

Deep-sea sponge grounds as nutrient sinks: Denitrification is common in boreo-arctic sponges

5 Christine Rooks¹, James Kar-Hei Fang², Pål Tore Mørkved³, Rui Zhao¹, Hans Tore Rapp^{1, 4, 5},
Joana R. Xavier^{1, 6} and Friederike Hoffmann¹.

¹Department of Biological Sciences, University of Bergen, Postboks 7803, 5020, Bergen, Norway.

2 ²Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic
10 University, Hung Hom, Hong Kong.

³Department of Earth Sciences, University of Bergen, Postboks 7803, 5020, Bergen, Norway.

⁴K.G. Jebsen Centre for Deep Sea Research, University of Bergen, Postboks 7803, 5020, Bergen,
Norway.

⁵NORCE, Norwegian Research Centre, NORCE Environment, Nygårdsgaten 112, 5008 Bergen,
15 Norway

⁶CIIMAR – Interdisciplinary Centre of Marine and Environmental Research of the University of
Porto, 4450-208 Matosinhos, Portugal.

Key words: Denitrification, denitrification rates, boreal, Arctic, deep-sea sponges, sponge
20 grounds.

Abstract

Sponges are commonly known as general nutrient providers for the marine ecosystem, recycling organic matter into various forms of bio-available nutrients such as ammonium and nitrate. In this study we challenge this view. We show that nutrient removal through microbial denitrification is a 5 common feature in six cold-water sponge species from boreal and Arctic sponge grounds. Denitrification rates were quantified by incubating sponge tissue sections with $^{15}\text{NO}_3^-$ - amended oxygen saturated seawater, mimicking conditions in pumping sponges, and de-oxygenated seawater, mimicking non-pumping sponges. Rates of anaerobic ammonium oxidation (anammox) using incubations with $^{15}\text{NH}_4^+$ could not be detected. Denitrification rates of the different sponge 10 species ranged from below detection to $97 \text{ nmol N cm}^{-3} \text{ sponge day}^{-1}$ under oxic conditions, and from 24 to $279 \text{ nmol N cm}^{-3} \text{ sponge day}^{-1}$ under anoxic conditions.

A positive relationship between the highest potential rates of denitrification (in the absence of oxygen) and the species-specific abundances of *nirS* and *nirK* genes encoding nitrite reductase, a key enzyme for denitrification, suggests that the denitrifying community in these sponge species is 15 active and prepared for denitrification. The lack of a lag phase in the linear accumulation of the ^{15}N labelled N_2 gas in any of our tissue incubations is another indicator for an active community of denitrifiers in the investigated sponge species.

Low rates for coupled nitrification-denitrification indicate that also under oxic conditions, nitrate to fuel denitrification rates was derived rather from the ambient seawater than from sponge 20 nitrification. The lack of *nifH* genes encoding nitrogenase, the key enzyme for nitrogen fixation, shows that the nitrogen cycle is not closed in the sponge grounds. The denitrified nitrogen, no matter of its origin, is then no longer available as a nutrient for the marine ecosystem.

These results suggest a high potential denitrification capacity of deep-sea sponge grounds based on typical sponge biomass on boreal and Arctic sponge grounds, with areal denitrification rates of

0.6 mmol N m⁻² day⁻¹ assuming non-pumping sponges and still 0.3 mmol N m⁻² day⁻¹ assuming pumping sponges. This is well within the range of denitrification rates of continental shelf sediments. Anthropogenic impact and global change processes affecting the sponge redox state may thus lead to that deep-sea sponge grounds change their role in the marine ecosystem from 5 being mainly nutrient sources to becoming mainly nutrient sinks.

1 Introduction

Sponges are sessile filter feeders with an immense capacity to process large volumes of seawater (Kahn et al., 2015;Reiswig, 1974). As such, they play a critical role in benthic-pelagic coupling, recycling particulate or dissolved organic matter from the water column into various forms of bio- 5 available nutrients (Brusca and Brusca;Reiswig, 1974;Yahel et al., 2003;Hoffmann et al., 2009;Schläppi et al., 2010a;Maldonado et al., 2012;de Goeij et al., 2013;Rix et al., 2016). Sponges show an active nitrogen metabolism, as recently reviewed by (Feng and Li, 2019;Folkers and Rombouts, 2020;Pawlik and McMurray, 2019;Zhang et al., 2019). Actively pumping sponges have been associated with the release of dissolved inorganic nitrogen (DIN), enriching ex-current waters 10 with excess ammonium (NH_4^+) and/or nitrite and nitrate (NO_3^- and/or NO_2^- , summarized as NO_x^-) (Southwell et al., 2008;Fiore et al., 2013;Keesing et al., 2013;Leys et al., 2018;Hoer et al., 2018). Whilst NH_4^+ is excreted by sponge cells as a metabolic waste product (Yahel et al., 2003), NO_x^- is derived from the microbial oxidation of NH_4^+ , through NO_2^- , to NO_3^- in aerobic nitrification 15 (Painter, 1970;Corredor et al., 1988;Diaz and Ward, 1997;Jiménez and Ribes, 2007;Schläppi et al., 2010a;Southwell et al., 2008;Radax et al., 2012;Fiore et al., 2010). Nitrogen fixation has also been reported in shallow water sponges (Wilkinson and Fay, 1979;Wilkinson et al., 1999;Mohamed et al., 2008;Ribes et al., 2015), reducing biologically inaccessible N_2 gas to NH_4^+ , which represents yet another source of DIN from sponges. DIN release has been affiliated with a 20 number of deep-sea and shallow water sponges and varies according to species (Schläppi et al., 2010a;Radax et al., 2012;Keesing et al., 2013), as well as on temporal (Bayer et al., 2008;Radax et al., 2012) and spatial scales (Fiore et al., 2013;Archer et al., 2017). Such variations have been linked to abiotic conditions, as well as the availability of organic matter or nutrients in the water column (Bayer et al., 2008;Archer et al., 2017;Fiore et al., 2013).

In any case, since nitrification is dependent on oxygen, NO_x^- release is dependent on active filtration, delivering an excess of O_2 to sponge tissues. (Reiswig, 1974; Hoffmann et al., 2008; Southwell et al., 2008; Pfannkuchen et al., 2009; Fiore et al., 2013; Keesing et al., 2013; Leys et al., 2018). Fluctuations in pumping activity, however, disrupt the delivery of O_2 to sponge tissues, resulting in either heterogeneous oxygenation within the sponge matrix or complete anoxia (Hoffmann et al., 2005; Hoffmann et al., 2008; Schläppy et al., 2010b; Schläppy et al., 2007). Under such conditions, a paucity of oxygen would inevitably promote anaerobic microbial processes.

Anaerobic N-transformations have been quantified using ^{15}N tracer experiments in deep-sea (Hoffmann et al., 2009) and shallow water sponges (Schläppy et al., 2010a; Fiore et al., 2013). In the deep-sea sponge, *Geodia barretti*, the removal of fixed nitrogen via heterotrophic denitrification (the sequential and anaerobic reduction of NO_3^- , via NO_2^- , to N_2) was shown to exceed sedimentary denitrification rates at equivalent depths by a factor 2 to 10 (Hoffmann et al., 2009). Also anaerobic ammonium oxidation (anammox, transforming NH_4^+ and NO_2^- to N_2) was quantified in that study, as well as nitrification performed simultaneously with denitrification (coupled nitrification-denitrification). Given that marine sediments are considered the major sites of marine N-transformations (Middelburg et al., 1996; Seitzinger, 1988), sponges may thus represent a significant, yet largely overlooked sink for bioavailable nitrogen (Hoffmann et al., 2009).

The redox state of the sponge tissue as well as the rates of the different N-transforming processes could thus determine whether the sponge may act as a nutrient source or a nutrient sink. It has been observed in field studies that sponges can act as both net sources or sinks for NH_4^+ and NO_3^- (Fiore et al., 2013; Archer et al., 2017); however the balance of the underlying processes and their controlling factors, have not as yet been quantified.

The understanding of such processes and their dynamics is particularly relevant for areas where sponges occur in high densities forming highly structured habitats as is the case of the sponge grounds found widely distributed across the deeper areas of the oceans. In such areas, sponges 5 can represent up to 95% of the total invertebrate biomass (Murillo et al., 2012) and attain densities of up to 20 individuals m⁻² (Hughes and Gage, 2004). In the North Atlantic boreo-arctic region the widely distributed sponge grounds have traditionally been divided into two main types. The cold-water (arctic) type, generally found along continental slopes and mid-ocean ridges at negative temperatures, or at least below 3-4°C, and comprising a multi specific assemblage of 10 demosponges (the astrophorids *Geodia parva*, *G. hentscheli* and *Stelletta raphidiophora*) and glass sponges (the hexactinellids *Schaudinnia rosea*, *Trichasterina borealis*, *Scyphidium septentrionale* and *Asconema foliata*) (Cardenas et al., 2013; Klitgaard and Tendal, 2004; Roberts et al., 2018). The boreal type is mainly found along continental shelves and upper slopes and at temperatures above 4 °C. These grounds are dominated by the astrophorids *Geodia barretti*, *G. atlantica*, *Stryphnus fortis* and *Stelletta normani* (Cardenas et al., 2013; Klitgaard and Tendal, 15 2004; Murillo et al., 2012). To make reliable estimates on the potential nitrogen sink function of these deep-sea sponge grounds, denitrification rates from more sponge ground species are needed.

In this study we quantify the potential nutrient sink function of six sponge species which 20 characterize the two main types of boreo-arctic Tetractinellid sponge grounds. We aim to test our hypothesis that nutrient removal through microbial denitrification is a common feature in cold-water sponges, and that rates are dependent on oxygen availability in the sponge tissue. Based on these results we aim to estimate the potential nutrient sink function of boreo-arctic sponge grounds for the marine ecosystem.

2 Materials and Methods

2.1 Site description

Arctic sponge species were collected at the Schulz Bank ($73^{\circ} 50' N$, $7^{\circ} 34' E$). This is a large seamount located at the transition between the Mohn and the Knipovich ridges, two of the main sections of the Arctic Mid-Ocean Ridge (AMOR). The seamount rises from more than 2.500 m depth and its summit and shallower areas (550-700 m depth) host a dense and diverse sponge ground composed of a multispecific assemblage of species dominated by tetractinellid desmosponges (*Geodia parva*, *G. hentscheli*, and *Stelletta raphidiophora*) and hexactinellid sponges (*Schaudinnia rosea*, *Trichasterina borealis*, *Scyphidium septentrionale*, and *Asconema foliata*). Exact hydrodynamic settings at the summit is not known, but conditions measured using a benthic lander at 670 m (i.e. 70-80 m below it) revealed a water temperature just below $0^{\circ}C$, salinity of 34.9, and dissolved oxygen between $12.4-12.6 \text{ mg L}^{-1}$. Near-bed suspended particulate matter concentrations was determined to be 3.2 mg L^{-1} , considerably larger than those observed both in surface and deeper waters (where values range from less than 1 and 2 mg L^{-1}) (Roberts and J., 2018; Roberts et al., 2018).

Boreal sponge species were collected on the hard bottom slope of the fjord Korsfjord ($60^{\circ}09'12''N$, $05^{\circ}08'52''E$) near the city of Bergen on the west coast of Norway. Hard bottom slopes of these fjords, which can be several hundred meters in deep, host dense assemblies of typical boreal sponges, dominated by tetractinellid demosponges such as different species of the Geodiidae. Site characteristics are described elsewhere (Hoffmann et al., 2003).

Average sponge biomass (kg/m^2) in both Arctic and boreal grounds was estimated from trawl catches and underwater imagery collected in the course of various sampling campaigns.

2.2 Sample collection and preparation

Intact individuals from each of the key Arctic species, *Geodia hentscheli* (n=3), *Geodia parva* (n=3) and *Stelletta raphidiophora* (n=3) were retrieved from a depth of 700m at the top of Schulz Bank. Sponges were collected with a remotely operated vehicle (ROV) on board the R/V GO Sars 5 in June 2016

Intact individuals from each of the key boreal species, *Geodia barretti* (n=3), *Geodia atlantica* (n=3) and *Stryphnus fortis* (n=3) were collected from a depth of 200m at the slope of Korsfjorden, Norway. Sponge individuals were retrieved using a triangular dredge deployed from the R/V Hans Brattstrøm in November 2016.

10 Upon retrieval, samples were immediately transferred into containers holding low-nutrient seawater, directly recovered from the sampling site. Following species identification, intact individuals were either transported to the aquaria at the University of Bergen (ca. 1h; boreal species), or immediately to the lab on board the R/V G.O. SARS (Arctic species). Sponge tissue, from three intact individuals, was then dissected for use in either ¹⁵N-labelled tissue incubations or 15 preserved for subsequent DNA extraction for each species.

Whilst completely immersed in site water, the massive sponge individuals were cut into 3 sections of approximately equal size to aid dissection. Using an autoclaved stainless steel core (internal diameter = 0.74cm; length = 7cm), the choanosomal portion of the sponge was sliced from each section to produce cylindrically-shaped tissue samples. Three whole sponges (n=3) were collected 20 for each species. The dissected tissue from a single sponge individual represented one replicate. Avoiding exposure to air, tissue samples were then transferred to 1L containers holding site water. Using a sterile scalpel, the tissue cylinders were further sectioned (under water) into pieces of equal

size (volume = 0.45cm³). The samples were then either distributed into 12mL gas-tight vials (Exetainer, Labco, High Wycombe, UK) for incubation with ¹⁵N isotopes, or into 1.5mL microcentrifuge tubes, snap frozen and stored at -80°C for subsequent DNA extraction.

Sediment was collected from the Arctic sponge grounds using a box-corer. The upper few 5 centimeters were sampled, homogenised and packed into 10 mL sterile cut-off syringes. 1mL of sediment was then either distributed into 3mL gas tight vials (Exetainer, Labco, High Wycombe, UK) for ¹⁵N isotope incubations or into 1.5ml microcentrifuge tubes (Eppendorf), snap-frozen and stored at -80°C for subsequent DNA extraction. At the boreal sponge ground, sponges were collected from the rocky slope of the fjord. It was therefore not possible to collect sediment from 10 this site.

2.3 Quantifying rates of N-removal processes in sponge tissues and deep-sea sediments

2.3.1 Sponge tissue incubations

For simulating conditions in pumping and non-pumping sponges, sponge tissue sections were incubated with oxygen-saturated (standard temperature and pressure) and degassed site water 15 (oxygen free seawater, degassed with ultra high purity He). Site water was retrieved using 10L Niskin flasks mounted on a CTD rosette water sampler aboard the R/V GO Sars. This water was collected at a depth of approximately 650m, just above the summit of the seamount. It was then filtered to remove water column bacteria and or phytoplankton (0.2μm polycarbonate filters, Whatman Nucleopore) and added to all incubations with Arctic specimens. Boreal specimens were 20 incubated with sand filtered seawater, pumped into the aquaria at the University of Bergen from a local fjord. This water was sourced from a depth of 130m.

To ensure that all labelled N₂ gas was retained, it was necessary to maintain gas-tight conditions in each of the incubations. Consequently, no oxygen could be added during the experiment. Estimating from typical respiration rates of 0.32 µmol O₂ mL sponge⁻¹ h⁻¹ in *G. barretti* (Leys et al., 2018), this would suggest the complete removal of oxygen (by sponge cells and associated 5 microbes) following 26 hours of incubation (12 ml exetainer, sponge pieces 0.45 cm³, oxygen concentration at experiment start 313 µmol/L). This means that oxygen concentrations in the aerobic incubation continuously decreased from oxygen saturation to zero throughout the course of the experiment, thus mimicking conditions where a sponge has recently ceased pumping, or where pumping occurs at a low rate (Fang et al., 2018; Hoffmann et al., 2008; Schläppy et al., 10 2010b). Nevertheless, we can assume that oxygen was available during the first 26 hours of incubation in the oxic experiment, in contrast to the anoxic experiment where oxygen was absent from the beginning of the incubation, thus mimicking non-pumping conditions (Hoffmann et al., 2008; Schläppy et al., 2010b).

For the oxic incubations, 12 mL of air-saturated (standard temperature and pressure) seawater was 15 transferred into 12 mL gas tight vials. Using autoclaved forceps, one piece of freshly dissected tissue was then placed into each gas tight vial, until a sufficient number of samples were prepared for the incubations. The caps were then replaced and the vial was carefully sealed to exclude any air bubbles.

For the anoxic incubations, 2L of site water was de-gassed with ultra high purity He for 2h. To 20 verify the absence of oxygen in the de-gassed water, an anaerob strip test (colour change from pink to white under anaerobic conditions; Sigma Aldrich) was performed prior to transfer into 12mL exetainers. The caps were then replaced and the gas tight vials were carefully sealed to exclude any

air bubbles. An anaerob strip was added to control exetainers (seawater only) to verify the absence of oxygen during anaerobic incubations.

Incubations were prepared in four sets of 1 un-amended reference (no isotope added) and 5 amended (^{15}N labelled) samples per in-tact sponge (x3 in-tact sponge individuals/ species). Each 5 set was then either injected (gas tight luer lock syringes, VICI, USA) with air saturated (at standard temperature and pressure, for oxic incubations) or oxygen free (de-gassed; for anoxic incubations) concentrated stock solutions of i) $\text{Na}^{15}\text{NO}_3^-$ (99.2 ^{15}N atm. %), screening for denitrification; or ii) $^{15}\text{NH}_4^+$ Cl^- ($\geq 98.$ ^{15}N atm %) and $\text{Na}^{14}\text{NO}_3^-$, screening for anammox. Solutions were shaken vigorously. The final concentrations of i) $^{15}\text{NO}_3^-$; or ii) $^{15}\text{NH}_4^+$; $^{14}\text{NO}_3^-$ were $100\mu\text{M}$ NO_3^- and 10 $10\mu\text{M}$ NH_4^+ respectively. These values were essentially 10 times above ambient NO_3^- ($10\mu\text{M}$ NO_3^-) and NH_4^+ concentrations ($<1\mu\text{M}$ NH_4^+) present in the seawater. Prior to the incubations, however, background nutrient concentrations were unknown. In this regard, to ensure that the availability of ^{15}N was sufficient for the measurement of denitrification and or anammox (e.g. at least 50% above the ambient pool of ^{14}N), we selected high concentrations of stock solutions (Holtappels et al., 15 2011). To enable continuous homogenisation of the isotopic label with sponge tissue, exetainers were placed on rollers (Spiromix, Denley) and incubated at (6°C) in the dark. At zero hours, and at subsequent 3-6 hour intervals, a selection of samples were injected with 2mL of ultra high purity helium to create an oxygen free headspace using a gas-tight syringe. The vials were then injected with $200\mu\text{L}$ of formaldehyde, and shaken vigorously to inhibit further microbial activity. This was 20 repeated over a period of 48 hours.

2.3.2 Sediment slurry incubations

One mL of the homogenised sediment was distributed into 3mL gas-tight vials (Exetainer, Labco, High Wycombe, UK) with 1mL of de-gassed site water (as above). The cap was replaced, the headspace (1mL) flushed with ultra-high purity helium and each vial was shaken vigorously to produce an anaerobic sediment slurry. Anaerobic slurries were prepared as 2 sets of un-amended 5 references (no isotopic mixture added) and 5 amended samples in incubations screening for either anammox and or denitrification. Amended samples were injected with oxygen free isotopic mixtures (as above) and placed on rotating rollers (Spiromix, Denley) in a constant temperature room (6°C) in the dark. At zero hours, and every subsequent 3-6 hours, 3 samples per sponge 10 species (one from each replicate specimen) was injected with 200µL of formaldehyde, and shaken vigorously to inhibit further microbial activity. This was repeated over a period of 48 hours. Concentrations of $^{28}\text{N}_2$, $^{29}\text{N}_2$ and $^{30}\text{N}_2$ were measured as above and calculations for denitrification and or anammox were performed as per (Thamdrup and Dalsgaard, 2002) and (Risgaard-Petersen et al., 2003).

15 2.3.3 *Calculation of denitrification and anammox rates*

Concentrations of $^{28}\text{N}_2$, $^{29}\text{N}_2$ and $^{30}\text{N}_2$ were measured by directly sub-sampling 70µL from the gas 20 headspace on a GC (Trace GC, Thermo Fisher Scientific, Bremen) connected to a continuous flow isotope ratio mass spectrometer (Delta V plus, Thermo Fisher Scientific, Bremen) calibrated with in house reference gas and air. Though we never observed visual signs for tissue degradation (see for example (Hoffmann et al., 2003;Osinga et al., 2001;Osinga et al., 1999) for description of how to spot signs of sponge tissue degradation), some samples showed an abrupt increase in N_2 production, indicating the onset of tissue degradation. These were not included in the analyses and

rate calculations. Calculations for rates of both anammox and denitrification were based on established methods for measuring these processes in sediments (Thamdrup and Dalsgaard, 2002; Risgaard-Petersen et al., 2003). Rates were calculated from the linear increase in excess N₂-accumulation over time as measured from the isotope ratio mass spectrometer.

5 The accumulation of excess ²⁹N₂ and ³⁰N₂, from incubations with ¹⁵NO₃⁻, was linear over a 24h period ($p<0.05$) and precluded an initial lag phase (Figures 1a and 1b). This was the case for all species. In the oxic incubations, after 24 hours a sharp non-linear increase in labelled N₂ was detected. This is in good agreement with our calculations for oxygen depletion (26 hours, see above). Since we observed no signs of tissue degradation in these during the 48 hours of

10 incubation this increase was taken to indicate a switch of metabolic processes within the sponge towards predominantly anaerobic pathways, and thus, a different denitrification rate. For the anoxic incubations, N₂-production was also linear during the first 24 hours of incubations, although the data were more scattered when compared with oxic incubations. The scatter increased after 24 hours, though most incubations still followed a similar linear trend.

15 For best comparability of denitrification rates from oxic and anoxic incubations, only the first 24 hours, where N₂ production was linear in all experiments, and where oxygen was assumed to be present in the extainers of the oxic incubation, were used to calculate denitrification rates.

No ²⁹N₂ production was detected following labelling with ¹⁵NH₄⁺ and ¹⁴NO₃⁻, suggesting an absence of anammox activity. Therefore, no anammox rates could be calculated. The N₂ produced

20 during the ¹⁵NO₃⁻/¹⁴NH₄⁺ experiments is assumed to originate entirely from denitrification.

2.3.4 Calculation of coupled nitrification-denitrification and the denitrification of NO₃⁻ derived from ambient seawater

To determine the predominant source of NO_3^- fueling denitrification, rates of coupled nitrification-denitrification and the denitrification of NO_3^- supplied by the ambient seawater, were calculated according to the methods of Nielsen (1992) (Nielsen, 1992). Production of NO_3^- can occur endogenously via the aerobic oxidation of NH_4^+ to NO_3^- within the sponge tissues. In turn, this represents a source of NO_3^- for denitrification which ‘couples’ nitrification to denitrification. Alternatively, denitrification can simply be fueled by NO_3^- diffusing from the ambient seawater. By taking into consideration the frequency of 14 and $^{15}\text{NO}_3^-$ availability, in addition to random isotope pairing, it is possible to calculate the source of denitrified NO_3^- from the abundance of 28 , 29 and $^{30}\text{N}_2$ in all oxic incubations.

10 Denitrification rates were calculated from the production of ^{15}N isotopes (see below) according to the method described by Nielsen (1992).

$$D_{15} = p(^{14}\text{N}^{15}\text{N}) + 2p(^{15}\text{N}^{15}\text{N}) \quad (1)$$

15 $D_{14} = \frac{p(^{14}\text{N}^{15}\text{N})}{2p(^{15}\text{N}^{15}\text{N})} D_{15}$ (2)

The rate of denitrification was measured from ^{15}N isotope production (equations 1 and 2). D_{15} and 20 D_{14} represent denitrification of labelled $^{15}\text{NO}_3^-$ and $^{14}\text{NO}_3^-$, respectively. $p(^{14}\text{N}^{15}\text{N})$ and $p(^{15}\text{N}^{15}\text{N})$ are the production rates of the 2 labelled N_2 species $^{14}\text{N}^{15}\text{N}$ and $^{15}\text{N}^{15}\text{N}$ (Rysgaard et al., 1995). Essentially, D_{15} is indicative of denitrification of labelled $^{15}\text{NO}_3^-$ and D_{14} represents *in situ* denitrification of $^{14}\text{NO}_3^-$.

To estimate denitrification of NO_3^- from the ambient water (D_w), in terms of D_{14} , the following calculation was applied (equation 3):

5 $D_w = D_{15} [^{14}\text{NO}_3]_w / [^{15}\text{NO}_3]_w$ (3)

10 where $[^{14}\text{NO}_3]_w$ and $[^{15}\text{NO}_3]_w$ represent the concentration of unlabeled and labelled NO_3^- in the ambient water. D_w thus represents an estimate of denitrification of NO_3^- at ambient NO_3^- concentrations (approximately 10uM) and we are in the rest of the publication referring to this as denitrification rates if nothing else is stated.

In situ coupled denitrification (D_n), in terms of D_{14} , was calculated using equation 4 (see below).

15 $D_n = D_{14} - D_w$ (4)

2.4 Screening and quantifying the abundance of *nirS*, *nirK* and *nifH* genes

Total DNA was extracted from dissected sponge pieces (0.45cm³of sponge tissue) using a FastDNA Spin Kit for Soil (mpbio, Santa Ana, CA, USA) following the manufacturer's 20 instructions. In total, DNA was extracted from 3 tissue samples retrieved from each of the intact sponges (3 intact individuals sampled/ key species) as well sediment samples (1mL, ~2g sediment slurry) and sample blanks (RNase free water). DNA extracts were eluted into 100 μL of PCR grade double distilled H_2O and stored at -20°C until further analysis.

The functional genes diagnostic of nitrogen fixation (*nifH* encoding nitrogenase) and denitrification (*nirS/K* encoding nitrite reductase) in sponges were screened using conventional PCR of 40 cycles. *nifH* gene was amplified using the primer pair nifHfw/nifHrv (Mehta et al., 2003) with the following thermal conditions: 94°C for 15 min, and 40 cycles of 94°C for 30 s, 55°C for 30 s, 72°C for 60 s. *nirS/K* genes were amplified using the primers and thermal conditions as described below. Each reaction mixture (25µl total volume) contained the following: 1× HotStar Taq® Master Mix (Qiagen, Hilden, Germany), 1.2 µM of each primer and 1 µl template DNA. PCR products were evaluated by visual inspection on 1% agarose gels.

The abundance of *nirS* or *nirK* genes of denitrifying bacteria were quantified using quantitative PCR (qPCR) on a StepOne Real-Time PCR system (Applied Biosystems). *nirS* genes were amplified using the primer pair nirS_cd3aF/nirS_R3cd (Throback et al., 2004), with thermal conditions as follows: 95°C for 15 min, 45 cycles of denaturing at 95°C for 15 s, annealing at 51°C for 30 s, and elongation at 72°C for 45 s. The *nirK* gene was amplified using the primer pair nirK_F1aCu/ nirK_R3Cu, with the following thermal conditions: 95°C for 15 min, 45 cycles of denaturing at 95°C for 30 s, annealing at 51°C for 45 s, and elongation at 72°C for 45 s. All qPCR reactions were run in triplicate and each reaction mixture contained 1× QuantiTech SybrGreen PCR master mixture (QIAgen, Germany), 0.5 µM forward and reverse primer and 1 µl of DNA template in a final volume of 20 µL. qPCR standard of each gene was linear DNA containing respective genes from an uncultured denitrifying bacterium in an Arctic permafrost soil. For each gene, the DNA concentration of the standard was measured using BIO-analyzer (DNA 1000 chips, Agilent Technologies) and a DNA abundance gradient of 10-10⁵ copies µL⁻¹ were prepared by 10x serial dilution.

2.5 Statistical analyses

Statistical analyses were performed to test for significant differences in (i) species-specific rates of denitrification or (ii) variations in the rates of denitrification according to oxygen availability. The data set failed to meet the assumptions of normality or equal variance. As a result, the data set was 5 transformed by rank prior to two-way ANOVA. All pairwise multiple comparisons were performed using the Holm-Sidak method at species level. In all cases, the level of significance was set to at least $p < 0.05$. Statistical analyses were performed using the software SigmaPlot 13.0 (Systat Software, CA, USA).

3 Results

3.1 Denitrification activity in sponge tissues

The lack of $^{29}\text{N}_2$ production following labelling with $^{15}\text{NH}_4^+$ as observed in our study suggests an absence of anammox, since N_2 production via anammox requires 1 N from NO_2^- (which is not labelled) and 1 N from NH_4^+ (which is ^{15}N labelled). Therefore, no anammox rates could be calculated and the labelled N_2 produced during the $^{15}\text{NO}_3^-$ incubations is assumed to originate entirely from denitrification. Denitrification rates at ambient NO_3^- concentrations as calculated from this linear N_2 -release (Eq 1- 4 in ch 2.3) were quantified in all 6 sponge species and are shown in figure 2. Mean rates of denitrification varied significantly between species (two-way ANOVA, $F_{1,5}=117,337, p<0.01$) and in the presence or absence of dissolved oxygen (two-way ANOVA, $F_{1,5}=141,235, p<0.01$). A significant interaction between species and the availability of dissolved oxygen was also identified by two-way ANOVA ($F_{1,5}=9,315, p=0.037$). Mean rates of denitrification were always greater in incubations with de-gassed seawater relative to incubations with fully air saturated seawater (Fig. 2). Under oxic conditions, mean rates varied from below detection in *Stryphnus fortis* to a maximum of $96 \text{ nmol N cm}^{-3} \text{ sponge day}^{-1}$ in *Geodia barretti*. However, under anoxic conditions, rates of denitrification ranged from $24 \text{ nmol N cm}^{-3} \text{ sponge day}^{-1}$ in *Geodia atlantica* to $280 \text{ nmol N cm}^{-3} \text{ sponge day}^{-1}$ in *Geodia parva* (Fig.2.). Differences in the rates of denitrification under either aerobic or anaerobic conditions were significant in *Stryphnus fortis* ($t=6.591, p<0.05$), *Geodia barretti* ($t=2.197, p<0.05$), *Geodia hentscheli* ($t=4.577, p<0.05$) *Geodia parva* ($t=8.788, p<0.05$) and *Stelletta raphidiophora* ($t=6.408, p<0.05$). Notably, the Arctic sponge ground species *G. hentscheli* and *G. parva* showed the highest anaerobic denitrification rates, with the boreal species *G. barretti* only slightly below.

No labelled N_2 production was detected in the surface sediment slurries screening for denitrification or anammox.

3.2 Coupled nitrification-denitrification and the absence of nitrogen fixation

In incubations with air saturated seawater, denitrifying activity was detected in all sponges with the exception of *Stryphnus fortis* (Fig. 2). The rates for coupled nitrification-denitrification (Dn, 5 Eq4) were generally low, with 16% for *G. barretti* and 30% for *G. atlantica* as the highest values (Table 1). This shows that sea-water nitrate was the predominant source of nitrate for denitrification also under oxic conditions.

Functional genes for nitrogen fixation were not detected in any of the six sponge species, pointing towards the absence of nitrogen fixing microorganisms in these species.

10

3.3 Correlation between denitrification rates and the abundance of nitrite reductase

Copies of the nitrite reductase genes, *nirS* and *nirK*, were detected in all six sponges, though in different quantities (Table 2). The total nitrite reductase copy number (the sum of mean *nirS* and *nirK* gene copies per cm⁻³ sponge tissue) ranged from 2.19E+03 copies cm⁻³ sponge in *Stryphnus fortis* 15 to 1.03E+09 copies cm⁻³ sponge in *Geodia parva* (Table 2). Although no denitrification activity was measured in the sediment slurry incubations, nitrite reductase was present at an abundance of 2.77E+04 copies cm⁻³ sediment.

We observed a positive relationship between denitrification rates under anoxic conditions, and total *nir* copy number, for all species except *G. atlantica*, the species with the lowest denitrification rate.

20 No correlation to *nir* copy number was detected for denitrification rates under oxic conditions (Fig. 3.).

4 Discussion

4.1 Denitrification as a common feature of cold-water sponges

The purpose of this study was to quantify the potential nutrient sink function of six sponge key

5 species from boreal and arctic sponge grounds. **We aimed to test our hypotheses that (1) nutrient removal through microbial denitrification is a common feature in cold-water sponge species, and that (2) rates are dependent on oxygen availability in the sponge tissue.**

All six species investigated in this study showed denitrification rates under anoxic conditions, five

of them even under oxic conditions. Rates were always higher in the absence compared to in the

10 presence of oxygen. All our denitrification rates are within the same range as rates previously

reported for cold- and warm-water sponges: Hoffmann et al. (2009) reported $92 \text{ nmol N cm}^{-3}$ sponge day $^{-1}$ for explants of *G. barretti* incubated under oxic conditions, which is very close to our

average rate of $97 \text{ nmol N cm}^{-3}$ sponge day $^{-1}$ for *G. barretti* sections incubated under oxic conditions. Rates reported by Schläppy et al. (2010a) for the two Mediterranean shallow water

15 sponges *Chondrosia reniformis* and *Dysidea avara*, also measured on tissue sections incubated

under oxic conditions, were 240 and $357 \text{ nmol N cm}^{-3}$ sponge day $^{-1}$, respectively – well above our

maximum rates measured under oxic conditions, but close to our maximum rates measured under

anoxic conditions. Higher metabolic rates in warm and shallow water sponges compared to cold

deep water sponges is not surprising. In addition to these rather few direct quantifications of

20 denitrification rates in sponges, the presence of denitrification activity has been indicated by

isotopic tracer experiments in a tropical sponge (Fiore et al., 2013), as well as by numerous reports

on the presence of functional genes for denitrification in sponge microbes, or by demonstrating the

ability for denitrification in sponge-derived microbial isolates from a variety of marine habitats

(Bayer et al., 2014; Cleary et al., 2015; Fiore et al., 2010; Fiore et al., 2015; Han et al., 2013; Li et al.,

2014;Liu et al., 2016;Liu et al., 2012;Webster and Taylor, 2012;Zhang et al., 2013;Zhuang et al., 2018).

We could not detect any anammox rates in any of the sponges investigated in this study. The only literature report for anammox rates quantified in a sponge was a very low rate of 3 nmol cm^{-3} sponge day $^{-1}$ in explants of *G. barretti* (Hoffmann et al 2009). In the present study, we could not reproduce these rates in the tissue sections of *G. barretti* nor detect the functional genes associated with this process. There are no other quantifications of anammox rates in sponges, and only few studies on the presence of anammox bacteria and genes in some sponge species (Han et al., 2012;Mohamed et al., 2010;Webster and Taylor, 2012).

10 Our study further clearly shows that denitrification rates are generally higher under anoxic conditions. As denitrification is an anaerobic process, this is not surprising. More surprising is our detection of considerable denitrification rates (up to $96 \text{ nmol N cm}^{-3}$ sponge day $^{-1}$) when sponge tissue sections were incubated in oxygenated seawater. Furthermore, evidence for coupled nitrification-denitrification, proves that both aerobic and anaerobic processes can happen in the 15 sponge sections at the same time. Oxygen was assumed to be present in the experimental vial at least during the first 26 hours of the experiment, though continuously decreasing due to sponge respiration (see calculation in method section), but we do not have control over oxygen concentration in the sponge tissue pieces during the experiment. From marine sediments, there are numerous studies reporting denitrification in bulk oxic conditions, either in anoxic 20 microniches or under complete oxygenated conditions. e.g. (Wilson, 1978); (Marchant et al., 2017;Robertson et al., 1995;Chen and Strous, 2013). For the present study, we do not know if denitrification actually happened in the presence of oxygen, in anoxic microniches, which were present in the sponge tissue already at experiment start, or in tissue sections rapidly becoming

anoxic while not continuously flushed with oxygen. Nevertheless since all these scenarios reflect the situation in a sponge which is pumping on a low rate or occasionally stops pumping (Hoffmann et al., 2008;Schläppy et al., 2010b;Schläppy et al., 2007), which are typical features in sponges, we assume that our results are representative for sponges under normal conditions.

5 Our study further indicates significant differences in anaerobic denitrification rates between most sponge species, indicating species-specific differences in maximum potential denitrification rates. Two of the Arctic sponges (*G. hentscheli* and *G. parva*) showed the highest denitrification rates. It is worth noticing that due to technical reasons the Arctic incubations had to be performed at a higher temperature (6 °C) compared to current in-situ conditions (0 °C), which may have led to an
10 overestimation of the potential rates for the Arctic species.

Our systematic screening of 6 cold-water sponge species, together with reports of denitrification activity from other sponge species all over the world and from different habitats (see above),
strengthens the view that denitrification is a common feature in many sponge species – both under oxygenated (pumping) and deoxygenated (non-pumping) tissue conditions, with rates
15 **being highest when oxygen is absent.** Anammox in contrast seems to be a more rare and occasional feature in sponges, which may not have quantitative importance for sponge-mediated nitrogen cycling.

4.2 The fate of nitrogen in sponges

20 With the exception of *Stryphnus fortis*, denitrification was verified in the presence of dissolved oxygen across all species. For most species, denitrification was partly coupled to nitrification. For *G. barretti*, 16% of nitrate used for denitrification under oxic conditions was derived from nitrification, which is very close to previously reported values of 26% as reported for the same

species (Hoffmann et al., 2009). Evidence for coupled nitrification-denitrification in most sponge species of this study indicates that nitrification was present in these species. Nitrification rates have been quantified in the cold-water species *Phakellia ventilabrum*, *Antho dichotoma*, *Geodia barretti* and *Stryphnus fortis* (120-1880 nmol N cm⁻³ sponge day⁻¹; Radax et al., 2012; Fang et al., 2018; Hoffmann et al., 2009), and we may assume similar rates for the species in this study. Since the ammonium concentration in bottom seawater at our sampling sites is far too low (under detection limit of 1 µM NH₄⁺) to fuel these nitrification rates, ammonium needs to originate from organic nitrogen remineralized from organic matter by the sponge cells or by heterotrophic sponge microbes. Under anoxic conditions, there is no nitrification, and nitrate to fuel the much higher denitrification rates has to be retrieved directly from the seawater. We did not detect any genes for nitrogen fixation; the N-cycle is not closed in the cold-water sponges. **The denitrified nitrogen, no matter of its origin, is no longer available as a nutrient and thus inevitably lost as a good and service for the marine ecosystem.**

15 4.3 The sponge microbial community is ready for denitrification

NirS and *nirK* are functionally equivalent genes that code for the reduction of nitrite to nitric oxide, the first step towards the production of a gas in denitrification (Shapleigh, 2013). Copies of *nirS* and *nirK* were quantified in all six sponge species, and also in the sediment (Table 2). Scattering denitrification rates against nitrite reductase copy numbers, revealed a clear positive relationship between denitrification rates (in the absence of oxygen) and the species-specific abundance of *nirS* and *nirK* (Fig. 3) for 5 of the 6 sponge species. This relationship suggests that there is an active denitrifying community present in these species.

This is further corroborated by our observation of a linear accumulation of ¹⁵N labelled N₂ gas already from incubation start for our ¹⁵N incubation experiments as shown in Fig.1. The lack of a

lag phase is frequently associated with ‘active’ denitrification (Bulow et al., 2010; Ward et al., 2009). Conversely, denitrifiers in pure culture require a 24-48h reactivation period to recover from dormancy (Baumann et al., 1997; Baumann et al., 1996). There was no lag phase in any of our sponge tissue incubations, which strengthens our conclusion that the denitrifying community is active and prepared for the denitrification rates observed in our experiments. This again means that the measured maximum denitrification rates are likely to occur *in situ* in situations where the sponge tissue becomes completely anoxic. This also suggests that the heterotrophic microflora in these sponges regularly find themselves in an anoxic or microoxic environment where it is beneficial to have the denitrification genes readily expressed.

10 In the slurries of surface sediments from the Schulz Massive, *nirK* and *nirS* copy numbers were comparable to those in the sponges (Table 2); however, in these samples we did not detect any labelled N₂ production within 48h of incubation. This would suggest that although a microbial community capable of denitrification is present in the surface sediments of the Schulz Bank, its activity was under detection limit. Low availability of reactive carbon in these Arctic sediments

15 (Baumberger et al., 2016) may be the reason for this lack of detectable denitrification activity, in contrast to a high availability of reactive carbon within a living sponge. Our results indicate that in the Arctic deep sea, sponge grounds play a much more important role for nitrogen cycling and benthic-pelagic coupling than the surrounding sediment.

20 **4.4 Sponge grounds as nutrient sinks**

Denitrification rates in this study were quantified in lab experiments, and therefore show potential rates of these species under certain conditions, not real rates under current in-situ conditions. Keeping this in mind, and also considering that denitrification rates are calculated to represent that of the ambient NO₃⁻, no carbon source was added and the incubation temperature was realistic for

natural conditions, our results allow estimates of the potential denitrification capacity of sponge grounds. Our results reveal average nitrogen removal rates for boreal sponge grounds of 70 nmol N cm⁻³ sponge day⁻¹ assuming all sponges are not pumping (results from the anoxic experiment), and 38 nmol cm⁻³ day⁻¹ when all sponges are pumping (results from the oxic experiment). For 5 Arctic sponge grounds the rates will be 167 and 55 for non-pumping and pumping sponges, respectively. Based on our own observations from trawl catches and underwater imagery from several cruises, we estimate that masses of 10 kg m⁻² are common in boreal sponge grounds, while smaller areas both in shelves and fjords may even come up to densities of 30 kg m⁻². In other areas masses can be considerably lower and more patchy, e.g. 3.5 kg in the Traena area, as reported by 10 (Kutti et al., 2013). In the Arctic sponge grounds investigated in this study we estimate the sponge biomass to be approximately 4 kg m⁻².

These estimates reveal a potential areal denitrification rate for the boreal sponge grounds of up to 0.587 mmol N m⁻² sponge ground assuming non-pumping and still 0.321 mmol N m⁻² day⁻¹ assuming pumping sponges. For Arctic sponge grounds the numbers are quite similar (sponge 15 biomass is lower but sponge denitrification rates are higher): 0.608 mmol N m⁻² day⁻¹ for non-pumping and 0.201 for pumping sponges. These rates are well within the range - or, for the non-pumping situation with anoxic tissue, on the upper end – of denitrification rates from continental shelf sediments, which are 0.1-1 mmol N m⁻² day⁻¹ (Middelburg et al., 1996; Seitzinger and Giblin, 1996). For the most dense boreal sponge grounds with sponge densities up to 30 kg m⁻², rates will 20 be up to 1.7 mmol N m⁻² day⁻¹; well above typical rates for continental shelf sediments.

While our denitrification rates in sponges incubated under oxic conditions may reflect normal *in-situ* conditions for pumping sponges, our numbers on denitrification rates in sponges incubated under anoxic conditions are theoretical extremes, since we know little about the *in-situ* pumping patterns of deep-sea sponges, and the environmental factors influencing them. Seawater nitrate

which fuels most of the denitrification under anoxic conditions enters the sponge through pumping. The maximum denitrification rates in non-pumping sponges can therefore only be maintained until the nitrate in the sponge pore water is used up. The length and frequency of these anoxic spells will thus determine the variability of *in situ* sponge denitrification rates. Observations by Schläppy et 5 al. (2010b) showed non-pumping periods of sponges *in situ* of up to two hours, leading to complete tissue anoxia, followed by several hours of high pumping activity. Sponges with dense tissue and high loads of associated microbes (high-microbial abundance (HMA) sponges, such as most sponges in our study) generally show slower volume pumping rates than sponges with low microbial numbers and loose tissue structure (Weisz et al., 2008). Slow pumping rates lead to 10 reduced and heterogeneous oxygen concentrations in sponges (e.g. (Schläppy et al., 2010b;Schläppy et al., 2007)) while they still may supply sufficient nitrate from ambient seawater to fuel denitrification. Even though our calculated areal denitrification rates of sponge grounds so far only point out a potential capacity, our study clearly shows that both boreal and arctic sponge grounds can function as efficient nutrient sinks, especially when they reduce or stop pumping and 15 the tissue becomes anoxic. Environmental and anthropogenic stressors such as increased sediment loads (Bell et al., 2015) reduce pumping activity and increase anoxic conditions in sponges (Fang et al., 2018; (Kutti et al., 2015;Tjensvoll et al., 2013), and thus stimulate nutrient removal through denitrification. Elevated ambient nitrate concentrations have been linked to increased nitrate removal by sponges (Archer et al., 2017). Global change processes affecting sponge redox state 20 will impact the sponge holobiont (Pita et al., 2018), and may thus lead to that deep-sea sponge grounds change their role in the marine ecosystem from functioning mainly as nutrient sources to functioning mainly as nutrient sinks.

Conclusions

In this study we have shown that several sponge species actively remove the bioavailable nutrients ammonium and nitrate from the marine ecosystem by denitrification and coupled nitrification-denitrification, which challenges the common view of sponges as main DIN providers through mineralisation of organic matter and nitrification. While variations in sponge remineralisation activity only postpone the delivery of nutrients, denitrification inevitably removes these nutrients from the marine ecosystem. The nitrogen cycle is not closed in the sponge grounds, the denitrified nitrogen, no matter of its origin, is no longer available as a nutrient and efficiently removed from the marine ecosystem. We further showed that the investigated sponges host an active community of denitrifiers which show highest denitrification rates under anoxic conditions. Anthropogenic impact and global change processes affecting the sponge redox state may thus lead to that deep-sea sponge grounds change their role in the marine ecosystem from functioning mainly as nutrient sources to functioning mainly as nutrient sinks.

15

Data availability. The data is available in the data publisher PANGAEA,

<https://doi.pangaea.de/10.1594/PANGAEA.899821>

Author contribution. F Hoffmann and C Rooks designed the study. C Rooks and J K-H Fang performed the sponge experiments. C Rooks and PT Mørkved performed the stable isotope analyses. C Rooks and R Zhao quantified the functional genes. C Rooks analyzed all the data. HT Rapp organized the cruises, quantified sponge biomass at key sites and determined the sponge species. C. Rooks wrote the first draft of the manuscript, and all authors contributed substantially

with writing and revision. F Hoffmann supervised and coordinated the writing process, and finalized the manuscript.

Competing Interests. The authors declare that they have no conflict of interest.

Acknowledgements. This research has been performed in the scope of the SponGES project, which received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 679849. This document reflects only the authors' views and the Executive Agency for Small and Medium-sized Enterprises (EASME) is not responsible for any use that may be made of the information it contains.

This study also received funding from the Norwegian Research Council through the project

10 SedexSponge, Project Number: 225283.

Measurements of stable isotope samples was done at the Norwegian National Infrastructure project FARLAB (Facility for advanced isotopic research and monitoring of weather, climate, and biogeochemical cycling, Project Nr. 245907) at the University of Bergen, Norway.

JRX research is further supported by the strategic funding UID/Multi/04423/2019 provided by

15 the Portuguese Foundation for Science and Technology (FCT) to CIIMAR.

References

5 Archer, S. K., Stevens, J. L., Rossi, R. E., Matterson, K. O., and Layman, C. A.: Abiotic conditions drive significant variability in nutrient processing by a common Caribbean sponge, *Ircinia felix*, *Limnol Oceanogr*, 62, 1783-1793, doi: 10.1002/lno.10533, 2017.

10 Baumann, B., Snozzi, M., Zehnder, A. J., and Van Der Meer, J. R.: Dynamics of denitrification activity of *Paracoccus denitrificans* in continuous culture during aerobic-anaerobic changes, *Journal of Bacteriology*, 178, 4367-4374, doi: 10.1128/jb.178.15.4367-4374.1996, 1996.

15 Baumann, B., Snozzi, M., Van Der Meer, J. R., and Zehnder, A. J. B.: Development of stable denitrifying cultures during repeated aerobic-anaerobic transient periods, *Water Research*, 31, 1947-1954, doi: 10.1016/S0043-1354(97)00053-5, 1997.

20 Baumberger, T., Früh-Green, G. L., Thorseth, I. H., Lilley, M. D., Hamelin, C., Bernasconi, S. M., Okland, I. E., and Pedersen, R. B.: Fluid composition of the sediment-influenced Loki's Castle vent field at the ultra-slow spreading Arctic Mid-Ocean Ridge, *Geochimica et Cosmochimica Acta*, 187, 156-178, doi: 10.1016/j.gca.2016.05.017, 2016.

25 Bayer, K., Schmitt, S., and Hentschel, U.: Physiology, phylogeny and in situ evidence for bacterial and archaeal nitrifiers in the marine sponge *Aplysina aerophoba*, *Environmental Microbiology*, 10, 2942-2955, doi:10.1111/j.1462-2920.2008.01582.x, 2008.

30 Bayer, K., Moitinho-Silva, L., Brummer, F., Cannistraci, C. V., Ravasi, T., and Hentschel, U.: GeoChip-based insights into the microbial functional gene repertoire of marine sponges (high microbial abundance, low microbial abundance) and seawater, *Fems Microbiology Ecology*, 90, 832-843, 10.1111/1574-6941.12441, 2014.

35 Bell, J. J., McGrath, E., Biggerstaff, A., Bates, T., Bennett, H., Marlow, J., and Shaffer, M.: Sediment impacts on marine sponges, *Mar Pollut Bull*, 94, 5-13, 10.1016/j.marpolbul.2015.03.030, 2015.

40 Brusca, R., and Brusca, G.: Invertebrates. 1990, Sunderland, MA: Sinauer Google Scholar, Bulow, S. E., Rich, J. J., Naik, H. S., Pratihary, A. K., and Ward, B. B.: Denitrification exceeds anammox as a nitrogen loss pathway in the Arabian Sea oxygen minimum zone, *Deep Sea Research Part I: Oceanographic Research Papers*, 57, 384-393, doi: 10.1016/j.dsr.2009.10.014, 2010.

45 Cardenas, P., Rapp, H. T., Klitgaard, A. B., Best, M., Thollesson, M., and Tendal, O. S.: Taxonomy, biogeography and DNA barcodes of *Geodia* species (Porifera, Demospongiae, Tetractinellida) in the Atlantic boreo-arctic region, *Zool J Linn Soc-Lond*, 169, 251-311, 10.1111/zoj.12056, 2013.

50 Chen, J. W., and Strous, M.: Denitrification and aerobic respiration, hybrid electron transport chains and co-evolution, *Biochimica Et Biophysica Acta-Bioenergetics*, 1827, 136-144, 10.1016/j.bbabi.2012.10.002, 2013.

55 Cleary, D. F. R., de Voogd, N. J., Polonia, A. R. M., Freitas, R., and Gomes, N. C. M.: Composition and Predictive Functional Analysis of Bacterial Communities in Seawater, Sediment and Sponges in the Spermonde Archipelago, Indonesia, *Microbial Ecology*, 70, 889-903, 10.1007/s00248-015-0632-5, 2015.

Corredor, J., Wilkinson, C., P. Vicente, V., Morell, J., and Otero Morales, E.: Nitrate release by Caribbean reef sponges, 114-120 pp., 1988.

de Goeij, J. M., van Oevelen, D., Vermeij, M. J. A., Osinga, R., Middelburg, J. J., and de Goeij, A. F. P. M.: Surviving in a marine desert: the sponge loop retains resources within coral reefs, *Science*, 342, doi: 10.1126/science.1241981, 2013.

5 Diaz, M. C., and Ward, B. B.: Sponge-mediated nitrification in tropical benthic communities, *Mar Ecol Prog Ser*, 156, 97-107, doi: 10.3354/meps156097, 1997.

Fang, J. K. H., Rooks, C. A., Krogness, C. M., Kutt, T., Hoffmann, F., and Bannister, R. J.: Impact 10 of particulate sediment, bentonite and barite (oil-drilling waste) on net fluxes of oxygen and nitrogen in Arctic-boreal sponges, *Environ Pollut*, 238, 948-958, doi: 10.1016/j.envpol.2017.11.092, 2018.

Feng, G., and Li, Z.: Carbon and Nitrogen Metabolism of Sponge Microbiome, in: *Symbiotic Microbiomes of Coral Reefs Sponges and Corals*, edited by: Li, Z., Springer, Dordrecht, 2019.

15 Fiore, C. L., Jarett, J. K., Olson, N. D., and Lesser, M. P.: Nitrogen fixation and nitrogen transformations in marine symbioses, *Trends in Microbiology*, 18, 455-463, doi: 10.1016/j.tim.2010.07.001, 2010.

Fiore, C. L., Baker, D. M., and Lesser, M. P.: Nitrogen Biogeochemistry in the Caribbean Sponge, *Xestospongia muta*: A Source or Sink of Dissolved Inorganic Nitrogen?, *PLOS ONE*, 8, e72961, doi: 10.1371/journal.pone.0072961, 2013.

20 Fiore, C. L., Labrie, M., Jarett, J. K., and Lesser, M. P.: Transcriptional activity of the giant barrel sponge, *Xestospongia muta* Holobiont: molecular evidence for metabolic interchange, *Frontiers in Microbiology*, 6, 10.3389/fmicb.2015.00364, 2015.

Folkers, M., and Rombouts, T.: Sponges Revealed: A Synthesis of Their Overlooked Ecological Functions Within Aquatic Ecosystems, in: *YOUNMARES 9 - The Oceans: Our Research, Our 25 Future*, edited by: S, J., V, L., and M, B.-D., Springer, Cham, 2020.

Han, M. Q., Liu, F., Zhang, F. L., Li, Z. Y., and Lin, H. W.: Bacterial and Archaeal Symbionts in the South China Sea Sponge *Phakellia fusca*: Community Structure, Relative Abundance, and Ammonia-Oxidizing Populations, *Marine Biotechnology*, 14, 701-713, 10.1007/s10126-012-9436-5, 2012.

30 Han, M. Q., Li, Z. Y., and Zhang, F. L.: The Ammonia Oxidizing and Denitrifying Prokaryotes Associated with Sponges from Different Sea Areas, *Microbial Ecology*, 66, 427-436, 10.1007/s00248-013-0197-0, 2013.

Hoer, D. R., Tommerdahl, J. P., Lindquist, N. L., and Martens, C. S.: Dissolved inorganic nitrogen fluxes from common Florida Bay (USA) sponges, *Limnol Oceanogr*, 63, 2563-2578, 10.1002/lno.10960, 2018.

35 Hoffmann, F., Rapp, H., Zöller, T., and Reitner, J.: Growth and regeneration in cultivated fragments of the boreal deep water sponge *Geodia barretti* Bowerbank, 1858 (Geodiidae, Tetractinellida, Demospongiae), 109-118 pp., 2003.

Hoffmann, F., Larsen, O., Thiel, V., Rapp, H. T., Pape, T., Michaelis, W., and Reitner, J.: An 40 Anaerobic World in Sponges, *Geomicrobiology Journal*, 22, 1-10, doi: 10.1080/01490450590922505, 2005.

Hoffmann, F., Røy, H., Bayer, K., Hentschel, U., Pfannkuchen, M., Brümmer, F., and de Beer, D.: Oxygen dynamics and transport in the Mediterranean sponge *Aplysina aerophoba*, *Mar Biol*, 153, 1257-1264, doi: 10.1007/s00227-008-0905-3, 2008.

45 Hoffmann, F., Radax, R., Woebken, D., Holtappels, M., Lavik, G., Rapp, H. T., Schläppy, M.-L., Schleper, C., and Kuypers, M. M. M.: Complex nitrogen cycling in the sponge *Geodia barretti*, *Environmental Microbiology*, 11, 2228-2243, 10.1111/j.1462-2920.2009.01944.x, 2009.

Holtappels, M., Lavik, G., Jensen, M. M., and Kuypers, M. M. M.: Chapter ten - ^{15}N -Labeling Experiments to Dissect the Contributions of Heterotrophic Denitrification and Anammox to Nitrogen Removal in the OMZ Waters of the Ocean, in: Methods in Enzymology, edited by: Klotz, M. G., Academic Press, 223-251, 2011.

5 Hughes, D. J., and Gage, J. D.: Benthic metazoan biomass, community structure and bioturbation at three contrasting deep-water sites on the northwest European continental margin, *Progress in Oceanography*, 63, 29-55, doi: 10.1016/j.pocean.2004.09.002, 2004.

Jiménez, E., and Ribes, M.: Sponges as a source of dissolved inorganic nitrogen: Nitrification mediated by temperate sponges, *Limnol Oceanogr*, 52, 948-958, doi: 10.4319/lo.2007.52.3.0948, 10 2007.

Kahn, A. S., Yahel, G., Chu, J. W. F., Tunnicliffe, V., and Leys, S. P.: Benthic grazing and carbon sequestration by deep-water glass sponge reefs, *Limnol Oceanogr*, 60, 78-88, doi: 10.1002/lno.10002, 2015.

15 Keesing, J. K., Strzelecki, J., Fromont, J., and Thomson, D.: Sponges as important sources of nitrate on an oligotrophic continental shelf, 58, 1947-1958, doi: 10.4319/lo.2013.58.6.1947, 2013.

Klitgaard, A. B., and Tendal, O. S.: Distribution and species composition of mass occurrences of large-sized sponges in the northeast Atlantic, *Progress in Oceanography*, 61, 57-98, doi: 10.1016/j.pocean.2004.06.002, 2004.

20 Kutti, T., Bannister, R. J., and Fossa, J. H.: Community structure and ecological function of deep-water sponge grounds in the Traenadypet MPA-Northern Norwegian continental shelf, *Cont Shelf Res*, 69, 21-30, 10.1016/j.csr.2013.09.011, 2013.

Kutti, T., Bannister, R. J., Fossa, J. H., Krogness, C. M., Tjensvoll, I., and Sovik, G.: Metabolic responses of the deep-water sponge *Geodia barretti* to suspended bottom sediment, simulated mine tailings and drill cuttings, *J Exp Mar Biol Ecol*, 473, 64-72, 10.1016/j.jembe.2015.07.017, 2015.

25 Leys, S. P., Kahn, A. S., Fang, J. K. H., Kutti, T., and Bannister, R. J.: Phagocytosis of microbial symbionts balances the carbon and nitrogen budget for the deep-water boreal sponge *Geodia barretti*, *Limnol Oceanogr*, 63, 187-202, doi: 10.1002/lno.10623, 2018.

Li, Z. Y., Wang, Y. Z., He, L. M., and Zheng, H. J.: Metabolic profiles of prokaryotic and eukaryotic communities in deep-sea sponge *Lamellomorpha* sp indicated by metagenomics, 30 *Scientific Reports*, 4, 10.1038/srep03895, 2014.

Liu, F., Li, J. L., Feng, G. F., and Li, Z. Y.: New Genomic Insights into "Entotheonella" Symbionts in *Theonella swinhonis*: Mixotrophy, Anaerobic Adaptation, Resilience, and Interaction, *Frontiers in Microbiology*, 7, 10.3389/fmicb.2016.01333, 2016.

Liu, M., Fan, L., Zhong, L., Kjelleberg, S., and Thomas, T.: Metaproteogenomic analysis of a 35 community of sponge symbionts, *ISME Journal*, 6, 1515-1525, 10.1038/ismej.2012.1, 2012.

Maldonado, M., Ribes, M., and van Duy, F. C.: Chapter three - Nutrient Fluxes Through Sponges: Biology, Budgets, and Ecological Implications, in: *Advances in Marine Biology*, edited by: Becerro, M. A., Uriz, M. J., Maldonado, M., and Turon, X., Academic Press, 113-182, 2012.

40 Marchant, H. K., Ahmerkamp, S., Lavik, G., Tegetmeyer, H. E., Graf, J., Klatt, J. M., Holtappels, M., Walpersdorf, E., and Kuypers, M. M.: Denitrifying community in coastal sediments performs aerobic and anaerobic respiration simultaneously, *The ISME Journal*, 2017.

Mehta, M. P., Butterfield, D. A., and Baross, J. A.: Phylogenetic diversity of nitrogenase (*nifH*) genes in deep-sea and hydrothermal vent environments of the Juan de Fuca ridge, *Appl. Environ. Microbiol.*, 69, 960-970, 10.1128/aem.69.2.960-970.2003, 2003.

45 Middelburg, J. J., Soetaert, K., Herman, P. M. J., and Heip, C. H. R.: Denitrification in marine sediments: A model study, *Global Biogeochemical Cycles*, 10, 661-673, doi: 10.1029/96GB02562, 1996.

Mohamed, N., S Colman, A., Tal, Y., and Hill, R.: Diversity and expression of nitrogen fixation genes in bacterial symbionts of marine sponges, *Environmental Microbiology*, 10, 2910-2921, doi: 10.1111/j.1462-2920.2008.01704.x, 2008.

Mohamed, N. M., Saito, K., Tal, Y., and Hill, R. T.: Diversity of aerobic and anaerobic ammonia-oxidizing bacteria in marine sponges, *Isme Journal*, 4, 38-48, 10.1038/ismej.2009.84, 2010.

Murillo, F. J., Muñoz, P. D., Cristobo, J., Ríos, P., González, C., Kenchington, E., and Serrano, A.: Deep-sea sponge grounds of the Flemish Cap, Flemish Pass and the Grand Banks of Newfoundland (Northwest Atlantic Ocean): Distribution and species composition, *Mar Biol Res*, 8, 842-854, doi: 10.1080/17451000.2012.682583, 2012.

Nielsen, L. P.: Denitrification in sediment determined from nitrogen isotope pairing, *FEMS Microbiology Ecology*, 9, 357-361, doi: 10.1111/j.1574-6941.1992.tb01771.x, 1992.

Osinga, R., Tramper, J., and Wijffels, R. H.: Cultivation of marine sponges, *Marine Biotechnology*, 1, 509-532, Doi 10.1007/Pl00011807, 1999.

Osinga, R., Armstrong, E., Burgess, J. G., Hoffmann, F., Reitner, J., and Schumann-Kindel, G.: Sponge-microbe associations and their importance for sponge bioprocess engineering, *Hydrobiologia*, 461, 55-62, Doi 10.1023/A:1012717200362, 2001.

Painter, H.: A review of literature on inorganic nitrogen metabolism in microorganisms, *Water Research*, 4, 393-450, doi: 10.1016/0043-1354(70)90051-5, 1970.

Pawlik, J. R., and McMurray, S. E.: The Emerging Ecological and Biogeochemical Importance of Sponges on Coral Reefs, *Annual Review of Marine Science*, 12, 3.1-3.23, <https://doi.org/10.1146/annurev-marine-010419-010807>, 2019.

Pfannkuchen, M., Fritz, G. B., Schlesinger, S., Bayer, K., and Brümmer, F.: In situ pumping activity of the sponge *Aplysina aerophoba*, *Nardo* 1886, *J Exp Mar Biol Ecol*, 369, 65-71, doi: 10.1016/j.jembe.2008.10.027, 2009.

Pita, L., Rix, L., Slaby, B. M., Franke, A., and Hentschel, U.: The sponge holobiont in a changing ocean: from microbes to ecosystems, *Microbiome*, 6, 46, doi: 10.1186/s40168-018-0428-1, 2018.

Radax, R., Hoffmann, F., Rapp, H. T., Leininger, S., and Schleper, C.: Ammonia-oxidizing archaea as main drivers of nitrification in cold-water sponges, *Environmental Microbiology*, 14, 909-923, doi: 10.1111/j.1462-2920.2011.02661.x, 2012.

Reiswig, H. M.: Water transport, respiration and energetics of three tropical marine sponges, *J Exp Mar Biol Ecol*, 14, 231-249, doi: 10.1016/0022-0981(74)90005-7, 1974.

Ribes, M., Dziallas, C., Coma, R., and Riemann, L.: Microbial Diversity and Putative Diazotrophy in High- and Low-Microbial-Abundance Mediterranean Sponges, *Applied and Environmental Microbiology*, 81, 5683-5693, doi: 10.1128/aem.01320-15, 2015.

Risgaard-Petersen, N., Nielsen, L. P., Rysgaard, S., Dalsgaard, T., and Meyer, R. L.: Application of the isotope pairing technique in sediments where anammox and denitrification coexist, *Limnology and Oceanography: Methods*, 1, 63-73, doi: 10.4319/lom.2003.1.63, 2003.

Rix, L., de Goeij, J. M., Mueller, C. E., Struck, U., Middelburg, J. J., van Duyl, F. C., Al-Horani, F. A., Wild, C., Naumann, M. S., and van Oevelen, D.: Coral mucus fuels the sponge loop in warm- and cold-water coral reef ecosystems, *Scientific Reports*, 6, 18715, doi: 10.1038/srep18715

<https://www.nature.com/articles/srep18715#supplementary-information>, 2016.

Roberts, E. M., Mienis, F., Rapp, H. T., Hanz, U., Meyer, H. K., and Davies, A. J.: Oceanographic setting and short-timescale environmental variability at an Arctic seamount sponge ground, *Deep-Sea Res Pt I*, 138, 98-113, 10.1016/j.dsr.2018.06.007, 2018.

Roberts, E. M., Mienis, F., Rapp, H. T., Hanz, U., Meyer, H. K., Davies, A. J., and J., A.: Physical, biological, biogeochemical, and bathymetric datasets from a research cruise to the Schultz Massif

Seamount (Norwegian/Greenland Sea) in June 2016 using RV G.O. Sars (Cruise 2016109A), PANGAEA, <https://doi.org/10.1594/PANGAEA.891035>, 10.1594/PANGAEA.891035, 2018.

Robertson, L. A., Dalsgaard, T., Revsbech, N. P., and Kuenen, J. G.: Confirmation of 'aerobic denitrification' in batch cultures, using gas-chromatography and ^{15}N mass spectrometry, FEMS Microbiol. Ecol., 18, 113-119, 10.1111/j.1574-6941.1995.tb00168.x, 1995.

Rysgaard, S., Christensen, P. B., and Nielsen, L. P.: Seasonal-Variation in Nitrification and Denitrification in Estuarine Sediment Colonized by Benthic Microalgae and Bioturbating Infrauna, Mar Ecol Prog Ser, 126, 111-121, DOI 10.3354/meps126111, 1995.

Schläppy, M.-L., Hoffmann, F., Røy, H., Wijffels, R. H., Mendola, D., Sidri, M., and de Beer, D.: Oxygen dynamics and flow patterns of *Dysidea avara* (Porifera: Demospongiae), J Mar Biol Assoc Uk, 87, 1677-1682, doi: 10.1017/S0025315407058146, 2007.

Schläppy, M.-L., Schöttner, S. I., Lavik, G., Kuypers, M. M. M., de Beer, D., and Hoffmann, F.: Evidence of nitrification and denitrification in high and low microbial abundance sponges, Mar Biol, 157, 593-602, doi: 10.1007/s00227-009-1344-5, 2010a.

Schläppy, M. L., Weber, M., Mendola, D., Hoffmann, F., and de Beer, D.: Heterogeneous oxygenation resulting from active and passive flow in two Mediterranean sponges, *Dysidea avara* and *Chondrosia reniformis*, Limnol Oceanogr, 55, 1289-1300, doi: 10.4319/lo.2010.55.3.1289, 2010b.

Seitzinger, S. P.: Denitrification in freshwater and coastal marine ecosystems: Ecological and geochemical significance, Limnol Oceanogr, 33, 702-724, doi: 10.4319/lo.1988.33.4part2.0702, 1988.

Seitzinger, S. P., and Giblin, A. E.: Estimating denitrification in North Atlantic continental shelf sediments, Biogeochemistry, 35, 235-260, Doi 10.1007/Bf02179829, 1996.

Shapleigh, J. P.: Denitrifying Prokaryotes, in: The Prokaryotes: Prokaryotic Physiology and Biochemistry, edited by: Rosenberg, E., DeLong, E. F., Lory, S., Stackebrandt, E., and Thompson, F., Springer Berlin Heidelberg, Berlin, Heidelberg, 405-425, 2013.

Southwell, M. W., Popp, B. N., and Martens, C. S.: Nitrification controls on fluxes and isotopic composition of nitrate from Florida Keys sponges, Marine Chemistry, 108, 96-108, doi: 10.1016/j.marchem.2007.10.005, 2008.

Thamdrup, B., and Dalsgaard, T.: Production of N_2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments, Applied and environmental microbiology, 68, 1312-1318, doi: 10.1128/AEM.68.3.1312-1318.2002, 2002.

Throback, I. N., Enwall, K., Jarvis, A., and Hallin, S.: Reassessing PCR primers targeting *nirS*, *nirK* and *nosZ* genes for community surveys of denitrifying bacteria with DGGE, FEMS Microbiol. Ecol., 49, 401-417, 10.1016/j.femsec.2004.04.011, 2004.

Tjensvoll, I., Kutti, T., Fossa, J. H., and Bannister, R. J.: Rapid respiratory responses of the deep-water sponge *Geodia barretti* exposed to suspended sediments, Aquat Biol, 19, 65-73, 10.3354/ab00522, 2013.

Ward, B. B., Devol, A. H., Rich, J. J., Chang, B. X., Bulow, S. E., Naik, H., Pratihary, A., and Jayakumar, A.: Denitrification as the dominant nitrogen loss process in the Arabian Sea, Nature, 461, 78, doi: 10.1038/nature08276, 2009.

Webster, N. S., and Taylor, M. W.: Marine sponges and their microbial symbionts: love and other relationships, Environmental Microbiology, 14, 335-346, 10.1111/j.1462-2920.2011.02460.x, 2012.

Weisz, J. B., Lindquist, N., and Martens, C. S.: Do associated microbial abundances impact marine demosponge pumping rates and tissue densities?, Oecologia, 155, 367-376, 10.1007/s00442-007-0910-0, 2008.

Wilkinson, C. R., and Fay, P.: Nitrogen fixation in coral reef sponges with symbiotic cyanobacteria, *Nature*, 279, 527, doi: 10.1038/279527a0, 1979.

Wilkinson, C. R., Summons, R. E., and Evans, E.: Nitrogen fixation in symbiotic marine sponges: Ecological significance and difficulties in detection, 667-673 pp., 1999.

5 Wilson, T. R. S.: Evidence for denitrification in aerobic pelagic sediments, *Nature*, 274, 354-356, 10.1038/274354a0, 1978.

Yahel, G., Sharp, J. H., Marie, D., Häse, C., and Genin, A.: In situ feeding and element removal in the symbiont-bearing sponge *Theonella swinhonis*: Bulk DOC is the major source for carbon, *Limnol Oceanogr*, 48, 141-149, DOI: 10.4319/lo.2003.48.1.0141, 2003.

10 Zhang, F., Jonas, L., Lin, H., and Hill, R. T.: Microbially mediated nutrient cycles in marine sponges, *Fems Microbiology Ecology*, 95, 10.1093/femsec/fiz155, 2019.

Zhang, X., He, L. M., Zhang, F. L., Sun, W., and Li, Z. Y.: The Different Potential of Sponge Bacterial Symbionts in N-2 Release Indicated by the Phylogenetic Diversity and Abundance Analyses of Denitrification Genes, *nirK* and *nosZ*, *Plos One*, 8, 10.1371/journal.pone.0065142, 15 2013.

Zhuang, L. P., Lin, B. B., Qin, F., and Luo, L. Z.: Zhouia spongiae sp nov., isolated from a marine sponge, *International Journal of Systematic and Evolutionary Microbiology*, 68, 2194-2198, 10.1099/ijsem.0.002808, 2018.

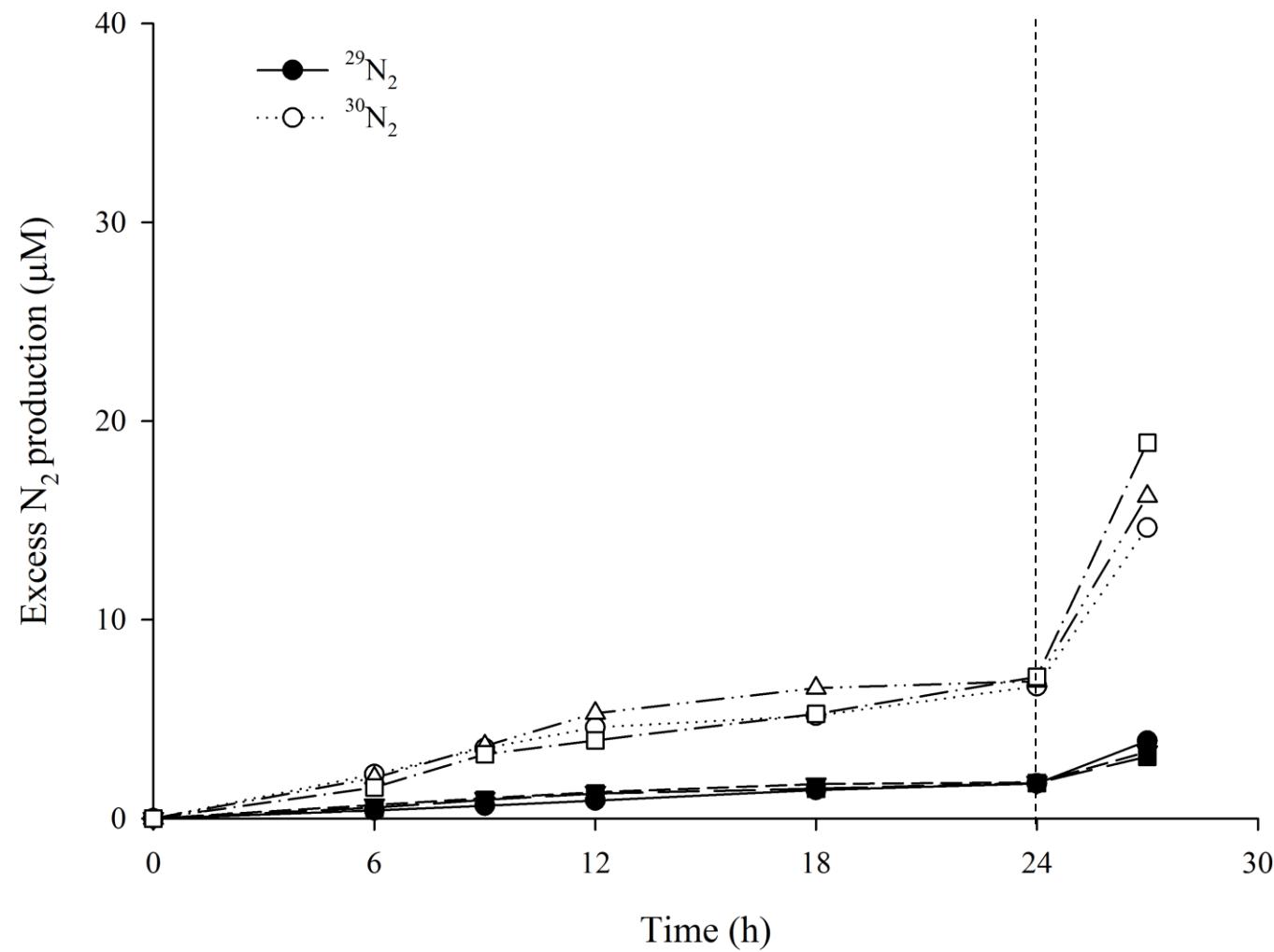
LIST OF FIGURE LEGENDS

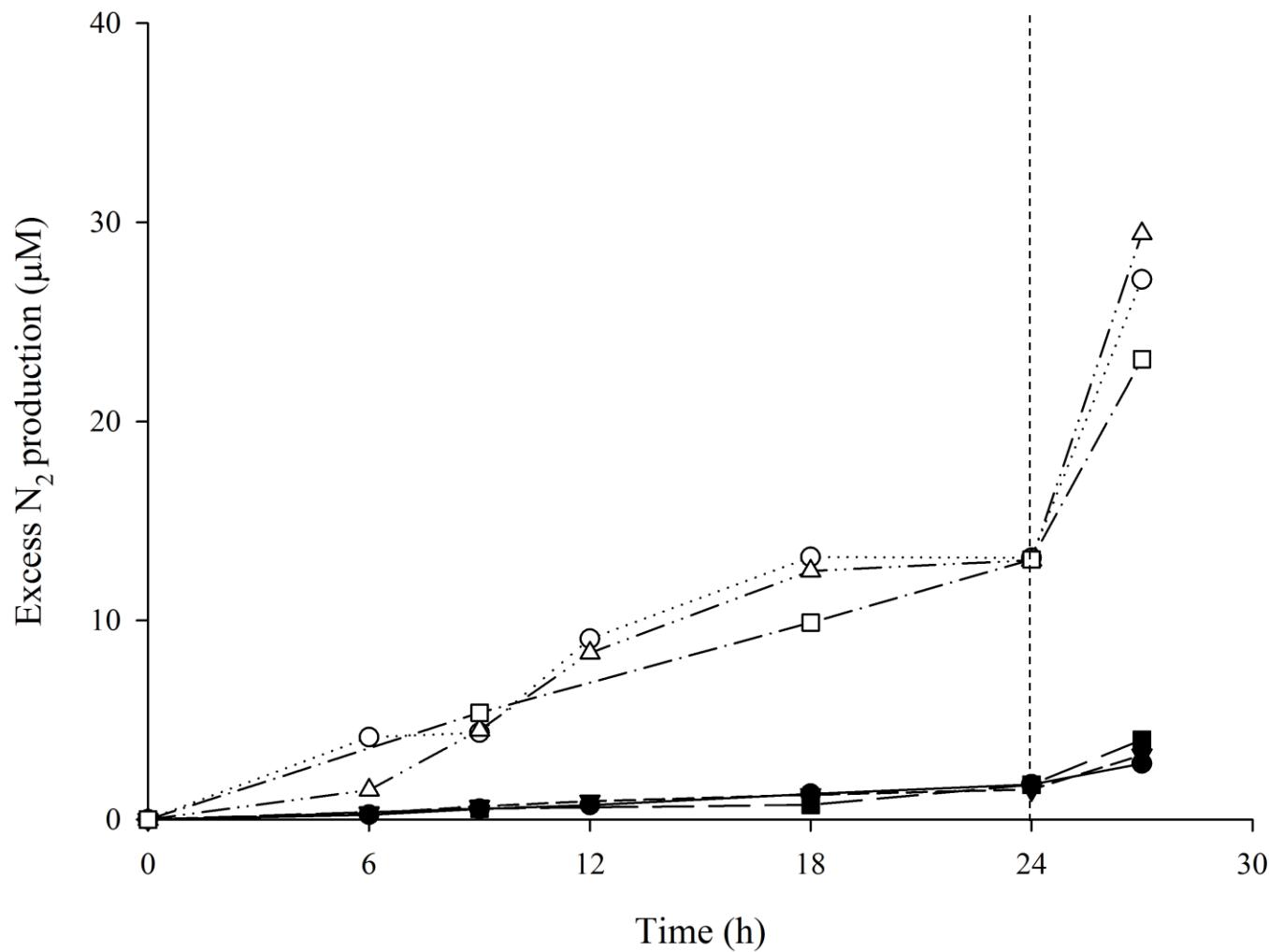
Fig. 1. Production of $^{29}\text{N}_2$ (filled symbols) and $^{30}\text{N}_2$ (open symbols) as a function of time after the addition of $^{15}\text{NO}_3^-$ in incubations with (A) air-saturated (simulating pumping conditions) and (B) de-gassed site water (simulating non-pumping conditions) with tissue from *Geodia barretti* (n=3 individuals).

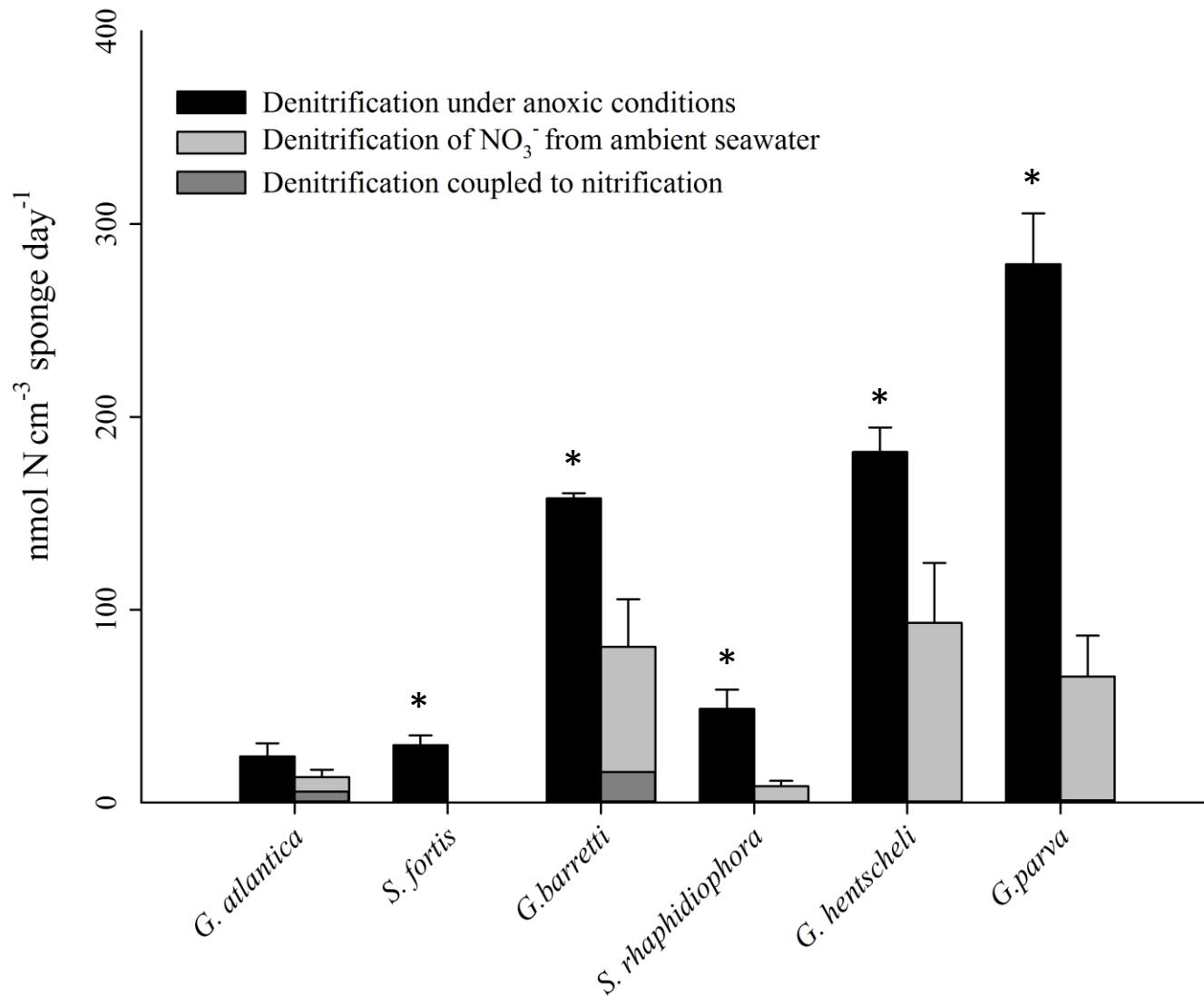
5 Data associated with an individual sponge is represented by a set of symbols. Linear regressions of N_2 production within the first 24 hours of the experiments were used to calculate denitrification rates.

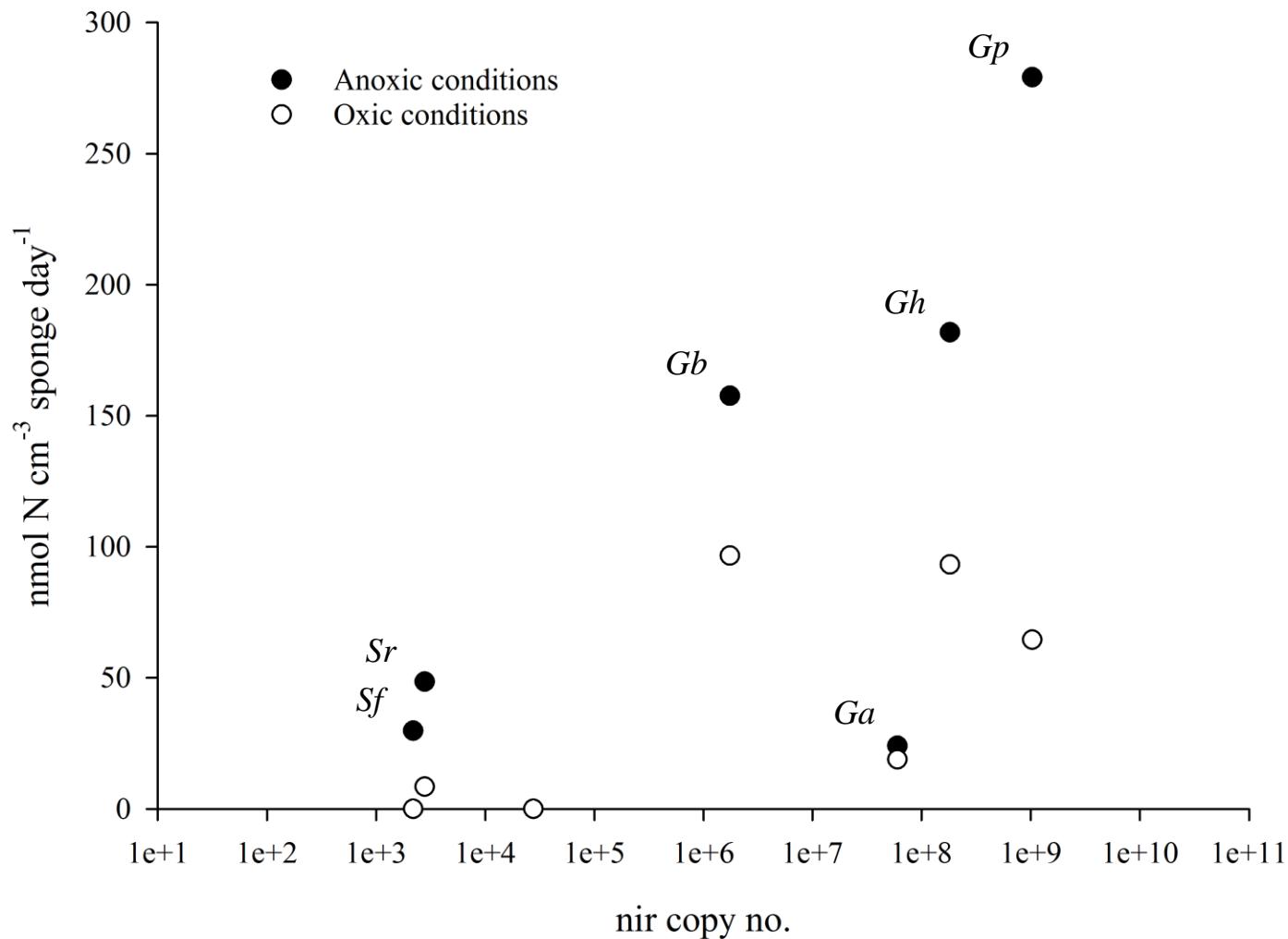
Fig. 2. Sponge species-specific rates of denitrification in incubations with de-gassed site water (anoxic conditions, black bars) and air-saturated site water (oxic conditions, grey bars) for 6 key 10 species from boreal and arctic sponge grounds. Statistically significant differences between denitrification rates in the presence and absence of dissolved oxygen are indicated by an asterisk for each species. Error bars indicate SE (n=3 individuals). Coupled nitrification-denitrification under oxic conditions is visualised with dark grey colour in the grey bars. Compare also Table 1.

Fig. 3. Mean species-specific denitrification rates in incubations with air-saturated site water (with 15 O_2 , open circles) and de-gassed site water (without O_2 , closed circles) as a function of nitrite reductase copy number. The nitrite reductase gene copy number is the sum of the mean number of *nirS* and *nirK* copies per cm^{-3} of sponge tissue (n=3). There is a positive relationship between denitrification rates (in the absence of oxygen) and the species-specific abundance of *nirS* and *nirK* for 5 of the 6 sponge species.


Table 1. Nitrate sources for denitrification in the presence of dissolved oxygen. Most of nitrate removed by sponge denitrification in oxic incubations originates from seawater, while some originates from sponge nitrification (coupled nitrification-denitrification). Denitrification rates in anoxic incubations (no coupled nitrification-denitrification) are also shown. Data are also presented in Fig 2.


Sample	Location	Denitrification anoxic incubation s	Denitrification oxic incubations nmol N cm ⁻³ sponge day ⁻¹	Nitrate from nitrification	Nitrate from seawater	% coupled nitrification-denitrification
<i>G. atlantica</i>	Boreal	23.98	18.87	5.68	13.19	30.1
<i>S. fortis</i>	Boreal	29.80	ND	ND	ND	ND
<i>G. barretti</i>	Boreal	157.64	96.54	15.87	80.67	16.4
<i>S. raphidiophora</i>	Arctic	40.92	8.42	ND	8.42	ND
<i>G. hentschelii</i>	Arctic	181.87	93.15	ND	93.15	ND
<i>G. parva</i>	Arctic	279.12	64.46	1.1	65.28	1.72
Sediment	Arctic	ND	ND	ND	ND	ND


10


Table 2. Abundance of the nitrite reductase genes *nirS* and *nirK* in sponge and sediment samples. The nitrite reductase copy number is the sum of the mean number of *nirS* and *nirK* copies per cm⁻³ of sponge tissue (n=3). *ND = not detectable.

Sample	Location	<i>nirS</i> copy no.	<i>nirK</i> copy no.	Nitrite reductase copy no.
<i>G. atlantica</i>	Boreal	2.67E+02	6.00E+07	6.00E+07
<i>S. fortis</i>	Boreal	ND	2.19E+03	2.19E+03
<i>G. barretti</i>	Boreal	7.04E+02	1.75E+06	1.75E+06
<i>S. raphidiophora</i>	Arctic	4.02E+02	2.39E+03	2.80E+03
<i>G. hentschelii</i>	Arctic	1.25E +03	1.82E+08	1.82E+08
<i>G. parva</i>	Arctic	3.81E+02	1.03E+09	1.03E+09
Sediment	Arctic	ND	2.77E+04	2.77E+04

