Dear Phillip,

With the help from one of the native-English-speaker co-authors, the manuscript is now language-edited again thoroughly, including all the minor grammatical issues you've mentioned in a previous round.

About the figures-appeared-twice problem, I checked the uploaded file. The figures now appear only once. I have no idea why previously we encountered an appearing twice problem. In this version, if you still find such a problem in the uploaded file, or there is anything I should do, please let me know.

Thank you for your suggestion and help.

Zhuoyi

1 The non-conservative distribution pattern of organic matter in the

2

Rajang, a tropical river with peatland in its estuary

Zhuo-Yi Zhu¹*, Joanne Oakes², Bradley Eyre², You-You Hao¹, Edwin Sien Aun Sia³, Shan
 Jiang¹, Moritz Müller³, Jing Zhang¹

5 1. State Key Laboratory of Estuarine and Coastal Research, East China Normal University,6 Shanghai, 200241, China

7 2. Centre for Coastal Biogeochemistry, School of Environment, Science and Engineering, Southern

8 Cross University, Lismore NSW, 2480, Australia

9 3. Swinburne University of Technology, Faculty of Engineering, Computing and Science, Jalan

10 Simpang Tiga, Kuching, 93350, Sarawak, Malaysia

11 *Corresponding author: Z.Y. Zhu, zyzhu@sklec.ecnu.edu.cn; zhu.zhuoyi@163.com

13 Abstract

12

South-east Asian peatland-draining rivers have attracted much attention due to their high 14 15 dissolved organic carbon (DOC) yield and high CO2 emissions under anthropogenic activities. In 16 August 2016, we carried out a field investigation of the Rajang river and estuary, a tropical system 17 located in Sarawak, Malaysia. The Rajang has peatland in its estuary, while the river basin is covered 18 by tropical rainforest. DOC δ^{13} C in the Rajang ranged from -28.7% to -20.1% and with a U-shaped 19 trend from river to estuary was identified. For particulate organic carbon (POC), the δ^{13} C ranged between -29.4‰ toand -31.1‰ in the river and there was a clear increasing trend towards more 20 21 δ^{13} C –enriched δ^{13} C values with higher salinity existed in the estuary. In the estuary, there was a linear conservative dilution pattern for dissolved organic matter composition (as quantified by D/L 22 23 amino acidsacid enantiomers) plotted against DOC δ^{13} C, whereas when plotted against salinity 24 dissolved D/L amino acidsacid enantiomers values were higher than the theoretical dilution value. 25 Together, these data indicate that the addition of DOC into the estuary (by peatland) not only 26 increased the DOC concentration, but also altered its composition, by adding more bio-degraded, ¹³C-depleted organic matter into the bulk dissolved organic matter. Alteration of organic matter 27 28 composition (addingaddition of a more degraded subpart) was also apparent for the particulate phase, 29 but patterns were less clear. The Rajang was characterized by DOC/DON to DON (dissolved 30 organic nitrogen) ratios of 50 in the river section, with loss of DON in the estuary 31 increasedincreasing the ratio to 140, suggesting the unbalanced export pattern forof organic carbon 32 and nitrogen, respectively. Under anthropogenic activities, further assessment of organic carbon to

33 nitrogen ratioratios is needed.

35 Keyword

36 Amino acidsacid enantiomers, DOC, POC, stable carbon isotope, Rajang, peatland

1

37

38 1. Introduction

Fluxes and cycling of organic matter (OM) in rivers and estuaries are important influences on 39 global biogeochemical cycles and climate change. In river basins, vascular plants are the ultimate 40 41 sources of organic matter (Hedges and Man, 1979), but algae, moss, and bacteria are also important 42 (Hernes et al., 2007). As well as providing a source of OM, bacteria may also strongly modify the 43 composition of organic matter within a river and its resistance to degradation. The lability of organic 44 matter determines how rapidly organic carbon will be transformed into inorganic carbon (CO2), which can vary from hours to millions of years. The lability of organic matter therefore plays a role 45 in determining whether organic matter is either a source or a sink of carbon in the atmosphere (Zhang 46 47 et al., 2018). Based on ¹⁴C ofin organic carbon, Mayorga et al. (2005) determined that the 48 degradation of recently synthesized organic matter in the river basin was the main reason Amazonian 49 river waters were supersaturated in CO2, and hence the a source of atmospheric CO2. This highlights the potential importance of organic matter stability for carbon cycling within river systems. Nitrogen 50 51 is another important element in organic matter, which is not independent from of carbon, but instead 52 is closely combined with carbon in various chemical compounds (like amino acids). Due to the 53 nature of these specific compounds, the behavior of bulk carbon and nitrogen can differ substantially. In basins with peatland, the leaching of DOC is related to the status of peatland (disturbed vs 54 55 undisturbed), whereas the leaching of dissolved organic nitrogen (DON) is controlled by the soil 56 inorganic nitrogen content (Kalbitz and Geyer, 2002). The different leaching mechanisms of organic 57 carbon and nitrogen indicates that the comparison of these two elements would deepen our 58 understanding of organic matter cycles.

59

Tropical south-east Asian rivers play an important role in both dissolved and particulate organic

60	matter export (Baum et al., 2007; Huang et al., 2017; Müller et al., 2016). Located in Sarawak,
61	Malaysia (Fig. 1a), the turbid Rajang river (hereafter refer to as the Rajang) is the longest river in
62	Malaysia. The Rajang flows through tropical rainforest, and peatland and mangroves are distributed
63	in the estuary. A dam was constructed in the upper reaches of the Rajang in 2015, but the total
64	suspended matter (TSM) in the river remains at 100 - 200 mg/Lin recent years (Müller-Dum et al.,
65	2019). Dilution of This terrestrial organic matter incan be expected to be diluted at the adjacent coast
66	is expected, while turbid, given that the turbidity of the river water strongly limits apparent organic
67	matter photo-degradation within the river and estuary, leaving the stage of fluvial. Fluvial organic
68	matter alteration to bacteriais therefore dominated by bacterial utilization and abiotic process
69	likeprocesses such as desorption/adsorption between particulate and dissolved phasephases (Martin
70	et al., 2018). Further, dissolved oxygen is negatively related to pCO ₂ , likely due to in-stream
71	heterotrophic respiration (Müller-Dum et al., 2019). In the Rajang brackish estuary, where peatland
72	is located, addition of peatland DOC into river water is suggested by the non-conservative mixing
73	pattern of DOC with increasing salinity (Martin et al., 2018), whereas removal of DON in the Rajang
74	estuary is suggested by nitrogen stable isotopes (Jiang et al., 2019).
75	While stable isotopes of carbon and nitrogen are useful tools for tracing organic matter, amino
76	acids (AAs) are the most important organic carbon and nitrogen carriers that have been chemically
77	identified, accounting for up to ~100% of the particulate nitrogen in aquatic environments, and up
78	to nearly half of the particulate organic carbon pool (Jennerjahn et al., 2004). Due to the selective
79	removal and accumulation of certain amino acids, amino acids are important biomarkers in early

81 1998; Kaiser and Benner, 2009). With the exception of glycine, amino acids are chiral. L forms of

80

diagenesis, allowing quantification of organic matter lability/resistance (Dauwe and Middelburg,

	82	amino acids are from animals, plants and plankton, whereas D forms mainly come from bacteria,
	83	and are key chemical compounds in peptidoglycan, which forms the basic structure of bacterial cell
	84	membranes (Vollmer et al., 2008). Due to the key role of bacteria in OM alteration and early
	85	diagenesis, D-AAs (D forms of AAs) tend to accumulate during OM degradation. A higher ratio of
	86	D- to L-AAs (D/L ratio) therefore indicates-more that OM is more refractory (Davis et al., 2009).
·	87	As a non-protein amino acid, accumulation of GABA (γ -aminobutyric acid) is also highly related
	88	to OM degradation (Davis et al., 2009). Conversely, a lower D/L ratio and GABA% indicates that
	89	OM is relatively less degraded, and hence more labile. In river waters, elevated D-AAs also
	90	indicates indicate the presence of soil humic substances, which is are a product of bacteria and their
•	91	detritus (Kimber et al., 1990).
	92	Tropical rivers are dominated by refractory (or bio-degraded) organic matter, yet labile OM is

93 also known to play a role in river carbon cycles (Mayorga et al., 2005). It is hence expected that the 94 fluvial organic matter in the within a river would be a mixture of labile organic matter (that which 95 can be respired to support pCO₂) and refractory terrestrial organic matter (that which will be 96 diluted/degraded after entering the sea (Martin et al., 2018), while in the estuary there would be 97 addition of dissolved OM from peatland/mangrove (Dittmar et al., 2001b; Müller et al., 2016). Previous studies of OM in south-east Asian rivers mainly focused on its bulk concentrations, ages, 98 99 or optical properties (Martin et al., 2018 and ref. therein). The use of biomarker approaches has been very limited (Baum et al., 2007; Gandois et al., 2014). Given the processes described above and 100 101 their potential contribution to the carbon (Müller-Dum et al., 2019) and nitrogen cycles (Jiang et al., 102 2019), it is somewhat surprising that there has been limited application of amino acid approaches, 103 including D-AAs, to investigate organic matter composition and the role of estuarine

104	peatland/mangrove in OM regulation (Jennerjahn et al., 2004). South-east Asian rivers are subject
105	to multiple stressors due to increasing anthropogenic activities in both their riverine (e.g., damming,
106	logging/secondary plantation) and estuarine sections (e.g., drainage, and oil palm plantations)
107	(Hooijer et al., 2015). AAsAmino acid enantiomers and carbon/nitrogen isotopes have the ability to
108	provide molecular level evidence for the impact of these stressors on carbon and nitrogen cycling
109	and bulk biogeochemistry, as well as insight into the mechanisms underlying such changes.
110	In this study, we carried out a field investigation in the Rajang in August 2016, from stations
111	S10 to S1-station, located on the coast of the South China Sea adjacent to the Rajang (Fig. 1b).
112	AAsAA enantiomers and $\delta^{13}C$ values of DOC were used to elucidate the succession of organic
113	matter sources/composition from the fresh water to the estuarine sections of the Rajang. Our aim
114	was to address the following questions: 1) Given that peatland contributes additional DOC to fluvial
115	DOC (Müller et al., 2016), does the composition of dissolved OM change from river to estuary? 2)
116	Do changes in organic nitrogen mirror changes in organic carbon? 3) And henceHence, what is the
117	role of peatland/mangroves on OM composition and lability in the Rajang? Globally, rivers inat low
118	latitudes receive much less attention relative to temperate and polar rivers (36 vs. 958 studies))
119	(Cloern et al., 2014), while they could <u>be</u> equally important infor global carbon eyelecycles (Cloern
120	et al., 2014). Our work, together with other tropical studies, would enrich the understandings for This
121	study ultimately aims to enrich our understanding of organic carbon and nitrogen cycles in tropical
122	rivers/estuaries.
123	

124 2. Materials and methods

125 All abbreviations, together with the amino acids measured in this study, are listed in table 1.

126 2.1 Brief background

127	The Rajang river and estuary is located in Sarawak, Malaysia. The climate is wet year-round,
128	but the main precipitation typically occurs in winter (November to February). Climate is influenced
129	by the El Niño-Southern Oscillation (ENSO) and Madden-Julian Oscillation. In August 2016, the
130	discharge was estimated as 2440 m ³ /s, in comparison with an annual mean discharge of 4000 m ³ /s
131	for 2016 and 2017 (Müller-Dum et al., 2019).

132 Based on salinity, station S5 is regarded as the boundary of the fresh and estuarine water of the Rajang (Fig. 1b). In this work all samples with a salinity of 0 were regarded as fresh water, while 133 134 samples with salinity >0 were regarded as estuarine. In the estuary, there are several branches, 135 namely Igan, Lassa, Paloh, and Rajang itself (Fig. 1b). Since water in all these branches areis derived 136 from the Rajang river (i.e., upstream of S5), in this workstudy all these branches are regarded as the 137 Rajang estuary. Peatland and mangroves are commonly distributed common in the estuary (shown 138 in Fig. 1b) while tropical rainforest is widely distributed upstream of S5 (not shown in Fig. 1b). The 139 peatland is under strong pressure of draining and change of use for oil palm_plantations, while in 140 the basin logging and secondary growth is very common in the river basin (Hooijer et al., 2015). 141 Compared with other peatland-draining tropical blackwater rivers, the Rajang is more like a turbid tropical rainforest river (Müller-Dum et al., 2019), but with notable peatland/mangrove in its estuary 142 143 (Fig. 1b).

144 2.2 Field sampling

145 The field work was carried out in August 2016. The sampling stations covered from S10 (the 146 upper most station in this study) to S1 on the coast. At each station, a pre-cleaned and sample-rinsed 147 bucket was used to collect surface water from the center of the channel in a boat. After sample

148	collection, pretreatment was done immediately on board in the boat. For DOC and its stable carbon
149	isotope ratios (δ^{13} C), water samples were collected by syringe filtering (pre-combusted Whatman
150	GF/F; 0.7 $\mu m)$ approximately 30 ml of sample water into a pre-combusted 40 ml borosilicate vial.
151	Samples were preserved with five drops of concentrated phosphoric acid and sealed with a lid
152	containing a Teflon-coated septa. For total dissolved amino acids (TDAA), water samples were
153	filtered through a 0.4 μm nylon filter. For particulate OM samples (TSM, POC, POC- $\delta^{13}C,$ PN and
154	$PN-\delta^{15}N$, and total particulate amino acids (TPAA)), suspended particles were concentrated onto
155	glass fiber membrane <u>filters</u> (pre-combusted Whatman GF/F; 0.7 μ m). The GF/F filters were folded
156	and packed in pre-combusted aluminum. All samples were immediately stored frozen (-20°C) until
157	analysis. At every station both particulate and dissolved samples were collected, but a few samples
158	were lost (broken/missing) during transportation back to Shanghai. This includes The lost samples
159	were the particulate <u>samples (POC</u> and TSM) samples at station from stations S16 (conductivity =
160	64 μ S/cm), station-S4 (salinity = 4.8), station-S25 (salinity = 11.7) and at station-S29 (salinity =
161	4.3 <u>)</u> , and a <u>total</u> dissolved <u>AA sample (TDAA) sample atfrom</u> station S24 (salinity = 19.1). A
162	portable meter (Aquaread, AP-2000) was used to obtain conductivity/salinity, temperature,
163	dissolved oxygen and pH.
164	2.3 Laboratory analyses
165	Concentrations and $\delta^{13}C$ of DOC were measured <u>at the Centre for Coastal Biogeochemistry at</u>
166	Southern Cross University (Lismore, Australia) via continuous-flow wet oxidation isotope-ratio
167	mass spectrometry using an Aurora 1030W total organic carbon analyzer coupled to a Thermo Delta
168	V <u>Plus</u> IRMS (Oakes et al. 2010). Glucose of known isotopic composition dissolved in He-purged
169	Milli-Q was used as a standard to correct for drift and to verify sample concentrations and $\delta^{13}C$

170	values. Reproducibility for concentrations and $\delta^{13}C$ was \pm 0.2 mg l^-1 and \pm 0.4 ‰. DOC
171	concentrations and δ^{13} C were measured at the Centre for Coastal Biogeochemistry at Southern Cross
172	University (Lismore, Australia). For the determination of POC, samples (GF/F glass fiber
173	filterfilters) were freeze-dried and analyzed with a CHNOS analyzer (Model: Vario EL III) after
174	removing the inorganic carbon by reaction with HCl vapor. For PN, a similar procedure like that of
175	POC-was used, but <u>followed, with</u> no acid was used in pre-treatment. The detection limit for POC
176	was 7.5×10^{-6} g, with precision better than 6%, based on repeated determinations (Zhu et al., 2006).
177	The POC- δ^{13} C and PN- δ^{15} N <u>values</u> were determined using a DELTA ^{plus} /XL isotopic ratio mass
178	spectrometer (Finnigan MAT Com. USA) interfaced with a Carlo Erba 2500 elemental analyzer.
179	The standard for $\delta^{13}C$ was PDB and the precision of the analysis was \pm 0.2‰. For $\delta^{15}N,$ the standard
180	was air and precision was $\pm 0.3\%$.

Total hydrolyzable AAs were extracted and analyzed following the method of Fitznar et al., (1999) 181 182 with slight modifications (Zhu et al., 2014). Briefly, samples were first hydrolyzed with HCl at 110°C. After pre-column derivatization with o-Phthaldialdehyde (OPA) and N-Isobutyryl-L/D-183 184 cysteine (IBLC/IBDC), AAs and their enantiomers were analyzed using an HPLC (Agilent 1200) 185 comprising of an online vacuum degasser, a quaternary pump, an auto-sampler, a thermostatted 186 column and a fluorescence detector (excitation 330 nm, emission 445 nm). The analytical column 187 was a Phenomenex Hyperclone column (BDS C18, 250×4mm, 5µm) with a corresponding precolumn. To eliminate the influence of racemization of L-type AAs in the hydrolysis process, the 188 189 concentration of D/L-AAs measured in actual samples was corrected according to the formula 190 obtained by Kaiser and Benner (2005). The detection limitlimits for glycine (Gly) and individual 191 AAs enantiomers were in the lower picomolar level. Asx and Glx were used for aspartic acid +

192	asparagine and glutamic acid + glutamine, respectively (Table 1), as the corresponding acids are
193	formed via deamination during hydrolysis.
194	A few samples (e.g., TDAA in S1 station) were not measured due to instrument hardware problem.
195	And hence the measured problems. Therefore, there is not always corresponding particulate and
196	dissolved sampledata for some stations-did not exactly match
197	
198	3. Results
199	In August 2016, the TSM concentration in the Rajang ranged from 22 mg/L (mean forto 161
200	mg/L. Mean TSM concentrations in the fresh water section: 61 mg/L) to 161 mg/L (mean for the and
201	estuarine section: 73 sections were 61 mg/L and 161 mg/L), respectively (Table 2). Throughout the
202	system DOC concentrations exceeded POC concentrations. DOC and POC in the fresh water section
203	averaged 337 μM and 86 $\mu M,$ and in the estuarine section 345 μM and 64 $\mu M,$ respectively (Table
204	2). While-DOC concentration wasconcentrations were slightly higher in the estuary than in the fresh
205	water section (Table 2), and maximum of concentrations for both DOC and POC can be were found
206	at around salinity 15 to 20 in the estuary (Fig. 2).
207	DOC δ^{13} C ranged from -28.7‰ to -20.1‰ (Table 2). <u>There was A</u> U-shaped trend in DOC
208	$\frac{\delta^{13}C}{\delta^{13}C}$ from the fresh water section to the estuary section can be identified for $\frac{DOC}{\delta^{13}C}$, with one
209	outlier from the Rajang main stream at a salinity of 5 (S2 station; Fig. 3a). The minimum-value of
210	DOC $\delta^{13}C$ (bottom of the U) was detected at a salinity of ~10 (Fig. 3a). For particulate OM, $\delta^{13}C$
211	ranged between -29.4% to -31.1% in the fresh water section. In the estuary section, there was a
212	clear increasing trend with increasing salinity, from -30% (S=1.1) to values close to -24% (S>30)
213	(Fig. 3b).

214	In the fresh water section, the mean TDAA and TPAA concentrations were 0.3 μM and 2.5
215	μ M, respectively (Table 3). For TDAA, the AA carbon yield (the carbon from AA divided by bulk
216	DOC or POC, in %) was similar in both fresh water and estuary sections-were very similar, namely
217	0.40% and 0.38% (mean), respectively (Table 3), whereas). In contrast, AA nitrogen yield was
218	higher in the estuary (11%) than in the fresh water section (4.8%) (Table 3). For TPAA, there was
219	little difference between the fresh water and estuary sections in AA carbon yield (13.5% and 16.8%,
220	respectively) and nitrogen yield (66% and 62%, respectively) (Table 3).
221	With respect to individual AA compounds, in In the both dissolved and particulate phase, Gly,
222	Glx, Ala and Asx were the most abundant AAsAA compounds. These four AAs together accounted
223	for 66% of TDAA and 47% of TPAA in the fresh water section, and 59% of TDAA and 48% of
224	TPAA in the estuary. The non-protein AA GABA was detected in trace amounts, but was
225	accumulated <u>more abundant</u> in the dissolved phase relative tothan in the particulate phase, as
226	indicated by the higher GABA% in the dissolved phase (Table 3). GABA% decreased from 2%
227	(fresh water section mean) to 1.3% (estuarine section mean) in the dissolved phase, and decreased
228	from 0.7% (fresh water section mean) to 0.4% (estuarine section mean) in the particulate phase
229	(Table 3). In the estuary, GABA% in the dissolved phase remained stable (~1.5%) in brackish water
230	(salinity 5 to 20) and quickly dropped to <1% where salinity was over 30 (Fig. 4a). Most of the
231	GABA% data dots werevalues lay above the theoretical mixing line (Fig. 4a). In the particulate
232	phase, there was an overall decrease in GABA% with increasing salinity within the estuary (Fig.
233	4b).
234	As for the AA enantiomers, the The percentage of D- form AA enantiomers of AAs in TDAA
225	120% for both first material activity matter The sections with Classed Acar being the

averaged 12% for both fresh water and estuarine section. The sections, with Glx and Asx being the

236	most abundant Dform AAs-in the dissolved phase were Glx and Asx. For the particulate phase,
237	The percentage of D- form AA in TPAAAAs was much lower relative to that in dissolved formin
238	TPAA, decreasing from a mean of 4.4% in the fresh water section to a mean of 3.3% in the estuary
239	(Table 3). And patternsPatterns in the variation of D/L Glx (Fig. 5) along withthe
240	conductivity/salinity gradient in the Rajang were similar to those for GABA% (Fig. 4) for both
241	dissolved and particulate phase. For example, for dissolved phase, the pattern of decreasing D/L
242	ratio along with increasing salinity was nearly absent (Fig. 5a), whereas for particulate phase such
243	decreasing pattern was much clearer in the estuary (Fig. 5b).phases. Similar to GABA%, all the
244	dissolved samples showedin the estuary had elevated values for D/L Glx (i.e., dotsvalues above the
245	theoretical dilution line) for D/L Glx in the estuary (Figs. 4a and 5a).
246	
2.0	
247	4. Discussion
	4. Discussion 4.1 Distribution patterns of OM composition
247	
247 248	4.1 Distribution patterns of OM composition
247 248 249	4.1 Distribution patterns of OM composition <i>Dissolved OM</i>
247 248 249 250	4.1 Distribution patterns of OM composition Dissolved OM Terrestrial OM usually has a more negative δ^{13} C value (-32‰ to -26‰ for C3 plants), whereas
247 248 249 250 251	4.1 Distribution patterns of OM composition Dissolved OM Terrestrial OM usually has a more negative δ^{13} C value (-32‰ to -26‰ for C3 plants), whereas marine OM has more positive value-values (δ^{13} C, ~ -20‰) (Lamb et al., 2006; Mayorga et al.,
247 248 249 250 251 252	4.1 Distribution patterns of OM composition Dissolved OM Terrestrial OM usually has a more negative δ^{13} C value (-32‰ to -26‰ for C3 plants), whereas marine OM has more positive value-values (δ^{13} C, ~ -20‰) (Lamb et al., 2006; Mayorga et al., 2005). Overall, the very negative δ^{13} C values for DOC (<-26‰) in the river partriverine section of
247 248 249 250 251 252 253	 4.1 Distribution patterns of OM composition Dissolved OM Terrestrial OM usually has a more negative δ¹³C value (-32‰ to -26‰ for C3 plants), whereas marine OM has more positive value-values (δ¹³C, ~ -20‰) (Lamb et al., 2006; Mayorga et al., 2005). Overall, the very negative δ¹³C values for DOC (<-26‰) in the river partriverine section of the Rajang indicatesclearly indicate that the OM had a-very clear C3 plant source (e.g., mangroves
247 248 249 250 251 252 253 254	 4.1 Distribution patterns of OM composition Dissolved OM Terrestrial OM usually has a more negative δ¹³C value (-32‰ to -26‰ for C3 plants), whereas marine OM has more positive value-values (δ¹³C, ~ -20‰) (Lamb et al., 2006; Mayorga et al., 2005). Overall, the very negative δ¹³C values for DOC (<-26‰) in the river partriverine section of the Rajang indicatesclearly indicate that the OM had a very clear C3 plant source (e.g., mangroves and oil palms (Jennerjahn et al., 2004; Lamade et al., 2009; Wu et al., 2019)), whereas DOC δ¹³C

258 δ^{13} C signal was more enriched (Fig. 3a).

259 Among samples in the fresh water section, the sample of most enriched DOC- δ^{13} C value values 260 (S10 and S15; DOC- δ^{13} C: -25%; Fig. 3a), although initially appearing to be outliers, were 261 characterized by very elevated D/L amino acids ratios (Fig. 6a). This was particularly the case for 262 the sample from S10 (the upper most station in this study; Fig. 1b), which showed a maximum D/L Glx ratio of 0.57 (Fig. 6a). In addition, these samples from S10 and S15 also showed a higher D/L 263 264 ratio for Asp (S10: 0.49, S15: 0.38; figure not shown) when compared to all fresh water or estuary 265 samples (mean: 0.34; Table 3). On land, D- form amino acids can be derived from abiotic 266 racemization. This process (which requires occurs over a very long time scale) (e.g., over thousands 267 of years) and results in which L- form amino acids slowly ehangeschanging into their corresponding 268 D₂ form (Schroeder and Bada, 1976). More significantly, in contemporary environments, D₂ form 269 amino acids are widely synthesized by bacteria during-their cell membrane construction (Schleifer 270 and Kandler, 1972). D/L Glutamic acid and D/L Aspartic acid ratios of pure peptidoglycan 271 (Staphylococcus aureus, Gram-positive) are 0.49 and 0.30, respectively (Amon et al., 2001). 272 ThoughAlthough 813C values for bacteria in the Rajang remains unclearremain unknown, bacteria 273 have been reported to have δ^{13} C values from -12% to -27% (Lamb et al., 2006). Contribution of 274 OM derived from bacteria may therefore explain the relatively enriched $\delta^{13}C$ values observed at 275 inland S10 station S15. A possible OM source at these stations is soil humic 276 substances, which isare expected to be under strong impact of bacteria, and hashave a high 277 contribution offrom bacteria, and therefore D-form amino acids (Dittmar et al., 2001a). A more 278 depleted pattern of DOC δ^{13} C from mountain to lowland is suggested to be due to dilution and 279 mixing with younger OM in the lowland (Mayorga et al., 2005). This is consistent with our findings

that, depleted the pattern we observed of riverinedepleted DOC δ^{13} C values within the fresh water section was-corresponding to a loweringwith lower D/L ratio<u>ratios</u> pattern, which indicates the<u>suggests</u> dilution with less degraded OM (see orange circles in Fig. 6a). Whether the dissolved samples with elevated D/L ratio<u>ratios</u> and relatively positive δ^{13} C values for dissolved samples in the fresh water section (<u>at</u> S10 and S15;-_(Fig. 6a) reflect the presence of soil humic substances, or instead reflect the direct presence of bacteria, requires further study.

286 In the estuarine section, it was very clear that terrestrial bio-degraded OM (indicated by elevated D/L ratios and more negative δ^{13} C) is diluted with more labile OM (lower in D/L ratio but 287 288 more positive $\delta^{13}C$)(see blue solid dots blue data points in Fig. 6a). However, this apparent dilution 289 trend became very vague (less clear or showed no trend) when D/L ratio was plotted against salinity 290 (Fig. 5a). This was also confirmed by the GABA% distribution pattern which showed a platform-291 like pattern at a salinity between 5 and 20 (Fig. 4a). Though TDAA at S1 iswas missing, the 292 composition of TDAA at S2 (salinity = 31.2) was very typical of marine OM (i.e., very low D/L 293 ratio and relatively enriched DOC- δ^{13} C; see Fig. 6a). Hence in the estuary there is a conservative 294 distribution pattern for dissolved OM in the estuary when plotted against $\delta^{13}C$ (Fig. 6a) but such pattern disappearednot when plotted against salinity (Figs. 4a&5a). The location above the 295 conservative dilution line of all OM data in the brackish estuary (salinity between 10 andto 25; Figs. 296 297 4a & 5a), indicates that the OM in the estuarine section was more degraded than theoretically 298 expected. The combination of degraded OM with the observed and DOC concentration increase in 299 the estuary (345 μ M in the estuary vs. 337 μ M in the fresh water section; or Fig. 2b), suggests the 300 addition of degraded DOC to the Rajang. Non-conservative dissolved OM behavior in the estuary has previously been reported based on an optical approach (Martin et al., 2018), and minimal OM 301

302	alteration during	g estuarine	transport	was	suggested	(Martin	et	al.,	2018).	Hence,	it is
303	reasonable<u>likely</u> 1	that changes	in dissolve	d OM	compositio	n (Figs. 4	a & <u>-</u>	<u>&</u> 5a)) may laı	gely take	e place
304	in land/estuary (e.g., in pore	e waters of	f soil)	and impac	t the Raj	ang	rivei	rine diss	olved O	M via

- 305 leaching from soils.
- 306 Particulate OM

1		
307	As for particulate OMIn the river section of the Rajang, depleted POC- $\delta^{13}C_{a}$ in the river part of	带格
308	the Rajang indicated the strong influence of terrestrial OM-(e.g., C3 plant; Dittmar et al., 2001b)_	带格带格
309	whereas in the estuary, particulate OM ; this OM is likely derived from C3 plant material, which is	
310	a major component of the sediment OM (Wu et al., 2019). In the estuarine section of the Rajang,	
311	there was seaward enrichment of POC- δ^{13} C (Fig. 3b), suggesting that the OM was diluted with	带格
312	marine particulate OM, as indicated by the seawards enrichment of δ^{43} C (Fig. 3b). In the sediment,	
313	a clear woody angiosperm C3 plants as the OM source is found based on a lignin approach (Wu et	
314	al., 2019), and aligning with similar increases in carbon and nitrogen isotopes inisotope enrichment	带格
315	of suspended particles in brackish water have also been observed in other estuaries (Cifuentes et al.,	带格带格
316	1996; Raymond and Bauer, 2001). Unlike dissolved OM, there were no POC_samples with	带格
317	unusually enriched δ^{13} C values in the fresh water section (Figs. 6b&c). D/L Glx ratio-ratios of	
318	particulate OM in the fresh water section iswas higher when compared with that in the estuary	
319	section (Table 3), and overall, when compared with dissolved OM, particulate OM basically became	
320	more labile when transportingtransported seawards, as indicated by shifts in its composition shift	
321	along (Figs. 4b&5b) and isotope ratio with salinity (Figs. 4b&5b) or isotope (Figs. 6b&c).	
322	Although particulate OM had a lower D/L ratio than dissolved OM (Fig. 6), it should be noted	
323	that this does not imply that mean dissolved OM is more aged or degraded than particulate OM.	
1		

-{	带格式的
-{	带格式的
-{	带格式的

带格式的

-1	带格式的
\neg	带格式的
-1	带格式的
1	带格式的

Riverine POM and DOM usually show different ages (Bianchi and Bauer, 2011), whileand this can be influenced by selective desorption/adsorption of bacteria and related detritus between the particulate and dissolved phase alsophases which can strongly modifiesmodify the biomarkerindicated degradation status of OM (Dittmar et al., 2001a).

328 4.2 Different fate of bulk organic carbon and nitrogen

329 Leaching of DOC and DON from peatlands is driven by differencedifferent mechanisms: DOC 330 release is related to the status of peatland (pristine vs. degraded), whereas DON release is 331 determined by the DIN content of peatland soil (Kalbitz and Geyer, 2002). In the Rajang, bulk DOC 332 and DON concentrations were not coupled, as suggested indicated by the variations in DOC/DON ratio variation patternratios (Fig. 7). The average DOC concentration in the estuary part was 333 334 slightly higher (345 µM) than in the river part (337 µM; Table 3), which indicates suggesting the 335 addition of DOC in the estuary. In comparison, thethere appears to have been removal of DON in 336 the estuary-is suggested (Jiang et al., 2019).

337 In the Rajang, estuarine DOC exhibited non-conservative dilution behavior frombased on 338 optical properties-was observed for estuarine DOC (Martin et al., 2018), which is consistent with other peatland-draining rivers in Sarawak (Müller et al., 2016). The contribution of marine sources 339 to dissolved OM is reflected in the increasing DOC-δ13C in the estuary part (Fig. 3a). Peatland, 340 341 however, is known for its high contribution to fluvial DOC and has been suggested to contribute to 342 the DOC in the Rajang (Martin et al., 2018). In peatland-draining rivers west of the Rajang, the 343 DOC concentration endmember can be as high as 3690 µM (Müller et al., 2015)-(Müller et al., 2015). 344 Under such high DOC background, a simple three-endmemberpoint mixing model-(i.e., a model that based on the, with endmembers of first(1) observed fresh waterfluvial DOC endmember, 345

346	second <u>concentration</u> , (2) peatland DOC endmember <u>concentration</u> , and third a calculated fresh
347	water(3) inferred fluvial DOC endmember)concentration from a marine-river mixing curve.
348	suggested that peatland-DOC addition accounts for 3% of the fluvial DOC in the Saribas riverRiver
349	and 15% in the Lupar riverRiver (Müller et al., 2016). Assuming that peatland in the Rajang estuary
350	has a comparable endmember DOC concentration to other peatland in Sarawak (i.e., 3690 $\mu\text{M};$
351	Müller et al., 2015), and given our observed Rajang fresh water DOC endmember value of 337 μM
352	(DOC concentration at S5 station) and a marine DOC endmember of 238 μM (S1 station), a similar
353	mixing model approach suggests that peatland DOC addition contributed 4% of the Rajang fluvial
354	DOC, which is comparable to <u>the Saribas riverRiver</u> and much lower than <u>the Lupar riverRiver</u>
355	(Müller et al., 2016). In the meantime, as mentioned in the previous section, there is a non-
356	conservative dilution pattern, with dissolved OM in the estuary part more degraded than expected
357	based on simple dilution with a marine endmember (Figs. 4a&5a). Hence it is reasonable that
358	peatland not only contributed to the fluvial DOC in concentration (Martin et al., 2018), but also
359	modified the dissolved OM composition (more bio-degraded) in the estuary. In another tropical
360	river study, mangrovemangroves in the estuary exerted a stronger influence on fluvial dissolved
361	OM than hinterland vegetation (Dittmar et al., 2001b). This is consistent with the Rajang, for which
362	estuarine processes apparently impact the dissolved OM in terms of both DOC concentration (by
363	increasing the bulk amount) and composition (by adding bio-degraded DOC). The estuarine
364	dissolved OM showed higher bio-degraded featurecharacteristics (e.g., elevated GABA% and D/L
365	ratio; Figs. 4a&5a), but this subpart may be photolabile (Martin et al., 2018).
366	WhenPhotodegradation is expected to be enhanced when TSM decreases and light
367	conditionpenetration in the water column becomes goodincreases (e.g., enteringas OM enters the

368	sea), photodegradation is expected) (Martin et al., 2018). Other oceanic degradation mechanisms
369	include the priming effect (Bianchi, 2011). The fate of the terrestrial OM in the sea requires further
370	study. As we lack the DON concentration endmember in peatland, peatland impact on DON in the
371	estuary iswas not estimated in the current study.
372	In contrast to DOC, which was apparently added to the estuary, DON was removed,
373	contributing to a remarkable increase of dissolved inorganic nitrogen in the estuary (Jiang et al.,
374	2019). In the fresh water section, the nitrate concentration was not related to the ratio of D/L
375	dissolved AAs, nor related to dissolved GABA% (Fig. 8), and). However, in the estuarine section,
376	although nitrate concentration was not related to D/L AAs-but, it indeed was related to GABA% in
377	the estuarine section (Fig. 8b). This indicates that fluvial nitrate in the fresh water section was not
378	derived from remineralization of fluvial organic matter in the river channel, but more likely from
379	other sources (e.g., leaching of soil). In the estuarine section, there may be some DON
380	transformation may have occurred (Jiang et al., 2019), while the although leaching from soil process
381	stillsoils cannot be eliminatedruled out (Fig. 8). For the particulate phase, no relation can be
382	foundrelationship between nitrate and particulate OM composition was detected (figure not shown).
383	The atomic DOC/DON ratio in the Rajang averaged 50 in the river part, and increased to 140
384	(mean value) in the estuary part (Fig. 7). Although the DOC/DON ratio was much higher when
385	compared tothan in other tropical peatland river waters (around 10; Sjögersten et al., 2011), the ratio
386	iswas comparable withto that in other peatland-draining rivers in Sarawak like the Lupar, Saruba
387	and Maludan rivers (Müller et al., 2015; Müller et al., 2016), which all enter the South China sea.
388	The ratio is also within the reported C/N ratio of peatland and leaves (Müller et al., 2016). For the
389	Amazon river<u>River</u>, the DOC <u>versusto</u> total nitrogen ratio ranges from 27 to 52 (Hedges et al., 1994).

390	Given their reported total nitrogen _ and, given that this ratio includes inorganic nitrogen, the
391	DOC/DON ratio for the Amazon river <u>River</u> would be even higher. Under the background of such
392	high C/N ratios (e.g., 50), transformation of DON to DIN in the estuary further enhanced the high
393	DOC/DON ratio (to 140), and hence a deficiency in terrestrial organic nitrogen output is expected-
394	for the Rajang River. We noted that dissolved inorganic nitrogen forconcentrations in the Rajang
395	iswere on the order of 10 µM, comparable to DON (Jiang et al., 2019). Terrestrial nitrogen output
396	is an important source for coastal primary production (Jiang et al., 2019), but peatland-impacted
397	rivers may have relatively lower nitrogen input to the South China Sea when compared with their
398	very high river basin DOC yields (Baum et al., 2007). On one hand, logging and secondary growth
399	has been found to play a negative role in the nitrogen output efficiency of forest soils (Davidson et
400	al., 2007). On the other hand, disturbed tropical peatlands could release more DOC in comparison
401	to an undisturbed site (Moore et al., 2013) while the DOC/DON ratio may also decrease along with
402	disturbance of peatland (Kalbitz and Geyer, 2002). Given that secondary growth in the river basin
403	and anthropogenic disturbance of peatland (e.g., drainage and conversion for oil palm) are both
404	common (Hooijer et al., 2015), changes of DOC/DON ratios in the Rajang are complex and further
405	assessment is needed in the future.
406	
407	5. Summary and Conclusion
408	In August 2016 in the Rajang, we observed that dissolved OM composition (as D/L Glx ratio)
409	was conservatively diluted along with increasing DOC δ^{13} C, indicating that the sources of dissolved
410	OM have a very conservative impact on the OM composition. When D/L Glx ratio wasratios were
411	plotted against salinity-(as is usually done for an estuarine OM behavior check in many studies),

412	such, this linear conservative dilution pattern disappeared (Figs. 4a& 5a). This implies that the
413	total addition of DOC in the estuary (peatland/mangrove) had an impact on dissolved OM
414	composition, adding more bio-degraded OM, and resulting in data above the theoretical dilution
415	line (Figs. 4a&_5a). For particulate OM, though the data was variable, the overall decreasing
416	GABA% or $\underline{D/L}$ ratio along with increasing salinity was much clearer relative to that of dissolved
417	OM (Figs. 4b <u>& &</u> 5b). Particulate D/L Glx ratio in the estuary was usually lower when compared
418	with that <u>than</u> in the fresh water section (Figs. 6b <u>& &</u> c), whereas for dissolved OM, the majority of
419	the samples in the estuary had a D/L Glx ratio similar to that inof the fresh water section (Fig. 6a).
420	The difference in OM composition between fresh water and estuarine section suggests that dissolved
421	OM became more degraded while particulate OM became less degraded in the estuary.

Т

422 The Rajang is characterized by DOC/DON ratios of 50 in the fresh water section, and the further loss of DON in the estuary increased the ratio to 140. Peatland draining and 423 logging/secondary growth are reported to have conflicting impacts on carbon and nitrogen cycling 424 425 (Davidson et al., 2007; Moore et al., 2013), which may increase fluvial DOC and limit basin nitrogen 426 output, resulting in even larger DOC/DON<u>ratios</u>. Mismatch in carbon and nitrogen loss from 427 tropical rivers due to anthropogenic activities plays a role in material eyclecycling in both 428 landterrestrial and marine systems, enhancing the role of tropical riverrivers as a direct sources of 429 carbon source to atmosphere while for; the effect of changes in nitrogen changeoutput and its further feedback on the carbon cycle needs further monitoring and assessment. 430

At lastFinally, this work is based on a dry season investigation (August). Though the
seasonality for Rajang OM may be moderate (Martin et al., 2018), for biomarkers like amino acids
enantiomers further investigation in the wet season is needed.

434

435 Acknowledgements

436 We thank <u>the captain and cre</u>	v of the boat, as well as<u>anc</u>	d other colleagues on	board for
---	--	-----------------------	-----------

437 <u>assistance</u> during the field work. We thank colleagues and students inat both Swinburne University

438 of Technology (Sarawak Campus) and inthe State Key Lab of Estuarine and Coastal Research/East

439 China Normal University- for their help in field and/or lab work. We thank Aazani Mujahid inat

440 University of Malaysia Sarawak for her help and hospitality during our stay in Malaysia. This work

441 is funded by the National Key Research and Development Program of China (2018YFD0900702),

442 MOHE FRGS 15 Grant (FRGS/1/2015/WAB08/SWIN/02/1) in Malaysia, ARC Linkage Grant

443 LP150100519 in Australia, a SKLEC Open Research Fund (SKLEC-KF201610) and '111' project

444 in SKLEC/ECNU from the Ministry of Education of China and State Administration of Foreign

- 445 Experts Affaires Affairs of China.
- 446

447 References

- Amon, R. M. W., Fitznar, H. P., and Benner, R.: Linkages among the bioreactivity, chemical composition,
 and diagenetic state of marine dissolved organic matter, Limnology and Oceanography, 46, 287-297,
 2001.
- 451 Baum, A., Rixen, T., and Samiaji, J.: Relevance of peat draining rivers in central Sumatra for the riverine
- input of dissolved organic carbon into the ocean, Estuarine, Coastal and Shelf Science, 73, 563-570,2007.
- Bianchi, T. S.: The role of terrestrially derived organic carbon in the coastal ocean: A changing paradigm
 and the priming effect, Proceedings of the National Academy of Sciences, 108, 19473-19481, 2011.
- 456 Bianchi, T. S. and Bauer, J. E.: Particulate Organic Carbon Cycling and Transformation. In: Treatise on
- 457 Estuarine and Coastal Science, Editors-in-Chief: Eric, W. and Donald, M. (Eds.), Academic Press, Waltham,
 458 2011.
- Cifuentes, L. A., Coffin, R. B., Solorzano, L., Cardenas, W., Espinoza, J., and Twilley, R. R.: Isotopic and
 Elemental Variations of Carbon and Nitrogen in a Mangrove Estuary Estuarine Coastal and Shelf
 Science, 43, 781-800, 1996.
- 462 Cloern, J. E., Foster, S. Q., and Kleckner, A. E.: Phytoplankton primary production in the world's
 463 estuarine-coastal ecosystems, Biogeosciences, 11, 2477-2501, 2014.
- Dauwe, B. and Middelburg, J. J.: Amino acids and hexosamines as indicators of organic matter
 degradation state in North Sea sediments, Limnology and Oceanography, 43, 782-798, 1998.

- 466 Davidson, E. A., de Carvalho, C. J. R., Figueira, A. M., Ishida, F. Y., Ometto, J. P. H. B., Nardoto, G. B., Saba,
- R. T., Hayashi, S. N., Leal, E. C., Vieira, I. C. G., and Martinelli, L. A.: Recuperation of nitrogen cycling in
 Amazonian forests following agricultural abandonment, Nature, 447, 995-998, 2007.
- 469 Davis, J., Kaiser, K., and Benner, R.: Amino acid and amino sugar yields and compositions as indicators
- 470 of dissolved organic matter diagenesis, Organic Geochemistry, 40, 343-352, 2009.
- 471 Dittmar, T., Fitznar, H. P., and Kattner, G.: Origin and biogeochemical cycling of organic nitrogen in the
- 472 eastern Arctic Ocean as evident from D- and L-amino acids, Geochimica et Cosmochimica Acta, 65,473 4103-4114, 2001a.
- Dittmar, T., Lara, R. J., and Kattner, G.: River or mangrove? Tracing major organic matter sources in
 tropical Brazilian coastal waters, Marine Chemistry, 73, 253-271, 2001b.
- 476 Fitznar, H. P., Lobbes, J. M., and Kattner, G.: Determination of enantiomeric amino acids with high-
- 477 performance liquid chromatography and pre-column derivatisation with o-phthaldialdehyde and N-
- isobutyrylcysteine in seawater and fossil samples (mollusks), Journal of Chromatography A, 832, 123-132, 1999.
- 480 Gandois, L., Teisserenc, R., Cobb, A. R., Chieng, H. I., Lim, L. B. L., Kamariah, A. S., Hoyt, A., and Harvey,
- C. F.: Origin, composition, and transformation of dissolved organic matter in tropical peatlands,
 Geochimica et Cosmochimica Acta, 137, 35-47, 2014.
- Hedges, J. I., Cowie, G. L., Richey, J. E., Quay, P. D., Benner, R., Mike, S., and Forsberg, B. R.: Origins and
 processing of organic matter in the Amazon River as indicated by carbohydrates and amino acids,
- 485 Limnology and Oceanography, 39, 743-761, 1994.
- Hedges, J. I. and Man, D. C.: The characterization of plant tissues by their lignin oxidation products,
 Geochimica et Cosmochimica Acta, 43, 1803-1807, 1979.
- Hernes, P. J., Robinson, A. C., and Aufdenkampe, A. K.: Fractionation of lignin during leaching and
 sorption and implications for organic matter "freshness", Geophysical Research Letters, 34, 2007.
- 490 Hooijer, A., Vernimmen, R., Visser, M., and Mawdsley, N.: Flooding projections from elevation and
- 491 subsidence models for oil palm plantations in the Rajang delta peatlands, Sarawak, Malaysia, Deltares
 492 report 1207384, 76 pp., 2015.
- 493 Huang, T. H., Chen, C. T. A., Tseng, H. C., Lou, J. Y., Wang, S. L., Yang, L., Kandasamy, S., Gao, X., Wang, J.
- T., Aldrian, E., Jacinto, G. S., Anshari, G. Z., Sompongchaiyakul, P., and Wang, B. J.: Riverine carbon fluxes
 to the South China Sea, Journal of Geophysical Research: Biogeosciences, 122, 1239-1259, 2017.
- 496 Jennerjahn, T. C., Ittekkot, V., Klöpper, S., Adi, S., Purwo Nugroho, S., Sudiana, N., Yusmal, A., Prihartanto,
- 497 and Gaye-Haake, B.: Biogeochemistry of a tropical river affected by human activities in its catchment:
- Brantas River estuary and coastal waters of Madura Strait, Java, Indonesia, Estuarine, Coastal and Shelf
 Science, 60, 503-514, 2004.
- Jiang, S., Müller, M., Jin, J., Wu, Y., Zhu, K., Zhang, G., Mujahid, A., Rixen, T., Muhamad, M. F., Sia, E. S.
- A., Jang, F. H. A., and Zhang, J.: Dissolved inorganic nitrogen in a tropical estuary at Malaysia: transport
 and transformation, Biogeosciences Discuss., 2019, 1-27, 2019.
- Kaiser, K. and Benner, R.: Biochemical composition and size distribution of organic matter at the Pacific
 and Atlantic time-series stations, Marine Chemistry, 113, 63-77, 2009.
- Kaiser, K. and Benner, R.: Hydrolysis-induced racemization of amino acids, Limnology and Oceanography:
 Methods, 3, 318-325, 2005.
- 507 Kalbitz, K. and Geyer, S.: Different effects of peat degradation on dissolved organic carbon and nitrogen,
- 508 Organic Geochemistry, 33, 319-326, 2002.
- 509 Kimber, R. W. L., Nannipieri, P., and Ceccanti, B.: The degree of racemization of amino acids released by

- 510 hydrolysis of humic-protein complexes: Implications for age assessment, Soil Biology and Biochemistry,
- 511 22, 181-185, 1990.
- 512 Lamade, E., Setiyo, I. E., Girard, S., and Ghashghaie, J.: Changes in 13C/12C of oil palm leaves to
- understand carbon use during their passage from heterotrophy to autotrophy, Rapid Communications
 in Mass Spectrometry, 23, 2586-2596, 2009.
- 515 Lamb, A. L., Wilson, G. P., and Leng, M. J.: A review of coastal palaeoclimate and relative sea-level
- $\label{eq:states} 516 \qquad \mbox{reconstructions using $13C$ and C/N$ ratios in organic material, Earth-Science Reviews, 75, 29-57, 2006. }$
- 517 Martin, P., Cherukuru, N., Tan, A. S. Y., Sanwlani, N., Mujahid, A., and Müller, M.: Distribution and cycling
- of terrigenous dissolved organic carbon in peatland-draining rivers and coastal waters of Sarawak,
 Borneo, Biogeosciences, 15, 6847-6865, 2018.
- 520 Mayorga, E., Aufdenkampe, A. K., Masiello, C. A., Krusche, A. V., Hedges, J. I., Quay, P. D., Richey, J. E.,
- 521 and Brown, T. A.: Young organic matter as a source of carbon dioxide outgassing from Amazonian rivers,
- 522 Nature, 436, 538-541, 2005.
- 523 Moore, S., Evans, C. D., Page, S. E., Garnett, M. H., Jones, T. G., Freeman, C., Hooijer, A., Wiltshire, A. J.,
- Limin, S. H., and Gauci, V.: Deep instability of deforested tropical peatlands revealed by fluvial organic
 carbon fluxes, Nature, 493, 660, 2013.
- 526 Müller-Dum, D., Warneke, T., Rixen, T., Müller, M., Baum, A., Christodoulou, A., Oakes, J., Eyre, B. D., and
- Notholt, J.: Impact of peatlands on carbon dioxide (CO2) emissions from the Rajang River and Estuary,
 Malaysia, Biogeosciences, 16, 17-32, 2019.
- 529 Müller, D., Warneke, T., Rixen, T., Müller, M., Jamahari, S., Denis, N., Mujahid, A., and Notholt, J.: Lateral
- carbon fluxes and CO2 outgassing from a tropical peat-draining river, Biogeosciences, 12, 5967-5979,2015.
- 532 Müller, D., Warneke, T., Rixen, T., Müller, M., Mujahid, A., Bange, H. W., and Notholt, J.: Fate of terrestrial
- organic carbon and associated CO2 and CO emissions from two Southeast Asian estuaries,
 Biogeosciences, 13, 691-705, 2016.
- 535 Raymond, P. A. and Bauer, J. E.: Use of 14C and 13C natural abundances for evaluating riverine, estuarine,
- and coastal DOC and POC sources and cycling: a review and synthesis, Organic Geochemistry, 32, 469-485, 2001.
- Schleifer, K. H. and Kandler, O.: Peptidoglycan types of bacterial cell walls and their taxonomic
 implications, Bacteriological Reviews, 36, 407-477, 1972.
- Schroeder, R. A. and Bada, J. L.: A review of the geochemical applications of the amino acid racemization
 reaction, Earth-Science Reviews, 12, 347-391, 1976.
- 542 Sjögersten, S., Cheesman, A. W., Lopez, O., and Turner, B. L.: Biogeochemical processes along a nutrient
- 543 gradient in a tropical ombrotrophic peatland, Biogeochemistry, 104, 147-163, 2011.
- Vollmer, W., Blanot, D., and de Pedro, M.: Peptidoglycan structure and architecture, FEMS Microbiology
 Review, 32, 149-167, 2008.
- 546 Wu, Y., Zhu, K., Zhang, J., Müller, M., Jiang, S., Mujahid, A., Muhamad, M. F., and Sia, E. S. A.: Distribution
- 547 and degradation of terrestrial organic matter in the sediments of peat-draining rivers, Sarawak,
- 548 Malaysian Borneo, Biogeosciences Discuss., 2019, 1-37, 2019.
- 549 Zhang, C. L., Dang, H. Y., Azam, F., Benner, R., Legendre, L., Passow, U., Polimene, L., Robinson, C., Suttle,
- 550 C. A., and Jiao, N. Z.: Evolving paradigms in biological carbon cycling in the ocean, National Science
- 551 Review, 5, 481-499, 2018.
- 552 Zhu, Z. Y., Wu, Y., Zhang, J., Dittmar, T., Li, Y., Shao, L., and Ji, Q.: Can primary production contribute non-
- labile organic matter in the sea: Amino acid enantiomers along the coast south of the Changjiang

554 Estuary in May, Journal of Marine Systems, 129, 343-349, 2014.

- 555 Zhu, Z. Y., Zhang, J., Wu, Y., and Lin, J.: Bulk particulate organic carbon in the East China Sea: Tidal
- 556 influence and bottom transport, Progress in Oceanography, 69, 37-60, 2006.
- 557 558

Table 1. Measured amino acids (the L- and D- enantiomers are not listed) and all abbreviations in

560 this study. Note that glycine has no enantiomer.

abbreviations	name
OM	organic matter
DOC	dissolved organic carbon
DON	dissolved organic nitrogen
TSM	total suspended matter
AA	amino acid
TDAA	total hydrolysable dissolved amino acids
TPAA	total hydrolysable particulate amino acids
Ala	Alanine
Arg	Arginine
Asx	Asparagine
ASX	Aspartic acid
C1	Glutamine
Glx	Glutamic acid
Gly	Glycine
Ile	Isoleucine
Leu	Leucine
Lys	Lysine
Met	Methionine
Phe	Phenylalanine
Ser	Serine
Thr	Threonine
Trp	Tryptophan
Tyr	Tyrosine
Val	Valine
GABA	γ - aminobutyric acid

Table 2. TSM, DOC, POC and stable carbon isotopes in the freshwater and estuary of the Rajang(mean (min-max)).

	•,		
	unit	Fresh water	Estuary
TSM	mg/L	61 (22 - 126)	73 (25 - 161)
DOC	μΜ	337 (217 - 658)	345 (214 - 587)
$DOC \; \delta^{13}C$	‰	-26.7 (-27.725.0)	-26.1 (-28.720.1)
POC	μΜ	86 (46 - 125)	64 (22 - 153)
	%	1.9 (1.2 - 2.5)	1.0 (0.6 - 1.9)
POC $\delta^{13}C$	‰	-30.1 (-31.129.4)	-26.7 (-30.123.8)

Table 3 The-Rajang AAs result (mean (min-max)) in August 2016 (*total Total D/TDAA means=
total D form AA versus TDAA, the same for total. Total D/TPAA = total D form AA versus TPAA)

		unit	Fresh water	Estuary
dissolved	TDAA	nM	317 (131 - 486)	523 (212 - 2320)
	TDAA carbon yield	%	0.40 (0.08 - 0.65)	0.38 (0.29 - 0.53)
	TDAA nitrogen yield	%	4.8 (1.3 - 15)	11 (5.4 - 18)
	GABA	%	2.0 (1.3 - 4.1)	1.3 (0.15 - 1.9)
	total D/total TDAA*	%	12 (8 - 15)	12 (3 - 14)
	D/L Glx		0.35 (0.16 - 0.57)	0.32 (0.07 - 0.42)
	D/L Asx		0.34 (0.23 - 0.48)	0.34 (0.08 - 0.42)
particulate	TPAA	μΜ	2.5 (1.4 - 3.6)	2.0 (1.1 - 3.7)
	TPAA carbon yield	%	14 (9.5 - 19)	17 (11 - 24)
	TPAA nitrogen yield	%	66 (36 - 82)	62 (30 - 100)
	GABA%	%	0.7 (0.6 - 0.9)	0.4 (0.2 - 0.8)
	total D/total TPAA*	%	4.4 (3.6 - 5.2)	3.3 (2.4 - 5.0)
	D/L Glx		0.09 (0.08 - 0.10)	0.06 (0.04 - 0.08)
	D/L Asx		0.04 (0.03 - 0.05)	0.05 (0.03 - 0.11)

575 Figure caption

Figure 1. Study area and sampling stations. a) Location of Sarawak, Malaysia; and b) the Rajang
with its estuary/river mouth background-shown. Samples upstream of S5 showedhad 0 salinity
whileand downstream of S5 showedhad salinity >0. Hence-here, from S5 to S10 iswas regarded as

579 the fresh water section (red triangles), and downstream of S5 iswas regarded as the estuarine section

580 (blue triangles). Note that salinity of samples at S15, S17, S18, S19 was also 0 during our sampling.

581 Figure 2. Distribution patternpatterns of (a) TSM, (b) DOC and (c) POC along with salinity in the

582 Rajang. The fresh water $\frac{\text{dot stands for} \text{data point represents}}{\text{stands and the stands}}$ all samples with $\frac{\text{stands}}{\text{stands}} = 0$ and the

583 error bar corresponds to the standard deviation. The marine dot is data point represents S1.

584 Figure 3. Distribution <u>patternpatterns</u> of (a) DOC δ^{13} C and (b) POC δ^{13} C along with 585 conductivity/salinity in the Rajang. The legend indicates the branches that the samples were 586 <u>collected</u> from and <u>the</u> marine <u>corresponds</u> data points correspond to <u>S1</u>-station <u>S1</u>.

587 Figure 4. The GABA% distribution pattern from fresh water to the estuary in the Rajang: a)

588 dissolved and b) particulate. Note the different x-axis scales between plot a and b. The dashed line

589 indicates the linear mixing line between fresh and marine endmembers. For the The fresh water

590 endmember (brown triangle), it is) was calculated as the meansmean of all fresh water samples

591 (Salinity = 0), and the marine endmember (purple diamond) is was calculated as the means mean of

all offshore samples with salinity >30. The error bar indicates the standard deviation.

593 Figure 5. Same as figure 4, but for D/L Glx.

594 Figure 5. The D/L Glx distribution pattern from fresh water to the estuary in the Rajang: a) dissolved

595 and b) particulate. Note the different x-axis scales between plot a and b. The dashed line indicates

the linear mixing line between fresh and marine endmembers. The fresh water endmember (brown

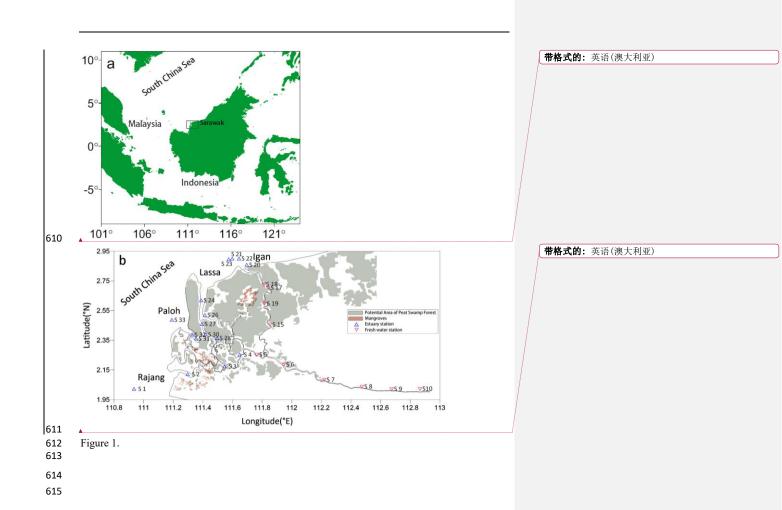
597 triangle) was calculated as the mean of all fresh water samples (salinity = 0), and the marine

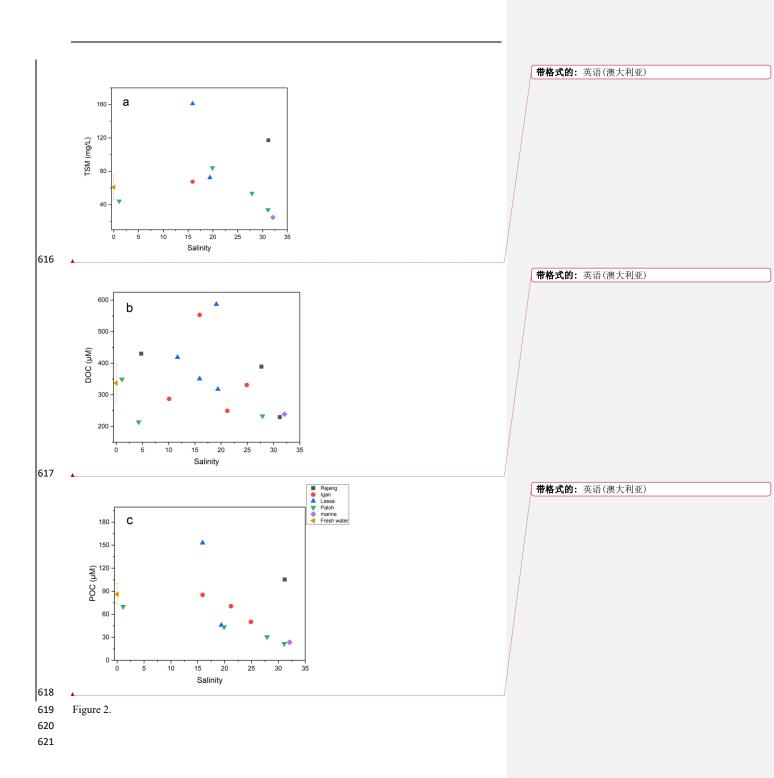
598 endmember (purple diamond) was calculated as the mean of all offshore samples with salinity >30.
 599 The error bar indicates the standard deviation.

 $\label{eq:figure} \begin{array}{l} \mbox{figure 6. D/L ratio of AAs (as Glx) plotted against a) DOC \ \delta^{13}\mbox{C b) POC } \delta^{13}\mbox{C, and c) PN } \delta^{15}\mbox{N}. \end{array}$

601 Figure 7. DOC/DON ratio distribution pattern along with salinity in the Rajang. For fresh water

and estuary, the mean DOC/DON value was 50 and 140, respectively. DON isconcentrations are

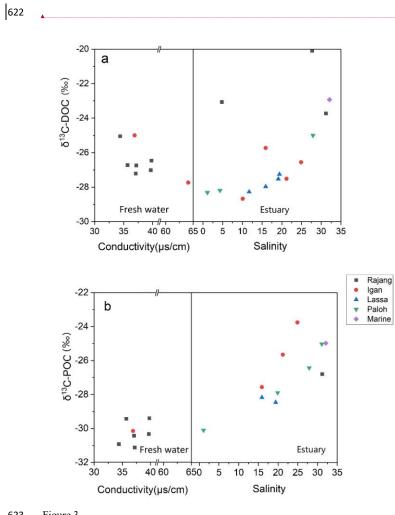
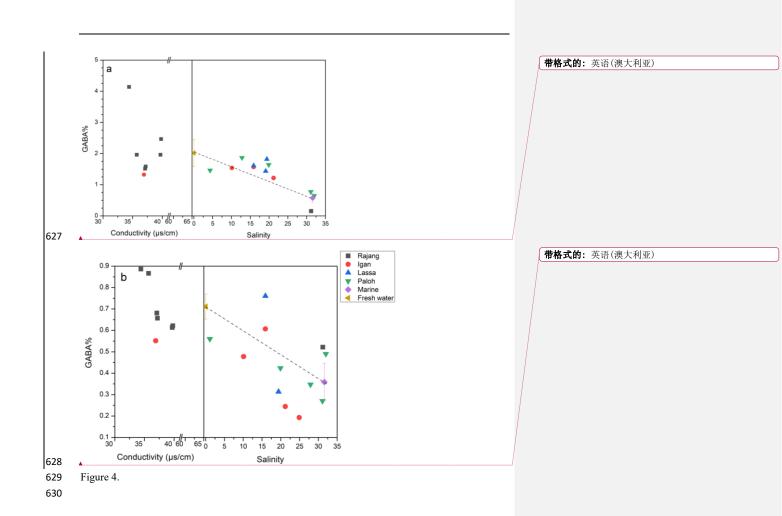
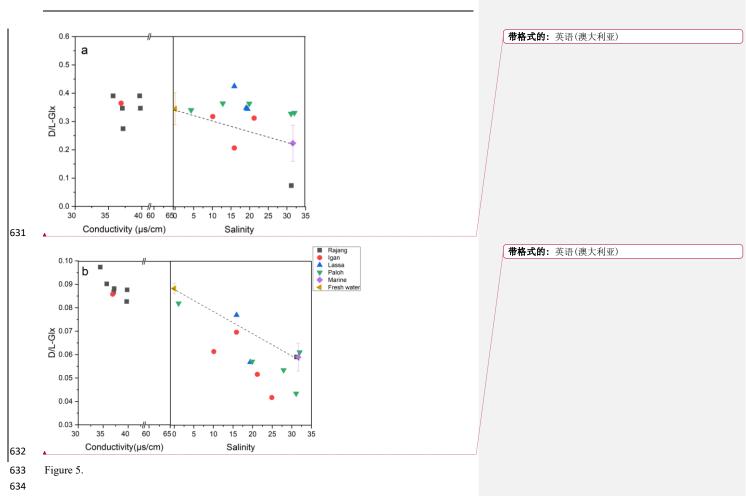
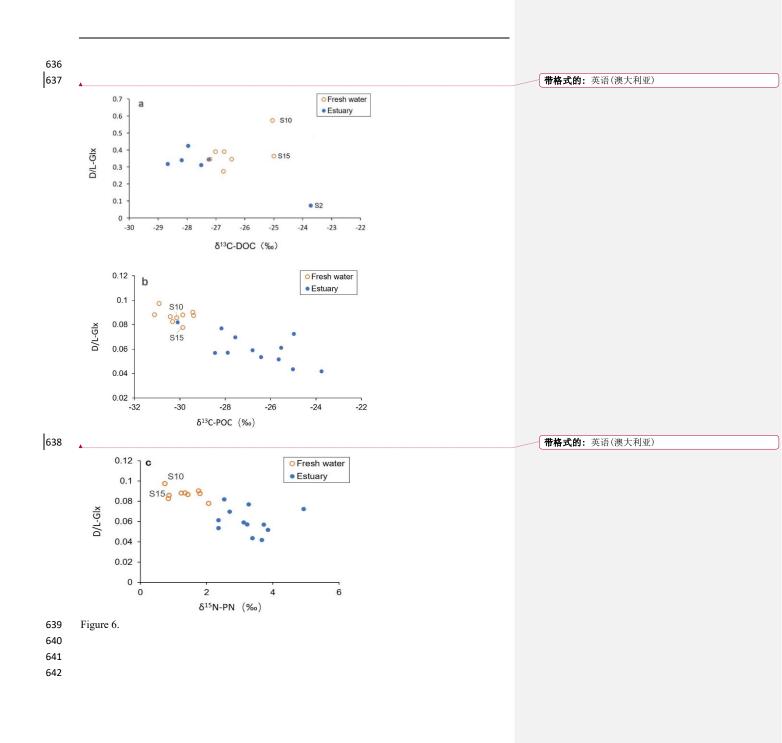
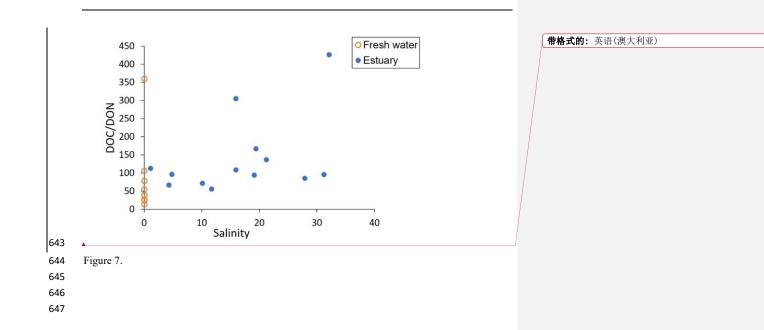

603 <u>taken</u> from Jiang et al., (2019).

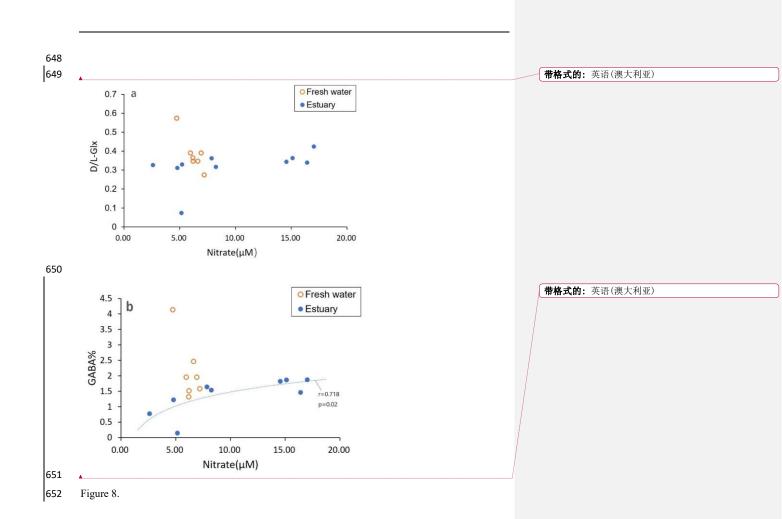

604 Figure 8. Dissolved OM composition (a: D/L Glx, b: GABA%) and its relationship with

605 nitrate-<u>concentration.</u> Nitrate is derived <u>concentrations are taken</u> from Jiang et al., (2019).

606

607 608


Figure 3.

