Referee 1

My understanding from reading the Methods several times is that Lysimeter tubes were temporarily installed in a beech tree forest soil, the soil inside was excavated away and used for sampling, and then the tubes were replaced with a large, solid polyethylene plug. The experimental treatments and measurements were then conducted in the area immediately around the plugged hole. I may have this wrong, and I think a schematic figure showing the physical structure of the experimental setup would really help, or at a minimum clarifying the text. My initial impression at first reading was that the lysimeters remained and some experiments were done inside and others outside, which would have been very different.

Authors response

Yes the reviewer is right that a schematic figure will be helpful. We will add the following two figures to the manuscript (Fig 1 and Fig 2) which clarify the experimental set up. In addition we will add 2-3 sentences in the method section where we explain the origin of the gas samples and that all measurements were done outside the subsoil observatory. The subsoil observatories contained the data logger and the power supply for the sensors as well as the endings of the stainless steel tubes of the gas samplers.

Changes

Two photographs were added (Fig. 1) showing the installation of the subsoil observatories. Further, we added a schematic figure (Fig. 2) showing the installations of the sensors in the soil and the labelling experiment.

The calculations of production rate and units were confusing (e.g. section 2.5.2, Fig’s 3-5). I believe production needs to be expressed in conventional terms of unit volume, not area (m³, not m²). To calculate production with the gradient method, you need a difference between fluxes at two depths, and therefore must divide by the difference in depth, and end up with a unit volume in the denominator. You cannot use the gradient method to calculate production at a single depth because any horizontal plane with only two dimensions at some arbitrary soil depth only has one concentration gradient and one diffusivity, and so there is only one flux, and therefore zero production. When you want to sum the production at depth intervals to get the steady-state surface flux per unit area, you must multiply each each production value by the depth increment. If you apply your Eqn 8 to your modeled depths (without dividing) you would be comparing 10 cm to 40 cm depth intervals equally. Will you please clarify this?

Authors response

We thank the reviewer for the comment and we agree that the CO₂ production expressed per area is a bit unusual. However, in the literature we found both expression per unit volume as well as area-based units see e.g. (Gaudinski et al. 2000; Hirano 2005; Fierer et al. 2005; Davidson et al. 2006; Hashimoto et al. 2007). Since SOC stocks are also reported on an area basis, we decided to stick with the expression of unit per area for the CO₂ production, which might be easier to understand for a broader audience.

We assumed that the CO₂ production in a certain soil layer can be described as the difference between the flux at the top of the soil layer and at the top of the soil layer below (e.g. Gaudinski et al. 2000). E.g. to calculate the CO₂ production in 10-30 cm depth we calculated the CO₂ flux between the sensor in 10 cm and 30 cm depth, this would represent the flux leaving the soil layer. For the CO₂ flux entering the soil layer between 10-30 cm we used the CO2 gradient between 30 and 50 cm depth. We are not sure if we understood the point you are making about the comparison of the
different depth intervals. We don’t see a problem by comparing different depth intervals, since we always name the specific depth interval.

Changes
On p.7 l.16 we added literature references, which used the same calculation of CO₂ production

Comment 3
Agreement between the profile method and the chamber measurements was off by quite a lot over large sections of time (Fig. 2), and could use more attention in the discussion. For OB1 and OB3 it looks like the modeled fluxes decrease relative to the surface fluxes over the course of the experiment. Could it possibly be that the flux gradient measurement area was impacted by the lysimeter installation (e.g. severed roots) in ways the surface fluxes were not?

Authors response
The decrease in the surface fluxes derived from the gradient method of OB1 and OB3 can be explained by bioturbation (voles) in OB1 and OB3, which occurred in the second year, as tried to explain in the last sentence of section 4.2 and Fig 3a. In order to make things more clear, we will rephrase this paragraph and highlight more the problems of bioturbation which changed diffusivity in the first 10 cm of OB1 and OB3. The area around the CO₂ sensors where not affected by lysimeter installation.

Changes
On p.12 l.13-l.24 we added
For example, the higher soil respiration determined with the gradient method at OB2 and OB3 in summer (Fig. 4) is linked to lower soil moisture measured in 10 cm depth (Fig. 3b) and to higher total soil porosity (51 % OB2, 49 % OB3 vs. 46 % OB1). In consequence, the effective diffusivity (Eq. 4) is higher, resulting in higher fluxes. Further, the lower soil respiration of OB1 and OB3 in the second year determined with the gradient method was related to bioturbation which changed diffusivity in the first 10 cm of OB1 and OB3. The area around the CO₂ sensors where not affected by lysimeter installation.

Comment 4
In OB2 the gradient method overestimated the flux during the growing season, possibly due to incorrect paramaterization of the model/diffusivity?

Authors response
Yes the reviewer is right, the parametrization of the used diffusivity model in 10 cm depth at observatory 2 overestimated the fluxes. We reprocessed the data by using a fixed parametrization (without a distribution of the power fit function) of the diffusivity model for the specific depth and observatory. The total fluxes changed from 1080 g C m⁻² yr⁻¹ to 847 g C m⁻² yr⁻¹. We will change all figures and tables and the respective values in the text. Furthermore, in the final manuscript we will remove the distribution of the Dₛ model in the calculations for all observatories and depths and instead use the fixed parametrization set for each depth and observatory. This change will be made to be consistent with the data processing. The used parametrization values will be part of the supplement. However, there is still an overestimation of CO₂ flux at OB2 during the growing season. This could possibly be explained by the lower measured soil moisture during the growing season at OB2 in 10 cm depth. In addition, OB2 had the highest total porosity of all three observatories (51 % vs 46 % and 49 %). In consequence the diffusivity at OB2 is higher during the growing season. As discussed in section 4.2 the difference between chamber measurements and the gradient method must be attributed to the spatial resolution of the measurement. At each observatory soil
respiration was measured at 5 spatial replicates with the chamber method. Therefore, chamber measurements accounted for the spatial variability in water content and CO₂ concentration below the chamber. However, there was no spatial replicate for the gradient method at the observatories.

Changes
We recalculated CO₂ fluxes and production rate for all observatories and depths. Therefore fig 4 – fig 7 and table 1 was adjusted to the new values. Further, the results in the text (numbers) were adjusted.

Comment 5
Why are there missing periods in the CO2 profile data (Fig. 1c) but not in the flux gradient model results (Fig. 2)? Was there gap filling of some kind?

Authors response
Thank you for pointing that out. The missing periods are also in figure 2. However these period are difficult to see, because they appear as a straight line. This is just a plotting issue of R.

Changes
Missing periods are now visible in figure 4.

Comment 6
For the isotope calculations, it appears you report the effect of label additions on delta-13C of CO2 at different depths. If I am mistaken about this I apologize and please clarify this in the text, but in Eqn 9, delta-13CM refers to a “gas sample”, and Fig. 6c presents “litter-derived CO2”. The isotope ratio of CO2 at a given depth does not tell you much of anything about production. It completely ignores the physics of diffusion. Instead, the authors should calculate the isotope ratio of production at different depths (apply the gradient method to each isotopologue), or of the cumulative soil profile (Keel-ing method). For the gradient method, you would have to calculate fluxes and production of 12CO2 and 13CO2 separately throughout the profile, and then calculate the isotope ratio of production for each zone using the ratios of 13CO2 and 12CO2 produced per unit time: ((prod-13CO2/prod-12CO2)/R-VPDB-1)*1000 per mil Alternatively, you can use a Keeling plot approach for the whole profile), with a diffusion offset of 4.4 per mil on the offset to calculate the production signature of the entire profile (using all depths, so does not give information within the profile). Then, after either of these, to know percent of label you would want to compare labelled and unlabelled plots over time to have the unlabelled endmember for a 2 source mixing model (use these values in equation 9 instead of the gas sample value). But, since there are no unlabelled plots, you will have to use the average or seasonal values from pre-treatment and state that you assume it would not have changed.

Authors response
We are happy for this comment, because it points out a mistake in our calculation of litter-derived CO₂ fluxes. As written in the manuscript we multiplied Eq. 9 with the absolute CO₂ concentration to distinguish between ¹²CO₂ and ¹³CO₂ and afterwards we calculated litter-derived C fluxes. However, as the reviewer mentioned this was wrong. Furthermore, we must first calculate the CO₂ fluxes / production in the respective layers for each sampling time. Then we must apply Eq. 9 on the CO₂ production to the amount of litter mineralisation in the certain layer. As a reference value we use the average delta value for each depth and observatory before the labelling experiment started assuming that it would not have changed.

We tried the suggested calculation from the reviewer for each isotopologue, but the derived delta values based on that calculation was on average -50 ‰ with a range of -400 ‰ to 40 ‰ which seems not realistic when compared to SOC delta values of -26.5 ‰. We think the Keeling plot approach for our soil profile is not suitable, since
the diffusion offset of 4.4 ‰ is more theoretical and different from our field data. As shown Fig. 8a the delta values of CO$_2$ in all depths and observatories showed almost similar values around 24 ‰ and we could not observe a change with depth. In consequence, we used the calculation as described below to estimate the litter-derived CO$_2$ production.

- We rephrased the section 2.5.3 Isotopic composition of CO$_2$, accounting for the mistake in the calculation.
- We recalculated litter-derived C in CO$_2$ and added figure 9 and figure 10
- p.10 l.28 added “The total amount of labelled litter-derived C to the CO$_2$ production below 10 cm was 408 mg C m$^{-2}$ (± 329) (Fig. 9), which accounted for 0.18 % of total CO$_2$ production below 10 cm depth.”
- p.10 l.30 – p.11 l.5 was rephrased, according to results from recalculation
- Fig. 8c changed title to “Litter-derived C in CO$_2$”
- Fig. 8c changed y axis label to “Amount of litter-derived CO$_2$ [%]”
- Replaced old figure 7 by figure 9 “Litter-derived CO$_2$ production”
- added figure 10 showing 13CO$_2$ fluxes

I believe the surface litter removal experiment would greatly underestimate the contribution of litter to CO$_2$ production. The insertion depth was 5 cm and the diameter of the chamber was 10.4 cm. The unsaturated layer of soil is at least two meters deep, and the CO mole fraction is tens of thousands of ppm at relatively shallow depths (Fig1c). Molecules of CO$_2$ are moving in all directions under the soil and reflecting back off the lower boundary. Therefore, the volume of soil affecting the measurement made by the chamber is much larger than the volume of soil within the collar, and you would have to remove litter from a much larger area to see the effect in a surface flux measurement.

Authors response

The contribution of the organic layer to total soil respiration is in the range as found in other studies. Litter-derived CO$_2$ accounts for 9.4 % to 37 % on total soil respiration as reported from litter manipulation experiments (Bowden et al. 1993; Nadelhoffer et al. 2004; Kim et al. 2005; Sulzman et al. 2005). However, we agree with the reviewer that the litter removal in the collar might underestimate the contribution of litter-derived CO$_2$. We will add a paragraph in the discussion section explaining the problem with the litter removal as already pointed out by the reviewer. Nevertheless, since our data fit in the range as reported in the literature it is still reasonable to report them in the paper even if we may underestimate the litter-derived CO$_2$.

added p.12 l.19-l.24

Removing the organic layer in the soil collars was supposed to determine the contribution of CO$_2$ production in the organic layer to total soil respiration. Since the organic layer was only removed in the soil collars and not around the soil collars, it must be noted that the contribution of the organic layer to total soil respiration might be underestimated with the used method. However, the results are in line with findings from litter manipulation experiments, which reported a contribution of 9 \% to 37 \% of the organic layer to total soil respiration (Nadelhoffer et al., 2004; Bowden et al., 1993; Kim et al., 2005; Sulzman et al., 2005).

For the same reason, it would be good to know the treatment area for the isotope-labelled litter addition. If the treatment area is small relative to the depth of the soil, the signal will disperse like a drop of ink into the ocean.
<table>
<thead>
<tr>
<th>Authors response</th>
<th>The treatment area of the labelled litter was 6.6 m².</th>
</tr>
</thead>
<tbody>
<tr>
<td>Changes</td>
<td>We added figure 2 and added the information of the labelled area in the method section (p. 5 l. 22)</td>
</tr>
</tbody>
</table>

Comment 9
Lastly, I would consider changing the title to remove “in a dystric cambisol” and maybe instead using words that are more broadly relevant to raise the reach of the paper. If the soil type is important enough to put in the title, then I think there should be more text in the paper explaining the importance of the soil type for the contribution of this paper.

Authors response
We agree with the reviewer to remove the soil type in the title.

Changes
The title was changed to “Vertical partitioning of CO₂ production in a forest soil”

Referee 2

Comment 1
The present study investigated the contribution of fresh litter-derived C to CO₂ production in the three soil profiles, the design and the methodology adopted was adequate, and the MS. is well written. However, the contribution of new C to CO₂ emissions can’t be fully assessed by the 13C labelling experiment. And the conclusion of the importance of roots and the rhizosphere for CO₂ production, should be evidenced by input of labelled root or root exudate analog in additional treatments

Authors response
We thank the reviewer for the interesting comment, unfortunately there is no analog experiment which could show the importance of roots and roots exudates to CO₂ production in the soil profile. Therefore, we can only rely on other studies which investigated the contribution of root respiration to total soil respiration such as Högberg et al. (2001). Still this is an interesting question and should be investigated in future studies

Changes
We added on p.12 l.34 – p.13 l.4
Even if the current study is unable to distinguish between autotrophic and heterotrophic respiration, the importance of autotrophic respiration to total soil respiration was shown in a large scale girdling experiment by Högberg et al. (2001). They reported that autotrophic respiration accounted for up to 54 % on total soil respiration. In consequence, autotrophic respiration should be higher in the topsoil than in the subsoil, due to the decreasing root bio- and necromass with increasing soil depth (Fig. 12).

Comment 2
This study is a two-year experiment. How to reduce the cross-feeding effect? Especially, the young beech litter can be assimilated into microbial biomass C. Did the formulas already take into account the cross-feeding effects between different C decomposition stages?

Authors response
We are not sure if we understand the comment correctly, but we didn’t account for cross-feeding effects in the calculations, since this was not the aim of the study.
Vertical partitioning of CO$_2$ production in a *Dystric Cambisolf* forest soil

Patrick Wordell-Dietrich1,2, Axel Don2, Anja Wotte3,4, Janet Rethemeyer4, Jörg Bachmann5, Mirjam Helfrich2, Kristina Kirfel6, and Christoph Leuschner6

1Institute of Soil Science and Site Ecology, Technische Universität Dresden, Pienner Straße 19, 01737 Tharandt, Germany
2Thünen Institute of Climate-Smart Agriculture, Bundesallee 50, 38116 Braunschweig, Germany
3Institute of Geology, Technische Universität Bergakademie Freiberg, Bernhard-von-Cotta Straße 2, 09599 Freiberg, Germany
4Institute of Geology and Mineralogy, University of Cologne, Zülpicher Straße 49b, 50674 Köln, Germany
5Institute of Soil Science, Leibniz University Hannover, Herrenhäuser Straße 2, 30451 Hannover, Germany
6Plant Ecology, Albrecht Haller Institute for Plant Science, University of Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany

Correspondence: Patrick Wordell-Dietrich (patrick.wordell-dietrich@tu-dresden.de)

Abstract. Large amounts of total organic carbon are temporarily stored in soils, which makes soil respiration one of the major sources of terrestrial CO$_2$ fluxes within the global carbon cycle. More than half of global soil organic carbon (SOC) is stored in subsoils (below 30 cm), which represent a significant C pool. Although several studies and models have investigated soil respiration, little is known about the quantitative contribution of subsoils to total soil respiration or about the sources of CO$_2$ production in subsoils. In a two-year field study in a European beech forest in northern Germany, vertical CO$_2$ concentration profiles were continuously measured at three locations and CO$_2$ production was quantified in the topsoil and the subsoil. To determine the contribution of fresh litter-derived C to CO$_2$ production in the three soil profiles, an isotopic labelling experiment using 13C-enriched leaf litter was performed. Additionally, radiocarbon measurements of CO$_2$ in the soil atmosphere were used to obtain information about the age of the C source in CO$_2$ production. At the study site, it was found that 90 % of total soil respiration was produced in the first 30 cm of the soil profile where 53 % of the SOC stock is stored. Freshly labelled litter inputs in the form of dissolved organic matter were only a minor source for CO$_2$ production below a depth of 10 cm. In the first two months after litter application, fresh litter-derived C contributed on average 1 % at 10 cm depth and 0.1 % at 150 cm depth to CO$_2$ in the soil profile. Thereafter, its contribution was less than 0.3 % and 0.05 % at 10 cm and 150 cm depths respectively. Furthermore CO$_2$ in the soil profile had the same modern radiocarbon signature at all depths, indicating that CO$_2$ in the subsoil originated from young C sources, despite a radiocarbon age bulk SOC in the subsoil. This suggests that fresh C inputs in subsoils in the form of roots and root exudates are rapidly respired and that other subsoil SOC seems to be relatively stable. The field labelling experiment also revealed a downward diffusion of 13CO$_2$ in the soil profile against the total CO$_2$ gradient. This isotopic dependency should be taken into account when using labelled 13CO$_2$ and 14C isotope data as an age proxy for CO$_2$ sources in the soil.
1 Introduction

Soils are the world’s largest terrestrial organic carbon (C) pool, with an estimated global C stock of about 2400 Gt in first two metres of the world’s soils (Batjes, 2014). The CO$_2$ efflux from soils, known as soil respiration, is the second largest flux component in the global C cycle (Bond-Lamberty and Thomson, 2010; Raich and Potter, 1995) and can be divided into autotrophic respiration due to roots and mycorrhizae and heterotrophic respiration due to mineralization of soil organic carbon (SOC) by decomposers. Global warming is expected to increase soil respiration by boosting the microbial decomposition of SOC (Bond-Lamberty et al., 2018; Hashimoto et al., 2015) and by greater root respiration (Schindlbacher et al., 2009; Suseela and Dukes, 2013). Although most of the CO$_2$ is produced in topsoils (< 30 cm), a significant amount of CO$_2$ is produced in the subsoil (> 30 cm) (Davidson and Trumbore, 1995; Drewitt et al., 2005; Fierer et al., 2005; Jassal et al., 2005). Despite the fact that more than 50% of global SOC stocks are stored in subsoils (Batjes, 2014; Jobbágy and Jackson, 2000), little is known about the amount and sources of CO$_2$ production in subsoils. Moreover, the mechanisms controlling CO$_2$ production in subsoils are still not fully understood. High apparent radiocarbon (¹⁴C) ages of SOC in subsoils (Rethemeyer et al., 2005; Torn et al., 1997) lead to an assumption of a high stability of C and a low turnover in subsoils. However, laboratory incubations of subsoil samples show similar mineralisation rates of SOC in both subsoils and topsoils (Agnelli et al., 2004; Salomé et al., 2010; Wordell-Dietrich et al., 2017), suggesting that subsoils also contain a labile fraction that should be taken into account as a source for soil respiration.

A range of studies have been conducted on CO$_2$ production in soils, but most of them have focused on spatial variations in temperature, water content and substrate supply (Borken et al., 2002; Davidson et al., 1998; Fang and Moncrieff, 2001), but ignoring the vertical partitioning of CO$_2$ production in the whole soil profile which is essential for understanding soil C dynamics. One reason for this might be the measurement methods used to quantify sources and fluxes in the soil profile. Total CO$_2$ production can easily be measured at the soil surface with an open-bottom chamber, whereas vertical monitoring of CO$_2$ production needs determination of CO$_2$ concentrations at several soil depths in order to estimate CO$_2$ production, i.e. using the gradient method first described by de Jong, E., Schappert (1972). Basically, the CO$_2$ flux between two depths can be calculated using the effective gas diffusion coefficient and the CO$_2$ gradient between the two depths. Recently, the development of low-cost sensors for temperature, soil moisture and CO$_2$ concentration has allowed greater use of the gradient method (Jassal et al., 2005; Maier and Schack-Kirchner, 2014; Pingintha et al., 2010; Tang et al., 2005). This method can help quantify CO$_2$ production in the entire soil profile, which is essential for an improved quantitative understanding of whole soil C dynamics including the important contribution made by subsoil. To date there have only been a few studies that have continuously determined CO$_2$ production in the whole soil profile in situ over a longer timescale (Goffin et al., 2014; Moyes and Bowling, 2012).

In the present study, the vertical distribution of CO$_2$ concentration was measured and CO$_2$ production rates calculated over a two-year period in a Dystric Cambisol in a temperate beech forest. The objectives of this study were 1) to quantify the contribution of CO$_2$ production in subsoils to total soil CO$_2$ production, and 2) to identify sources of CO$_2$ production along the
soil profile using sources partitioning via isotopic data (13C and 14C). It was hypothesised that the majority of CO$_2$ in subsoils originates from young C sources and not from mineralisation of old SOC.

2 Methods

2.1 Site description and subsoil observatories

The study site is located in a beech forest (Grinderwald) 35 km northwest of Hannover, Germany (52°34´22´´N, 9°18´49´´E). The vegetation is dominated by common beech trees (*Fagus sylvatica*) that were planted in 1916 and the soil is characterised as a Dystric Cambisol (IUSS Working Group WRB, 2014) developed on Pleistocene fluvial and aeolian sandy deposits from the Saale glaciation. The site is located around 100 m above sea level, with a mean annual temperature and precipitation of 9.7 °C and 762 mm (*Deutscher Wetterdienst, Nienburg*, 1981–2010) respectively. The soil texture of the site is mainly composed of the sand fraction with contents varying from 60 % (< 30 cm) to 90 % (> 120 cm), with SOC contents of 11.5 g kg$^{-1}$ down to (10 cm) 0.4 g kg$^{-1}$ (185 cm) (Heinze et al., 2018; Leinemann et al., 2016).

In July 2013, three subsoil observatories were installed using a stainless steel lysimeter vessel (1.6 m diameter and 2 m height) driven 2 m deep into the soil (Fig. 1a). Once the vessel had been inserted, the soil inside the containment was excavated by hand and undisturbed soil cores (5.7 cm inner diameter, 4.0 cm height) taken with five replicates at depths of 10, 30, 50, 90 and 150 cm from each subsoil observatory for soil diffusivity measurements. In addition, undisturbed soil samples in the observatories were taken to estimate fine root density. Thus six samples were taken from the forest floor and six samples from each of the upper mineral soil layers (0–10 cm, 10–20 cm, 20–40 cm) using a soil corer (3.5 cm diameter), and three samples were taken from each depth increment of the lower profile (40–200 cm depth) at 20 cm depth intervals using a steel cylinder (12.3 cm diameter and 20 cm height). In the laboratory, the samples were gently washed over sieves of 0.25-mm mesh size to separate the roots from adhering soil particles. Under the stereo microscope, the rootlets were separated into live (biomass) and dead (necromass) roots, and subsequently into fine (< 2 mm in diameter) and coarse roots (> 2 mm in diameter). All live and dead root samples were dried at 70 °C for 48 h and weighed.

After the lysimeter vessel was removed, a polyethylene shaft (1.5 m in diameter and 2.1 m height) was placed in the soil (Fig. 1b), referred to here as the subsoil observatory. The gap (≈ 5 cm) between the subsoil observatory and the surrounding undisturbed soil was refilled. The observatories where installed close to one other, with a maximum distance of 30 m between them.

To monitor the temperature and volumetric water content, combined temperature and moisture sensors (UMP-1, Umwelt-Geräte-Technik GmbH, Germany) were installed at depths of 10, 30, 50, 90 and 150 cm with a horizontal distance of 100 cm from the wall of the subsoil observatories (Fig. 2a). Measurements were taken every 15 minutes and stored on a data logger *inside the subsoil observatory*. The CO$_2$ concentration in the soil air was monitored by solid-state infrared gas sensors (GMP221, Vaisala Oyi, Finland) with a measuring range of 0–10 % CO$_2$. To protect the PTFE membrane of the CO$_2$ sensor from damage while being placed in the soil, the sensor was coated with an additional PTFE foil (616.13 P, FIBERFLON, Turkey), to allow gaseous diffusion and prevent water infiltration. The CO$_2$ concentration was measured every three hours to
reduce power consumption. The CO₂ sensors were turned on 15 minutes before the measurement itself due to their warm-up
time. In addition, PTFE suction cups (25 mm diameter, 60 mm length) for soil air sampling with stainless steel tubing (2 mm
inner diameter) (ecoTech Umwelt-Meßsysteme GmbH, Germany) were installed adjacent to the CO₂ sensors. The gas samplers
and CO₂ sensors were installed at the same depths as the temperature and moisture sensors. The horizontal distance of the gas
samplers and CO₂ sensors from the subsoil observatory wall increased from 40 cm to 100 cm with increasing soil depth (Fig.
2a).

2.2 Gas sampling and measurements

2.2.1 Soil respiration

The surface CO₂ efflux was measured using the closed-chamber method. Thirty PVC collars with a diameter of 10.4 cm and
a height of 10 cm were installed 5 cm deep in the soil around the three subsoil observatories. The organic layer of 15 collars
was removed in order to be able to distinguish between mineral soil respiration and total soil respiration. Soil respiration was
measured with the EGM-3 SRC-1 soil respiration chamber (PP-Systems, USA) and the LI-6400-09 soil chamber (LI-COR
Inc., USA). The measurement system was changed due to technical problems with the EGM-3 system, however a comparison
between the two systems revealed only minor differences. Each collar was measured three times per sampling day from March
2014 to March 2016, with sampling ranging from once a month to once a week. Annual soil respiration was derived from linear
interpolation of measured CO₂ fluxes from the collars. Furthermore, soil respiration was modelled by fitting an Arrhenius-type
model (Eq.1), introduced by Lloyd and Taylor (1994) and using soil temperature data from 10 cm depth, and the measured
CO₂ fluxes:

\[F_0 = a \times e \left(\frac{E_0}{T - T_0^10} \right) \] \hspace{0.5cm} (1)

where \(F_0 \) is soil respiration [µmol m⁻² s⁻¹], \(a, E_0 \) and \(T_0 \) are fitted model parameters, and \(T \) is the soil temperature at 10 cm
depth [°C].

2.2.2 \(^{13}\)CO₂ sampling and measurement

In addition to continuous CO₂ concentration monitoring, two gas samples per depth and subsoil observatory were taken at the
end of the stainless steel tubing from the suction cups with a syringe and filled into 12-mL evacuated gas vials (Labco Exetainer,
Labco Limited, UK). The sampling started in May 2014 with an interval of between once a month and once a week. The CO₂
concentration in the soil gas samples was analysed by gas chromatography (Agilent 7890A, Agilent Technologies, USA). The
\(\delta^{13}C \) values of the CO₂ samples were measured by an isotope ratio mass spectrometer (Delta Plus with GP interface and GC-
Box, Thermo Fisher Scientific, Germany) connected to a PAL autosampler (CTC Analytics, Switzerland). The \(^{13}C \) results are
expressed in parts per thousand (‰) relative to the international standard Vienna Pee Dee Belemnite (VPDB).
2.2.3 \(^{14}\text{CO}_2\) sampling and measurement

Soil gas samples for radiocarbon analysis were taken in October and December 2014 in subsoil observatories 1 and 3. The \(^{14}\text{CO}_2\) was sampled using a self-made molecular sieve cartridge as described in Wotte et al. (2017). Briefly, each stainless steel cartridge was filled with 500 mg zeolite type 13X (40/60 mesh, Charge 5634, IVA Analysetechnik GmbH & Co KG, Germany), which is used as an adsorbent for \(^{14}\text{CO}_2\). The molecular sieve cartridges were connected to the installed gas samplers. The soil atmosphere of the corresponding depth was then pumped with an airflow of 7 mL min\(^{-1}\) over a desiccant (Drierite, W. A. Hammond Drierite Company, USA) to the molecular sieve cartridge for 40 minutes to trap the \(^{14}\text{CO}_2\) on the molecular sieve. Surface samples were taken from a respiration chamber (Gaudinski et al., 2000). The atmospheric \(^{14}\text{CO}_2\) inside the chamber was removed prior to sampling by circulating an airflow of \(\approx 1.5\) L min\(^{-1}\) from the chamber through a column filled with soda lime until the equivalent of 2-3 chamber volumes had been passed over the soda lime. Thereafter, the airflow was run over a desiccant and the molecular sieve cartridge for 10 minutes to collect the \(^{14}\text{CO}_2\) sample.

In the laboratory, the adsorbed \(^{14}\text{CO}_2\) was released from the molecular sieve cartridge by heating the molecular sieve under vacuum (Wotte et al., 2017). The released \(^{14}\text{CO}_2\) was purified cryogenically and sealed in a glass tube. The radiocarbon \(^{14}\text{C}\) analysis was directly performed on the \(^{14}\text{CO}_2\) with the gas ion source of the mini carbon dating system (MICADAS, Ionplus, Switzerland) at ETH Zurich (Ruff et al., 2010). The \(^{14}\text{C}\) concentrations are reported as fraction modern carbon (F\(^{14}\text{C}\)), whereby F\(^{14}\text{C}\) values less than one denote that the majority of the C was fixed before the nuclear bomb tests in the 1960s, while values greater than one indicate C fixation after the bomb tests.

2.3 Labelling experiment

To trace the fate of fresh litter inputs in the soil and their contribution to the \(^{14}\text{CO}_2\) released from different soil horizons, a \(^{13}\text{C}\) labelling experiment was performed. In January 2015, the leaf litter layer around the subsoil observatories was removed and replaced with a homogeneous mixture of 237 g \(^{13}\text{C}\)-labelled and 1575 g non-labelled young beech litter, which is equal to a litter input of 250 g m\(^{-2}\). The labelled litter was distributed on a semi-circular area (6.6 m\(^2\)) around the subsoil observatories (Fig. 2b). The labelled litter originated from young beech trees grown in a greenhouse in a \(^{13}\text{CO}_2\)-enriched atmosphere. The mixture of labelled and non-labelled litter had an average \(\delta^{13}\text{C}\) value of 1241 ‰ for subsoil observatory 1 (OB1) and a \(\delta^{13}\text{C}\) value of 1880 ‰ for subsoil observatories 2 (OB2) and 3 (OB3).

2.4 Diffusivity measurements

Gas transport along the soil profile is determined by the diffusivity of the soil. The diffusivity of the soil was determined at depths of 10, 30, 50, 90 and 150 cm, with five undisturbed core sample replicates per depth and per observatory. To account for different water contents, the undisturbed soil cores (5.7 cm diameter, 4.0 cm height) were adjusted in the laboratory at different matrix potentials (-30 hPa, -60 hPa, -300 hPa) to cover a wide range of soil moisture. After moisture adjustment, the soil cores were attached to a diffusion chamber as described in Böttcher et al. (2011). The diffusion chamber was flushed with \(\text{N}_2\) to initially establish a gas gradient between the chamber and the top of the sample as an atmospheric boundary condition.
The increase in oxygen inside the ventilated chamber was measured over time with an oxygen dipping probe (DP-PSt3-L2.5-St10-YOP, PreSens-Precision Sensing GmbH, Germany). Diffusivity and tortuosity factors (τ) were calculated with an inverse diffusion model (Schwen and Böttcher, 2013).

2.5 Data analysis

2.5.1 Gradient method

This method is based on the assumption that molecular diffusion is the main gas transport in the soil atmosphere. Therefore gas fluxes, e.g. CO$_2$ fluxes in a soil profile, can be calculated from the CO$_2$ concentration gradient and the effective gas diffusion coefficient in the specific soil layer of interest.

In order to account for temperature and pressure dependencies of the CO$_2$ sensors, the CO$_2$ concentrations were corrected with a compensation algorithm for the GMP221 (S1) provided by the manufacturer (pers. comm. Niklas Piirinen, Vaisala Oyi, Finland). For the flux calculation, CO$_2$ volume concentrations were converted to CO$_2$ mole concentrations (Eq. 2):

$$C = \frac{C_v \times p}{R \times T}$$ \hspace{1cm} (2)

where C is the CO$_2$ mole concentration [μmol m$^{-3}$], C_v is the CO$_2$ volume fraction [μmol mol$^{-1}$], p is the atmospheric pressure in [Pa], R is the universal gas constant [8.3144 J K$^{-1}$ mol$^{-1}$] and T is the soil temperature in [K] measured by temperature sensors at the corresponding soil depths. The CO$_2$ flux of a soil layer was calculated using Fick’s first law (Eq. 3)

$$F = -D_s \times \frac{dC}{dz}$$ \hspace{1cm} (3)

where F is the diffusive CO$_2$ flux [μmol m$^{-2}$ s$^{-1}$], D_s is the effective diffusivity in the soil atmosphere [m2 s$^{-1}$] determined as described below, C is the CO$_2$ concentration [μmol m$^{-3}$] and z is the depth [m]. The equation is based on the assumption that 1) molecular diffusion is the dominating transport process in the soil atmosphere and other transport mechanisms – i.e. convective CO$_2$ transport due to air pressure gradients or diffusion in the soil, and convective transport with soil water – are negligible and 2) gas transport is one-dimensional (e.g., de Jong, E., Schappert, 1972; Maier and Schack-Kirchner, 2014). The effective diffusivity D_s was calculated with Eq. 4:

$$D_s = D_0 \times \tau$$ \hspace{1cm} (4)

where D_0 is the CO$_2$ diffusivity in free air. The pressure and temperature effect on D_0 were taken into account by:

$$D_0 = D_{a0} \times \left(\frac{p_0}{p}\right) \times \left(\frac{T}{T_0}\right)^{1.75}$$ \hspace{1cm} (5)

where D_{a0} is a reference value of D_0 at standard conditions (1.47×10^{-5} m2 s$^{-1}$ at T_0 293.15 K and p_0 1.013 \times 105 Pa) (Jones, 1994). The dimensionless tortuosity factor τ at each depth was modelled as a function of the air-filled pore space ε for each soil
depth. The model was derived from a power function fit from laboratory diffusion experiments (see above) on the undisturbed soil cores.

To account for the non-uniform vertical distribution of soil water content in the soil profile, D_s was estimated as the harmonic average between the two measurement depths (Pingintha et al., 2010; Turcu et al., 2005):

$$D_s = \frac{\Delta z_1 + \Delta z_2}{\frac{\Delta z_1}{D_{sz1}} + \frac{\Delta z_2}{D_{sz2}}}$$

(6)

where $\Delta z_{i,2}$ [m] is the thickness of the corresponding soil layer and $D_{sz_{i,2}}$ is the effective diffusivity of the respective soil layer.

Finally, assuming a constant flux between measured CO$_2$ at depth z_i and z_{i+1}, the CO$_2$ flux (F_i) was calculated by combining Eq. (2 - 6):

$$F_i = \left(\frac{\Delta z_i + \Delta z_{i+1}}{D_{sz_i} + D_{sz_{i+1}}} \right) \times \left(\frac{C_{i+1} - C_i}{z_{i+1} - z_i} \right)$$

(7)

where F_i is the CO$_2$ flux [μmol m$^{-2}$ s$^{-1}$] at the upper boundary (z_i) between depth z_i and z_{i+1}[m]. To calculate soil respiration (F_0) at the surface with the gradient method, a CO$_2$ concentration of 400 µmol mol$^{-1}$ at the soil surface and a constant D_s for the first 10 cm were assumed.

2.5.2 CO$_2$ production

The CO$_2$ production (P_i) in a soil layer was calculated as the difference between the flux (F_i) leaving the specific soil layer at the upper boundary (z_i) and the input flux (F_{i+1}) at the lower boundary (z_{i+1}) of the specific soil layer. Therefore, P_i had the unit of a flux [µmol m$^{-2}$ s$^{-1}$] (similar approach was done by e.g., Gaudinski et al., 2000; Hashimoto et al., 2007; Fierer et al., 2005; Davidson et al.,

$$P_i = F_i - F_{i+1}$$

(8)

Total soil respiration was calculated as the sum of CO$_2$ production in all soil layers. Equation (8) is based on the assumption of steady-state diffusion. Steady-state conditions for CO$_2$ concentration and volumetric water content were mostly given, except during a few heavy rain events where steady-state conditions were not met due to changing water contents in the profiles. Most soils exhibit increasing CO$_2$ concentrations with increasing soil depth. Therefore, CO$_2$ production is mostly positive with upward CO$_2$ fluxes. However, if the CO$_2$ concentration in a soil layer is greater than in the layers below, the calculated CO$_2$ production in the layers below can become negative (downward directed). Hence in the present study no CO$_2$ production was assumed when the calculated CO$_2$ production in a soil layer was negative. This approach was based on the assumption that there are no relevant CO$_2$ sinks in the soil profile. Furthermore, negative CO$_2$ production is considered as CO$_2$ storage, which will be released if the CO$_2$ concentration gradient or diffusion conditions change. In OB1 negative CO$_2$ production values were calculated in the first year at 30-50 cm depth (331 out of 365) and at 50-90 cm depth (359 out of 365). In the second year negative values also occurred in OB1 at 30-50 cm depth (8 out of 308) and at 50-90 cm depth (182 out of 308).
2.5.3 Isotopic composition of CO$_2$

To determine the contribution of the labelled leaf litter to CO$_2$ in different soil layers, the fluxes of 12CO$_2$ and 13CO$_2$ had to be calculated separately. Therefore, the amount of 13CO$_2$ (L) originating from the labelled leaf litter was calculated using the soil atmosphere we used the isotopic mixing equation (Eq. 9):

\[
L = 1 - \left(\frac{\delta^{13}C_M - \delta^{13}C_L}{\delta^{13}C_B - \delta^{13}C_L} \right)
\]

where $\delta^{13}C_M$ is the isotopic signature of the gas sample, $\delta^{13}C_L$ is the isotopic signature of the labelled leaf litter (1241 $\%$ for OB1 and 1880 $\%$ for OB2 and OB3) and $\delta^{13}C_B$ is the average isotopic signature of the gas samples soil atmosphere for each observatory and depth before the labelled leaf litter was applied. The 13CO$_2$ volume concentration for each layer was calculated using $\delta^{13}C_L$ assuming there was no change. The litter-derived CO$_2$ flux was calculated by multiplying the amount of litter-derived CO$_2$ (L) with the CO$_2$ flux of the respective soil layer. Afterwards, litter-derived CO$_2$ production was determined according to Eq. (2) multiplied by L. The 13CO$_2$ fluxes and production rates concentration was calculated with isotopic signature of the soil atmosphere and 13CO$_2$ fluxes were calculated using Eq. (12) - (17). To account for different effective diffusivities of 12CO$_2$ and 13CO$_2$, the effective diffusivity D_s for 13CO$_2$ was adjusted according to Cerling et al. (1991):

\[
D_s = ^{12}D_s = 1.0044 \times ^{13}D_s
\]

where it is assumed that D_s is equivalent to $^{12}D_s$ due to the fact that about 99 $\%$ of total CO$_2$ is 12CO$_2$.

2.6 Statistical analysis

A Monte Carlo simulation was generated to determine the influence of measurement uncertainties of the sensors, which were used for calculation of CO$_2$ fluxes and CO$_2$ production rates. It was assumed that each measurement error was normally distributed. The standard deviation was equal to measurement accuracy, which was obtained from the corresponding manual. To obtain a distribution of the power function (D_s model), the Markov chain Monte Carlo algorithm DiffeRential Evolution Adaptive Metropolis (DREAM) (Vrugt et al., 2009) in the R package dream (Guillaume and Andrews, 2012) was used. Dream was run in the standard configuration and as soon as the convergence criteria of Gelman and Rubin (1992) were less than 1.01, another 20000 simulations were run to get a distribution of the D_s model parameters ($n=1000$). The distributions of CO$_2$, volumetric water content and temperature measurements and the distribution of the D_s model were used for 1000 Monte Carlo simulations. Unless stated otherwise, the error bars in the final results represent the standard deviation of these simulations. All analyses were performed in R (version 3.3.2) for Linux (R Core Team, 2017).
3 Results

3.1 Temperature, water content and CO$_2$ concentration in the profile

Soil temperature showed a distinct seasonality down to 150 cm, with the maximum and the minimum temperatures delayed with increasing soil depth (Fig. 43a). The minimum soil temperature was 0.3 °C and 4.0 °C in January 2016 at 10 cm and 150 cm depths respectively. The maximum temperature was measured in July in the uppermost layer (16.6 °C) and in August in the deepest layer (14.4 °C). The annual amplitude of soil temperature decreased from 16.3 °C at 10 cm to 10.4 °C at 150 cm. However, mean annual values showed no significant decline with soil depth and were 8.4 °C and 8.3 °C at 10 cm and 150 cm respectively during the two years of observation. Variations in the mean soil temperatures between the three observatories were < 1 °C at all depths (Fig. S1).

The volumetric water contents also showed seasonal variations at all depths (Fig. 43b), with depletion during the summer. The minimum of volumetric water content at 10 cm was reached in August (10 %), whereas the minimum at 150 cm was observed two months later in October (6 %). The water reservoir of the soil profile was refilled during the autumn and winter, reaching maximum values at 10 cm (23 %) and 150 cm (22 %) in April (Fig. 43b), which were delayed by 14 days in the deepest layer. In OB1 and OB3, the mean volumetric water content decreased with increasing soil depth. Only in OB2 did the mean water content increase at 150 cm (Fig. S2). The water content showed a greater variation between the three observatories than soil temperature (Fig. S2).

The CO$_2$ concentration in the soil pores followed a similar seasonality as soil temperature (Fig. 43c), with a maximum during the summer and a minimum during the winter and early spring. The same behaviour was observed for both investigated years, while the values were higher during the first summer. The CO$_2$ concentration in the uppermost layer ranged from 1,000 to 35,000 µmol mol$^{-1}$ and thus was in a similar range of results for the deepest layer with 7,500 to 35,000 µmol mol$^{-1}$. However, values were highly variable between the observatories, with OB2 and OB3 showing an increasing CO$_2$ concentration with greater soil depth, whereas OB1 yielded the highest CO$_2$ concentrations at 30 to 50 cm depth.

3.2 Soil respiration

The mean annual mineral (without the organic layer) soil respiration determined with chamber measurements for the three observatories was 776 ± 193 g C m$^{-2}$ yr$^{-1}$, with a small variability between the observatories (Table 1). The mineral soil respiration modelled with the Lloyd-Taylor function gave similar results for the same period. In contrast, soil respiration determined with the gradient method showed a high variability between the observatories, but was in the range of the directly measured respiration, except for OB1. This variability can be explained by the higher water content at OB1 and consequently the lower diffusion coefficient. The average diffusion coefficient at OB1 at 10 cm was less than half that at OB2 and OB3.

The organic layer increased total respiration by 13 % and 25 % respectively for the Lloyd-Taylor model and chamber measurements (Table 1). For all the methods and in all the observatories, soil respiration correlated well with soil temperature and soil moisture. The highest fluxes were measured when soil temperature (10 cm) was highest and water content (10 cm) was low (Fig. 43 and Fig. 24).
3.3 Vertical CO₂ production

The mean CO₂ production rates decreased from 1.4 µmol m⁻² s⁻¹ in the uppermost layer (0–10 cm depth) to 0.03 µmol m⁻² s⁻¹ in the deepest layer (50–90 cm depth) (Fig. 35). The CO₂ production followed the same seasonality as soil temperature and CO₂ concentration, with the highest productions rates occurring during the summer and the lowest during the winter months in all soil layers. This seasonal variation was greatest in the top two layers of the soil (0–10, 10–30 cm) (Fig. 35a-d).

About 71 ± 17 % of total soil respiration was produced in the first 10 cm of the soil profile where 21 % of the SOC stock (0–1.5 m) was stored. The CO₂ production at 10 to 30 cm accounted for 20 ± 14 % of total soil respiration during the year, and 32 % of the SOC was located in this depth increment. The subsoil (> 30 cm) accounted for 8 ± 9 % of total CO₂ production, with 47 % of the SOC stock stored in the subsoil.

The mean total CO₂ production showed no significant differences between the two years. The variation in cumulative annual CO₂ production was greater between the three observatories (335–326–1,202–008 g CO₂-C m⁻² yr⁻¹) than between the two studied years (Fig. 46). However, the CO₂ production in the different soil layers showed considerable changes with time: it increased by 500 % in the subsoil from 30 to 50 cm in the second year, which increased the contribution of subsoil CO₂ production from 34 % to 45–16 % of total CO₂ production. This increase was observed in all three observatories. In contrast, the CO₂ production in the first 10 cm in OB1 and OB3 showed a decline from the first to the second year, which was probably caused by methodological variations and does not represent a real decrease in respiration activity since bioturbation of animals (e.g. voles) might have had a strong influence on diffusivity (Fig. 35a). Voles created macropores, therefore the CO₂ gradient approach was not applicable. This was also indicated by a sudden and rapid drop of CO₂ production between 0 and 10 cm in OB1 (October 2015) (Fig. 35a).

To take the different SOC contents of each soil layer into account, the cumulative CO₂ production was normalised to the SOC stock of the respective layer (Fig. 57). The specific CO₂ production decreased from 346–322 g CO₂-C kg⁻¹ SOC yr⁻¹ in the first 10 cm to less than 8–9 g CO₂-C kg⁻¹ SOC yr⁻¹ at 50 to 90 cm. It should be noted that the proportion of autotrophic respiration in the total CO₂ production could not be quantified.

3.4 Sources of CO₂ production

3.4.1 Contribution of fresh litter

The isotopic signature of soil CO₂ (δ¹³CO₂) in the observatories before the start of labelling experiment ranged from -25.4 ‰ to -21.8 ‰, with no significant differences between soil depths (Fig. 68a). The labelling experiment was conducted to assess the fate of fresh litter added on top of the organic layer into different C fractions (e.g. SOC and DOC) including soil CO₂. Six days after the application of the ¹³C-labelled leaf litter, CO₂ was already enriched in litter-derived C down to 90 cm depth in all the observatories. The isotopic signature ranged from 70 ‰ at 10 cm depth to -19 ‰ at 90 cm depth (Fig. 68b). Thus, the maximum contribution of litter-derived C to total CO₂ was 5 % at 10 cm depth six days after the litter replacement (Fig. 68c). At 90 cm, the maximum amount of litter-derived CO₂ was 0.6 % two weeks after the beginning of the labelling experiment (Fig. 68c). In addition, minor peaks with up to 0.8 % of CO₂ derived from the labelled litter were observed at all depths.
after rain events within the first six months of litter application. However, the average contribution of litter-derived CO₂ decreased with time and reached a range of 2.5 % to 0.2 % at 10 cm depth from January 2015 to July 2016. The total amount of labelled litter-derived C to the CO₂ production below 10 cm was 408 mg C m⁻² (± 329) (Fig. 9), which accounted for 0.18 % of total CO₂ production below 10 cm depth.

Assuming that diffusion is the main transport process of CO₂ in the soil atmosphere, the litter-derived CO₂ flux between two soil layers can be calculated according to Eq. (3-7) and Eq. (10). As already for each C isotope separately, a positive flux indicates mineralisation of litter-derived C release of CO₂ from mineralisation or root respiration in the respective soil layer. A negative flux in turn represents downward diffusion of CO₂ from the layer above. Due the high ¹³C enrichment of the applied litter, negative ¹³CO₂ fluxes can indicate a downward diffusion of litter-derived CO₂ from the soil layer above (Fig. 10). On average for the three observatories, 34-20 out of 41 sampling days had negative ¹³CO₂ fluxes below 90 cm depth, indicating a downward movement of labelled litter-derived CO₂. Only OB1. Further, OB2 and OB3 had positive ¹³CO₂ fluxes at between 10 to 50 cm, representing 90 cm, indicating a transport of labelled litter-derived C down the soil profile as dissolved organic carbon (DOC) and mineralisation of this DOC. The While, the observed ¹³C enrichment in CO₂ in OB2 and OB3 was due to OB1 below 30 cm depth might also be influenced by diffusion of labelled litter-derived ¹³CO₂ from the organic layer down to deeper layers of the mineral soil layer above (10 to 30 cm).

3.4.2 Contribution of old C

The radiocarbon content of the bulk SOC decreased strongly with increasing soil depth from close to atmospheric values (F¹⁴C 0.99) at 10 cm to an apparent age of about 3460 years BP (F¹⁴C 0.65) at 110 cm depth (Fig. 11, grey triangles). In contrast, the ¹⁴C concentrations of the CO₂ in the soil atmosphere were relatively constant throughout the soil profile and for both samplings, with values in the range of 1.03–1.07 F¹⁴C and thus derive mainly from the post-bomb period (Fig. 11, black dots). This indicates a young source of CO₂ production. Consequently “old” subsoil SOC was not detected as a significant source of CO₂ production.

4 Discussion

4.1 Temperature, water content and CO₂ concentration in the profile

In all three subsoil observatories, increasing CO₂ concentrations with depth were observed. This has also been reported by other studies (Davidson et al., 2006; Drewitt et al., 2005; Fierer et al., 2005; Hashimoto et al., 2007; Moyes and Bowling, 2012). However, the increase was not continuous down to 150 cm depth. Higher CO₂ concentrations were observed between 30 cm and 50 cm depth, indicating a higher CO₂ production at this depth increment, which can be linked to the root distribution in the subsoil observatories (Fig. 12). About 82 % of the fine root biomass and necromass were found to be located between 0 and 50 cm, and 18 % at the 30 to 50 cm depth. Therefore, the contribution of autotrophic respiration to CO₂ production and the mineralisation of dead roots were greater at these depths than in the deep subsoil (> 50 cm). The CO₂ concentration in the soil
pores is also controlled by abiotic factors such as effective diffusivity \((D_s)\). The average effective diffusivity \((D_s)\) at 10 cm was about 40% lower than at 30 cm. Consequently CO\(_2\) accumulated in the soil pores below 10 cm depth due to the lower diffusion of CO\(_2\) between the soil surface and 10 cm depth. The effective diffusivity was mainly controlled by soil water content, which reduced it. For example, the high CO\(_2\) concentration in August 2014 (up to 40,000 µmol mol\(^{-1}\)) compared to August 2015 (up to 20,000 µmol mol\(^{-1}\)) (Fig. 3c) can be explained by the higher volumetric water content in 2014 in all profiles. The high water content was related to more precipitation in July 2014 (120 mm) than in July 2015 (47 mm) and to less precipitation in August in both years (49 and 95 mm). Additionally, evapotranspiration was greater in August 2015 than in August 2014 due to a higher mean air temperature (18 °C and 15 °C).

4.2 Soil respiration

The annual mean total respiration determined using the gradient method corresponded well with the results of the closed chamber measurements, indicating that the gradient method resulted in realistic flux estimations (Table 1, Fig. 24). This is in line with the results reported by other studies (Baldocchi et al., 2006; Tang et al., 2003; Liang et al., 2004). The differences in soil respiration between the methods can be attributed to the different spatial resolution of the corresponding measurements. The chamber measurements were based on five spatial replicates for each subsoil observatory, covering a total measurement area of 1274 cm\(^2\). Therefore chamber measurements accounted for spatial variability in water content and soil CO\(_2\) concentrations below the chamber, whereas the gradient method was based on one profile measurement for CO\(_2\) and water content at each of the three observatories. Large differences in total respiration rates of up to 200% were found between the three observatories with the gradient method. Both methods have advantages and disadvantages for determining total soil respiration. The gradient method does not alter the soil atmosphere CO\(_2\) gradient and is continuous and less time-consuming than chamber measurements, but it is very vulnerable to the spatial heterogeneity of the soil structure and moisture content around the sensors and to changes in diffusivity, e.g. due to bioturbation by animals such as voles. For example, the higher soil respiration determined with the gradient method at OB2 and OB3 in summer (Fig. 4) is linked to lower soil moisture measured in 10 cm depth (Fig. 3b) and to higher total soil porosity (51% OB2, 49% OB3 vs. 46% OB1). In consequence, the effective diffusivity (Eq. 4) is higher, resulting in higher fluxes. Further, the lower soil respiration of OB1 and OB3 in the second year determined with the gradient method was related to bioturbation of voles, which may also increased the diffusivity around the CO\(_2\) sensors and leading to a lower CO\(_2\) concentration in 10 cm depth, which in turn led to an underestimation of total soil respiration (e.g. OB1-Fig. 3a-4) by the gradient method.

Removing the organic layer in the soil collars was supposed to determine the contribution of CO\(_2\) production in the organic layer to total soil respiration. Since the organic layer was only removed in the soil collars and not around the soil collars, it must be noted that the contribution of the organic layer to total soil respiration might be underestimated with the used method. However, the results are in line with findings from litter manipulation experiments, which reported a contribution of 9% to 37% of the organic layer to total soil respiration (Nadelhoffer et al., 2004; Bowden et al., 1993; Kim et al., 2005; Sulzman et al., 2005).
4.3 Vertical CO₂ production

The vertically partitioned CO₂ flux revealed that more than 90 % of total CO₂ efflux was produced in the topsoil (< 30 cm). These results correspond well with other studies which have found that more than 70 % of total CO₂ efflux in temperate forests is produced in the upper 30 cm of the soil profile (Davidson et al., 2006; Fierer et al., 2005; Hashimoto et al., 2007; Jassal et al., 2005; Moyes and Bowling, 2012). However, only 53 % of the SOC stock is stored in the first 30 cm, indicating that subsoil SOC on the site of the present study may have a slower turnover than topsoil SOC. This is supported by the low ¹⁴C concentrations in SOC below 30 cm. However, the higher CO₂ production in the topsoil can be also related to greater fine root biomass and necromass density (Fig. 912), which may serve as an indicator of autotrophic respiration and heterotrophic respiration in the rhizosphere. Consequently, root-derived respiration is greater. Even if the current study is unable to distinguish between autotrophic and heterotrophic respiration, the importance of autotrophic respiration to total soil respiration was shown in a large scale girdling experiment by Högberg et al. (2001). They reported that autotrophic respiration accounted for up to 54 % on total soil respiration. In consequence, autotrophic respiration should be higher in the topsoil than in the subsoil, due to the decreasing root bio- and necromass with increasing soil depth (Fig. 12).

It is remarkable that the CO₂ production at 30 to 50 cm increased from 23 g C m⁻² yr⁻¹ in the first year to 118 g C m⁻² yr⁻¹ in the second year of the study (Fig. 46). This can be explained in part by more precipitation in the second year (621 mm) than in the first year (409 mm), inducing less water-limiting conditions for plants and microbial activity. As a result, the mean volumetric water content was higher in the second year (18 % compared to 16 %) at 50 cm depth, which gave better conditions for the mineralisation of SOC by microorganisms (Cook et al., 1985; Moyano et al., 2012). Furthermore, the greater precipitation increased the input of DOC into the subsoil on the site of the present study, which is supported by the study of (Leinemann et al., 2016) who investigated DOC fluxes in subsoil observatories for more than 60 weeks. They found a positive correlation between DOC fluxes, precipitation and water fluxes at 10, 50 and 150 cm depths. Furthermore, they showed that DOC fluxes declined by 92 % between a depth of 10 cm and 50 cm, which was attributed to mineral adsorption and microbial respiration of DOC (Leinemann et al., 2016).

4.4 Sources of CO₂ production

4.4.1 Young litter derived CO₂

In this study, a unique labelling approach was used to estimate the contribution of aboveground litter to CO₂ production along a soil profile by applying stable isotope-enriched leaf litter to the soil surface. These results showed that litter-derived C did not significantly contribute to annual CO₂ production below 10 cm depth. Leaf litter is decomposed and washed into the mineral soil as DOC. Within one year, only 0.2-0.12 % of total CO₂ production between 10 and 50 cm originated from the labelled leaf litter. Below 50 cm there was no contribution of litter derived C to CO₂ production. Therefore, mineralisation of DOC originating from the organic layer was a minor source of CO₂ production in the soil profile below 10 cm. The average DOC flux in the subsoil observatories in the first year was estimated to be 20 g C m⁻² yr⁻¹ at 10 cm depth and 2 g C m⁻² yr⁻¹ at 50 cm depth, indicating a DOC input of 18 g C m⁻² yr⁻¹ into the 10 and 50 cm depth increments (Leinemann et al., 2016). An assumed
complete mineralisation of this DOC would account for 11% of CO$_2$ production at this depth increment. Overall, most of the CO$_2$ production between a depth of 10 cm and 50-90 cm must be derived from autotrophic respiration and heterotrophic respiration in the rhizosphere.

4.4.2 Old SOC derived CO$_2$

The very similar radiocarbon contents of soil CO$_2$ produced at different depths, which were 1.06 F14C on average, revealed that ancient SOC components were not a major source of CO$_2$ production. The results indicate that the CO$_2$ originated mainly from young (several decades old) C sources, presumably mainly from root respiration, its exudates and DOC. Other studies have found similar results on a grassland site in California down to 230 cm depth (Fierer et al., 2005) and in temperate forests down to 100 cm (Hicks Pries et al., 2017; Gaudinski et al., 2000; Hicks Pries et al., 2017). In addition, Hicks Pries et al. (2017) incubated root-free soil from three depths (15, 50 and 90 cm) and compared the radiocarbon signature of the respired CO$_2$ with their results from the field. They found that CO$_2$ from the short-term incubations had the same modern signature as the field measurements, despite the high 14C age of the bulk SOC at 90 cm depth (~1000 yr BP) (Hicks Pries et al., 2017). This supports the findings of the present experiment. Therefore, microbial respiration in temperate subsoils is mainly fed by relatively young C sources fixed less than 60 years ago.

4.4.3 Diffusion effects

A highly 13C-enriched CO$_2$ source was introduced to the top of a soil profile. Shortly afterwards, an enrichment of 13C was measured in CO$_2$ along the whole soil profile (Fig. 8b). However, this enrichment could not only be linked to the transport and mineralisation of litter-derived C along the soil profile (e.g. DOC in seepage water). In contrast, The diffusion of 13CO$_2$ was observed to have originated from the mineralisation in the litter layer down the soil profile. According to Fick’s first law, 13CO$_2$ diffuses into the soil profile following the 13CO$_2$ gradient independently from the 12CO$_2$. Thus even though the total CO$_2$ concentration increased with soil depth, meaning an upward diffusion of 12CO$_2$, the 13CO$_2$ gradient could be the opposite due to 13C-enriched leaf litter leading to a downward diffusion of 13CO$_2$. Consequently this could lead to a misinterpretation of the pathways of subsoil 13CO$_2$ in tracer experiments. Furthermore, this effect should also be taken into consideration when interpreting 14CO$_2$ soil profile measurements as an indicator of the age of the mineralised SOC, as in other field studies (e.g., Davidson et al., 2006; Davidson and Trumbore, 1995; Fierer et al., 2005; ?) (e.g., Davidson et al., 2006; Davidson and Trumbore, 1995; Fierer et al., 2005; Gaudinski et al., 2000). Downward diffusion of 14CO$_2$ might be an important factor for explaining the observed 14CO$_2$ profiles. If this downward diffusion is the case, the 14CO$_2$ gradient should not have a continuous decrease with soil depth since the 14CO$_2$ gradient is the driving factor for diffusion according to Eq. (3). In fact, 14CO$_2$ concentration at 30 cm depth in subsoil OB1 was greater than at 50 cm depth (Fig. 13), which in turn led to a downward diffusion of 14CO$_2$ from a depth of 30 cm to 50 cm. This might lead to a rejuvenation of the 14CO$_2$ soil profile and to an underestimation of the mineralisation of old SOC in subsoils.
5 Conclusions

The gradient method allowed total soil respiration to be partitioned vertically along a soil profile. Most of the CO$_2$ (90%) was produced in the topsoil (< 30 cm). However, the subsoil (> 30 cm), which contained 47% of SOC stocks, accounted for 10% of total soil respiration. This can be explained by a larger amount of stable SOC in subsoils as compared to topsoils. However, the modern radiocarbon signature of CO$_2$ throughout the soil profiles indicated that mainly young carbon sources were being respired, such as from roots and root exudates and autotrophic respiration. The contribution of old SOC to subsoil CO$_2$ production was too small to significantly alter the 14C concentrations in the soil atmosphere used to identify CO$_2$ sources. Furthermore, this study showed that the mineralisation of fresh litter-derived C only contributed to a small part of total soil respiration, underlining the importance of roots and the rhizosphere for subsoil CO$_2$ production.

Author contributions. All the authors contributed to the design of the field measurements and PWD carried out the field measurements. Preparation of 14CO$_2$ samples was performed by PWD and AW. Data analysis and modelling were performed by PWD. KK took the root samples and analysed them and provided the data. PWD took the lead in writing the manuscript, with contributions from all the co-authors.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. This study was funded by the Deutsche Forschungsgemeinschaft (DFG) (HE 6877/1-1) within the framework of the research unit SUBSOM (FOR1806) – “The Forgotten Part of Carbon Cycling: Organic Matter Storage and Turnover in Subsoils”. We would like to thank Jens Dyckmanns and Reinhard Langel from the Centre for Stable Isotope Research and Analysis at the University of Göttingen for 13CO$_2$ measurements. We also want to thank Frank Hegewald and Martin Volkmann for their support in the field, especially changing the 23 kg heavy batteries in the subsoil observatories every month. We would also like to thank Ullrich Dettmann for his support with R. Last but not least, many thanks to Marco Gronwald, Cora Vos and Viridiana Alcantara for fruitful discussions and recommendations.
References

Figure 1. Photographs of (a) the used lysimeter vessels to drill the hole for the subsoil observatories and (b) the used polyethylene shaft as subsoil observatory.

Figure 2. Schematic overview of the subsoil observatories, the installed sensors and the labelling experiment, (a) side view of the subsoil observatory and (b) topview of the labelled and control area.
Figure 3. Soil profile measurements of temperature (a), volumetric water content (b) and CO$_2$ concentration for the three observatories (OB). White bars represent periods without measurements.
Figure 4. Mean daily soil respiration determined with the gradient method, measured with chambers and modelled with a Lloyd-Taylor function for the observatories (OB)
Figure 5. Daily mean CO$_2$ production in each soil layer (a)-(d). Arrows indicate disturbance due to bioturbation of voles close to the CO$_2$ sensors in observatories 10 cm depth (OB1 and OB3), which created macropores and changed diffusivity.
Figure 6. Cumulative CO$_2$ production for each soil layer, observatory (OB) and year of observation. Error bars represent standard deviation.

Figure 7. Mean annual specific CO$_2$ production for the total CO$_2$ efflux. Error bars represent Mean (n=3) and standard deviation.
Isotopic signature of CO₂ at each depth and observatory (OB) before the addition of the labelled litter (a) and after labelled litter addition (b) with daily precipitation data (blue bars). The relative amount of litter-derived CO₂ on total CO₂ in each depth and observatory (c). Please note the different y-axis ranges for (b) and (c).

Figure 8. Isotopic signature of CO₂ at each depth and observatory (OB) before the addition of the labelled litter (a) and after labelled litter addition (b) with daily precipitation data (blue bars). The relative amount of litter-derived CO₂ on total CO₂ in each depth and observatory (c). Please note the different y-axis ranges for (b) and (c).
Litter-derived CO$_2$ fluxes for each observatory (OB). Positive fluxes represent mineralisation of litter-derived C. Negative fluxes represent diffusion from the layer above.

Figure 9. Litter-derived CO$_2$ production in each soil layer (a)-(c). Mean (n=3) and standard error

Figure 10. 13CO$_2$ fluxes for each observatory. Negative fluxes represents diffusion of 13CO$_2$ from the soil layer above.
Figure 11. Mean 14C concentration (F^{14}C) of bulk soil (grey triangles; data from Angst et al. (2016)) and CO$_2$ in the soil atmosphere (black dots). The solid black lines represents the annual average F^{14}C value in the atmosphere from 2014 measured at the Jungfraujoch alpine research station, Switzerland (Levin and Hamer, pers. communication).

Figure 12. Mean fine root density for biomass and necromass of the subsoil observatories. Error bars represent standard error.
Figure 13. Soil air $^{14}\text{CO}_2$ concentration in observatory 1 from December 2014.
Table 1. Total soil respiration with and without the organic layer for the three observatories derived from soil surface measurements with linear interpolation (Chamber), modelled with a Lloyd-Taylor function and derived from the gradient method based on CO₂ measurements along the soil profile for one year. Means and standard deviations.

<table>
<thead>
<tr>
<th>Observatory</th>
<th>Soil respiration [g C m⁻² yr⁻¹] from August 2014 to August 2015</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chamber</td>
<td>without organic layer</td>
</tr>
<tr>
<td>1</td>
<td>699 (180)</td>
<td>778</td>
</tr>
<tr>
<td>2</td>
<td>804 (211)</td>
<td>780</td>
</tr>
<tr>
<td>3</td>
<td>824 (204)</td>
<td>916</td>
</tr>
<tr>
<td>Mean</td>
<td>776 (193)</td>
<td>825 (79)</td>
</tr>
</tbody>
</table>