2010; Jung et al., 2014; Toyoda et al., 2017) and 6.3-10.2‰ in a marine AOA 22 strain (Santoro et al., 2011). The δ^{15} N of N₂O produced during denitrification ranged from -37.2 to -7.9‰ 23 (Toyoda et al., 2005); during nitrifier-denitrification by AOB strains it ranged from -57.6 ± 4.1 to -21.5%24 (Sutka et al., 2003; Sutka et al., 2006; Frame and Casciotti, 2010). Therefore, the much lower ¹⁵N-N₂O 25 (-27.9 to -12.6‰) upstream of the Humen outlet is consistent with AOB nitrification or denitrification 26

processes, whereas enriched ${}^{15}N_2O$ (5.2–7.1‰) in the lower reaches approaches AOA nitrification and air ${}^{15}N-N_2O$ (Santoro et al., 2011). Taken together, the isotopic compositions of N₂O (Fig. 2h) and N₂O concentration distribution (Fig. 2e–g) suggest that the high concentrations of N₂O (oversaturation) were produced from strong nitrification by AOB and probably concurrent minor denitrification in the upper estuary, however in the lower reaches, low concentrations of N₂O could be explained by AOA nitrification or water atmospheric exchange of N₂O.

7 4.2 Correlations of nitrifiers and denitrifiers with N2O-related biogeochemical parameters along 8 the PRE

9 The more abundant AOA *amo*A genes than AOB as well as the more abundant genes in the PA 10 communities than the FL communities are consistent with our previous study in the PRE (Hou et al., 11 2018), which in addition, reported significant positive correlations between the AOB *amo*A gene 12 abundance and the oxidation rate of ammonia to nitrate. This evidence supports that AOB might be 13 more active than AOA in the ammonium-enriched PRE (Füssel, 2014; Hou et al., 2018) despite their 14 low abundance.

To confirm the relationship between AOA, AOB, or denitrifier and N₂O production, we analyzed 15 the correlations between their genes abundances and N_2O -related biogeochemical parameters. The 16 results indicate that AOA amoA abundance was significantly correlated (P < 0.05 - 0.01) to the water 17 mass parameters temperature (negatively), salinity (positively), and silicate concentration (negatively) 18 (Table 2), suggesting that the water mass may exert control on AOA distribution. However, AOB amoA 19 abundance was significantly correlated (P < 0.05 - 0.01) to TSM concentration (positively), pH 20 (negatively), and DO (negatively), which is consistent with our previous PRE study that found high 21 TSM concentrations and low DO and pH influenced substrate availability and thus AOB distribution 22 (Hou et al., 2018). Notably, there were positive correlations between AOB amoA abundances and all 23 N₂O parameters as well as ammonia concentration (Table 2; P < 0.05 - 0.01), suggesting a significant 24 influence of AOB on N₂O production. There no significant Spearman correlations were found between 25 bacterial nitrite reductase *nirS* abundance and the measured biogeochemical parameters. 26

The RDA was used to further analyze variations in the ammonia oxidizer communities under the environmental constraints. In the present study, the environmental constraints included four types: water

mass parameters (temperature, salinity, and silicate), substrate parameters (ammonia/ammonium, nitrite, 1 and nitrate), parameters influencing substrate availability (DO, TSM, and pH), and N_2O parameters. 2 The results confirmed that the communities with relatively high AOB abundances in the upper estuary 3 were constrained by high temperature and low salinity water masses, high nutrient and TSM 4 concentrations and low DO and pH conditions, as well as high N₂O concentration; whereas the opposite 5 water masses and environmental conditions constrained the communities with high AOA abundances in 6 the Lingdingyang area (Fig. 5). These constraints explained 87.3% of the variation in the ammonia 7 oxidizer distribution along the PRE. Apparently, the communities with relatively high AOB abundances 8 in the upper estuary positively influenced the concentration of N_2O in the water. 9

Partial Mantel tests were applied to eliminate the co-varying effects of water mass, substrate 10 availability, and N₂O parameters along the salinity transect, and to identify the intrinsic/direct 11 relationship between ammonia oxidizers and N2O production. Water mass parameters (standard and 12 partial Mantel tests, P < 0.01) and those influencing substrate availability (standard and partial Mantel 13 tests, P < 0.05) significantly controlled variations in the distribution of AOA and AOB along the PRE 14 transect (Fig. 6a and c). Notably, variations in the distribution of AOA and AOB were significantly 15 correlated with N₂O production (standard and partial Mantel test, P < 0.01) after eliminating the co-16 17 varying effects of other parameters (Fig. 6d), demonstrating the significant contribution of ammonia oxidizers to N₂O production. 18

19 4.3 Contribution of AOB versus AOA to N₂O production

We attempted to accurately assess the relative contributions of AOA and AOB to N₂O production in the 20 PRE by plotting the N₂O production rates (Fig. 7a) and yields (Fig. 7b) normalized to total (sum of 21 AOA and AOB) amoA gene copies or transcripts along X-Y axes that represent the relative 22 contributions of AOA and AOB to the total amoA gene or transcript pools. The highest average amoA 23 gene copy-specific N_2O production rates and yields were in the surface water of site P05, where the 24 highest nitrification rate was also observed (Table 1). The highest average amoA gene transcript-25 specific N₂O production rates and yields were in the bottom water of site P01, where the highest N₂O 26 production rates were observed (Table 1). Notably, for both incubation sites, the more abundant AOB 27

were in the *amoA* gene-based DNA or cDNA pool, the distinctly higher (disproportionately higher 1 relative to enhanced abundance) the average amoA gene copy or transcript-specific N₂O production 2 rates (Fig. 7a) and yields (Fig. 7b). Previous studies based on pure cultures of the AOB strain 3 Nitrosospira multiforimis and AOA strains Nitrososphaera viennensis and Nitrosopumilus maritimus 4 have provided evidence that AOB has higher N₂O yields (0.9 to 2.7%) than AOA (0.3 to 0.9%) during 5 ammonia oxidation (Stieglmeier et al., 2014). The higher N₂O yield from AOB has also been observed 6 in soils (Hink et al., 2017; Hink et al., 2018). Based on results indicated by Fig. 7, we conclude that 7 AOB may have higher relative contributions to the high N₂O production in the upper estuary where low 8 DO, high concentrations of N₂O and Δ N₂O, and high N₂O flux were observed. 9

Ammonia oxidizers are sensitive to oxygen during N₂O production (Santoro et al., 2011; Löscher 10 et al., 2012; Stieglmeier et al., 2014). Studies based on pure cultures of AOB strains Nitrosomonas 11 marina NM22 and Nitrosococcus oceani NC10 and AOA strain Nitrosopumilus maritimus showed 12 higher N₂O yields and production during nitrification by both AOA and AOB when O₂ concentrations 13 varied from aerobic to hypoxic conditions (Löscher et al., 2012). However, when O₂ concentrations 14 varied from hypoxic to anaerobic conditions (i.e. in a lower O₂ concentration range), the AOB strain 15 Nitrosospira multiformis and AOA strains Nitrososphaera viennensis and Nitrosopumilus maritimus 16 showed that AOB had distinctly higher N₂O yields at lower oxygen conditions and, in contrast, AOA 17 had lower N₂O yields at lower oxygen concentrations (Stieglmeier et al., 2014). In addition, results from 18 the cultured AOB strain Nitrosomonas marina C-113a indicated increasing N2O yields with higher cell 19 concentrations (Frame and Casciotti, 2010). This evidence supports our conclusions that the high 20 concentration of N_2O (oversaturated) may be mainly produced from strong nitrification by the high 21 abundance of AOB in the low DO conditions in the upper estuary. 22

23 5 Conclusions

Our work explored the relative contributions of AOB and AOA in producing N₂O in the PRE by combining the isotopic compositions and concentrations of N₂O, distributions and transcript levels of AOB and AOA *amo*A and denitrifier *nir*S genes, and incubation estimates of nitrification rates and N₂O production rates. Our findings indicate that the high concentrations of N₂O and Δ N₂O and the much

- 1 lower ¹⁵N-N₂O are primarily attributed to strong nitrification by AOB and probably concurrent minor 2 denitrification in the upper estuary where AOB abundances were higher and decreased seaward along 3 the salinity transect. Low concentrations of N₂O and Δ N₂O and enriched ¹⁵N₂O could be explained by 4 AOA nitrification in the lower reaches of the estuary. Collectively, AOB contributed the major part in 5 N₂O production in the upper estuary, which is the major source of N₂O emitted to the atmosphere in the
- 6 PRE.

1 Data availability

2 All data can be accessed in the form of Excel spreadsheets via the corresponding author.

3 The Supplement related to this article is available online.

4 Author contribution

5 M.D. and Y.Z. conceived and designed the experiments. L.M., H.L., and X.X. performed the 6 experiments. L.M., Y.Z., H.L., and X.X. analyzed the data. L.M. and Y.Z. wrote the paper. All authors 7 contributed to the interpretation of results and critical revision.

8 Competing interests

9 The authors declare no conflicts of interest.

10 Acknowledgments

We thank Qing Li for measuring ammonia concentrations on board, Jian-Zhong Su and Liguo Guo for measuring dissolved oxygen concentrations on board, and Tao Huang and Lifang Wang for measuring nitrate and nitrite concentrations. We also thank Lei Hou for her assistance in qPCR measurements and data analysis, and Mingming Chen and Huade Zhao for their assistance with the software. This research was supported by the National Key Research and Development Programs (2016YFA0601400) and NSFC projects (41676125, 41721005, and 41706086). We thank Kara Bogus, PhD, from Liwen Bianji, Edanz Editing China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

References

- Allen, D., Dalal, R. C., Rennenberg, H., and Schmidt, S.: Seasonal variation in nitrous oxide and methane emissions from subtropical estuary and coastal mangrove sediments, Australia, Plant Biol., 13, 126-133, 2011.
- 5 Ar évalo-Mart nez, D. L., Kock, A., Löscher, C. R., Schmitz, R. A., and Bange, H. W.: Massive nitrous oxide emissions from the tropical South Pacific Ocean, Nat. Geosci., 8, 530–533, 2015.
 - Avrahami, S., and Bohanann, J. M.: N₂O emission rates in a California meadow soil are influenced by fertilizer level, soil moisture and the community structure of ammonia-oxidizing bacteria, Glob. Change Biol., 15, 643–655, 2009.
- 10 Bernhard, A. E., Landry, Z. C., Blevins, A., de la Torre, J. R., Giblin, A. E., and Stahl, D. A.: Abundance of ammonia-oxidizing archaea and bacteria along an estuarine salinity gradient in relation to potential nitrification rates, Appl. Environ. Microbiol., 76, 1285–1289, 2010.
 - Braker, G., Fesefeldt, A., and Witzel, K. P.: Development of PCR primer systems for amplification of nitrite reductase genes (*nir*K and *nir*S) to detect denitrifying bacteria in environmental samples, Appl. Environ. Microbiol., 64, 3769–3775, 1998.
 - Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R., and Zechmeister-Boltenstern, S.: Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philos. Trans. R. Soc. B-Biol. Sci., 368, https://doi.org/10.1098/rstb.2013.0122, 2013.
 - Canfield, D. E., Glazer, A. N., and Falkowski, P. G.: The Evolution and Future of Earth's Nitrogen

20

- Cycle, Science, 330, 192–196, 2010.
- Cao, Y., Sun, G., Han, Y., Sun, D., and Wang, X.: Determination of nitrogen, carbon and oxygen stable isotope ratios in N₂O, CH₄, and CO₂ at natural abundance levels by mass spectrometer, Acta. Pedologica. Sinica., 45, 249–258, 2008 (Chinese).
- Clark, I. M., Buchkina, N., Jhureea, D., Goulding, K. W. T., and Hirsch, P. R.: Impacts of nitrogen application rates on the activity and diversity of denitrifying bacteria in the Broadbalk Wheat Experiment, Philos. Trans. R. Soc. B-Biol. Sci., 367, https://doi.org/10.1098/rstb.2011.0314, 2012.

- Čuhel, J., Šimek, M., Laughlin, R. J., Bru, D., Chèneby, D., Watson, C. J., and Philippot, L.: Insights into the Effect of Soil pH on N₂O and N₂ Emissions and Denitrifier Community Size and Activity, Appl. Environ. Microbiol., 76, 6, 1870–1878, 2010.
- Dai, M., Guo, X., Zhai, W., Yuan, L., Wang, B., Wang, L., Cai, P., Tang, T., and Cai, W. J.: Oxygen
 depletion in the upper reach of the Pearl River estuary during a winter drought, Mar. Chem., 102, 159–169, 2006.
 - Dai, M., Wang, L., Guo, X., Zhai, W., Li, Q., He, B., and Kao, S. J.: Nitrification and inorganic nitrogen distribution in a large perturbed river/estuarine system: the Pearl River Estuary, China, Biogeosciences, 5, 1545–1585, 2008.
- 10 Dai, M., Gan, J., Han, A., Kung, H. S., and Yin, Z.: Physical dynamics and biogeochemistry of the Pearl River plume, In Biogeochemical dynamics at major river-coastal interfaces, Linkages with Global Change. Bianchi, T. S., Allison, M. A., and Cai, W. J. (eds). Cambridge University Press, pp. 321–351, 2014.
 - Frame, C. H., and Casciotti, K. L.: Biogeochemical controls and isotopic signatures of nitrous oxide
- 15 production by a marine ammonia-oxidizing bacterium, Biogeosciences, 7, 2695–2709, 2010.
 - Frame, C. H., Lau, E., Joseph Nolan IV, E., Goepfert, T. J., and Lehmann, M. F.: Acidification Enhances Hybrid N₂O Production Associated with Aquatic Ammonia-Oxidizing Microorganisms, Front. Microbiol., 7, 1–23, 2017.
 - Francis, C. A., Roberts, K. J., Beman, J. M., Santoro, A. E., and Oakley, B. B.: Ubiquity and diversity
- 20 of ammonia-oxidizing archaea in water columns and sediments of the ocean, P. Natl. Acad. Sci. USA, 102, 14683–14688, 2005.
 - Freing, A., Wallace, D. W. R., and Bange, H. W.: Global oceanic production of nitrous oxide, Philos. Trans. R. Soc. B-Biol. Sci., 367, https://doi.org/10.1098/rstb. 2011. 0360, 2012.
 - Füssel, J.: Impacts and importance of ammonia and nitrite oxidation in the marine nitrogen cycle, PhD thesis, Max Planck Institute for Microbial Ecology, Bremen, Germany, 166 pp., 2014.
 - Han, A., Dai, M., Kao, S.-J., Gan, J., Li, Q., Wang, L., Zhai, W., and Wang, L.: Nutrient dynamics and biological consumption in a large continental shelf system under the influence of both a river plume and coastal upwelling, Limnol. Oceanogr., 57, 486–502, 2012.

- Hatzenpichler, R.: Diversity, Physiology, and Niche Differentiation of Ammonia Oxidizing Archaea, Appl. Environ. Microbol., 78, 7501–7510, 2012.
- He, B., Dai, M., Zhai, W., Guo, X., and Wang, L.: Hypoxia in the upper reaches of the Pearl River Estuary and its maintenance mechanisms: A synthesis based on multiple year observations during
- 2000-2008, Mar. Chem., 167, 13–24, 2014.
- Hink, L., Nicol, G. W., and Prosser, J. I.: Archaea produce lower yields of N₂O than bacteria during aerobic ammonia oxidation in soil, Environ. Microbiol., 19, 4829–4837, 2017.
- Hink, L., Gubry-Rangin, C., Nicol, G. W., and Prosser, J. I.: The consequences of niche and physiological differentiation of archaeal and bacterial ammonia oxidisers for nitrous oxide emissions, ISME J., 12,1084–1093, 2018.
- Hou, L., Xie, X., Wan, X., Kao, S. J., Jiao, N., and Zhang, Y.: Niche differentiation of ammonia and nitrite oxidizers along a salinity gradientnfrom the Pearl River estuary to the South China Sea, Biogeosciences, 15, 5169–5187, 2018.
- Huang, S., Chen, C., Yang, X., Wu, Q., and Zhang, R.: Distribution of typical denitrifying functional
- 15 genes and diversity of the *nir*S-encoding bacterial community related to environmental characteristics of river sediments, Biogeosciences, 8, 3041–3051, 2011.
 - Hu, A., Jiao, N., and Zhang, C. L.: Community structure and function of planktonic *Crenarchaeota*: changes with depth in the South China Sea, Microb. Ecol., 62, 549–563, 2011.
 - Jones, C. M., Spor, A., Brennan, F. P., Breuil, M. C., Bru, D., Lemanceau, P., Griffiths, B., Hallin, S.,
- and Philippot, L.: Recently identified microbial guild mediates soil N₂O sink capacity, Nat. Clim.
 Chang., 4, 801–805, 2014.
 - Jung, M. Y., Well, R., Min, D., Giesemann, A., Park, S. J., Kim, J. G., and Rhee, S. K.: Isotopic signatures of N₂O produced by ammonia-oxidizing archaea from soils, ISME J., 8, 1115–1125, 2014.
- 25 Kim, O. S., Junier, P., Imhoff, J. F., and Witzel, K. P.: Comparative analysis of ammonia monooxygenase (*amoA*) genes in the water column and sediment–water interface of two lakes and the Baltic Sea, FEMS Microbiol. Ecol., 66, 367–378, 2008.

25

Lin, H., Dai, M., Kao, S. J., Wang, L., Roberts, E., Yang, J., Huang, T., and He, B.: Spatiotemporal variability of nitrous oxide in a large eutrophic estuarine system: The Pearl River Estuary, China,

5 Mar. Chem., 182, 14–24, 2016.

- Löscher, C. R., Kock, A., Könneke, M., LaRoche, J., Bange, H. W., and Schmitz, R. A.: Production of oceanic nitrous oxide by ammonia-oxidizing archaea, Biogeosciences, 9, 2419–2429, 2012.
- Magalhães, C., Bano, N., Wiebe, W. J., Bordalo, A. A., and Hollibaugh, J. T.: Dynamics of nitrous oxide reductase genes (*nosZ*) in intertidal rocky biofilms and sediments of the Douro River Estuary (Portugal), and their relation to N-biogeochemistry, Microb. Ecol., 55, 259–269, 2008.
- Mandernack, K. W., Mills, C. T., Johnson, C. A., Rahn, T., and Kinney, C.: The δ¹⁵N and δ¹⁸O values of N₂O produced during the co-oxidation of ammonia by methanotrophic bacteria, Chem. Geol., 267, 96–107, 2009.
- Mincer, T. J., Church, M. J., Taylor, L. T., Preston, C., Karl, D. M., and DeLong, E. F.: Quantitative
- distribution of presumptive archaeal and bacterial nitrifiers in Monterey Bay and the North Pacific Subtropical Gyre, Environ. Microbiol., 9, 1162–1175, 2007.
 - Monteiro, M., Séneca, J., and Magalhães, C.: The History of Aerobic Ammonia Oxidizers: from the First Discoveries to Today, J. Microbiol., 52, 537–547, 2014.

Mortazavi, B., Iverson, R. L., Huang, W., Graham Lewis, F., Caffrey, J. M.: Nitrogen budget

- 20 of Apalachicola Bay, a bar-built estuary in the northeastern Gulf of Mexico, Mar. Ecol.-Prog. Ser., 195, 1–14, 2000.
 - Naqvi, S. W. A., Bange, H. W., Far ás, L., Monteiro, P. M. S., Scranton, M. I., and Zhang, J.: Marine hypoxia/anoxia as a source of CH₄ and N₂O, Biogeosciences, 7, 2159–2190, 2010.
 - Nevison, C. D., Lueker, T. J., and Weiss, R. F.: Quantifying the nitrous oxide source from coastal upwelling, Glob. Biogeochem. Cycle, 18, 1–17, 2004.
 - Ni, B. J., Peng, L., Law, Y., Guo, J., and Yuan, Z.: Modeling of Nitrous Oxide Production by Autotrophic Ammonia-Oxidizing Bacteria with Multiple Production Pathways, Environ. Sci. Technol., 48, 3916–3924, 2014.

Kroeze, C., Dumont, E., and Seitzinger, S.: Future trends in emissions of N₂O from rivers and estuaries,J. Integr. Environ. Sci., 7, 71–78, 2010.

- Pai, S. C., Tsau, Y. J., and Yang, T. I.: pH and buffering capacity problems involved in the determination of ammonia in saline water using the indophenol blue spectrophotometric method, Analytica Chimica Acta, 434, 209–216, 2001.
- Rabalais, N. N., D'1az, R. J., Levin, L. A., Turner, R. E., Gilbert, D., and Zhang, J.: Dynamics and distribution of natural and human-caused hypoxia, Biogeosciences, 7, 585–619, 2010.
- Ravishankara, A. R., Daniel, J. S., and Portmann, R. W.: Nitrous Oxide (N₂O): The Dominant Ozone-Depleting Substance Emitted in the 21st Century, Science, 326, 123–125, 2009.
- Raymond, P. A., and Cole, J. J.: Gas exchange in rivers and estuary: choosing a gas transfer velocity, Estuaries Coasts, 24, 312–317, 2001.
- 10 Santoro, A. E., Buchwald, C., McIlvin, M. R., and Casciotti K. L.: Isotopic Signature of N₂O Produced by Marine Ammonia-Oxidizing Archaea, Science, 333, 1282–1285, 2011.
 - Seitzinger, S. P., and Kroeze, C.: Global distribution of nitrous oxide production and N inputs in freshwater and coastal marine ecosystems, Glob. Biogeochem. Cycle, 12, 93-113, 1998.
- Shaw, L. J., Nicol, G. W., Smith, Z., Fear, J., Prosser, J. I., Baggs, E. M.: *Nitrosospira* spp. can produce
 nitrous oxide via a nitrifier denitrification pathway, Environ. Microbiol., 8, 214–222, 2006.
 - Stein, L. Y.: Surveying N₂O-Producing Pathways in Bacteria, Methods Enzymol., 486, 131–152, 2011.
 - Stieglmeier, M., Mooshammer, M., Kitzler, B., Wanek, W., Zechmeister-Boltenstern, S., Richter, A., and Schleper, C.: Aerobic nitrous oxide production through N-nitrosating hybrid formation in ammonia-oxidizing archaea, ISME J., 8, 1135–1146, 2014.
- 20 Sutka, R. L., Ostrom, N. E., Ostrom, P. H., Gandhi, H., and Breznak, J. A.: Nitrogen isotopomer site preference of N₂O produced by Nitrosomonas europaea and Methylococcus capsulatus Bath, Rapid Commun. Mass Spectrom., 17, 738–745, 2003.
 - Sutka, R. L., Ostrom, N. E., Ostrom, P. H., Breznak, J. A., Gandhi, H., Pitt, A. J., and Li, F.: Distinguishing Nitrous Oxide Production from Nitrification and Denitrification on the Basis of Isotopomer Abundances, Appl. Environ. Microbiol., 72, 638–644, 2006.
 - Syakila, A., and Kroeze, C.: The global nitrogen budget revisited, J. Greenhouse Gas Meas. Manag., 1, 17–26, 2011.

- Tan, E., Zou, W., Jiang, X., Wan, X., Hsu, T. C., Zheng, Z., Chen, L., Xu, M., Dai, M., Kao, S.: Organic matter decomposition sustains sedimentary nitrogen loss in the Pearl River Estuary, China, Sci. Total. Environ., 648, 508–517, 2019
- Toyoda, S., Mutobe, H., Yamagishi, H., Yoshida, N., Tanji, Y.: Fractionation of N₂O isotopomers during production by denitrifier, Soil. Biol. Biochem., 37, 1535–1545, 2005.
- Toyoda, S., Yoshida, N., and Koba, K.: Isotopocule analysis of biologically produced nitrous oxide in various environments, Mass Spectrom. Rev., 36, 135–160, 2017.
- Usui, T., Koike, I., and Ogura, N.: N₂O production, nitrification and denitrification in an estuarine sediment, Estuar. Coast. Shelf Sci., 52, 769-781, 2001.
- 10 Voss, M., Bange, H. W., Dippner, J. W., Middelburg, J. J., Montoya, J. P., and Ward, B.: The marine nitrogen cycle: recent discoveries, uncertainties and the potential relevance of climate change, Philos. Trans. R. Soc. B-Biol. Sci., 368, 20130121, 2013.
 - Wanninkhof, R. I. K.: Relationship between wind speed and gas exchange over the ocean, J. Geophys. Res.-Oceans, 97, 7373–7382, 1992.
- Weiss, R. F., and Price, B. A.: Nitrous oxide solubility in water and seawater, Mar. Chem., 8, 347–359, 1980.
 - Yoshida, N.: ¹⁵N-depleted N₂O as a product of nitrification, Nature, 335, 528–529, 1988.
 - Yu, R., Kampschreur, M. J., Mark van Loosdrecht, C. M., and Chandran, K.: Mechanisms and Specific Directionality of Autotrophic Nitrous Oxide and Nitric Oxide Generation during Transient Anoxia, Environ. Sci. Technol., 44, 1313–1319, 2010.
 - Zhang, Y., Xie, X., Jiao, N., Hsiao, S. S. Y., and Kao, S. J.: Diversity and distribution of *amoA*-type nitrifying and *nir*S-type denitrifying microbial communities in the Yangtze River estuary, Biogeosciences, 11, 2131–2145, 2014.
 - Zhu, R., Liu, Y., Li, X., Sun, J., Xu, H. and Sun, L.: Stable isotope natural abundance of nitrous oxide
- emitted from Antarctic tundra soils: effects of sea animal excrement depositions, Rapid Commun.
 Mass Spectrom., 22, 3570–3578, 2008.

Figure 1: Map of the Pearl River Estuary showing the sampling sites. Biogeochemical analyses were performed on samples from all sites. The green circles indicate sites from which genes and transcripts were analyzed. The black crosses indicate in situ incubation experiment sites. The black asterisks indicate samples from which the isotopic composition of N₂O was analyzed.

- 1 Figure 2: Distribution of biogeochemical factors along the PRE transect. (a) Salinity, (b) NH₃/NH₄⁺, (c)
- 2 $NO_2^- + NO_3^-$, (d) DO, (e) N₂O, and (f) ΔN_2O concentration, (g) N₂O flux, (h) $\delta^{15}N_{N2O}$, (i) ΔN_2O vs. DO,
- 3 and (j) N₂O flux vs. DO. The dashed lines show the division of the transect into the northern (upstream
- 4 of the Humen outlet) and southern (Lingdingyang) areas. The arrows indicate the sites where the in situ
- 5 incubation experiments were performed.

1

Figure 3: Abundance distribution of AOA and AOB *amoA* and bacterial *nirS* along the salinity gradient in the PRE. Abundances of AOA *amoA* genes (open circles) and PA transcripts (closed circles) and the relative abundances of PA and FL AOA *amoA* genes in (a) surface water and (b) bottom water. Abundances of AOB *amoA* genes (open triangles) and PA transcripts (closed triangles) and the relative abundances of PA and FL AOB *amoA* genes in (c) surface water and (d) bottom water. Abundance of bacterial *nirS* genes (open squares) and PA transcripts (closed squares) and the relative abundances of PA and FL AOB *amoA* genes in (c) surface water and (d) bottom water. Abundance of bacterial *nirS* genes (open squares) and PA transcripts (closed squares) and the relative abundances of PA transcripts (closed squares) and the relative abundances of bacterial *nirS* genes (open squares) and PA transcripts (closed squares) and the relative abundances of pa transcripts (closed squares) and the relative abundances of bacterial *nirS* genes (open squares) and PA transcripts (closed squares) and the relative abundances of pa transcripts (closed squares) and the relative abundances of bacterial *nirS* genes (open squares) and PA transcripts (closed squares) and the relative abundances of bacterial *nirS* genes (open squares) and PA transcripts (closed squares) and the relative abundances of bacterial *nirS* genes (open squares) and PA transcripts (closed squares) and the relative abundances of bacterial *nirS* genes (open squares) and PA transcripts (closed squares) and the relative abundances of bacterial *nirS* genes (open squares) and PA transcripts (closed squares) and the relative abundances of bacterial *nirS* genes (open squares) and PA transcripts (closed squares) and the relative abundances of bacterial *nirS* genes (open squares) and PA transcripts (closed squares) and the relative abundances of bacterial *nirS* genes (open squares) and PA transcripts (closed squares) and the relative abundances of bacterial *n*

- 1 PA and FL nirS genes in (e) surface water and (f) bottom water. The dashed lines indicate the division
- 2 into the northern (upstream of the Humen outlet) and southern (Lingdingyang) areas.

Figure 4: Variations in nitrogen compounds and N₂O concentrations at sites P01 and P05 during the 2 incubation experiments in surface (open symbols) and bottom (closed symbols) waters. (a, d) Total DIN 3 (brown triangles) and NH₃/NH₄⁺ (blue circles); (b, e) NO₃⁻ (green diamonds) and NO₂⁻ (dark yellow 4 squares); (c, f) N₂O (purple inverted triangles). Linear regressions depend on whether variations in DIN 5 concentration against time retain "mass balance" in a closed incubation system. The linear regressions 6 7 of ammonia were used to estimate ammonia oxidation rates in (a) P01 over 18 and 24 h (surface, blue lines) and 6 and 24 h (bottom, black lines), and (d) P05 over 12 h (surface, blue line; bottom, black line). 8 9 The linear regressions of nitrate estimated nitrite oxidation rates in (b) P01 over 18 h (surface water, green line) and 6 h (bottom water, black line), and (e) P05 after 12 h (surface, green line; bottom, black 10

line). The nitrite linear regressions after 18 h (surface water, dark yellow line) and 6 h (bottom water,
black line) in P01 and 12 h (surface, dark yellow line; bottom, black line) in P05 are also shown, but do
not indicate oxidation rates. The N₂O linear regressions were used to estimate N₂O production rates in
(c) P01 after 18 and 24 h (surface water, purple lines) and 6 and 24 h (bottom water, black lines; dashed
line, no statistical significance test), and (f) P05 after 12 h (surface, purple line; bottom, black line). All
regression formulas, R, and *P* values are shown in Table 1.

1

2 Figure 5: Redundancy analysis of ammonia-oxidizing communities under biogeochemical constraints.

3 Each square represents an individual community. Vectors represent environmental variables. Temp,

4 temperature. *P < 0.05, **P < 0.01 (Monte Carlo permutation test).

1

2 Figure 6: Correlations between ammonia oxidizer community composition and (a) water mass parameters (temperature, salinity, and silicate), (b) substrate parameters (ammonia/ammonium, nitrite, 3 and nitrate), (c) parameters influencing substrate availability (TSM, DO, and pH), or (d) N₂O 4 parameters (N₂O and Δ N₂O). The ammonia oxidizer community matrix was calculated according to 5 AOA and AOB abundances. Dissimilarity matrices of communities were based on Bray-Curtis 6 distances and environmental factors were based on Euclidean distances between samples. Standard and 7 partial Mantel tests were run to measure the correlation between two matrices. Spearman or Kendall's 8 correlation coefficient (R) values are shown for standard (first value) and partial Mantel (second, third, 9 and fourth) tests. The P values were calculated using the distribution of the Mantel test statistics 10 estimated from 999 permutations. P < 0.05; P < 0.01. 11

- 1 Figure 7: N₂O (a) production rates and (b) yields normalized to total *amoA* gene copy or transcript
- 2 numbers of AOA and AOB in a given sample. They are presented along the x-y axes that represent the
- 3 relative contributions of AOA and AOB to the total amoA gene or transcript pools. S, surface; B,
- 4 bottom.

1 **Table 1** Linear regressions of ammonia, nitrite, nitrate, and N₂O concentrations against time and N₂O yields during incubation experiments.

C' (. I	Time	ΔNH ₃ /NH ₄ ⁺ (μmol L ⁻¹ h ⁻¹)			ΔNO_2^- (µmol L ⁻¹ h ⁻¹)			ΔNO_{3}^{-} (µmol L ⁻¹ h ⁻¹)			$\frac{\Delta N_2O}{(nmol \ L^{-1}h^{-1})}$			N ₂ O
Site_Layer	(hour)	Liner Regression	R	Rate	Liner Equation	R	Rate	Liner Regression	R	Rate	Liner Regression	R	Rate	yield ^a
D 01 S	18	y = -0.47 <i>x</i> +163.20	0.98*	0.47	<i>y</i> = 0.20 <i>x</i> +11.69	1.00**	0.20	<i>y</i> = 0.18 <i>x</i> +78.98	0.95*	0.18	y = 0.60x + 120.93	0.98*	0.60 ^b	1.28 ^b
101_3	24	<i>y</i> = -0.53 <i>x</i> +163.44	0.99**	0.53	_	_	-	_	-	-	y = 0.62x + 120.85	0.99**	0.62	_c
	6	<i>y</i> = -1.08 <i>x</i> +160.65	1.00*	1.08	y = 0.42x + 10.95	1.00*	0.42	y = 0.23x + 78.84	0.99	0.23	<i>y</i> = 1.61 <i>x</i> +127.04	0.99	1.61 ^b	1.49 ^b
101_В	24	<i>y</i> = -0.69 <i>x</i> +159.76	0.98**	0.69	-	-	-	_	-	-	<i>y</i> = 0.70 <i>x</i> +129.14	0.93*	0.70	_c
P05_S	12	<i>y</i> = -1.12 <i>x</i> +43.58	0.98*	1.12	y = 0.73x + 18.78	1.00**	0.73	<i>y</i> = 0.46 <i>x</i> +116.58	0.99**	0.46	<i>y</i> = 1.15 <i>x</i> +79.79	0.99**	1.15 ^b	1.03 ^b
P05_B	12	<i>y</i> = -0.89 <i>x</i> +30.25	0.98*	0.89	y = 0.42x + 18.17	0.98*	0.42	y = 0.44 <i>x</i> +127.83	1.00**	0.44	y = 1.41x+81.57	0.98*	1.41 ^b	1.58 ^b

2 ^aµmol N₂O produced per mol ammonia oxidized.

3 ^bThese rates and yields (when only nitrification occurred) were used to calculate the average *amoA* gene copy-specific N₂O production rates and

4 N_2O yields in Figure 7.

5 °No estimation of N₂O yield was made due to nitrification and denitrification may occur concurrently.

 $6 \qquad {}^{*}P < 0.05; \, {}^{**}P < 0.01.$

7 -No regression analysis or no estimation made.

1

Table 2 R values for the relationships between nitrifier and denitrifier gene abundances and biogeochemical parameters in the PRE.

Biogeochemical parameters		PA + FL		(PA (> 0.8 μm)		FL (0.22–0.8 μm)			
6 1	AOA-amoA (n =16)	AOB-amoA (n =16)	<i>nir</i> S (n =16)	AOA-amoA (n =16)	AOB-amoA (n =14)	<i>nir</i> S (n =16)	AOA-amoA (n =16)	AOB- <i>amo</i> A (n =16)	<i>nir</i> S (n =16)	
Temperature	-0.694**	0.359	0.085	-0.676**	0.303	0.165	-0.438	0.358	0.229	
Salinity	0.644**	-0.339	-0.018	0.604^{*}	-0.270	-0.047	0.403	-0.351	-0.356	
SiO ₃ -	-0.541*	0.559^{*}	0.206	-0.497	0.503^{*}	0.282	-0.350	0.481	0.238	
TSM	-0.109	0.668^{**}	0.047	-0.097	0.612^{*}	0.194	0.191	0.565^{*}	-0.071	
рН	0.381	-0.656**	0.157	0.316	-0.615*	0.088	0.377	-0.605*	-0.059	
DO	-0.074	-0.771**	-0.026	-0.121	-0.729**	-0.144	0.009	-0.697**	0.218	
NH_3/NH_4^+	-0.482	0.646**	0.068	-0.482	0.571^{*}	0.196	-0.325	0.587^*	0.000	
NO ₃ -	-0.485	0.359	-0.138	-0.444	0.353	-0.112	-0.588^{*}	0.213	0.115	
NO ₂ -	-0.588^{*}	0.447	0.126	-0.556*	0.356	0.212	-0.421	0.288	0.265	
N_2O	-0.421	0.641**	-0.194	-0.356	0.606^{*}	-0.121	-0.385	0.490	0.047	
$\Delta N_2 O$	-0.527*	0.559^{*}	-0.160	-0.480	0.517^{*}	-0.081	-0.369	0.504	0.096	
N ₂ O flux ^a	-0.190 (n = 8)	$\frac{1.000^{**}}{(n=8)}$	-0.524 (n = 8)	-0.143 (n = 8)	$\frac{1.000^{**}}{(n=8)}$	-0.310 (n = 8)	-0.571 (n = 8)	0.657 (n = 6)	-0.524 (n = 8)	

2 ^aSurface data; P < 0.05; P < 0.01.