Supplement of Vertical partiotioning of CO₂ production in a Dystric Cambisol

Patrick Wordell-Dietrich, Axel Don, Anja Wotte, Janet Rethemeyer, Jörg Bachmann, Mirjam Helfrich, Kristina Kirfel, and Christoph Leuschner

Correspondence to: Patrick Wordell-Dietrich (patrick.wordell-dietrich@tu-dresden.de)

Compensation algorithm of dependence of pressure and temperature for GMP221:

$$c_{[i+1]} = c_1 - k_{p1}[c_i] \times \left(\frac{p - 1013}{1013}\right)^2 - k_{p2}[c_i] \times \left(\frac{p - 1013}{1013}\right) \times p$$
$$-k_{t1}[c_i] \times \left(\frac{T - 25}{25}\right)^3 - k_{t2}[c_i] \times \left(\frac{T - 25}{25}\right)^2 - 16320 \times \left(-(k_{t3}[c_i])^2 + k_{t3}[c_i]\right) \times \left(\frac{T - 25}{25}\right)$$
S1

where $i \in \{1,2,3,4\}$, $c_{(i+1)}$ [ppm] is the compensated CO₂ reading in the iteration process, c_1 is the uncompensated reading in [ppm], p is the pressure in [hPa], T is the temperature in [°], and k_{p1} , k_{p2} , k_{t1} , k_{t2} and k_{t3} are empirical derived functions.

$$k_{p1}[c_i] = A_{p1} \times c_i^4 + B_{p1} \times c_i^3 + C_{p1} \times c_i^2 + D_{p1} \times c_i$$
S2
$$k_{p2}[c_i] = A_{p2} \times c_i^3 + B_{p2} \times c_i^2 + C_{p2} \times c_i$$
S3
$$k_{t1}[c_i] = A_{t1} \times c_i^3 + B_{t1} \times c_i^2 + C_{t1} \times c_i + D_{t1}$$
S4
$$k_{t2}[c_i] = A_{t2} \times c_i^2 + B_{t2} \times c_i$$
S5
$$k_{t3}[c_i] = A_{t3} \times c_i^3 + B_{t3} \times c_i^2 + C_{t3} \times c_i$$
S6

where *c_i* is the CO₂ concentration in [%] and *A*, *B*, *C*, *D* are empirical derived constants (Table S1).

Table S1: Empirical derived constants for temperature and pressure compensation

A _{p1} =	0.97501	$A_{p2} =$	-9.3269E-3	A _{t1} =	0.046481	$A_{t2} =$	-3.0166	A _{t3} =	8.3600E-5
B _{p1} =	-54.1519	B _{p2} =	0.14345	B _{t1} =	-1.02280	B _{t2} =	-8.8421	B _{t3} =	-2.4199E-3
C _{p1} =	479.778	C _{p2} =	15.7164	C _{t1} =	-37.4433			C _{t3} =	0.066814
D _{p1} =	-11362.8			D _{t1} =	-49.000				

The compensated reading was calculated in an iterative process. In the first iteration loop (i=1), c_2 was calculated from equation (1) by using c_1 for S2-S5. The obtained c_2 was then used in the following loop and so on. The iteration stops at the last c_5 , which was the temperature and pressure corrected reading.

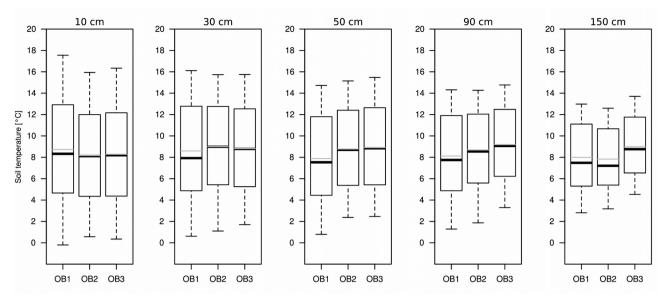


Figure S1. Box-whisker-plot of soil temperature for each soil depth and observatory (OB). Medians and means are shown as black and grey lines respectively.

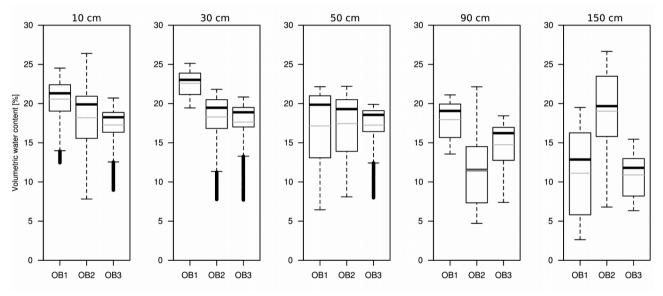


Figure S2. Box-whisker-plot of volumetric water content for each soil depth and observatory (OB). Medians and means are shown as black and grey lines respectively.