

3 Title: **Agropedogenesis: Humankind as the 6th soil-forming factor and attractors of
4 agricultural soil degradation**

7 Authors: Yakov Kuzyakov^{1, 2*}, Kazem Zamanian^{1*}
8
9

10 ¹. Department of Soil Science of Temperate Ecosystems, Georg-August University of Göttingen, Büsgenweg
11 2, 37077 Göttingen, Germany

12 ². Department of Agricultural Soil Science, Georg-August University of Göttingen, Büsgenweg 2, 37077
13 Göttingen, Germany
14

15 * Authors for correspondence

16 Kazem Zamanian

17 Phone: +49 (0)551 39 12104

18 E-mail: zamanians@yahoo.com

19 Yakov Kuzyakov

20 Phone: +49 (0)551 401 33235

21 E-mail: kuzyakov@gwdg.de

22
23
24 Keywords: Anthropogenic soil change, Soil forming factors, Land-use, Intensive agriculture,
25 Anthropocene, Human impact, Ecosystem engineer

Agropedogenesis: Humankind as the 6th soil-forming factor and attractors of agricultural soil degradation

Abstract

Agricultural land covers 5100 million ha (ca. 50% of potentially suitable land area) and agriculture has immense effects on soil formation and degradation. Although, we have an advanced mechanistic understanding of individual degradation processes of soils under agricultural use general concepts of agropedogenesis are absent. We therefore, urgently need a unifying theory of soil development under agricultural practices, of *agropedogenesis*. We introduce a theory of *anthropedogenesis* – soil development under the main factor ‘humankind’ – the 6th factor of soil formation, and deepen it to encompass *agropedogenesis* as the most important direction of anthropedogenesis. The developed theory of agropedogenesis consists of (1) broadening the classical concept of Factors – Processes – Properties with the addition of Functions along with their feedbacks to the Processes, (2) a new concept of attractors of soil degradation, (3) selection and analysis of master soil properties, (4) analysis of phase diagrams of master soil properties to identify thresholds and stages of soil degradation, and finally (5) a definition of the multi-dimensional attractor space of agropedogenesis. The main feature of anthropedogenesis is the narrowing of soil development to only one function (e.g. crop production for agropedogenesis), and this function is becoming the main soil-forming factor. The focus on only one function and disregard of other functions inevitably lead to soil degradation. We show that the factor ‘humankind’ dominates over the effects of the five natural soil-forming factors and that agropedogenesis is therefore much faster than natural soil formation. The direction of agropedogenesis is largely opposite to that of natural soil development and is thus usually associated with soil degradation. In contrast to natural pedogenesis leading to *divergence* of soil properties, agropedogenesis leads to their *convergence* because of the efforts to optimize conditions for crop production. Agricultural practices lead soil development toward a quasi-steady state with a predefined range of measured properties – attractors (an attractor is a minimal or maximal value of a soil property, toward which the property will develop via long-term intensive agricultural use from any natural state). Based on phase diagrams and expert knowledge, we define a set of ‘master properties’ (bulk density and macroaggregates, soil organic matter content, C/N ratio, pH and EC, microbial biomass and basal respiration) as well as soil depth (A and B horizons). These master properties are especially sensitive to land-use and determine the other properties during

57 agropedogenesis. Phase diagrams of master soil properties help identify thresholds and stages of soil
58 degradation, each of which is characterized by one dominating process. Combining individual
59 attractors to a multi-dimensional attractor space enables predicting the trajectory and the final state of
60 agrogenic soil development and to develop measures to combat soil degradation. In conclusion, the
61 suggested new theory of anthro- and agropedogenesis is a prerequisite for merging various
62 degradation processes to a general view, and for understanding the functions of humankind not only
63 as the 6th soil-forming factor but also as an ecosystem engineer optimizing its environment to fulfil a
64 few desired functions.

65 *Keywords:* Anthropogenic soil change, Soil-forming factors, Land-use, Intensive agriculture,
66 Anthropocene, Human impact, Ecosystem engineer

67

68 1. Introduction

69 1.1. Soil degradation by agricultural land-use

70 Soils (S) as natural bodies are formed via interactions of soil-forming factors, i.e. climate (cl),
71 organisms (o), relief (r), and parent material (p) over time (t) (Dokuchaev, 1883; Glinka, 1927;
72 Jenny, 1941; Zakharov, 1927): $S = f(cl, o, r, p, t, \dots)$ (see the history of the equation in Supplementary
73 Materials).

74 The processes of additions, losses, transfers/translocation, and transformations of matter and
75 energy over centuries and millennia produce a medium – soil (Simonson, 1959), which supports plant
76 roots and fulfills many other ecosystem functions (Lal, 2008; Nannipieri et al., 2003; Paul, 2014).
77 These functions, commonly decrease due to human activities, in particular through agricultural
78 practices because of accelerated soil erosion, nutrient loss (despite intensive fertilization), aggregate
79 destruction, compaction, acidification, alkalization and salinization (Homburg and Sandor, 2011;
80 Sandor and Homburg, 2017). Accordingly, the factor ‘humankind’ has nearly always been considered
81 as a soil-degrading entity that, by converting natural forests and grasslands to arable lands, changes
82 the natural cycles of energy and matter. Except in very rare cases that lead to the formation of fertile
83 soils such as *Terra Preta* in the Amazonian Basin (Glaser et al., 2001), *Plaggen* in northern Europe
84 (Pape, 1970) as well as *Hortisols* (Burghardt et al., 2018), soil degradation is the most common
85 outcome of agricultural practices (DeLong et al., 2015; Homburg and Sandor, 2011). Soil
86 degradation begins immediately after conversion of natural soil and involves the degradation in all
87 physical, chemical and biological properties (Table 1). The result is a decline in ecosystem functions.

88 Soil degradation gains importance with the rapid increase in human populations (Carozza et al.,
89 2007) and technological progress. Increasing food demand requires either larger areas for croplands
90 or/and intensification of crop production per area of already cultivated land. Because the land
91 resources suitable for agriculture are limited, most increases in food production depend on the second
92 option: intensification (Lal, 2005). While prohibiting or reducing degradation is essential in
93 achieving sustainable food production (Lal, 2009), many studies have addressed individual
94 mechanisms and specific drivers of soil degradation (Table 1). Nonetheless, there is still no standard
95 and comprehensive measure to determine soil degradation intensity and to differentiate between
96 degradation stages.

97 Agricultural soils (croplands + grasslands) cover 5100 million ha, corresponding to about 34% of
98 the global land area. Huge areas are located in very cold regions that are continuously covered by ice
99 (1500 million ha), in hot deserts, mountainous areas, or barren regions (2800 million ha), as well as
100 sealed in urban and industrial regions and roads (150 million ha). Accordingly, agricultural lands
101 cover about 50% of the area potentially suitable for agriculture ([https://ourworldindata.org/yields-
102 and-land-use-in-agriculture](https://ourworldindata.org/yields-and-land-use-in-agriculture)). Even though huge areas of land are occupied by agriculture, and
103 humans have modified natural soils over the last 10-12 thousand years, a theory of soil formation as
104 affected by humankind – anthropedogenesis and its subcategory agropedogenesis – is absent. This
105 paper therefore presents for the first time a unifying theory of anthropedogenesis – soil development
106 under the main factor ‘humankind’ – the 6th factor of soil formation. Moreover, we expand it to
107 encompass agropedogenesis as a key aspect of general anthropedogenesis.

108

109 **1.2. Humans as the main soil-forming factor**

110 Humans began to modify natural soils at the onset of agriculture ca. 10-12 thousand years ago
111 (Diamond, 2002; Richter, 2007), resulting in soil degradation. Examples of soil degradation leading
112 to civilization collapses are well known starting at least with Mesopotamia (18th to 6th centuries BC)
113 (Diamond, 2002; Weiss et al., 1993). Notwithstanding all the negative impacts humans have on
114 soils, the intention was always to increase fertility to boost crop production (Richter et al., 2011;
115 Sandor and Homburg, 2017), reduce negative environmental consequences, and achieve more stable
116 agroecosystems. To attain these aims, humans have (i) modified soil physical and hydrological
117 properties (for example, by removing stones, loosening soil by tillage, run-off irrigation, draining,
118 and terracing), (ii) altered soil chemical conditions through fertilization, liming, desalinization, and

119 (iii) controlled biodiversity by sowing domesticated plant species and applying biocides (Richter et
120 al., 2015; Richter, 2007). Although these manipulations commonly lead to soil degradation
121 (Homburg and Sandor, 2011; Paz-González et al., 2000; Sandor et al., 2008), they are aimed at
122 decreasing the most limiting factors (nutrient contents, soil acidity, water scarcity, etc.) for crop
123 production, regardless of the original environmental conditions in which the soil was formed
124 (Guillaume et al., 2016a; Liu et al., 2009). Thus, agricultural land-use always focused on removing
125 limiting factors and providing optimal growth conditions for a few selected crops: 15 species make
126 up 90% of the world's food, and 3 of them – corn, wheat, and rice – supply 2/3 of this amount
127 (FAO, 2018). These crops (except rice) have similar water and nutrient requirements in contrast to
128 the plants growing under natural conditions. Consequently, agricultural land-use has always striven
129 to narrow soil properties to uniform environmental conditions.

130 Humans can even change soil types as defined by classification systems (Supplementary Fig. 1)
131 by inducing erosion, changing the thickness of horizons and their mixture, decreasing soil organic
132 matter (SOM) content, destroying aggregates, and accumulating salts (Dazzi and Monteleone, 2007;
133 Ellis and Newsome, 1991; Shpedt et al., 2017). A Mollisol (~ Chernozems or Phaeozems), for
134 example, turns into an Inceptisol (~ Cambisols) by decreasing total SOM (Lo Papa et al., 2013; Tugel
135 et al., 2005) or/and thinning of the mollic epipedon by tillage and erosion and destroying granular
136 and sub-polyedric structure (Ayoubi et al., 2012; Lo Papa et al., 2013). Accordingly, humankind can
137 no longer be treated solely as a soil-degrading but also as a soil-forming factor (Amundson and
138 Jenny, 1991; Dudal, 2004; Gerasimov and Fridland, 1984; Richter et al., 2015; Sandor et al., 2005).
139 The result is the formation of anthropogenic soils (soils formed under the main factor 'humankind').
140 This is well known for rice paddies, i.e. Hydric Anthrosols (Chen et al., 2011; Cheng et al., 2009;
141 Kölbl et al., 2014; Sedov et al., 2007), Hortic Anthrosols (long-term fertilized soils with household
142 wastes and manure) and Irragic Anthrosols (long-term irrigated soils in dry regions) (WRB, 2014).
143 These effects have stimulated the on-going development of soil classifications to reflect new
144 directions of soil evolution (Bryant and Galbraith, 2003; Richter, 2007): *anthropedogenesis*, i.e. soil
145 genesis under the main factor 'humankind' and in particular *agropedogenesis*, i.e. soil genesis under
146 agricultural practices as a subcategory of anthropedogenesis.

147 Human impacts on soil formation have immensely accelerated in the last 50-100 years (Dudal,
148 2004; Gerasimov and Fridland, 1984; Richter, 2007) with the (1) introduction of heavy machinery,
149 (2) application of high rates of mineral fertilizers, especially after discovery of N fixation by the

150 Haber-Bosch technology, (3) application of chemical plant protection, and (4) introduction of crops
151 with higher yield and reduced root systems. We expect that, despite various ecological measures
152 (no-till practices, restrictions of chemical fertilizer applications and heavy machinery, etc.); the
153 effects of humans on soil formation will increase in the Anthropocene and will be even stronger
154 than for most other components of global change. This urgently calls for a concept and theory of
155 soil formation under humans as the main factor.

156

157 **2. Concept of Agropedogenesis**

158 *Anthropedogenesis* is the soil formation under the main factor ‘humans’ (Amundson and Jenny,
159 1991; Bidwell and Hole, 1965; Howard, 2017; Meuser, 2010; Richter, 2007; Yaalon and Yaron,
160 1966). *Agropedogenesis* is the dominant form of anthropedogenesis and includes soil formation
161 under agricultural use – mainly cropland (Sandor et al., 2005). The other forms of
162 anthropedogenesis are construction of completely new soils (Technosols, e.g. Urban soils or Mine
163 soils). These other forms of anthropedogenesis are not treated here, because they are not connected
164 with agriculture.

165 Agropedogenesis should be clearly separated from the natural pedogenesis because of: (1) strong
166 dominance of the factor ‘human’ over all other five factors of soil formation, (2) new processes and
167 mechanisms that are absent under natural soil development (Table 2), (3) new directions of soil
168 developments compared to natural processes (Table 2), (4) frequent development of processes in the
169 reverse direction compared to natural pedogenesis, (5) much higher intensity of many specific
170 processes compared to natural developments and consequently faster rates of all changes.

171 Agropedogenesis and natural pedogenesis are partly opposite. Natural soil formation involves
172 the development of soils from parent materials under the effects of climate, organisms, relief, and
173 time (Dokuchaev, 1883; Jenny, 1941; Zakharov, 1927; Supplementary Materials). Here, soil
174 formation will reach the quasi-steady state typical for the combination of the five soil-forming factors
175 (Fig. 1). Agropedogenesis, in most cases, is a process involving the loss of soil fertility, i.e.
176 degradation because of intensive agriculture and narrowing of soil properties. Agropedogenesis is
177 partly the reverse of soil formation but the final stage is not the parent material (except in a few cases
178 of extreme erosion). Agropedogenesis also leads to a quasi-steady state of soils (Fig. 1) (Eleftheriadis
179 et al., 2018; Wei et al., 2014). The time needed to reach this quasi-steady state, however, is much
180 shorter (in the range of a few centuries, decades, or even less) than for natural pedogenesis, which

181 involves millennia (Tugel et al., 2005). The range of soil properties at this quasi-steady state will
182 show the end-limit of agricultural effects on soil development.

183 Our theory of agropedogenesis is based on five components: (1) Concept of ‘Factors →
184 Processes → Properties → Functions’, (2) Concept of ‘attractors of soil degradation’, (3) Selection
185 and analysis of ‘master soil properties’, (4) Analysis of phase diagrams between the ‘master soil
186 properties’ and identification of thresholds and stages of soil degradation, and (5) ‘Multi-dimensional
187 attractor space’ and trajectory of pedogenesis.

188

189 **2.1. Concept: Factors → Processes → Properties → Functions**

190 The original concept of “Soil Factors → Soil Properties” was initially suggested by (Dokuchaev
191 (1883) and Zakharov (1927) and was modified by “Processes”, which are dependent on the factors
192 of soil formation and develop the properties (Gerasimov, 1984; McBratney et al., 2003). This triad:
193 Factors → Processes → Properties enables understanding soil development from the initial parent
194 materials by the effects of climate, organisms, and relief, over time. This very well describes the
195 visible morphological soil properties in the field and measurable parameters in the lab, leading to
196 the development of various (semi)genetic soil classifications (KA-5, 2005; KDPR, 2004; WRB,
197 2014).

198 Considering the recent development of functional approaches and ecosystem perspectives, this triad
199 is insufficient. We therefore introduce the concept: “Factors → Processes → Properties →
200 Functions” (Fig. 2). Rather than describing here the very broad range of functions of natural soils as
201 related to clean air and water, biodiversity, decontamination of pollutants, biofuel and waste
202 management, etc., we refer to excellent reviews focused on soil functions (Lal, 2008; Nannipieri et
203 al., 2003).

204 One function – plant growth – is crucial for agropedogenesis (Fig. 2) because humans change this
205 natural function to an anthropogenic function – crop growth, and thus adapt and modify natural
206 soils to maximize productivity and crop yields. As it is not possible to simultaneously maximize all
207 functions, the functions other than ‘crop growth’ decrease or even disappear. Accordingly,
208 *agropedogenesis is driven by processes pursuing the maximization of only one function – crop*
209 *growth.* The consequence is that all other soil functions are reduced. *We define soil degradation as*
210 *a reduction of functions.* Initially, all functions will be reduced at the cost of increased crop
211 production. As degradation advances, however, the production function decreases as well. Nearly

212 all previous definitions of soil degradation were based on declining crop productivity. The principal
213 difference between our concept of soil degradation and the most common other concepts is that the
214 degradation starts with the reduction of one or more functions – before crop productivity decreases.
215 This concept, based on multi-functionality, is much broader and considers the ecosystem functions
216 and services of soil and the growing human demand for a healthy environment.

217 Agropedogenesis clearly shows that the natural sequence ‘Factors → Processes → Properties →
218 Functions’ is changed by humans: Functions are no longer the final step in this sequence because
219 *one function becomes a factor* (Fig. 2). This is because humans tailor the processes of soil
220 development for the main function of agricultural soils – crop production. Based on the example of
221 agropedogenesis, we conclude that all types of anthropedogenesis are directed at the functions that
222 humans desire from the soil; hence, the *one function becomes the factor of soil development* (Fig.
223 2).

225 **2.2. Attractors of soil degradation: definitions and concept**

226 Despite a very broad range of individual properties of natural soils, long-term intensive agricultural
227 land-use strongly narrows their range (Homburg and Sandor, 2011; Kozlovskii, 1999; Sandor et al.,
228 2008) and ultimately brings individual properties to the so-called attractors of degradation
229 (Kozlovskii, 1999). We define:

231 **An attractor of a soil property is a numerical value toward which the property develops from
232 a wide variety of initial or intermediate states of pedogenesis.**

234 **An attractor of agricultural soil degradation is a minimal or maximal value, toward which the
235 property tends to develop by long-term intensive agricultural use from a wide variety of initial
236 conditions common for natural soils.**

238 Attractors of soil properties are common for natural pedogenesis and anthropedogenesis (Fig. 1).
239 The well-known examples of natural pedogenic attractors are the maximal SOM accumulation ($C \approx$
240 5-6% for mineral soils), highest increase of clay content in the Bt horizon by a ~ two-fold
241 illuviation compared to the upper horizon (without lithological discontinuity), the upper depth of the
242 Bt horizon for sheet erosion, a minimal bulk density of mineral soils of ~ 0.8 g cm³, the maximal

243 weathering in wet tropics by removal of all minerals until only Fe and Al oxides remain (Chadwick
244 and Chorover, 2001).

245 Natural pedogenesis leads to a divergence of pedogenic properties and consequently to the
246 broadening of the multi-dimensional attractor space (see below) because various soils develop to
247 steady state from the same parent materials depending on climate, organisms, and relief (Fig. 1).
248 The time necessary for natural processes to reach these attractors is at least 1-2 orders of magnitude
249 longer than the periods to reach the attractors of agropedogenesis (see below).

250 In contrast to natural pedogenesis, agropedogenesis narrows the soil properties by optimizing
251 environmental conditions for agricultural crops with similar requirements (Lo Papa et al., 2011,
252 2013). Consequently, each soil property follows a trajectory from a specific natural level toward the
253 unified agrogenic attractor (Fig. 1). Therefore, in contrast to *Natural pedogenesis resulting in*
254 *divergence of soil properties, agropedogenesis leads to convergence of soil properties.*

255 2.3. Examples of attractors of soil degradation

256 The convergence in soil properties (and thus reaching an attractor) after a start from various initial
257 states is evident by comparing soils under long-term (e.g. decades and centuries) cultivation
258 (Sandor and Homburg, 2017). The challenges that ancient farmers faced were fundamentally the
259 same as today, although recent decades are characterized by a major intensification of chemical
260 impacts (fertilization, pesticides) and heavy machinery (Dudal, 2004; Sandor and Homburg, 2017).
261 *The main difference between soil degradation in the past and in the modern era is the rates and*
262 *extent, but not the processes or mechanisms themselves.* The dynamics of soil properties in long-
263 term cultivations have revealed a narrowing in the measured values of a given property over time,
264 i.e. a tendency toward the attractor of that property (Alletto and Coquet, 2009; Dalal and Mayer,
265 1986b; Dalal and Mayer, 1986; Haas et al., 1957; Nyberg et al., 2012) (Figs 3, 4, and the
266 Supplementary fig. 2).

267 In reaching the attractor values, however, the process rates and dynamics differ among various soil
268 properties (Fig. 6), in various geo-climatological regions (Chen et al., 2011, p.29011; Guillaume et
269 al., 2016a; Hartemink, 2006) and according to land-use intensity. For example, microbial biomass
270 carbon (C) (Henrot and Robertson, 1994) and aggregate stability (Wei et al., 2014) respond faster
271 than SOM and total N to cultivation. Cultivation affects total N and P content less than organic C
272 because of N and P fertilization (Guillaume et al., 2016b), whereby a strong decrease of C input is

274 inferred by the decreasing C:N ratio with cultivation duration (Wei et al., 2014). Whereas
275 cultivation on deforested lands in the tropics can degrade soils within a few years, converting
276 temperate prairies and steppes to agricultural fields supports crop production without fertilization
277 for decades (Tiessen et al., 1994). Generally, the degradation rates (e.g. C losses) in the moist
278 tropics are faster (e.g. about 4-fold) than in the dry tropics (Hall et al., 2013). Despite the
279 differences in rates, however, the long-term cultivated soils ultimately reach similar degradation
280 levels (Lisetskii et al., 2015) (Fig. 3f).

281

282 **2.4. Master soil properties**

283 Soils and their functions are characterized by and are dependent on the full range of physical,
284 chemical and biological properties. A Few of them – the master soil properties – however, are
285 responsible for a very broad range of functions and define other properties (Lincoln et al., 2014;
286 Lisetskii et al., 2013; Seybold et al., 1997). *We define a soil property as being a master property if it*
287 *has a strong effect on a broad range of other properties and functions, and if it cannot be easily*
288 *assessed based on the other properties.* For natural pedogenesis, such master properties – inherited
289 partly from the parent material – are: clay mineralogy and CaCO_3 content, texture, nutrient content,
290 and bulk density. The master properties that are cumulated or formed during pedogenesis are: soil
291 aggregation/structure, depth of A+B horizons, SOM stock and C:N ratio, pH, electrical conductivity,
292 etc. (Table 3). These properties largely define the other properties and soil functions under natural
293 conditions and generally under agricultural use as well.

294 The master properties of agropedogenesis may differ from those of natural soil development.
295 The crucial difference is that *the master properties of agropedogenesis must sensitively respond to*
296 *agricultural use over the cultivation period.* Accordingly, properties such as texture, clay content and
297 mineralogy – crucial master properties of natural pedogenesis, are not relevant in agropedogenesis.
298 Note that, although these properties may change under certain circumstances (Karathanasis and
299 Wells, 1989; Velde and Peck, 2002), they fail to qualify as master properties in agropedogenesis
300 because they are relatively insensitive to agricultural land-use and soil degradation.

301 Master soil properties have an additional important function: they are (co)responsible for the
302 changes in other properties. Changes in a master property over time may therefore intensify or
303 dampen changes in other (secondary) properties. The stability of macroaggregates, for example,
304 increases with the content and quality of SOM (Boix-Fayos et al., 2001; Celik, 2005). The infiltration

rate and water holding capacity decrease with increasing bulk density (Rasa and Horn, 2013; Raty et al., 2010), promoting erosion. These relations between soil properties, however, seem to be significant only within certain ranges, i.e. until thresholds are reached. Beyond such thresholds, new relations or new master properties may govern. For example, an increasing effect of SOM content on aggregate stability in extremely arid regions of the Mediterranean was recorded at above 5% SOM contents (Boix-Fayos et al., 2001). Increasing organic matter contents up to this 5% threshold had no effect on aggregate stability: instead, the carbonate content was the main regulator (Boix-Fayos et al., 2001). Microbial biomass and respiration in well-drained Acrisoils in Indonesia are resistant to decreasing SOM down to 2.7% of SOM, but strongly dropped beyond that value (Guillaume et al., 2016b). While the amounts of SOM and total N in sand and silt fractions may continuously decrease with cultivation duration, those values in the clay fraction remain stable (Eleftheriadis et al., 2018) (Fig. 3e). Bulk density increases non-linearly with SOM decrease, and the rates depend on SOM content (Fig. 7). Phase diagrams are very useful to identify such thresholds (see below).

Summarizing, we define '*Master properties*' as a group of soil-fertility-related parameters that (1) are directly affected by management, i.e. are sensitive to agricultural use and soil degradation, (2) determine the state of many other (non-master) parameters and soil fertility indicators during agropedogenesis, and (3) should be orthogonal to each other, i.e. independent (or minimally dependent) of one other (Kozlovskii, 1999). Note that, in reality all soil properties are at least partly dependent on each other. Nonetheless, the last prerequisite – orthogonality – ensures the best separation of soils in multi-dimensional space (see below) and reduces the redundancy of the properties.

Considering the three prerequisites and based on expert knowledge, as well as on phase diagrams (see below), we suggest soil depth (A+B horizons) and 8 properties as being master (Table 3): Density, Macroaggregates, SOM, C/N ratio, pH, EC, Microbial biomass C, and Basal respiration. We consider these 9 to be sufficient to describe the degradation state of most other parameters during agropedogenesis: water permeability, penetration resistance, erodibility, base saturation, exchangeable sodium percentage, sodium absorption ratio, N mineralization, availability of other nutrients, etc.

The combination of master properties provides a minimum dataset to determine soil development stages with cultivation duration (Andrews et al., 2002). Organic C content is the most important and universally accepted master property that directly and indirectly determines the state of

336 many physical (soil structure, density, porosity, water holding capacity, percolation rate, erodibility)
337 (Andrews et al., 2003; Nabiollahi et al., 2017; Seybold et al., 1997; Shpedt et al., 2017), chemical
338 (nutrient availability, sorption capacity, pH) (Lal, 2006; Minasny and Hartemink, 2011), and
339 biological (biodiversity, microbial biomass, basal respiration) (Raiesi, 2017) properties. The values of
340 the mentioned secondary properties can be estimated with an acceptable uncertainty based on robust
341 data on SOM content (Gharahi Ghehi et al., 2012). Finding additional soil properties beyond SOM to
342 form the set of master properties is, however, not straightforward (Homburg et al., 2005) because it
343 depends on the desired soil functions (Andrews et al., 2003) such as nutrient availability, water
344 permeability and holding capacity, crop yield quantity and quality, etc. (Andrews et al., 2002).
345 Therefore, various types of master properties, depending on geo-climatological conditions (Cannell
346 and Hawes, 1994), have already been suggested (Table 3). Nonetheless, the dynamics, sensitivity and
347 resistance of such properties to degradation and with cultivation duration remain unknown
348 (Guillaume et al., 2016b).

349

350 **2.5. Analysis of phase diagrams and identification of thresholds and stages of soil degradation**

351 All the properties described above move toward their attractors over the course of soil degradation
352 with time (Figs 3 and 6). The duration, however, is difficult to compare between soils because the
353 process rates depend on climatic conditions and land-use intensities. One option to understand and
354 analyze soil degradation *independent of time* is to use phase diagrams. Generally, a phase diagram
355 is a type of chart to show the state and simultaneous development of two or more parameters of a
356 matter¹. Phase diagrams present (and then analyze) properties against each other, without the time
357 factor (Figs 7c and 8). Thus, various properties measured in a chronosequence of soil degradation
358 are related to each other on 2D or even 3D graphs (Fig. 9), and time is excluded.

359 Phase diagrams have two advantages: (1) they help evaluate the dependence of properties on each
360 other – independent of time, climate, or management intensity. They represent generalized
361 connection between the properties. This greatly simplifies comparing the trajectory of soil
362 degradation under various climatic conditions, management intensities and even various land-uses.
363 (2) Such diagrams enable identifying the *thresholds* and stages of soil development and
364 degradation.

¹ Note that in chemistry, mineralogy, and materials sciences, a phase diagram is a type of chart used to show conditions (pressure, temperature, volume, etc.) at which thermodynamically distinct phases (e.g. solid, liquid or gaseous states) are at equilibrium.

365 We define:

366 **Thresholds of soil development and degradation are relatively abrupt changes in process rates**
367 **or process directions leading to a switch in the dominating mechanism of soil degradation.**

368 **Stages of soil degradation are periods confined by two thresholds and characterized by one**
369 **dominating degradation mechanism** (Fig. 7c).

370 Importantly, soil degradation does not always follow a linear or exponential trajectory (Kozlovskii,
371 1999). This means that changes (absolute for linear or relative for exponential) are not proportional
372 to time or management intensity. Soil degradation proceeds in stages of various duration and
373 intensity. The key consideration, however, is that each stage is characterized by the dominance of
374 one (group) of degradation process(es), whose prerequisites are formed in the previous phase.

375 We conclude that phase diagrams (1) enable tracing the trajectory of various soil properties as they
376 reach their attractors, independent of time, land-use or management intensity, and (2) are useful into
377 analyze not only the dependence (or at least correlation) between individual properties, but also to
378 identify the thresholds of soil degradation. The thresholds clearly show that soil degradation
379 proceeds in stages (Figs 7c, 8 and 9), each of which is characterized by the dominance of one
380 specific degradation process with its specific rates (and affecting the degradation of related soil
381 properties).

383 **2.6. Multi-dimensional attractor space**

384 The phase diagrams described above were presented in 2D or 3D space (Fig. 7 and 8) and help to
385 evaluate the connections between the properties and the stages of soil degradation. The suggested 9
386 master soil properties are orthogonal and the phase diagrams can therefore be built in multi-
387 dimensional attractor space – the space defining the soil degradation trajectory based on the master
388 soil properties (Fig. 8 bottom). Therefore, **development of master soil properties during long-term**
389 **agricultural land-use and degradation forms a multi-dimensional space of properties (multi-**
390 **dimensional space) toward which the soil will develop (trajectory) during agropedogenesis and**
391 **will then remain unchanged within this equilibrium field. Accordingly, the multi-dimensional**
392 **space of attractors defines the final stage of agropedogenesis.**

393 The degraded soil will remain within this multi-dimensional space even if subsequently slightly
394 disturbed (or reclaimed). This explains why long-term agricultural fields that have been abandoned
395 for centuries or even millennia still show evidence of soil degradation (Hall et al., 2013; Jangid et al.,

396 2011; Kalinina et al., 2013; Lisetskii et al., 2013; Ovsepyan et al., 2019; Sandor et al., 2008). For
397 example, abandoned soils under succession of local vegetation such as grassland and forest show
398 similar physicochemical and biological properties as a result of similarities in their history, i.e.
399 agricultural land-use (Jangid et al., 2011; Kalinina et al., 2019; Kurganova et al., 2019; Ovsepyan et
400 al., 2019). The flood-irrigated soils in Cave Creek, Arizona, support only the growth of the Creosote
401 bush even after about 700 years abandonment. This contrasts with the presence of seven species of
402 shrubs and cacti in areas between such soils. The reason is substantial changes in soil texture, i.e. via
403 siltation, thus reducing the water holding capacity in the flood-irrigated soils and leading to a shift in
404 the vegetation community to more drought-resistant species, in this case the Creosote bush (Hall et
405 al., 2013). Whereas establishing a no-till system on former pasture-land leads to a decrease in SOM,
406 changing a formerly plowed land to no-till had no such effect (Francis and Knight, 1993). The
407 amidase activity in Colca soils, Peru, is still high 400 years after of land abandonment due to the
408 remaining effect of applied organic amendments on microorganisms (Dick et al., 1994). **We argue**
409 **that during agropedogenesis the multi-dimensional space of master soil properties will**
410 **continuously narrow in approaching the attractors. This multi-dimensional space resembles a**
411 **funnel (Fig. 9), meaning that the broad range of all properties in initial natural soils will be**
412 **narrowed and unified to a (very) small range in agricultural and subsequently degraded soils.**
413 Identifying the attractors of master properties and the relations among them in this multi-dimensional
414 space yields diagnostic characteristics to identify and classify agrogenic soils (Gerasimov, 1984;
415 Kozlovskii, 1999).

416

417 **2.7. Changes in the attractors by specific land-use or climatic conditions**

418 Despite the principle of attractors – the convergence of a property of various soils to one value by
419 degradation – we assume that these attractors may differ slightly depending on climate, parent
420 material and management (Supplementary Fig. 3). This means that the multi-dimensional attractor
421 space can exhibit some local minima – metastable states (Kozlovskii, 1999). If the initial natural soil
422 is close to such a minimum, or the management pushes the trajectory in such a direction, then
423 agropedogenesis may stop at local minima. Hence, the global minimum will not be reached.

424 For example, no-till farming may increase SOM in the Ap horizon (Lal, 1997) and cause them to
425 level-off at higher values compared to tillage practices (Fig. 10). However, periodically tilling the
426 soil to simplify weed control quickly destroys the improvements in soil properties during the no-till

427 period (Cannell and Hawes, 1994). This results in degradation stages similar to soils under
428 conventional tillage. The ultimate effect of irrigation on soil degradation is expected to be similar to
429 that of dry-land farming. Despite more organic C input into irrigated systems, the SOM content
430 remains unchanged (Trost et al., 2014) due to accelerated decomposition (Denef et al., 2008). The
431 state of soil properties in the tropics is predictable based on pedotransfer functions commonly used in
432 temperate regions, even though tropical soils are usually more clayey, have a lower available water
433 capacity, and exhibit a higher bulk density. The explanation lies in the similarities in relations among
434 soil properties under various climatic conditions (Minasny and Hartemink, 2011). This makes the
435 concept of attractors generalizable to all cultivated soils (Kozlovskii, 1999), although geo-climatic
436 conditions and specific managements may modify the attractor values and affect the rates of soil
437 degradation following cultivation (Tiessen et al., 1994).

438

439 **3. Conclusions and outlook**

440 **3.1. Conclusions**

441 We state that (1) human activities are stronger in intensities and rates than all other soil-forming
442 factors (Liu et al., 2009; Richter et al., 2015). Because humans exploit mainly one soil function –
443 crop production – they optimize all soil processes and properties toward a higher yield of a few
444 agricultural crops. Because most crops have similar requirements, the range of measured values for
445 any soil property becomes narrower during agropedogenesis. Therefore, human activities for crop
446 production lead to the formation of a special group of agrogenic soils with a defined and narrow
447 range of properties – Anthrosols. The range of properties moves toward the attractor; specific for
448 each property but similar for various soils. (2) Analyzing the properties of soils from various geo-
449 climatological conditions and managements in relation to cultivation periods reveals (i) the
450 dynamics of soil properties by agropedogenesis and (ii) demonstrates the final stage of agrogenic
451 degradation when the values of various soil properties reach the attractor.

452 By analyzing the soil development and the properties' dynamics under agricultural use, we develop
453 for the first time the basic theory of agropedogenesis. This theory is based on (1) the modified
454 classical concept of Factors – Processes – Properties – Functions and back to the Processes, (2) the
455 concept of attractors of soil degradation, (3) identifying master soil properties and analyzing their
456 dynamics by agropedogenesis, (4) analyzing phase diagrams of master soil properties to identify the
457 thresholds and stages of soil degradation, and finally (5) defining multi-dimensional attractor space.

458 We defined the attractors and provided the basic prerequisites for elucidating the nine master
459 properties responsible for the trajectory of any soil during agropedogenesis within multi-
460 dimensional attractor space.

461

462 **3.2. Outlook**

463 We developed a new unifying theory of agropedogenesis based on the long observation of soil
464 degradation under agricultural use and on experiments with agricultural soils under various land-use
465 intensities under a broad range of climatic conditions. The presented examples of soil degradation
466 trajectories and of attractors of soil properties clearly do not reflect the full range of situations.
467 This theory therefore needs to be filled with more observational and experimental data. Various
468 emerging topics can be highlighted:

469 Confirmation of master soil properties: The master properties presented here represent suggested
470 entities. This calls for clarifying whether these are sufficient (or excessive) to describe the stages of
471 soil degradation under agropedogenesis. The degree of orthogonality of these properties also
472 remains to be determined. Defining the master soil properties and their multi-dimensional attractor
473 space will clearly simplify the modelling of degradation trajectories.

474 Identification of attractor values: The suggested attractor values (Fig. 3, 6, 8b; Table 3) are mainly
475 based on a few chronosequence studies and expert knowledge. These values should be defined more
476 precisely based on a larger database. The challenge here is that the average values are not suitable
477 as attractors because only the maximal or minimal values – the attractors – of a variable are of
478 interest. Therefore, specific statistical methods should be applied, e.g. the lower (or upper –
479 depending on the property) 95% confidence interval or overlap testing should be used instead of
480 means to set the attractor value.

481 The determination of local minima is necessary (and is closely connected with the identification of
482 the multi-dimensional attractor space). Arriving at such local minima will temporarily stop soil
483 degradation and knowing their values can help simplify the measures to combat degradation and
484 accelerate soil recovery.

485 Investigating the thresholds and stages of soil degradation, along with identifying the main
486 mechanisms dominating at each stage, should be done based on the phase diagrams of various soil
487 properties – at least the master properties. These stages of agropedogenesis with their corresponding
488 main mechanisms are crucial for understanding, modeling, and combating soil degradation.

489 Only a few models of natural pedogenesis in its full complexity are available (Finke, 2012; Finke
490 and Hutson, 2008; Keyvanshokouhi et al., 2016) and the models addressing soil degradation
491 describe more or less individual or a selected few processes, but not overall agropedogenesis. For
492 example, various models are available for erosion (Afshar et al., 2018; Arekhi et al., 2012;
493 Ebrahimzadeh et al., 2018; Millward and Mersey, 1999; Morgan et al., 1998; Pournader et al., 2018;
494 Rose et al., 1983), SOM decrease (Chertov and Komarov, 1997; Davidson et al., 2012; Del Gross
495 et al., 2002; Grant, 1997; Liu et al., 2003; Smith et al., 1997), density increase (Hernanz et al., 2000;
496 Jalabert et al., 2010; Makovnikova et al., 2017; Shiri et al., 2017; Taalab et al., 2013; Tranter et al.,
497 2007) and other processes due to land-use. This calls for complex theory-based models of
498 agropedogenesis.

499

500 **Author contribution**

501 YK and KZ contributed equally to writing the paper.

502

503 **Competing interest**

504 The authors declare that they have no conflict of interest.

505

506 **Acknowledgements**

507 This paper is devoted to the 90th anniversary of Dr. Sci. Felix I. Kozlovskii – eminent pedologist and
508 geo-ecologist, who introduced the theory of agropedogenesis more than 30 years ago and was the
509 first to suggest the concept of attractors of soil degradation. We are very thankful to Prof. Dr. S.
510 Goryachkin for very helpful critical suggestions to the first version of the concept.

511

512 **References**

513 Afshar, E., Yarnia, M., Bagherzadeh, A., Mirshekari, B. and Haghghi, R. S.: The Effect of Crops
514 Cultivation on Soil Erosion Indices Based on Impelero Model in Northeast Iran, *Appl. Ecol. Environ.*
515 Res., 16(1), 855–866, doi:10.15666/aeer/1601_855866, 2018.

516 Alletto, L. and Coquet, Y.: Temporal and spatial variability of soil bulk density and near-saturated
517 hydraulic conductivity under two contrasted tillage management systems, *Geoderma*, 152(1), 85–94,
518 doi:10.1016/j.geoderma.2009.05.023, 2009.

519 Amundson, R. and Jenny, H.: The Place of Humans in the State Factor Theory of Ecosystems and
520 Their Soils, *Soil Sci.*, 151(1), 99, 1991.

521 Andrews, S. S., Karlen, D. L. and Mitchell, J. P.: A comparison of soil quality indexing methods for
522 vegetable production systems in Northern California, *Agric. Ecosyst. Environ.*, 90(1), 25–45,
523 doi:10.1016/S0167-8809(01)00174-8, 2002.

524 Andrews, S. S., Flora, C. B., Mitchell, J. P. and Karlen, D. L.: Growers' perceptions and acceptance
525 of soil quality indices, *Geoderma*, 114(3), 187–213, doi:10.1016/S0016-7061(03)00041-7, 2003.

526 Arekhi, S., Niazi, Y. and Kalteh, A. M.: Soil erosion and sediment yield modeling using RS and GIS
527 techniques: a case study, *Iran, Arab. J. Geosci.*, 5(2), 285–296, doi:10.1007/s12517-010-0220-4,
528 2012.

529 Askari, M. S. and Holden, N. M.: Quantitative soil quality indexing of temperate arable management
530 systems, *Soil Tillage Res.*, 150(Supplement C), 57–67, doi:10.1016/j.still.2015.01.010, 2015.

531 Ayoubi, S., Mokhtari Karchegani, P., Mosaddeghi, M. R. and Honarjoo, N.: Soil aggregation and
532 organic carbon as affected by topography and land use change in western Iran, *Soil Tillage Res.*,
533 121(Supplement C), 18–26, doi:10.1016/j.still.2012.01.011, 2012.

534 Bidwell, O. W. and Hole, F. D.: Man as a factor of soil formation, *Soil Sci.*, 99(1), 65, 1965.

535 Boix-Fayos, C., Calvo-Cases, A., Imeson, A. C. and Soriano-Soto, M. D.: Influence of soil properties
536 on the aggregation of some Mediterranean soils and the use of aggregate size and stability as land
537 degradation indicators, *CATENA*, 44(1), 47–67, doi:10.1016/S0341-8162(00)00176-4, 2001.

538 Bosch-Serra, A. D., Padro, R., Boixadera-Bosch, R. R., Orobital, J. and Yaguee, M. R.: Tillage and
539 slurry over-fertilization affect oribatid mite communities in a semiarid Mediterranean environment,
540 *Appl. Soil Ecol.*, 84, 124–139, doi:10.1016/j.apsoil.2014.06.010, 2014.

541 Breland, T. A. and Eltun, R.: Soil microbial biomass and mineralization of carbon and nitrogen in
542 ecological, integrated and conventional forage and arable cropping systems, *Biol. Fertil. Soils*, 30(3),
543 193–201, doi:10.1007/s003740050608, 1999.

544 Bryant, R. B. and Galbraith, J. M.: Incorporating Anthropogenic Processes in Soil Classification, in
545 *Soil Classification: A Global Desk Reference*, edited by H. Eswaran, R. Ahrens, T. J. Rice, and B. A.
546 Stewart, CRC Press, Boca Raton, FL., 2003.

547 Bünenmann, E. K., Bongiorno, G., Bai, Z., Creamer, R. E., De Deyn, G., de Goede, R., Fleskens, L.,
548 Geissen, V., Kuyper, T. W., Mäder, P., Pulleman, M., Sukkel, W., van Groenigen, J. W. and
549 Brussaard, L.: Soil quality – A critical review, *Soil Biol. Biochem.*, 120, 105–125,
550 doi:10.1016/j.soilbio.2018.01.030, 2018.

551 Burghardt, W., Heintz, D. and Hocke, N.: Soil Fertility Characteristics and Organic Carbon Stock in
552 Soils of Vegetable Gardens Compared with Surrounding Arable Land at the Center of the Urban and
553 Industrial Area of Ruhr, Germany, *Eurasian Soil Sci.*, 51(9), 1067–1079,
554 doi:10.1134/S106422931809003X, 2018.

555 Cannell, R. Q. and Hawes, J. D.: Trends in tillage practices in relation to sustainable crop production
556 with special reference to temperate climates, *Soil Tillage Res.*, 30(2), 245–282, doi:10.1016/0167-
557 1987(94)90007-8, 1994.

558 Carducci, C. E., Zinn, Y. L., Rossoni, D. F., Heck, R. J. and Oliveira, G. C.: Visual analysis and X-
559 ray computed tomography for assessing the spatial variability of soil structure in a cultivated Oxisol,
560 *Soil Tillage Res.*, 173(Supplement C), 15–23, doi:10.1016/j.still.2016.03.006, 2017.

561 Carozza, J.-M., Galop, D., Metailie, J.-P., Vanniere, B., Bossuet, G., Monna, F., Lopez-Saez, J. A.,
562 Arnould, M.-C., Breuil, V., Forne, M. and Lemonnier, E.: Landuse and soil degradation in the
563 southern Maya lowlands, from Pre-Classic to Post-Classic times: The case of La Joyanca (Petén,
564 Guatemala), *Geodin. Acta*, 20(4), 195–207, doi:10.3166/ga.20.195-207, 2007.

565 Celik, I.: Land-use effects on organic matter and physical properties of soil in a southern
566 Mediterranean highland of Turkey, *Soil Tillage Res.*, 83(2), 270–277, doi:10.1016/j.still.2004.08.001,
567 2005.

568 Chadwick, O. A. and Chorover, J.: The chemistry of pedogenic thresholds, *Geoderma*, 100(3–4),
569 321–353, doi:10.1016/S0016-7061(01)00027-1, 2001.

570 Chen, L.-M., Zhang, G.-L. and Effland, W. R.: Soil Characteristic Response Times and Pedogenic
571 Thresholds during the 1000-Year Evolution of a Paddy Soil Chronosequence, *Soil Sci. Soc. Am. J.*,
572 75(5), 1807–1820, doi:10.2136/sssaj2011.0006, 2011.

573 Cheng, Y.-Q., Yang, L.-Z., Cao, Z.-H., Ci, E. and Yin, S.: Chronosequential changes of selected
574 pedogenic properties in paddy soils as compared with non-paddy soils, *Geoderma*, 151(1), 31–41,
575 doi:10.1016/j.geoderma.2009.03.016, 2009.

576 Chertov, O. G. and Komarov, A. S.: SOMM: A model of soil organic matter dynamics, *Ecol. Model.*,
577 94(2–3), 177–189, doi:10.1016/S0304-3800(96)00017-8, 1997.

578 Dalal, R. and J. Mayer, R.: Long term trends in fertility of soils under continuous cultivation and
579 cereal cropping in southern Queensland. II. Total organic carbon and its rate of loss from the soil
580 profile, *Aust. J. Soil Res. - AUST J SOIL RES*, 24, 281–292, doi:10.1071/SR9860281, 1986.

581 Dalal, R. and Mayer, R.: Long-term trends in fertility of soils under continuous cultivation and cereal
582 cropping in southern Queensland. IV. Loss of organic carbon for different density functions., *Aust. J.*
583 *Soil Res. - AUST J SOIL RES*, 24, 281–292, doi:10.1071/SR9860301, 1986a.

584 Dalal, R. C. and Mayer, R. J.: Long term trends in fertility of soils under continuous cultivation and
585 cereal cropping in southern Queensland .V. Rate of loss of total nitrogen from the soil profile and
586 changes in carbon : nitrogen ratios, *Soil Res.*, 24(4), 493–504, doi:10.1071/sr9860493, 1986b.

587 Davidson, E. A., Samanta, S., Caramori, S. S. and Savage, K.: The Dual Arrhenius and Michaelis-
588 Menten kinetics model for decomposition of soil organic matter at hourly to seasonal time scales,
589 *Glob. Change Biol.*, 18(1), 371–384, doi:10.1111/j.1365-2486.2011.02546.x, 2012.

590 Dazzi, C. and Monteleone, S.: Anthropogenic processes in the evolution of a soil chronosequence
591 on marly-limestone substrata in an Italian Mediterranean environment, *Geoderma*, 141(3), 201–209,
592 doi:10.1016/j.geoderma.2007.05.016, 2007.

593 Dehaan, R. L. and Taylor, G. R.: Field-derived spectra of salinized soils and vegetation as indicators
594 of irrigation-induced soil salinization, *Remote Sens. Environ.*, 80(3), 406–417, doi:10.1016/S0034-
595 4257(01)00321-2, 2002.

596 Del Grosso, S., Ojima, D., Parton, W., Mosier, A., Peterson, G. and Schimel, D.: Simulated effects of
597 dryland cropping intensification on soil organic matter and greenhouse gas exchanges using the
598 DAYCENT ecosystem model, *Environ. Pollut.*, 116, S75–S83, doi:10.1016/S0269-7491(01)00260-3,
599 2002.

600 DeLong, C., Cruse, R. and Wiener, J.: The Soil Degradation Paradox: Compromising Our
601 Resources When We Need Them the Most, *Sustainability*, 7(1), 866–879, doi:10.3390/su7010866,
602 2015.

603 Denef, K., Stewart, C. E., Brenner, J. and Paustian, K.: Does long-term center-pivot irrigation
604 increase soil carbon stocks in semi-arid agro-ecosystems?, *Geoderma*, 145(1–2), 121–129,
605 doi:10.1016/j.geoderma.2008.03.002, 2008.

606 Diamond, J.: Evolution, consequences and future of plant and animal domestication, *Nature*,
607 doi:10.1038/nature01019, 2002.

608 Dick, R. P., Sandor, J. A. and Eash, N. S.: Soil enzyme activities after 1500 years of terrace
609 agriculture in the Colca Valley, Peru, *Agric. Ecosyst. Environ.*, 50(2), 123–131, doi:10.1016/0167-
610 8809(94)90131-7, 1994.

611 Diedhiou, A. G., Dupouey, J.-L., Buée, M., Dambrine, E., Laüt, L. and Garbaye, J.: Response of
612 ectomycorrhizal communities to past Roman occupation in an oak forest, *Soil Biol. Biochem.*,
613 41(10), 2206–2213, doi:10.1016/j.soilbio.2009.08.005, 2009.

614 Dokuchaev, V.: Russian Chernozem, Saint Petersburg., 1883.

615 Dudal, R.: The sixth factor of soil formation, [online] Available from:
616 https://www.researchgate.net/publication/228669778_The_sixth_factor_of_soil_formation (Accessed
617 5 October 2018), 2004.

618 Ebrahimbzadeh, S., Motagh, M., Mahboub, V. and Harijani, F. M.: An improved RUSLE/SDR model
619 for the evaluation of soil erosion, *Environ. Earth Sci.*, 77(12), 454, doi:10.1007/s12665-018-7635-8,
620 2018.

621 Eleftheriadis, A., Lafuente, F. and Turrión, M.-B.: Effect of land use, time since deforestation and
622 management on organic C and N in soil textural fractions, *Soil Tillage Res.*, 183, 1–7,
623 doi:10.1016/j.still.2018.05.012, 2018.

624 Ellis, S. and Newsome, D.: Chalkland soil formation and erosion on the Yorkshire Wolds, northern
625 England, *Geoderma*, 48(1), 59–72, doi:10.1016/0016-7061(91)90006-F, 1991.

626 Emdad, M. R., Raine, S. R., Smith, R. J. and Fardad, H.: Effect of water quality on soil structure and
627 infiltration under furrow irrigation, *Irrig. Sci.*, 23(2), 55–60, doi:10.1007/s00271-004-0093-y, 2004.

628 Fageria, N. K.: Role of Soil Organic Matter in Maintaining Sustainability of Cropping Systems,
629 *Commun. Soil Sci. Plant Anal.*, 43(16), 2063–2113, doi:10.1080/00103624.2012.697234, 2012.

630 FAO: World Food and Agriculture: Statistical Pocketbook, Rome., 2018.

631 Finke, P. A.: Modeling the genesis of luvisols as a function of topographic position in loess parent
632 material, *Quat. Int.*, 265, 3–17, doi:10.1016/j.quaint.2011.10.016, 2012.

633 Finke, P. A. and Hutson, J. L.: Modelling soil genesis in calcareous loess, *Geoderma*, 145(3–4),
634 462–479, doi:10.1016/j.geoderma.2008.01.017, 2008.

635 Flynn, D. F. B., Gogol-Prokurat, M., Nogeire, T., Molinari, N., Richers, B. T., Lin, B. B., Simpson, N.,
636 Mayfield, M. M. and DeClerck, F.: Loss of functional diversity under land use intensification across
637 multiple taxa, *Ecol. Lett.*, 12(1), 22–33, doi:10.1111/j.1461-0248.2008.01255.x, 2009.

638 Francis, G. S. and Knight, T. L.: Long-term effects of conventional and no-tillage on selected soil
639 properties and crop yields in Canterbury, New Zealand, *Soil Tillage Res.*, 26(3), 193–210,
640 doi:10.1016/0167-1987(93)90044-P, 1993.

641 Gerasimov, I.: The System of Basic Genetic Concepts That Should Be Included in Modern
642 Dokuchayevian Soil Science, *Sov. Geogr.*, 25(1), 1–14, 1984.

643 Gerasimov, I. P. and Fridland, V. : Historical role and current problems of genetical soil science of
644 Dokuchaev, *Pochvovedenie*, 4, 5–10, 1984.

645 Gharahi Ghehi, N., Nemes, A., Verdoodt, A., Van Ranst, E., Cornelis, W. and Boeckx, P.:
646 Nonparametric techniques for predicting soil bulk density of tropical rainforest topsoils in Rwanda,
647 *SOIL Sci. Soc. Am. J.*, 76(4), 1172–1183, doi:<http://dx.doi.org/10.2136/sssaj2011.0330>, 2012.

648 Glaser, B., Haumaier, L., Guggenberger, G. and Zech, W.: The “Terra Preta” phenomenon: a model
649 for sustainable agriculture in the humid tropics, *Naturwissenschaften*, 88(1), 37–41,
650 doi:10.1007/s001140000193, 2001.

651 Glinka, K. D.: Dokuchaiev’s ideas in the development of pedology and cognate sciences., *The
652 Academy*, Leningrad., 1927.

653 Govers, G., Vandaele, K., Desmet, P., Poesen, J. and Bunte, K.: The Role of Tillage in Soil
654 Redistribution on Hillslopes, *Eur. J. Soil Sci.*, 45(4), 469–478, doi:10.1111/j.1365-
655 2389.1994.tb00532.x, 1994.

656 Grant, R. F.: Changes in soil organic matter under different tillage and rotation: Mathematical
657 modeling in ecosys, *Soil Sci. Soc. Am. J.*, 61(4), 1159–1175,
658 doi:10.2136/sssaj1997.03615995006100040023x, 1997.

659 Guillaume, T., Maranguit, D., Murtilaksono, K. and Kuzyakov, Y.: Sensitivity and resistance of soil
660 fertility indicators to land-use changes: New concept and examples from conversion of Indonesian
661 rainforest to plantations, *Ecol. Indic.*, 67, 49–57, doi:10.1016/j.ecolind.2016.02.039, 2016a.

662 Guillaume, T., Holtkamp, A. M., Damris, M., Brummer, B. and Kuzyakov, Y.: Soil degradation in oil
663 palm and rubber plantations under land resource scarcity, *Agric. Ecosyst. Environ.*, 232, 110–118,
664 doi:10.1016/j.agee.2016.07.002, 2016b.

665 Haas, H. J., Evans, C. E. and Miles, E. F.: Nitrogen and Carbon Changes in Great Plains Soils as
666 Influenced by Cropping and Soil Treatments, *U.S. Department of Agriculture.*, 1957.

667 Hall, S. J., Trujillo, J., Nakase, D., Strawhacker, C., Kruse-Peeples, M., Schaafsma, H. and Briggs,
668 J.: Legacies of Prehistoric Agricultural Practices Within Plant and Soil Properties Across an Arid
669 Ecosystem, *Ecosystems*, 16(7), 1273–1293, doi:10.1007/s10021-013-9681-0, 2013.

670 Hartemink, A. E.: Assessing Soil Fertility Decline in the Tropics Using Soil Chemical Data, in
671 Advances in Agronomy, vol. 89, pp. 179–225, Academic Press., 2006.

672 Hartemink, A. E. and Bridges, E. M.: The influence of parent material on soil fertility degradation in
673 the coastal plain of Tanzania, *Land Degrad. Dev.*, 6(4), 215–221, doi:10.1002/ldr.3400060403,
674 1995.

675 Henrot, J. and Robertson, G. P.: Vegetation removal in two soils of the humid tropics: Effect on
676 microbial biomass, *Soil Biol. Biochem.*, 26(1), 111–116, doi:10.1016/0038-0717(94)90202-X, 1994.

677 Hernanz, J. L., Peixoto, H., Cerisola, C. and Sanchez-Giron, V.: An empirical model to predict soil
678 bulk density profiles in field conditions using penetration resistance, moisture content and soil depth,
679 *J. Terramechanics*, 37(4), 167–184, doi:10.1016/S0022-4898(99)00020-8, 2000.

680 Holthusen, D., Brandt, A. A., Reichert, J. M. and Horn, R.: Soil porosity, permeability and static and
681 dynamic strength parameters under native forest/grassland compared to no-tillage cropping, *Soil*
682 *Tillage Res.*, 177, 113–124, doi:10.1016/j.still.2017.12.003, 2018.

683 Homburg, J. A. and Sandor, J. A.: Anthropogenic effects on soil quality of ancient agricultural
684 systems of the American Southwest, *CATENA*, 85(2), 144–154, doi:10.1016/j.catena.2010.08.005,
685 2011.

686 Homburg, J. A., Sandor, J. A. and Norton, J. B.: Anthropogenic influences on Zuni agricultural soils,
687 *Geoarchaeology Int. J.*, 20(7), 661–693, doi:10.1002/gea.20076, 2005.

688 Horn, R. and Fleige, H.: Risk assessment of subsoil compaction for arable soils in Northwest
689 Germany at farm scale, *Soil Tillage Res.*, 102(2), 201–208, doi:10.1016/j.still.2008.07.015, 2009.

690 Howard, J.: Anthropogenic Soils, Springer International Publishing. [online] Available from:
691 <https://www.springer.com/de/book/9783319543307> (Accessed 22 April 2019), 2017.

692 Jalabert, S. S. M., Martin, M. P., Renaud, J.-P., Boulonne, L., Jolivet, C., Montanarella, L. and
693 Arrouays, D.: Estimating forest soil bulk density using boosted regression modelling, *Soil Use*
694 *Manag.*, 26(4), 516–528, doi:10.1111/j.1475-2743.2010.00305.x, 2010.

695 Jalali, M. and Ranjbar, F.: Effects of sodic water on soil sodicity and nutrient leaching in poultry and
696 sheep manure amended soils, *Geoderma*, 153(1–2), 194–204,
697 doi:10.1016/j.geoderma.2009.08.004, 2009.

698 Jangid, K., Williams, M. A., Franzluebbers, A. J., Schmidt, T. M., Coleman, D. C. and Whitman, W.
699 B.: Land-use history has a stronger impact on soil microbial community composition than
700 aboveground vegetation and soil properties, *Soil Biol. Biochem.*, 43(10), 2184–2193,
701 doi:10.1016/j.soilbio.2011.06.022, 2011.

702 Jenny, H.: Factors of soil formation: a system of quantitative pedology, McGraw-Hill., 1941.

703 KA-5: Bodenkundliche Kartieranleitung, 5th ed., Schweizerbart'sche, E., Stuttgart., 2005.

704 Kalinina, O., Chertov, O., Dolgikh, A. V., Goryachkin, S. V., Lyuri, D. I., Vormstein, S. and Giani, L.:
705 Self-restoration of post-agrogenic Albeluvisols: Soil development, carbon stocks and dynamics of
706 carbon pools, *Geoderma*, 207–208, 221–233, doi:10.1016/j.geoderma.2013.05.019, 2013.

707 Kalinina, O., Cherkinsky, A., Chertov, O., Goryachkin, S., Kurganova, I., Lopes de Gerenu, V.,
708 Lyuri, D., Kuzyakov, Y. and Giani, L.: Post-agricultural restoration: Implications for dynamics of soil
709 organic matter pools, *CATENA*, 181, 104096, doi:10.1016/j.catena.2019.104096, 2019.

710 Karathanasis, A. D. and Wells, K. L.: A Comparison of Mineral Weathering Trends Between Two
711 Management Systems on a Catena of Loess-Derived Soils, *Soil Sci. Soc. Am. J.*, 53(2), 582–588,
712 doi:10.2136/sssaj1989.03615995005300020047x, 1989.

713 KDPR: Klassifikazia i Diagnostika Pochv Rossii (Classification and Diagnostics of Soil of
714 Russia), edited by L. L. Shishov, I. I. Lebedeva, M. I. Gerasimova, and V. D. Tonkongov, Smolensk:
715 Oikumena. [online] Available from: <http://infosoil.ru/index.php?pageID=clas04mode> (Accessed 10
716 September 2018), 2004.

717 Keyvanshokouhi, S., Cornu, S., Samouelian, A. and Finke, P.: Evaluating SoilGen2 as a tool for
718 projecting soil evolution induced by global change, *Sci. Total Environ.*, 571, 110–123,
719 doi:10.1016/j.scitotenv.2016.07.119, 2016.

720 Khormali, F., Ajami, M., Ayoubi, S., Srinivasarao, C. and Wani, S. P.: Role of deforestation and
721 hillslope position on soil quality attributes of loess-derived soils in Golestan province, Iran, *Agric.
722 Ecosyst. Environ.*, 134(3), 178–189, doi:10.1016/j.agee.2009.06.017, 2009.

723 Kölbl, A., Schad, P., Jahn, R., Amelung, W., Bannert, A., Cao, Z. H., Fiedler, S., Kalbitz, K.,
724 Lehndorff, E., Müller-Niggemann, C., Schloter, M., Schwark, L., Vogelsang, V., Wissing, L. and
725 Kögel-Knabner, I.: Accelerated soil formation due to paddy management on marshlands (Zhejiang
726 Province, China), *Geoderma*, 228–229(Supplement C), 67–89,
727 doi:10.1016/j.geoderma.2013.09.005, 2014.

728 Kozlovskii, F. I.: The Modeling of Agropedogenesis in Plowed Soils on Mantle Loams, *EURASIAN
729 SOIL Sci. CC POCHVOVEDENIE*, 32(6), 710–720, 1999.

730 Kurganova, I., Merino, A., Lopes de Gerenu, V., Barros, N., Kalinina, O., Giani, L. and Kuzyakov,
731 Y.: Mechanisms of carbon sequestration and stabilization by restoration of arable soils after
732 abandonment: A chronosequence study on Phaeozems and Chernozems, *Geoderma*, 354, 113882,
733 doi:10.1016/j.geoderma.2019.113882, 2019.

734 Lal, R.: Long-term tillage and maize monoculture effects on a tropical Alfisol in western Nigeria. I.
735 Crop yield and soil physical properties, *Soil Tillage Res.*, 42(3), 145–160, doi:10.1016/S00167-
736 1987(97)00006-8, 1997.

737 Lal, R.: Soil degradation by erosion, *Land Degrad. Dev.*, 12(6), 519–539, doi:10.1002/ldr.472, 2001.

738 Lal, R.: Climate change, soil carbon dynamics and global food security, in Climate change and
739 global food security, edited by R. Lal, B. A. Stewart, N. Uphoff, and D. O. Hansen, pp. 113–143,
740 CRC Press, Taylor & Francis., 2005.

741 Lal, R.: Enhancing crop yields in the developing countries through restoration of the soil organic
742 carbon pool in agricultural lands, *Land Degrad. Dev.*, 17(2), 197–209, doi:10.1002/ldr.696, 2006.

743 Lal, R.: Soils and sustainable agriculture. A review, *Agron. Sustain. Dev.*, 28(1), 57–64,
744 doi:10.1051/agro:2007025, 2008.

745 Lal, R.: Soil degradation as a reason for inadequate human nutrition, *Food Secur.*, 1(1), 45–57,
746 doi:10.1007/s12571-009-0009-z, 2009.

747 Lal, R.: Restoring Soil Quality to Mitigate Soil Degradation, *Sustainability*, 7(5), 5875–5895,
748 doi:10.3390/su7055875, 2015.

749 Lemenih, M., Karlton, E. and Olsson, M.: Assessing soil chemical and physical property responses
750 to deforestation and subsequent cultivation in smallholders farming system in Ethiopia, *Agric.*
751 *Ecosyst. Environ.*, 105(1), 373–386, doi:10.1016/j.agee.2004.01.046, 2005.

752 Lincoln, N., Chadwick, O. and Vitousek, P.: Indicators of soil fertility and opportunities for precontact
753 agriculture in Kona, Hawai'i, *Ecosphere*, 5(4), art42, doi:10.1890/ES13-00328.1, 2014.

754 Lipiec, J., Horn, R., Pietrusiewicz, J. and Siczek, A.: Effects of soil compaction on root elongation
755 and anatomy of different cereal plant species, *Soil Tillage Res.*, 121, 74–81,
756 doi:10.1016/j.still.2012.01.013, 2012.

757 Lisetskii, F., Stolba, V., Ergina, E., Rodionova, M. and Terekhin, E.: Post-agrogenic evolution of soils
758 in ancient Greek land use areas in the Herakleian Peninsula, southwestern Crimea, *The Holocene*,
759 23(4), 504–514, doi:10.1177/0959683612463098, 2013.

760 Lisetskii, F., Stolba, V. F. and Marinina, O.: Indicators of agricultural soil genesis under varying
761 conditions of land use, Steppe Crimea, *Geoderma*, 239–240(Supplement C), 304–316,
762 doi:10.1016/j.geoderma.2014.11.006, 2015.

763 Liu, S. G., Bliss, N., Sundquist, E. and Huntington, T. G.: Modeling carbon dynamics in vegetation
764 and soil under the impact of soil erosion and deposition, *Glob. Biogeochem. Cycles*, 17(2), 1074,
765 doi:10.1029/2002GB002010, 2003.

766 Liu, X., Zhang, W., Zhang, M., Ficklin, D. L. and Wang, F.: Spatio-temporal variations of soil
767 nutrients influenced by an altered land tenure system in China, *Geoderma*, 152(1), 23–34,
768 doi:10.1016/j.geoderma.2009.05.022, 2009.

769 Lo Papa, G., Palermo, V. and Dazzi, C.: Is land-use change a cause of loss of pedodiversity? The
770 case of the Mazzarrone study area, Sicily, *Geomorphology*, 135(3), 332–342,
771 doi:10.1016/j.geomorph.2011.02.015, 2011.

772 Lo Papa, G., Palermo, V. and Dazzi, C.: The “genetic erosion” of the soil ecosystem, *Int. Soil Water
773 Conserv. Res.*, 1(1), 11–18, doi:10.1016/S2095-6339(15)30045-9, 2013.

774 Lobe, I., Amelung, W. and Preez, C. C. D.: Losses of carbon and nitrogen with prolonged arable
775 cropping from sandy soils of the South African Highveld, *Eur. J. Soil Sci.*, 52(1), 93–101,
776 doi:10.1046/j.1365-2389.2001.t01-1-00362.x, 2001.

777 Makovnikova, J., Siran, M., Houskova, B., Palka, B. and Jones, A.: Comparison of different models
778 for predicting soil bulk density. Case study - Slovakian agricultural soils, *Int. Agrophysics*, 31(4),
779 491–498, doi:10.1515/intag-2016-0079, 2017.

780 McBratney, A. B., Mendonça Santos, M. L. and Minasny, B.: On digital soil mapping, *Geoderma*,
781 117, 3–52, 2003.

782 Meuser, H.: Anthropogenic Soils, in Contaminated Urban Soils, edited by H. Meuser, pp. 121–193,
783 Springer Netherlands, Dordrecht., 2010.

784 Millward, A. A. and Mersey, J. E.: Adapting the RUSLE to model soil erosion potential in a
785 mountainous tropical watershed, *Catena*, 38(2), 109–129, doi:10.1016/S0341-8162(99)00067-3,
786 1999.

787 Minasny, B. and Hartemink, A. E.: Predicting soil properties in the tropics, *Earth-Sci. Rev.*, 106(1),
788 52–62, doi:10.1016/j.earscirev.2011.01.005, 2011.

789 Morgan, R. P. C., Quinton, J. N., Smith, R. E., Govers, G., Poesen, J. W. A., Auerswald, K., Chisci,
790 G., Torri, D. and Styczen, M. E.: The European Soil Erosion Model (EUROSEM): A dynamic
791 approach for predicting sediment transport from fields and small catchments, *Earth Surf. Process.
792 Landf.*, 23(6), 527–544, doi:10.1002/(SICI)1096-9837(199806)23:6<527::AID-ESP868>3.0.CO;2-5,
793 1998.

794 Morrison, R. J. and Gawander, J. S.: Changes in the properties of Fijian Oxisols over 30 years of
795 sugarcane cultivation, *Soil Res.*, 54(4), 418–429, doi:10.1071/SR15173, 2016.

796 Nabiollahi, K., Taghizadeh-Mehrjardi, R., Kerry, R. and Moradian, S.: Assessment of soil quality
797 indices for salt-affected agricultural land in Kurdistan Province, Iran, *Ecol. Indic.*, 83, 482–494,
798 doi:10.1016/j.ecolind.2017.08.001, 2017.

799 Nannipieri, P., Ascher, J., Ceccherini, M. T., Landi, L., Pietramellara, G. and Renella, G.: Microbial
800 diversity and soil functions, *Eur. J. Soil Sci.*, 54(4), 655–670, doi:10.1046/j.1351-0754.2003.0556.x,
801 2003.

802 Nyberg, G., Bargués Tobella, A., Kinyangi, J. and Ilstedt, U.: Soil property changes over a 120-yr
803 chronosequence from forest to agriculture in western Kenya, *Hydrol Earth Syst Sci*, 16(7), 2085–
804 2094, doi:10.5194/hess-16-2085-2012, 2012.

805 Obour, A. K., Mikha, M. M., Holman, J. D. and Stahlman, P. W.: Changes in soil surface chemistry
806 after fifty years of tillage and nitrogen fertilization, *Geoderma*, 308, 46–53,
807 doi:10.1016/j.geoderma.2017.08.020, 2017.

808 Ovsepyan, L., Kurganova, I., Gerenu, V. L. de and Kuzyakov, Y.: Recovery of organic matter and
809 microbial biomass after abandonment of degraded agricultural soils: the influence of climate, *Land
810 Degrad. Dev.*, 30(15), 1861–1874, doi:10.1002/ldr.3387, 2019.

811 Pape, J. C.: Plaggen soils in the Netherlands, *Geoderma*, 4(3), 229–255, doi:10.1016/0016-
812 7061(70)90005-4, 1970.

813 Paul, E. A.: *Soil Microbiology, Ecology and Biochemistry*, Academic Press., 2014.

814 Paz-González, A., Vieira, S. R. and Taboada Castro, M. T.: The effect of cultivation on the spatial
815 variability of selected properties of an umbric horizon, *Geoderma*, 97(3), 273–292,
816 doi:10.1016/S0016-7061(00)00066-5, 2000.

817 Ponge, J.-F., Peres, G., Guernion, M., Ruiz-Camacho, N., Cortet, J., Pernin, C., Villenave, C.,
818 Chaussod, R., Martin-Laurent, F., Bispo, A. and Cluzeau, D.: The impact of agricultural practices on
819 soil biota: A regional study, *Soil Biol. Biochem.*, 67, 271–284, doi:10.1016/j.soilbio.2013.08.026,
820 2013.

821 Pournader, M., Ahmadi, H., Feiznia, S., Karimi, H. and Peirovan, H. R.: Spatial prediction of soil
822 erosion susceptibility: an evaluation of the maximum entropy model, *Earth Sci. Inform.*, 11(3), 389–
823 401, doi:10.1007/s12145-018-0338-6, 2018.

824 Raiesi, F.: A minimum data set and soil quality index to quantify the effect of land use conversion on
825 soil quality and degradation in native rangelands of upland arid and semiarid regions, *Ecol. Indic.*,
826 75, 307–320, doi:10.1016/j.ecolind.2016.12.049, 2017.

827 Raiesi, F. and Kabiri, V.: Identification of soil quality indicators for assessing the effect of different
828 tillage practices through a soil quality index in a semi-arid environment, *Ecol. Indic.*, 71, 198–207,
829 doi:10.1016/j.ecolind.2016.06.061, 2016.

830 Rasa, K. and Horn, R.: Structure and hydraulic properties of the boreal clay soil under differently
831 managed buffer zones, *Soil Use Manag.*, 29(3), 410–418, doi:10.1111/sum.12043, 2013.

832 Raty, M., Horn, R., Rasa, K., Yli-Halla, M. and Pietola, L.: Compressive behaviour of the soil in
833 buffer zones under different management practices in Finland, *Agric. Food Sci.*, 19(2), 160–172,
834 2010.

835 Rezapour, S. and Samadi, A.: Assessment of inceptisols soil quality following long-term cropping in
836 a calcareous environment, *Environ. Monit. Assess.*, 184(3), 1311–1323, doi:10.1007/s10661-011-
837 2042-6, 2012.

838 Richter, D. D. B., Bacon, A. R., Megan, L. M., Richardson, C. J., Andrews, S. S., West, L., Wills, S.,
839 Billings, S., Cambardella, C. A., Cavallaro, N., DeMeester, J. E., Franzluebbers, A. J., Grandy, A. S.,
840 Grunwald, S., Gruver, J., Hartshorn, A. S., Janzen, H., Kramer, M. G., Ladha, J. K., Lajtha, K., Liles,
841 G. C., Markewitz, D., Megonigal, P. J., Mermut, A. R., Rasmussen, C., Robinson, D. A., Smith, P.,
842 Stiles, C. A., Tate, R. L., Thompson, A., Tugel, A. J., Es, H. V., Yaalon, D. and Zobeck, T. M.:
843 Human-soil relations are changing rapidly: Proposals from SSSA's cross-divisional soil change
844 working group, *Soil Sci. Soc. Am. J.*, 75(6), 2079–2084, doi:10.2136/sssaj2011.0124, 2011.

845 Richter, D. deB, Bacon, A. R., Brecheisen, Z. and Mobley, M. L.: Soil in the Anthropocene, *IOP*
846 *Conf. Ser. Earth Environ. Sci.*, 25(1), 012010, doi:10.1088/1755-1315/25/1/012010, 2015.

847 Richter, D. deB J.: HUMANITY'S TRANSFORMATION OF EARTH'S SOIL: PEDOLOGY'S NEW
848 FRONTIER, *Soil Sci.*, 172(12), 957, doi:10.1097/ss.0b013e3181586bb7, 2007.

849 Rose, C. W., Williams, J. R., Sander, G. C. and Barry, D. A.: A Mathematical Model of Soil Erosion
850 and Deposition Processes: I. Theory for a Plane Land Element 1, *Soil Sci. Soc. Am. J.*, 47(5), 991–
851 995, doi:10.2136/sssaj1983.03615995004700050030x, 1983.

852 Sandor, J., Burras, C. L. and Thompson, M.: Factors of soil formation: human impacts, in
853 Encyclopedia of Soils in the Environment, edited by D. Hillel, pp. 520–532, Elsevier Ltd. [online]
854 Available from: <https://www.elsevier.com/books/encyclopedia-of-soils-in-the-environment/9780123485304> (Accessed 22 April 2019), 2005.

856 Sandor, J. A. and Homburg, J. A.: Anthropogenic Soil Change in Ancient and Traditional Agricultural
857 Fields in Arid to Semiarid Regions of the Americas, *J. Ethnobiol.*, 37(2), 196–217, doi:10.2993/0278-
858 0771-37.2.196, 2017.

859 Sandor, J. A., Hawley, J. W., Schiowitz, R. H. and Gersper, P. L.: Soil-geomorphic setting and
860 change in prehistoric agricultural terraces in the Mimbres area, New Mexico, in *Geology of the Gila*

861 Wilderness-Silver City area: New Mexico Geological Society Fifty-ninth Annual Field Conference,
862 October 23-25, 2008, pp. 167–176, New Mexico Geological Society, Socorro, N.M., 2008.

863 Sedov, S., Solleiro-Rebolledo, E., Fedick, S. L., Gama-Castro, J., Palacios-Mayorga, S. and Vallejo
864 Gómez, E.: Soil genesis in relation to landscape evolution and ancient sustainable land use in the
865 northeastern Yucatan Peninsula, Mexico, *Atti Della Soc. Toscana Sci. Nat. Mem. Ser. A*, 112, 115–
866 126, 2007.

867 Severiano, E. da C., de Oliveira, G. C., Dias Junior, M. de S., Curi, N., de Pinho Costa, K. A. and
868 Carducci, C. E.: Preconsolidation pressure, soil water retention characteristics, and texture of
869 Latosols in the Brazilian Cerrado, *Soil Res.*, 51(3), 193–202, doi:10.1071/SR12366, 2013.

870 Seybold, C. A., Mausbach, M. J., Karlen, D. L. and Rogers, H. H.: Quantification of soil quality, in
871 *Soil Processes and the Carbon Cycle*, edited by R. Lal, J. M. Kimble, R. F. Follett, and B. A.
872 Stewart, CRC Press, Boca Raton, FL., 1997.

873 Shiri, J., Keshavarzi, A., Kisi, O., Karimi, S. and Iturraran-Viveros, U.: Modeling soil bulk density
874 through a complete data scanning procedure: Heuristic alternatives, *J. Hydrol.*, 549, 592–602,
875 doi:10.1016/j.jhydrol.2017.04.035, 2017.

876 Shpedt, A. A., Trubnikov, Y. N. and Zharinova, N. Y.: Agrogenic degradation of soils in Krasnoyarsk
877 forest-steppe, *Eurasian Soil Sci.*, 50(10), 1209–1216, doi:10.1134/S106422931710012X, 2017.

878 Simonson, R. W.: Outline of a Generalized Theory of Soil Genesis 1, *Soil Sci. Soc. Am. J.*, 23(2),
879 152–156, doi:10.2136/sssaj1959.03615995002300020021x, 1959.

880 Smith, P., Smith, J. U., Powson, D. S., McGill, W. B., Arah, J. R. M., Chertov, O. G., Coleman, K.,
881 Franko, U., Frolking, S., Jenkinson, D. S., Jensen, L. S., Kelly, R. H., Klein-Gunnewiek, H.,
882 Komarov, A. S., Li, C., Molina, J. a. E., Mueller, T., Parton, W. J., Thornley, J. H. M. and Whitmore,
883 A. P.: A comparison of the performance of nine soil organic matter models using datasets from
884 seven long-term experiments, *Geoderma*, 81(1–2), 153–225, doi:10.1016/S0016-7061(97)00087-6,
885 1997.

886 Taalab, K. P., Corstanje, R., Creamer, R. and Whelan, M. J.: Modelling soil bulk density at the
887 landscape scale and its contributions to C stock uncertainty, *Biogeosciences*, 10(7), 4691–4704,
888 doi:10.5194/bg-10-4691-2013, 2013.

889 Tiessen, H., Cuevas, E. and Chacon, P.: The role of soil organic matter in sustaining soil fertility,
890 *Nature*, 371(6500), 783–785, doi:10.1038/371783a0, 1994.

891 Tranter, G., Minasny, B., Mcbratney, A. B., Murphy, B., Mckenzie, N. J., Grundy, M. and Brough, D.:
892 Building and testing conceptual and empirical models for predicting soil bulk density, *Soil Use
893 Manag.*, 23(4), 437–443, doi:10.1111/j.1475-2743.2007.00092.x, 2007.

894 Trost, B., Ellmer, F., Baumecker, M., Meyer-Aurich, A., Prochnow, A. and Drastig, K.: Effects of
895 irrigation and nitrogen fertilizer on yield, carbon inputs from above ground harvest residues and soil
896 organic carbon contents of a sandy soil in Germany, *Soil Use Manag.*, 30(2), 209–218,
897 doi:10.1111/sum.12123, 2014.

898 Tugel, A. J., Herrick, J. E., Brown, J. R., Mausbach, M. J., Puckett, W. and Hipple, K.: Soil Change,
899 Soil Survey, and Natural Resources Decision Making, *Soil Sci. Soc. Am. J.*, 69(3), 738–747,
900 doi:10.2136/sssaj2004.0163, 2005.

901 Velde, B. and Peck, T.: CLAY MINERAL CHANGES IN THE MORROW EXPERIMENTAL PLOTS,
902 UNIVERSITY OF ILLINOIS, *Clays Clay Miner.*, 50(3), 364–370, 2002.

903 Wei, G., Zhou, Z., Guo, Y., Dong, Y., Dang, H., Wang, Y. and Ma, J.: Long-Term Effects of Tillage
904 on Soil Aggregates and the Distribution of Soil Organic Carbon, Total Nitrogen, and Other Nutrients
905 in Aggregates on the Semi-Arid Loess Plateau, China, *Arid Land Res. Manag.*, 28(3), 291–310,
906 doi:10.1080/15324982.2013.845803, 2014.

907 Weiss, H., Courty, M., Wetterstrom, W., Guichard, F., Senior, L., Meadow, R. and Curnow, A.: The
908 Genesis and Collapse of 3rd Millennium North Mesopotamian Civilization, *Science*, 261(5124), 995–
909 1004, doi:10.1126/science.261.5124.995, 1993.

910 WRB: World reference base for soil resources 2014: International soil classification system for
911 naming soils and creating legends for soil maps - Update 2015, Food & Agriculture Org., 2014.

912 Yaalon, D. H. and Yaron, B.: Framework for man-made soil changes - an outline of
913 metapedogenesis, *Soil Sci.*, 102(4), 272, 1966.

914 Zakharov, S. A.: A Course of Soil Science, Gosizdat, Moscow., 1927.

915 Zamanian, K. and Kuzyakov, Y.: Contribution of soil inorganic carbon to atmospheric CO₂: More
916 important than previously thought, *Glob. Change Biol.*, 25(1), E1–E3, doi:10.1111/gcb.14463, 2019.

917 Zhang, Y., Zhao, W. and Fu, L.: Soil macropore characteristics following conversion of native desert
918 soils to irrigated croplands in a desert-oasis ecotone, Northwest China, *Soil Tillage Res.*, 168, 176–
919 186, doi:10.1016/j.still.2017.01.004, 2017.

920

921

Table 1: Processes and mechanisms of soil degradation by agricultural land-use

Degradation directions and consequences	Processes and mechanisms	References
Physical properties		
<u>Structure:</u>		
↓ granular structure	- ↓ SOM content and litter input	(Homburg and Sandor, 2011)
↑ hard clod formation	- aggregate destruction	(Ayoubi et al., 2012;
↑ micro-aggregates and large blocks	- ↓ rhizodeposition & mucilage	Celik, 2005; Khormali et al., 2009)
	- compaction by heavy machinery	
	- plowing at a constant depth	
<u>Density:</u>		
↑ bulk density	- destruction of aggregates	(Carducci et al., 2017;
↑ subsoil compaction	- ↓ SOM content	Holthusen et al., 2018;
↑ formation of massive layers	- ↓ burrowing animals (earthworms, gophers, etc.)	Horn and Fleige, 2009;
	- ↓ root growth and distribution	Severiano et al., 2013)
<u>Porosity:</u>		
↓ total porosity	- ↓ root density	(Celik, 2005; Lipiec et al., 2012)
↓ water holding capacity	- ↓ burrowing animals	(Flynn et al., 2009;
↓ soil aeration	- ↓ large & medium aggregates	Ponge et al., 2013)
↓ soil depth	- ↑ water and wind erosion	(Ayoubi et al., 2012;
	- ↑ tillage erosion	Govers et al., 1994; Lal, 2001)
	- ↑ soil density	
Chemical properties		
↓ SOM content	- ↑ SOM mineralization by increasing aeration	
↓ easily available and low molecular weight organic substances	- removal of plant biomass via harvesting	(Lisetskii et al., 2015; Liu et al., 2009; Sandor and Homburg, 2017)
	- residual burning	
	- destruction of macro-aggregates	
↓ element/nutrient content loss of nutrients narrowing of C:N:P ratio	- removal of plant biomass via harvesting	(Hartemink, 2006; Lisetskii et al., 2015; Sandor and Homburg, 2017)
	- nutrient leaching	
	- SOM mineralization + NP-fertilization	

	- N-fertilization	
<u>Acidification:</u>	<ul style="list-style-type: none"> - cation removal by harvest - ↓ buffering capacity due to cation leaching and decalcification - acidification and H⁺ domination on exchange sites - loss of SOM 	(Homburg and Sandor, 2011; Obour et al., 2017; Zamanian and Kuzyakov, 2019)
↓ pH		
↑ exchangeable aluminum		
↓ CEC		
↑ salts and/or exchangeable Na ⁺	<ul style="list-style-type: none"> - irrigation (with low-quality water or/and groundwater level rise by irrigation) 	(Dehaan and Taylor, 2002; Emdad et al., 2004; Jalali and Ranjbar, 2009; Lal, 2015)
	- weeding	
	- pesticide application	
	- monocultures or narrow crop rotations	
↓ biodiversity	<ul style="list-style-type: none"> - mineral fertilization 	(Lal, 2009; Zhang et al., 2017)
↓ (micro)organism density and abundance	<ul style="list-style-type: none"> - ↓ SOM content and litter input - ↓ root amounts and rhizosphere volume - plowing and grubbing - ↓ total SOM - pesticide application 	(Breland and Eltun, 1999; Fageria, 2012)
	- recalcitrance of remaining SOM	
	- ↓ microbial abundance	
	- ↓ litter & rhizodeposition input	
↓ microbial activities	<ul style="list-style-type: none"> - mineral fertilization - ↓ organism activity, diversity and abundance - shift in microbial community structure - ↓ soil animal abundance and activity 	(Breland and Eltun, 1999) (Bosch-Serra et al., 2014; Diedhiou et al., 2009; Ponge et al., 2013)
- respiration		
- enzyme activities		

Table 2: Soil formation processes under agricultural practices

Additions	Losses	Translocation	Transformation
Irrigation	Mineralization \uparrow - organic matter - plant residues - organic fertilizers - N (to N_2O and N_2) \uparrow	Irrigation - dissolved organic matter \downarrow - soluble salts \uparrow	Fertilization - acceleration of nutrient (C, N, P, etc.) cycles - formation of potassium-rich clay minerals
Fertilization: - mineral - organic (manure, crop residues)	Erosion: - fine earth erosion \uparrow - whole soil material	Evaporation - soluble salt transportation to the topsoil \uparrow	Mineralization \uparrow - humification of organic residues \downarrow - organo-mineral interactions \downarrow
Pest control - pesticides - herbicides	Leaching: - nutrients leaching \uparrow - cations \uparrow - CaCO_3	Plowing/deep plowing - soil horizon mixing - homogenization - bioturbation \downarrow	Heavy machinery - compaction of top- and subsoil - aggregate destruction \uparrow
Amendments - liming - gypsum - sand** - biochar	Harvesting - nutrients - ballast (Si, Al, Na, ...) elements		Pest control - fungal community \downarrow

925 * \uparrow and \downarrow imply the increase or decrease, respectively, in rates of processes that may also occur under natural conditions

926 ** To improve soil texture and permeability

927 **Table 3: Soil properties suggested in the literature and in agropedogenesis theory as being**
 928 **master properties**

Suggested minimum set of master properties	References
Clay content, CEC, bulk density	(Minasny and Hartemink, 2011)
CEC, CaCO_3 content, Exchangeable sodium percentage (ESP), Sodium absorption ratio, pH	(Nabiollahi et al., 2017)
Bulk density, Mg content, Total N, C:N ratio, Aggregate size distribution, Penetration, Microbial respiration	(Askari and Holden, 2015)
Labile phosphorus, Base saturation, Extractable Ca	(Lincoln et al., 2014)
C:N ratio, Labile phosphorus, $\text{C}_{\text{humic}}:\text{C}_{\text{fulvic}}$, Gibbs energy, $\text{SiO}_2:(10\text{R}_2\text{O}_3)$	(Lisetskii et al., 2013)
pH, Sodium absorption ratio, Potentially mineralizable N, Labile phosphorus	(Andrews et al., 2003)
Labile (active) carbon	(Bünemann et al., 2018)
Microbial biomass, Microbial respiration	(Guillaume et al., 2016b)
pH, Arylsuphatase activity	(Raiesi, 2017)
Geometric means of microbial and enzyme activity	(Raiesi and Kabiri, 2016)
Coarse fragments, pH, SOC, total N, ESP, exchangeable cations (Ca, Mg, and K), and available phosphorus	(Rezapour and Samadi, 2012)

Physical:

Bulk density (1.7 g cm^{-3}), Macroaggregates (0%), Soil depth (A+B horizons = 20 cm)

Chemical:

SOM content (50% of natural), C/N (8-10), pH (4 or 10), EC (16 dS m^{-1})*

This study**

Biological:

Microbial biomass C, Basal respiration

929 * CEC has been omitted from chemical master properties because it depends on (i) clay content and clay
 930 mineralogy – whose properties are resistant to agricultural practices, and (ii) SOM, which is considered a
 931 master property.

932 ** The values in brackets are very preliminary attractors of each property by anthropogenic soil degradation.
 933 The two pH attractors are presented for acidic (humid climate) and alkaline (semiarid climate) soils. Note that
 934 not all attractors can be suggested in this study. The criteria for selecting master soil properties are described in
 935 the text.

936

937 Fig. 1: Conceptual scheme of soil development, i.e. pedogenesis, under natural conditions (green
 938 lines) and agropedogenesis due to long-term agricultural practices (red lines). Green area: the
 939 increasing variability of natural soils during pedogenesis. Yellow area: decrease in the variability of
 940 soil properties by agricultural use. Double vertical arrow: the start of cultivation. X axis: time for
 941 natural soil development, and duration and intensity of cultivation under agricultural use.

942 Natural pedogenesis leads from the initial parent material to a wide range of steady state values
 943 (green dashed arrow) for a given soil property over hundreds or thousands of years due to various
 944 combinations of the five soil-forming factors. Natural pedogenesis leads to *divergence* of soil
 945 properties. In contrast, agricultural practices and the dominance of humans as the main soil-forming
 946 factor cause each property to tend toward a very narrow field of values, i.e. attractors of that property
 947 defined by human actions, namely land management to optimize the production of few crops.
 948 Therefore, agropedogenesis leads to *convergence* of soil properties.

949
950

951 Fig. 2: Soil genesis based under the five natural factors of soils formation and under the 6th factor:
 952 Humans. Natural processes are presented in green, human processes in red.
 953 The concept 'Factors → Properties' was suggested by Dokuchaev (1883) and Zakharov (1927, see
 954 Supplementary Materials); and later by Jenny (1941) Our introduced theory 'Factors → Processes →
 955 Properties → Functions' considers not only the functions of natural soils, but especially human
 956 modification of soils toward only one function of interest (here, Crop growth). Anthropogenic
 957 optimization of only one function involves strongly modifying processes and factors, leading to
 958 formation of a new process group: Anthropopedogenesis. The bottom reverse arrows reflect the main
 959 specifics of Anthropogenesis: One of the functions becomes a factor of pedogenesis and modifies the
 960 processes.

961

962
963 Fig. 3: Examples for attractors of soil properties by anthropogenic degradation: (a) Soil organic
964 carbon content, (b) Total nitrogen content, (c) Infiltration rates, (d) Exchangeable Ca^{2+} and Mg^{2+}
965 contents, (e) C to N ratio, and (f) overall decrease in soil quality, i.e. degradation over the cultivation
966 period. Yellow shading: area covered by all experimental points, showing a decrease of the area with
967 cultivation duration. Blue double arrows: range of data points in natural soils (left of each Subfigure)
968 and strong decrease of data range due to cultivation.

969 (a) Narrowing range (blue arrows) of soil organic C over cultivation periods in southern Queensland,
970 Australia (6 sites) (Dalal and Mayer, 1986a) and savanna soils in South Africa (3 sites) (Lobe et al.,
971 2001). The natural soils in different climatic regions have various ranges of properties, e.g. organic C
972 from 0.8-2.3%. During cultivation however, the organic C content strongly narrows to between 0.3-
973 1.0%.

974 (b) Narrowing range (blue arrows) of total soil N over cultivation periods. Sampling sites similar to
975 (a) plus 5 sites (hexagon symbols) from Great Plains, USA (Haas et al., 1957). Before agriculture
976 start, the Great Plains soils had a wide range of texture classes (silt loam, loam, clay loam, and very
977 fine sandy loam), an initial organic C content of 1.13-2.47%, and a total N content of 0.05-0.22%.
978 Nonetheless, the total N range narrowed to 0.03-0.07% over 45 years of intensive agriculture. As
979 (Haas et al., 1957) anticipated, all soils may finally reach a similar value for total N (i.e. the attractor
980 for N) by continuing the ongoing management (in line with Australian and South African soils).

981 (c) Infiltration rates as a function of years since land-use change from forest to agriculture (Nyberg et
982 al., 2012). Note the narrowing trend (blue arrows) from forest ($t = 0$) toward long-term cultivations (t
983 = 39, 57, 69 and 119 years since conversion). The value at ca. 120 years is defined as the attractor of
984 the infiltration rate, and 120 years is the time needed to reach that attractor.

985 (d) Narrowing content (blue arrows) of exchangeable Ca^{2+} and Mg^{2+} in the first 15 cm of Oxisols
986 during 31 years (1978-2009) of sugar cane cultivation (Morrison and Gawander, 2016). The three
987 soils developed under various natural vegetation prior to cultivation and received different
988 managements thereafter.

989 (e) Narrow ranges of C:N ratios in all texture classes (sand, silt, clay) over 85 years of cultivation
990 (Eleftheriadis et al., 2018). Note the different rates of C:N decrease in the three fractions. That ratio
991 in the sand fraction is more susceptible to cultivation duration but is rather resistant in the clay
992 fraction.

993 (f) Dependence of the soil quality index on duration and intensity of soil cultivation (on the x-axis: 1-
994 Virgin land, 2- Idle land in the modern era, 3- Modern-day plowed land, 4- Post-antique idle land, 5-
995 Continually plowed land) over 220 to 800 years cultivation (Lisetskii et al., 2015). Note that soil
996 quality became similar (blue arrows) with increasing cultivation duration and/or cultivation intensity
997 (from 1 to 5) (Value in red circle is an outlier).

998
999
1000 Fig. 4: Example of the divergence of soil properties of abandoned agriculturally used Chernozem
1001 (under steppe) and Phaeozem (under forest) after termination of cultivation (Ovsepyan et al., 2019,
1002 modified). The soil properties were analyzed by principal component analysis (PCA). The soils had
1003 very similar properties due to long-term (> 100 years) cropping (time point “0”). After abandonment,
1004 they started to develop to their natural analogues (Ref.: natural reference soils), leading to strong
1005 divergences of their properties. This figure reflects the divergence by natural pedogenesis, i.e. the
1006 opposite situation to agropedogenesis. Numbers close to points: duration of abandonment, 0 is
1007 agricultural soil and Ref. is natural analogues (never cultivated under natural vegetation). The soil
1008 parameters primarily driving the divergence are on the x axis: microbial biomass C (C_{mic}), soil
1009 organic C (C_{org}), total N (TN), free particulate organic matter (fPOM) and occluded organic matter
1010 (oPOM); and on the y axis: basal respiration (BR). (for details see Ovsepyan et al., 2019).
1011
1012

1013
1014 Fig. 5: Overview on rates of key processes of agropedogenesis and their trajectory in reaching their
1015 attractors. Curves start from 0 or 1 (relative values) at the onset of cultivation and go to 1 or 0 to the
1016 specific attractors. Each curve is labeled with the specific property. Small arrows after each
1017 parameter title show the estimated level of attractor in absolute values. After approach to its attractor,
1018 each process slow down and finally stop. The time scale is logarithmic. Curve shape, time to reach
1019 attractor, and attractor levels are only estimates and require future adjustment based on experimental
1020 data. pH₁ is for alkaline, pH₂ for acidic soils. Note that not all attractors are defined yet. Properties in
1021 bold: master soil properties for agropedogenesis (see Table 3). MBC: microbial biomass carbon,
1022 SOM: soil organic matter, CEC: cation exchange capacity. Continuous lines present physical
1023 properties or processes, dot-dashed lines correspond to chemical, dotted lines to biological properties.

1024
1025 Fig. 6: Effects of duration of forest conversion to cropland on decreasing soil organic carbon (SOC)
1026 (a) and increasing bulk density (b) during 53 years (Southern Highlands of Ethiopia, (Lemenih et al.,

1027 2005). (c) Phase diagram: relation between SOC and bulk density at corresponding time. Note the
1028 stepwise changes in bulk density following decreasing SOC content below the thresholds of 7.8, 6.5
1029 and 4.2%. Numbers beside symbols refer to years after conversion.

1032 Fig. 7: Phase diagrams of various properties of agricultural soils. Small arrows at the start or end of
 1033 the axes show the increase of the corresponding soil property.

1034 (a) Narrow range (yellow-shaded area) of organic carbon and bulk density in ancient agricultural
 1035 soils cultivated for 1500 y at Mimbres (New Mexico, USA), compared to uncultivated soils and
 1036 runoff sediments (Sandor et al., 2008). Note that the decreasing trend of bulk density with increasing
 1037 soil organic carbon content (green line with regression equation for uncultivated soils) is absent in
 1038 cultivated soils (Sandor et al., 2008).

1039 (b) Changes in exchangeable base cations depending on soil pH in Cambisols and Ferralsols in
 1040 coastal plains of Tanzania (Hartemink and Bridges, 1995). Ferralsols clearly decline in exchangeable
 1041 cations (i.e. two separated groups in phase II and III) with decreasing pH over ca. 24 years of
 1042 cultivation. The exchangeable cations in Cambisols remain in stage I. Double lines: stages of
 1043 exchangeable cation decrease with decreasing soil pH. Content of exchangeable cations levels off at

1044 ~ 25 mmol+ kg⁻¹ (stage III). This value – which corresponds to the amount of exchangeable Ca²⁺ and
1045 Mg²⁺ shown on Fig. 3d (31 years of sugar cane cultivation on Fijian Ferralsols) – is an attractor.
1046 (c) The content of free iron oxides, clay content and hard isothermal remnant magnetization (IRMh)
1047 as a function of CaCO₃ content in soil (adopted from Chen et al., 2011).
1048 (d) The relation between IRMh and free iron oxides vs. clay content.
1049

1050
1051
1052
1053
1054
1055
1056
1057

Fig. 8: Examples of conceptual 2D and 3D phase diagrams linking soil erosion intensity with (top) bulk density and macroaggregates content, (middle) SOM and CaCO₃ contents during agropedogenesis. The original curves were taken from Fig. 6. Small red arrows on curved lines show the direction of soil degradation and corresponds to the increasing duration or intensity of agricultural use. Vertical blue double lines show the arbitrary thresholds of soil degradation, horizontal blue dashed arrows the degradation stages. The stages are time laps to reach a threshold for a given soil property. After a threshold the trend may slow down or reverse. Projections of 3D lines (light blue)

1058 on last Subfigures (bottom) correspond to the individual lines on the 2D phase diagrams in top and
1059 middle. Similar phase diagrams can be built in multi-dimensional space corresponding to the number
1060 of master soil properties (Table 3).

1061

1062

1063 Fig. 9: Conceptual schema of convergence of soil properties by agropedogenesis. The very broad
 1064 range of natural soils and their properties will be tailored for crop production by agricultural use,
 1065 resulting in Anthrosols with a very narrow range of properties. Note that the soils within the funnel
 1066 are mentioned exemplarily and not all WRB soil groups are presented. The sequence of soils within
 1067 the funnel does not reflect their transformations during agropedogenesis to Anthrosols. (The extended
 1068 version of this Figure, reflecting multiple pathways to Anthrosols, e.g. formed and used under
 1069 completely different climate and management conditions is presented in Supplementary Materials,
 1070 Supplementary Fig. 3).

1073 Fig. 10: Nine years of continuous cropping and conventional tillage (left) led to similar soil organic
 1074 carbon (SOC) contents, in contrast to no-till soils (right) (Francis and Knight, 1993). The Lismore
 1075 no-till soil either needs longer cultivation duration to reach the C content characterizing soils under
 1076 conventional tillage or the attractor of SOC has already been reached, i.e. local minima for this soil.
 1077 Note that the Wakanui no-till soil was cultivated for 10 years before beginning the trial and thus
 1078 shows similar values, i.e. similar attractor for SOC as under conventional tillage. Hence, changing the
 1079 conventional tillage to no-till had no effect on SOC content. Lismore soil: Umbric Dystochrept, 5%
 1080 stones, rapid draining, 5 y mixed rye grass/white clover pasture. Wakanui soil: Udic Ustochrept, slow
 1081 draining, 10 y rotation of wheat, barley, peas.