

Reply to reviewer #1

General comments:

The present paper examined the seasonal and annual variations of dissolved N₂O in a time-series station located in the southwestern Baltic Sea. The results show the coupled variations between the N₂O anomalies, the oxygen concentrations, and nutrients.

The paper presents a valuable new dataset of N₂O and related biogeochemical parameters in a marine region subject to extensive human activities and so nutrients inputs, responsible of the deoxygenation in the Baltic Sea. After the revision, I consider that the manuscript is highly interesting and provide relevant information about processes occurring to the N₂O in the Boknis Eck. The paper is well written and structured, with an appropriate description of the state of the art, objectives are clearly outlined and discussion precisely referenced. The main strength of the paper is the monthly sampling undertaken during twelve years.

However, there are several weaknesses in the paper. First, the authors make the discussion of the results based on data that are included in this study. There are references to data that exist but are not shown. But, in order to discuss about upwelling and hydrographic changes, about algal blooms and ammonium changes, the salinity, temperature, chlorophyll and ammonium data should be included and shown in this paper.

Both reviewers requested to show additional temperature, salinity, chlorophyll *a* and ammonium data. These data were not explicitly shown in our manuscript because they have been published already in Lennartz et al.: Long-term trends at the Boknis Eck time series station (Baltic Sea), 1957–2013: does climate change counteract the decline in eutrophication? Biogeosciences, 11, 6323–6339, <https://doi.org/10.5194/bg-11-6323-2014>. However, in order to provide this obvious lacking information, we decided to include the seasonal and annual variations of temperature, salinity, chlorophyll *a* and ammonium in a new supplement to our manuscript.

Secondly, the paper lack of a proper description of the water masses presents at BE and their temporal variability.

Considering that all the measurements were conducted at one fixed location, it is difficult to investigate the water masses based on our data. However, the hydrological condition at BE are not complicated. As is written in Lines 86-87, there is no pronounced river input, and saline water from the North Sea plays a dominant role. By showing the seasonal and annual variations of temperature, salinity, dissolved oxygen and other parameters, readers gain a comprehensive idea about the hydrographic conditions at BE during 2005-2017.

We rewrite the lines 86-87 which read now:

There is no significant river runoff to Eckernförde Bay. Hence, the hydrographical conditions are mainly dominated by saline water input from the North Sea and less saline water from the Baltic Proper, which is typical for that region.

Specific comments:

-Lines 129-130: *How did you shifted the data to the 15th? Include procedure and assumptions in the text.*

Since the time of sampling varied every month (usually 20-40 days interval), it would be easier for comparison and data analysis if all the samples were collected with a regular spacing. In this case, we ignored the slight time difference and assumed that all of the samples were collected on the same day every month.

We have replaced lines 129-130 with the following sentence: Sampling time varied for every month (usually 20-40 day interval), but for the statistical analysis, data was assumed to be regularly spaced as differences on weekly scales were minor.

Line 170: Could you explicitly explain in the text how did you computed Sc, instead just give the reference? What is the equation for computing Sc?

Sc was computed as:

$$Sc = v/D_{N2O}$$

$$D_{N2O} = 3.16 \times 10^{-6} e^{-18370/RT}$$

where v is the kinematic viscosity of seawater, which is calculated from the empirical equations given in Siedler and Peters (1986), and D_{N2O} is the diffusion coefficient of N₂O in seawater. R is the universal gas constant and T is the water temperature in K. We used the D_{N2O} from Rhee (2000).

We have incorporated this part into section 2.4.

Lines 176-184: The comparison of the range of concentrations found between Boknis and other time-series would be better move later in the text, since the reader at this point does not have enough information about the causes that differentiate it from other time-series. The authors should better discuss not only the different magnitudes of the N₂O concentrations, but also the site-specific processes responsible of such differences.

Thank you for the suggestion. The purpose of the comparison is just to give a general idea about the values of the few time-series N₂O measurement published so far, because it might be different from the normal cruises which only last for days or months. A comparison of N₂O concentrations between different time-series analysis is not the major topic of the manuscript, and a discussion about the site-specific processes requires detailed information on the environmental variability of the time-series stations, which does not fit in the scope of the manuscript. In this case, we keep this part in section 3.1.

Lines 207...: In case there is additional information in the BTS, such as chlorophyll, during the study period, show the data in figures instead to refer to previous studies.

Chlorophyll *a* data were added and are now shown in a new supplement.

Lines 235: are there NH₄ data available at the study site during the study period? In that case, it would be better to show them for the discussion instead to appeal to a reference NH₄⁺ data were added and are now shown in a new supplement.

Lines 238-239: "Denitrification is inhibited by the presence of O₂ and thus nitrification is presumably responsible for the high N₂O concentrations in winter/early spring." This statement is not correct at all. The production of N₂O by denitrification can occur at suboxic and hypoxic environments. Please, modify this sentence.

Thank you for pointing out the problem. We modified the text to “Denitrification is inhibited by the presence of high concentrations of dissolved O₂ (> 20 µmol L⁻¹) and...”

Line 239-240: The authors should normalize the N₂O and pH to a constant temperature. Otherwise, temperature changes can be the responsible of this relationship because of thermodynamics changes and not necessarily due to nitrification. In fact, it is not as clear the positive correlation between the N₂O and pH in figure 5, since for pH higher than 7.6, there is no apparent trend between N₂O and pH. The relationship between pH and N₂O obtained during incubations experiments described by Rees et al. (2016) cannot be directly compare to this study, since the experimental conditions and approaches are completely different. The authors should rewrite the entire paragraph.

We need to delete this part from the manuscript because after double-checking the data, we realize that some of the pH values were not calibrated properly. After re-calibration, the relationship between N₂O and pH no longer exists. We are very sorry about the mistake.

Lines 263-269: Again, the temperature salinity and Chla information at Boknis are mentioned in the text, but data are missed. If data for these parameters exist, the authors should include in the manuscript. It would reinforce some of the statement that now could look only speculative.

Temperature, salinity and Chlorophyll *a* data were added and are now shown in a new supplement.

Lines 287-288: “Although the observed temperatures and salinities during October 2016–April 2017 were comparable to other years,..”. Please, show temperature and salinity.

Data is now shown in the supplement (see replies above).

Lines 295-296: “Considering the classical view of N₂O consumption via denitrification under hypoxic and anoxic conditions”. This is contrary to the statement done at lines 238-239. Consider to rewrite the first one.

Thank you pointing this out. We have revised the first one as suggested.

Lines 304-306; 308-309: The authors should make use of temperature, salinity or density to show changes in water masses.

Temperature and salinity data can be found in the supplement. Mixed layer variations can be seen in Fig. 4. As is mentioned above, it is difficult to show the changes in water masses. We suggested that the low-N₂O water was a result of advection because vertical exchange can be excluded. However, we do not have any evidence since we did not measure dissolved N₂O from adjacent waters.

Lines 313: Instead of “presence” it would be more correct “concentration/level”
We have revised it as suggested.

Lines 320: “We did not observe an exceptional spring algae bloom in 2017”. Please, consider to include Chla or POM to support this statement.

Chlorophyll a data is now shown in the supplement (see replies above). Unfortunately, POM data are not available. Secchi depth, a proxy of water transparency, is slightly lower in March 2017 than the average value. This could be used to support the statement.

We modified the text to “Secchi depth, a proxy of water transparency, was 3.8 m in March 2017, which is only slightly lower compared to the monthly average value for March (4.5 ± 1.8 m). There was no exceptional spring algae bloom and thus we infer that assimilative uptake of nutrients by phytoplankton was not responsible for the low nutrients concentrations.”

Lines 319: Why can not be shown the Chla data?

Chlorophyll *a* data is now shown in the supplement.

Lines 331-335: The author should also discuss the potential dependence of rates on temperature and its impact on the seasonal variations of N₂O production/consumption through the text.

Unfortunately, we did not measure N₂O production/consumption rates at BE. A discussion about the potential temperature dependence of rates is, thus, too speculative. Besides, there is no significant temperature anomaly during the low-N₂O-event. In this case, we suggest that the impact of temperature on the low-N₂O event could be excluded.

Lines 356-357: Please, consider to support this statement with the salinity data 371-373. Please, show the density (or temperature and salinity) record to track the upwelling event in autumn 2017. Lines 377-378: Please, show the chlorophyll data. Lines 385-386: Please, show the ammonium data.

The data are now shown in the supplement.

Lines 394-399: This is a very speculative paragraph as it is written. Could you give any evidence for these potential explanations of the homogeneous distribution of N₂O?

Although the oxic/anoxic interface, where enhanced N₂O production occurs, lasts for several months, the high N₂O concentrations were usually observed only in late autumn (Fig. 4). We agree this paragraph is speculative. There are just some “potential explanations” for why there is no enhanced N₂O in early autumn. Unfortunately, we do not have any further evidence to support the conjecture.

-Section 3.5: The author should evaluate in the results the impact of the dissolved gas analysis uncertainty in the air-sea flux computation and the uncertainty introduced in the net seasonal and annual air-sea NO fluxes.

The uncertainty of flux density, which is mainly derived from K_{N₂O}, with a minor contribution from the error of trace gas analysis, was estimated to be 20% (Wanninkhof, 2014). The average flux density at BE was 3.5 ± 12.4 $\mu\text{mol m}^{-2} \text{ d}^{-1}$. With a large uncertainty in the flux density, it is difficult to compute meaningful seasonal/annual fluxes. In this case, we only discussed the variation of flux density in section 3.5.

We have added the uncertainty of flux density in section 3.5.

Lines 416-424: The authors show that N₂O concentration change seasonally, but the saturation stay almost constant. So, how can the author affirm that emissions are controlled by temperature?

There is a seasonality in surface N₂O concentrations but not for the N₂O saturation. During the transformation of concentrations into saturations, the effect of temperature on the saturation is more essential than the effect of salinity. In summer when surface N₂O concentrations are low, N₂O saturations are increased by the relative high temperature (because the equilibrium concentration is decreased). In winter the N₂O concentrations are high, but N₂O saturations are decreased because of the high N₂O solubility at low temperature condition. Temperature is “buffering” the variation of saturation and thus affecting N₂O emissions, and this is our point of “a modulating role”.

To clarify this point we rewrite the paragraph:

We found a weak seasonal cycle for surface N₂O concentrations, with high N₂O concentrations occurring in winter/early spring and low concentrations occurring in summer/autumn, but no such cycle for N₂O saturation. The seasonality in concentration but not in saturation could be largely attributed to the effect of temperature on N₂O solubility: In summer when surface N₂O concentrations are low, N₂O saturations are increased by the relative high temperature; and vice versa in winter. Although salinity also affects N₂O solubility, its contribution is negligible compared to temperature. Temperature alleviated the fluctuation of surface N₂O saturation and thus affected the sea-to-air N₂O fluxes. We conclude that temperature plays a modulating role for N₂O emissions.

Lines 476-484: Unless the author do not include salinity and temperature, they should not used them to conclude the hydrographic conditions at Boknis Eck. Further studies about the hydrography at the BE would complete the picture together with the biogeochemical data at the BE time-series station.

We agree that changing hydrographic conditions will affect N₂O cycling at Boknis Eck as well. This, however, will require modeling studies which need to take into account the ongoing environmental changes of temperature, deoxygenation, changing frequency of North Sea water inflow etc. We think that a detailed discussion of potential future projections of the environmental variability of Boknis Eck/Eckernförde Bay is beyond the scope of the manuscript.

Reply to reviewer #2

Quantifying the concentrations and dynamics of dissolved N₂O in seawater is important for understanding the climate change, but conducting measurements of sufficient duration to determine trends over seasonal, interannual, and decadal time frames for any marine ecosystem remains a challenging task. A long-term Time-Series Station like Boknis Eck in the Eckernförde Bay can provide invaluable information for documenting the role of oceans in relation to N₂O, hence this type of study is significant for our scientific understanding. The paper is well-written and clear. I only have few comments/suggestions below:

Lines 95-96: more information is needed on seawater sample collection.

The sampling procedure is described in detail in lines 95-100 on page 3. Thus we do not see a need to revise the text.

Lines 108-109: The N₂O concentration of standard gases should be provided.

We have added this information in the method section.

Line 154-155: : : :dry mole fractions of atmospheric N₂O at the time of the sampling. This description is not the fact since atmospheric N₂O at the time of the sampling has not been measured and the monthly average of N₂O data measured at Mace Head was used to N₂Oeq.

Thank you for pointing this out. We modified the sentence. It reads now: “Since the atmospheric N₂O mole fractions were not measured at the BE Time-Series Station, atmospheric dry mole fractions of N₂O were derived from the monthly average of N₂O data at Mace Head, Ireland (AGAGE, <http://agage.mit.edu/>), instead.”

Lines 185-193: NH₄⁺ concentrations should be provided in the text as well as Figure 2.

Both reviewers requested to show additional temperature, salinity, chlorophyll *a* and ammonium data. These data were not explicitly shown in our manuscript because they have been published already in Lennartz et al.: Long-term trends at the Boknis Eck time series station (Baltic Sea), 1957–2013: does climate change counteract the decline in eutrophication? Biogeosciences, 11, 6323–6339, <https://doi.org/10.5194/bg-11-6323-2014>. However, in order to provide this obvious lacking information, we decided to include the seasonal and annual variations of temperature, salinity, chlorophyll *a* and ammonium in a new supplement to our manuscript.

Lines 221-222: The expression caused misunderstanding.

We would like to change it to “The seasonal variations of NO₂⁻ and NO₃⁻ were significantly correlated with each other ([NO₃⁻]=11.59[NO₂⁻]-0.51, R²=0.80, n=72, p<0.0001) and high concentrations were observed for both in winter.”

Lines 239-243: Does N₂O correlate with NH₄⁺?

There is no straightforward relationship between N₂O and NH₄⁺. By the way, we realized that there were some problems with the calibration of pH data and, therefore, this part will be deleted.

Line 462: The year of 2015 should be 2005?

Thank you for pointing out the mistake. It should be 2005, which is the beginning of the N₂O measurement.

Line 476: There is no temperature data provided at all in this study but with a conclusion 'Temperature plays a modulating role for the N₂O emission at the BE Time-Series Station'. I suggest to provide t data in Figure 2 and more t data provided in related discussion in the text

We would like to show temperature data in the supplement. Also will rewrite the relevant text in section 3.5 to explain how temperature modulates N₂O emissions in. See our reply to reviewer #1 as well.

Figure 2: It would be better for the authors to provide the vertical profiles of t, s, density, NH₄⁺ and Chl a.

The data is now shown in the supplement.

Figure 6: The vertical profiles of hydrological parameters, such as t, s and density are needed to help understand the possible influence of physical processes on N₂O distribution as discussed between lines 301 and 309.

Vertical profiles of temperature, salinity, NH₄⁺ and Chl a are shown in supplement. Mixed layer variations can be seen in Fig. 4.

Figure 8: title is needed for x- and y-axis at figure b and d

Figure 9: title is needed for x- and y-axis

We have added new titles in the figures.

According to the comments from the reviewers, the following changes are made in the manuscript:

1. Show seasonal and annual variations of temperature, salinity, chlorophyll *a* and ammonium in a new supplement to our manuscript.
2. Rewrite the lines 86-88.
3. Add more details about standard gases in line 109.
4. Rewrite the lines 129-131.
5. Rewrite the lines 156-158.
6. Add more details in *Sc* computation in Section 2.4 (lines 165-171).
7. Rewrite the lines 221-223.
8. Rewrite the lines 238-239.
9. Delete the discussion about the relationship between N_2O and pH in section 3.2, and the corresponding figure was removed as well.
10. Modify the sentence in line 309.
11. Rewrite the lines 316-320.
12. Rewrite the lines 414-422.
13. Add the uncertainty of flux density computation in lines 428-429.
14. Add new titles in Fig. 7 and 8.

Besides the changes mentioned above, we also revised:

1. The computation of $\Delta\text{N}_2\text{O}$ and AOU were removed from section 2.4 because the corresponding discussion was no longer in Results and Discussion.
2. Few typos in the manuscript were corrected.

1 **A multi-year observation of nitrous oxide at the Boknis Eck**
2 **Time-Series Station in the Eckernförde Bay (southwestern**
3 **Baltic Sea)**

4 Xiao Ma¹, Sinikka T. Lennartz^{1,2}, and Hermann W. Bange¹

5 ¹ GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany

6 ² now at ICBM, University of Oldenburg, Oldenburg, Germany

7 *Correspondence to:* Xiao Ma (mxiao@geomar.de)

9 **Abstract.** Nitrous oxide (N_2O) is a potent greenhouse gas and it is involved in stratospheric ozone
10 depletion. Its oceanic production is mainly influenced by dissolved nutrient and oxygen (O_2)
11 concentrations in the water column. Here we examined the seasonal and annual variations of
12 dissolved N_2O at the Boknis Eck (BE) Time-Series Station located in Eckernförde Bay
13 (southwestern Baltic Sea). Monthly measurements of N_2O started in July 2005. We found a
14 pronounced seasonal pattern for N_2O with high concentrations (supersaturations) in winter/early
15 spring and low concentrations (undersaturations) in autumn when hypoxic/anoxic conditions
16 prevail. Unusually low N_2O concentrations were observed during October 2016–April 2017,
17 which was presumably a result of prolonged anoxia and the subsequent nutrient deficiency.
18 Unusually high N_2O concentrations were found in November 2017 and this event was linked to
19 the occurrence of upwelling which interrupted N_2O consumption via denitrification and
20 potentially promoted ammonium oxidation (nitrification) at the oxic/anoxic interface. Nutrient
21 concentrations (such as nitrate, nitrite and phosphate) at BE are decreasing since 1980s, but
22 oxygen concentrations in the water column are still decreasing. Our results indicate a close
23 coupling of N_2O anomalies to O_2 concentration, nutrients and stratification. Given the long-term
24 trends of declining nutrient and oxygen concentrations at BE, a decrease in N_2O concentration,
25 and thus emissions, seems likely due to an increasing number of events with low N_2O
26 concentrations.

27 **1. Introduction**

28 Long-term observation with regular measurement intervals can be an effective way to monitor
29 seasonal and interannual variabilities as well as to decipher short- and long-term trends of an
30 ecosystem, which are required to make projections of the future ecosystem development (see e.g.
31 Ducklow et al., 2009). Recently, multi-year time-series measurements of nitrous oxide (N_2O), a
32 potent greenhouse gas and a major threat to ozone depletion (IPCC, 2013; Ravishankara et al.,
33 2009), have been reported from the coastal upwelling areas off central Chile (Farías et al., 2015)
34 and off Goa (Naqvi et al., 2010), in the North Pacific Subtropical Gyre (Wilson et al., 2017), and
35 in Saanich Inlet (Capelle et al., 2018).

36 N₂O production in the ocean is generally dominated by microbial nitrification ($\text{NH}_4^+ \rightarrow \text{NO}_2^- \rightarrow \text{NO}_3^-$) and denitrification ($\text{NO}_3^- \rightarrow \text{NO}_2^- \rightarrow \text{N}_2\text{O} \rightarrow \text{N}_2$). During bacterial/archaeal nitrification, 37 N₂O is produced as a by-product with enhanced N₂O production under low oxygen (O₂) 38 conditions (e.g. Goreau et al., 1980; Löscher et al., 2012). N₂O is produced as an intermediate 39 during bacterial denitrification (Codispoti et al., 2005). N₂O could be further consumed via 40 denitrification to dinitrogen, however, this process is inhibited with the presence of O₂ because 41 of the low O₂ tolerance of the enzyme involved (Bonin et al. 1989). This incomplete pathway is 42 called partial denitrification and can lead to N₂O accumulation (e.g. Naqvi et al., 2000; Farías et 43 al., 2009).

45 The oceans including coastal areas contribute ~25% of the natural and anthropogenic N₂O 46 emissions (IPCC, 2013), with disproportionately high emissions from coastal and estuarine areas 47 (Bange, 2006). N₂O emissions from coastal areas strongly depend on nitrogen inputs (Seitzinger 48 and Kroeze, 1998; Zhang et al., 2010). The increasing input of nitrogen (i.e. eutrophication) has 49 become a worldwide problem in coastal waters leading to enhanced productivity and severe O₂ 50 depletion caused by enhanced degradation of organic matter (Breitburg et al., 2018; Rabalais et 51 al., 2014). The decline in O₂ concentration (i.e. deoxygenation), either in coastal waters or the 52 open ocean, might result in favorable conditions for N₂O production (Codispoti et al., 2001; 53 Nevison et al., 2003). The results of a model study by Kroeze and Seitzinger (1998) indicated a 54 significant increase of N₂O in European coastal waters for 2050. Moreover, it has been suggested 55 that N₂O production and emissions are very likely to increase in the near future, especially in the 56 shallow suboxic/anoxic coastal systems (Naqvi et al., 2000; Bange, 2006). However, model 57 projections show a net decrease in future global oceanic N₂O emission during the 21st century 58 (Martinez-Rey et al., 2015; Landolfi et al., 2017; Battaglia and Joos, 2018).

59 The Baltic Sea is a nearly enclosed, marginal sea with a very limited access to the open ocean via 60 the North Sea. The restricted water exchange with the North Sea and extensive human activities, 61 such agriculture, industrial production and sewage discharge in the catchment area led to high 62 inputs of nutrients to the Baltic Sea. As a result, the areas affected by anoxia have been 63 expanding in the deep basins of the central Baltic Sea (Carstensen et al., 2014). In order to 64 control this situation, the Helsinki Commission (HELCOM) was established in 1974 and a series 65 of measures have been taken to prevent anthropogenic nutrient input into the Baltic Sea. 66 Consequently, the nutrient inputs (by riverine loads, direct point-sources and, for nitrogen, 67 atmospheric deposition) to the Baltic Sea are declining (HELCOM, 2018a). However, the 68 number of low O₂ (i.e. hypoxic/anoxic) events in coastal waters of the Baltic Sea is increasing 69 and deoxygenation is still going on (Conley et al., 2011; Lennartz et al., 2014). The 70 deoxygenation in the Baltic Sea can affect the production/consumption of N₂O. Our group has 71 been monitoring dissolved N₂O concentrations at the Boknis Eck Time-Series Station, located in 72 Eckernförde Bay (southwestern Baltic Sea), for more than a decade. In this study, we present 73 monthly measurements of N₂O and biogeochemical parameters such as nutrients and O₂ from 74 July 2005 to December 2017. The major objectives of our study were: 1) to decipher the seasonal

75 pattern of N₂O distribution in the water column, 2) to identify short-term and long-term trends of
76 the N₂O concentrations, 3) to explore the potential role of nutrients and O₂ for N₂O
77 production/consumption, and 4) to quantify the sea-to-air N₂O flux density at the time-series
78 station.

79 **2. Material and methods**

80 **2.1 Study site**

81 Sampling at the Boknis Eck (BE) Time-Series Station (www.bokniseck.de) started on 30 April
82 1957 and, therefore, it is one of the oldest continuously operated time-series stations in the world.
83 The BE station is located at the entrance of the Eckernförde Bay (54°31' N, 10°02' E, Fig. 1) in
84 the southwestern Baltic Sea. The water depth of the sampling site is 28 m. Various physical,
85 chemical and biological parameters are measured on a monthly basis (Lennartz et al., 2014).
86 **There is no significant river runoff to Eckernförde Bay. Hence, the hydrographical conditions are**
87 **mainly dominated by saline water input from the North Sea and less saline water from the Baltic**
88 **Proper, which is typical for that region.** Seasonal stratification usually starts to develop in April
89 and lasts until October, during which hypoxia or even anoxia (characterized by the presence of
90 hydrogen sulphide, H₂S) sporadically occurs, as a result of restricted vertical water exchange and
91 bacterial decomposition of organic matter in the bottom water (Hansen et al., 1999; Lennartz et
92 al., 2014). Thus, BE is a natural laboratory to study the influence of O₂ variations and
93 anthropogenic nutrient loads on N₂O production/consumption.

94 **2.2 Sample collection and measurement**

95 Monthly sampling of N₂O at the BE Time-Series Station started in July 2005. Triplicate samples
96 were collected from six depths (1, 5, 10, 15, 20 and 25 m). Seawater was drawn from 5 L Niskin
97 bottles into 20 mL brown glass vials after overflow. The vials were sealed with rubber stoppers
98 and aluminum caps. The bubble-free samples were poisoned with 50 µL of a saturated mercury
99 chloride (HgCl₂) solution and then stored in a cool, dark place until measurement. The general
100 storage time before measurements of the N₂O concentrations was less than three months.

101 The static headspace-equilibrium method was adopted to measure the dissolved N₂O
102 concentrations in the vials. 10 mL helium (99.9999 %, AirLiquide, Düsseldorf, Germany)
103 headspace was created in each vial with a gas-tight glass syringe (VICI Precision Sampling,
104 Baton Rouge, LA). Samples were vibrated with Vortex (G-560E, Scientific Industries Inc., New
105 York, USA) for 20 seconds and then left for at least two hours until equilibrium. 9.5 mL
106 subsample of the headspace was subsequently injected into a GC-ECD (gas chromatograph
107 equipped with the electron capture detector) system (Hewlett-Packard 5890 Series II, Agilent
108 Technologies, Santa Clara, CA, USA), which was calibrated with two standard gas mixtures
109 (N₂O in synthetic air, 320 ppb and 1000 ppb, Deuste-Steininger GmbH, Mühlhausen, Germany
110 and Westfalen AG, Münster, Germany) prior to the measurement. The average precision of the

111 measurements, calculated as the median standard deviation from triplicate measurements, was
112 0.4 nM. Triplicates with a standard deviation of >10% were omitted. More details about the N₂O
113 measurement can be found in Kock et al. (2016). Dissolved oxygen (O₂) concentrations were
114 measured by Winkler titrations (Grasshoff et al., 1999). Nutrient concentrations were measured
115 by the Segmented Continuous Flow Analysis (SCFA, Grasshoff et al., 1999). A more detailed
116 summary of the parameters measured and methods applied can be found in Lennartz et al. (2014).

117 **2.3 Times series analysis**

118 A time-series can be decomposed into three main components, i.e. trend, cycle and residual
119 component (Schlittgen and Streitberg, 2001). We used the Mann–Kendall test and wavelet
120 analysis to detect the trend and periodical cycles in the time-series data, respectively. As for the
121 residual component, we highlight unusual high/low N₂O concentrations during 2005-2017 and
122 discuss the potential causes for these events.

123 **2.3.1 Wavelet analysis**

124 In order to decipher periodical cycles of the parameters collected at the BE Time-Series Station,
125 a wavelet analysis method was adopted. Wavelet analysis enables the detection of the period and
126 the temporal occurrence of repeated cycles in time-series data. One of the requirements for
127 wavelet analysis is a regular, continuous time-series. Since there is data missing (maximum 2
128 months in a row) in the BE time-series, due to terrible weather or the ship's unavailability,
129 missing data was interpolated from the previous and following months. **Sampling time varied for**
130 **every month (usually 20-40 day interval), but for the statistical analysis, data was assumed to be**
131 **regularly spaced as differences on weekly scales were minor.** Considering the band width in both
132 frequency and time domain, a Morlet mother wavelet with a wave number of 6 was chosen
133 (Torrence and Compo, 1998). The mother wavelet was then scaled between the frequency of a
134 half-year cycle and the length of the time-series with a stepsize of 0.25. The wavelet analysis was
135 conducted with the MatLab code by Torrence and Compo [2004]. More information about the
136 method can be found on the website <http://paos.colorado.edu/research/wavelets/>.

137 **2.3.2 Mann–Kendall test**

138 Mann–Kendall test (MKT) is a non-parametric statistical test to assess the significance of
139 monotonic trends for time-series measurements. It tests the null hypothesis that all variables are
140 randomly distributed against the alternative hypothesis that a monotonic trend, either increase or
141 decrease, exists in the time-series on a given significance level α (here $\alpha=0.05$). MKT is flexible
142 for data with missing values and the results are not impacted by the magnitude of extreme values,
143 which makes it a widely used test in hydrology and climatology (e.g. Xu et al., 2003; Yang et al.,
144 2004). However, MKT is sensitive to serial correlation in the time-series. The presence of
145 positive serial correlation would increase the probability of trend detection even though no such
146 trend exists (Kulkarni and von Storch, 1995). In order to avoid this situation, data from 12

147 months were tested individually. It is assumed that there is no residual effect left from the same
148 month last year, considering that the nitrogen species are rapidly biologically cycled. The Matlab
149 function from Simone (2009) was used for the MKT.

150 **2.4 Calculation of saturation and sea-to-air flux density**

151 N_2O saturations (S_{N2O} , %) were calculated as:

$$152 \quad S_{N2O} = 100 \times N_2O_{obs}/N_2O_{eq} \quad (1)$$

153 where N_2O_{obs} and N_2O_{eq} (in nM) are the observed and equilibrated N_2O concentrations in
154 seawater, respectively. N_2O_{eq} was computed as a function of surface seawater temperature, in
155 situ salinity (Weiss and Price, 1980) and the dry mole fractions of atmospheric N_2O at the time
156 of the sampling. Since the atmospheric N_2O mole fractions were not measured at the BE Time-
157 Series Station, atmospheric dry mole fractions of N_2O were derived from the monthly average of
158 N_2O data at Mace Head, Ireland (AGAGE, <http://agage.mit.edu/>), instead.

159 N_2O flux density (F_{N2O} , in $\mu\text{mol m}^{-2} \text{ d}^{-1}$) was calculated as:

$$160 \quad F_{N2O} = k_{N2O} \times (N_2O_{obs} - N_2O_{eq}) \quad (2)$$

161 where k_{N2O} (in cm h^{-1}) is the gas transfer velocity calculated with the method given by
162 Nightingale et al. (2000), as a function of the wind speed and the Schmidt number (Sc). The wind
163 speed data were obtained from the Kiel Lighthouse (see: www.geomar.de/service/wetter/), which
164 is approximately 20 km away from the BE Time-Series Station. The wind speed was normalized
165 to 10 m (u_{10}) to calculate k_{N2O} (Hsu et al., 1994). k_{N2O} was adjusted by multiplying with $(Sc/600)^{0.5}$,
166 and Sc was computed as:

$$167 \quad Sc = v/D_{N2O} \quad (3)$$

$$168 \quad D_{N2O} = 3.16 \times 10^{-6} e^{-18370/RT} \quad (4)$$

169 where v is the kinematic viscosity of seawater, which is calculated from the empirical equations
170 given in Siedler and Peters (1986), and D_{N2O} is the diffusion coefficient of N_2O in seawater. R is
171 the universal gas constant and T is the water temperature in K.

172 **3. Result and discussion**

173 **3.1 Overview**

174 N_2O concentrations at the BE Time-Series Station showed significant temporal and depth-
175 dependent variations from 2005 to 2017 (Fig. 2). N_2O concentrations fluctuated between 1.2 and
176 37.8 nM, with an overall average of 13.9 ± 4.2 nM. This value was higher than the results from
177 the surface water of Station ALOHA (5.9–7.4 nmol kg^{-1} , average 6.5 ± 0.3 nmol kg^{-1} , Wilson et

178 al., 2017), which is reasonable considering the weak anthropogenic impact in the North Pacific
179 Subtropical Gyre. The N_2O concentrations at BE were much lower than those measured at the
180 time-series station in the coastal upwelling area off Chile (2.9–492 nM, average 39.4 ± 29.2 nM in
181 the oxyclines and 37.6 ± 23.3 nM in the bottom waters, Farías et al., 2015) and a quasi-time series
182 station off Goa (Naqvi et al., 2010), where significant N_2O accumulations were observed in
183 subsurface waters at both locations. Our measurements were comparable to the time-series
184 station from Saanich Inlet (~0.5–37.4 nM, average 14.7 nM, Capelle et al., 2018), a seasonally
185 anoxic fjord which has similar hydrographic conditions as BE.

186 NO_2^- concentrations fluctuated between below detection limit of 0.1 μM and 1.6 μM , with an
187 average of 0.2 ± 0.3 μM . NO_3^- concentrations varied from below detection limit of 0.3 μM to 17.9
188 μM , with an average of 2.0 ± 2.8 μM . The temporal and spatial distributions of nitrite (NO_2^-) and
189 nitrate (NO_3^-) were similar during 2005–2017. A clear O_2 seasonality can be seen with severe O_2
190 depletion in the bottom waters during summer and autumn. Anoxia with the presence of H_2S
191 were detected in September/October 2005, September 2007, September/October 2014, and
192 September–November 2016. All of the extremely low N_2O concentrations (<5 nM) were
193 observed in the bottom waters in autumn, coinciding with hypoxia/anoxia, while the high N_2O
194 concentrations (>20 nM) sporadically occurred at different depths either in spring or autumn.

195 3.2 Seasonal cycle

196 Significant cycles at different frequencies were detected via wavelet analysis at the BE Time-
197 Series Station during 2005–2017 (Fig. 3). A half-year NO_2^- cycle sporadically occurred in 2007–
198 2009, 2013 and 2015. There is a seasonal NO_2^- variability (at the frequency of 1 year) between
199 2007 and 2016 (times before 2007 and after 2016 were outside the conic line), except during
200 2010–2012, when high NO_2^- concentrations were not observed in winter (Fig. 2). A biennial
201 cycle of NO_2^- could be observed as well during 2008–2015. The NO_3^- concentrations were
202 dominated by an annual cycle and a minor half-year cycle. The biennial cycle only occurred in
203 2008 and 2009. A remarkable seasonal variability of dissolved O_2 prevailed all the time, which is
204 also obvious from the times series data shown in Fig. 2. The annual N_2O cycle became gradually
205 more and more evident until 2014, then declined and reoccurred less intensely in 2016. The
206 periodical cycle was also present at other frequencies, indicated by the broadening of the red area
207 before 2015 in Fig. 2d. For example, a biennial N_2O cycle occurred during 2013–2015.

208 The half-year cycles of NO_2^- and NO_3^- were probably associated with algae blooms which
209 usually occur in each spring and autumn (Fig. S1 and S2). Since the time between the two
210 blooms differed between years, the cycles were weak and thus not present in every year. Due to
211 the fact that there was no half-year O_2 cycle at all, nutrients apart from O_2 might be the “drivers”
212 of the sporadic half-year N_2O cycle in 2008 and 2015, because N_2O production depends on the
213 concentration of the bioavailable nitrogen compounds (Codispoti et al., 2001).

214 Generally the wavelet analysis indicated a strong annual cycle for NO_2^- , NO_3^- , dissolved O_2 and
215 N_2O at the BE Time-Series Station, which enabled us to explore the seasonal pattern with annual
216 mean data. Although extreme values were excluded as a result of averaging, the smoothed results
217 generally reflect the seasonality of these parameters. Here, we focus on the annual cycle.

218 The annual mean vertical distribution of dissolved O_2 , NO_2^- , NO_3^- and N_2O are shown in Fig. 4.
219 Due to the development of stratification, the mixed layer was shallow in summer and deep in late
220 autumn/winter. O_2 depletion was observed in bottom waters from late spring until late autumn.
221 The seasonal variations of NO_2^- and NO_3^- were significantly correlated with each other
222 ($[\text{NO}_3^-] = 11.59[\text{NO}_2^-] - 0.51$, $R^2 = 0.80$, $n = 72$, $p < 0.0001$) and high concentrations were observed
223 for both in winter. Minimum N_2O concentrations were found in the bottom waters during
224 September and October, presumably as a result of consumption during denitrification under
225 anoxic condition (Codispoti et al., 2005). High N_2O concentrations were observed in late spring
226 and late autumn, respectively. In late spring N_2O accumulated in the bottom waters because the
227 stratification prevented mixing of the water column. In late autumn, however, N_2O could be
228 ventilated to the surface and thus emitted to the atmosphere due to the breakdown of the
229 stratification. The high N_2O concentrations could be attributed to enhanced N_2O production via
230 nitrification and/or denitrification within the oxic/anoxic interface (Goreau et al., 1980;
231 Codispoti et al., 1992). Since there is no clear O_2 concentration threshold, N_2O production from
232 both nitrification and the onset of denitrification overlap at oxic/anoxic interface. To this end,
233 direct N_2O production measurements (i.e. nitrification/denitrification rates) are required to
234 decipher which process dominates the formation of the different N_2O maxima.

235 High N_2O concentrations prevailed all over the water column in winter/early spring. NH_4^+ is
236 released from the sediment into bottom waters due to the degradation of organic matter,
237 especially after the autumn algae bloom (Fig. S1 and S2). The stratification usually completely
238 breaks down at this time of the year and the water column becomes oxygenated. Denitrification
239 is inhibited by the presence of high concentrations of dissolved O_2 ($> 20 \mu\text{mol L}^{-1}$) and thus
240 nitrification is presumably responsible for the high N_2O concentrations in winter/early spring.

241 3.3 Trend analysis

242 The MKTs were conducted for the surface (1m) and bottom (25m) N_2O concentrations and
243 saturations of the individual 12 months, respectively. Significant decreasing trends were detected
244 for the concentrations in the bottom waters for February and August (Table 1a), and for the
245 saturations in the surface for September and in the bottom for August and November (Table 1b).
246 These results indicated that some systematical changes in N_2O took place at BE. For example,
247 the significant decrease in N_2O concentration/saturation in August might be associated with the
248 increasing temperature, which reinforces the stratification and accelerates O_2 consumption in the
249 bottom waters (Lennartz et al., 2014). As a result, hypoxia/anoxia starts earlier and thus enables
250 the onset of denitrification to consume N_2O . During most of the months, trends in N_2O
251 concentration and saturation were not significant during 2005–2017.

252 A significant nutrient decline has been observed at the BE Time-Series Station since the mid-
253 1980s, however, Lennartz et al. (2014) found that bottom O₂ concentrations were still decreasing
254 over the past 60 years. The ongoing oxygen decline was attributed to the temperature-enhanced
255 O₂ consumption in the bottom water (Meier et al., 2018) and a prolongation of the stratification
256 period at the BE Time-Series Station (Lennartz et al., 2014). Please note that the trends in
257 nutrients and O₂ concentrations were detected based on the data collection which lasted for
258 approximately 30 and 60 years, respectively, while the N₂O observations at BE Time-Series
259 Station has lasted for only 12.5 years. Further MKT analysis for nutrients, temperature and
260 oxygen for months with significant trends in N₂O concentrations did not show any significant
261 results ($p>0.05$). The significant trends in N₂O concentrations thus do not seem to be directly
262 related to one of these parameters, and we cannot state a reason for the significant trends of N₂O
263 concentration in February and the N₂O saturation in September and November at this point.
264 Presumably, a longer monitoring period for N₂O is required to detect corresponding trends in
265 N₂O and oxygen or nutrients.

266 **3.4 Extreme events**

267 **3.4.1 Low N₂O concentrations during October 2016-April 2017**

268 Besides the low N₂O concentrations occurring in autumn, we observed a band of pronounced
269 low N₂O concentrations which started in October 2016 and lasted until April 2017 (Fig. 5). In
270 this period N₂O concentrations varied between 5.5–13.9 nM, with an average of 8.4 ± 2.0 nM.
271 This is approximately 40% lower than the average N₂O concentration during the entire
272 measurement period 2005–2017. The average N₂O saturation during 2005–2017 was $111\pm30\%$,
273 while from October 2016 to April 2017, the N₂O saturations were as low as 43–93% (average
274 $62\pm10\%$).

275 Undersaturated N₂O waters have been previously reported from the Baltic Sea: Rönner (1983)
276 observed a N₂O surface saturation of 79% in the central Baltic Sea and attributed the
277 undersaturation to upwelling of N₂O-depleted waters. Bange et al. (1998) found a minimum N₂O
278 saturation of 91% in the southern Baltic Sea where the hydrographic conditions were
279 significantly influenced by riverine runoff. Walter et al. (2006) reported a mean N₂O saturation
280 of $79\pm11\%$ for shallow stations (<30 m) in the southwestern Baltic Sea in October 2003. The
281 low-N₂O event at BE was unusual because the concentrations were much lower than those
282 reported values and it lasted for more than half a year.

283 Although the observed temperatures and salinities during October 2016–April 2017 were
284 comparable to other years (Fig. S1), it is difficult to evaluate the role of physical mechanism in
285 the low-N₂O event because of insufficient data for water mass exchange at the BE Time-Series
286 Station. Here we mainly focused on the chemical or biological processes. Anoxia events with the
287 presence of H₂S were observed in the bottom waters for three months in a row during
288 September–November 2016. This is an unusual long period and is unprecedented at the BE

289 Time-Series Station. In December 2016 the stratification did not completely break down.
290 Although the water column was generally oxygenated, bottom O₂ concentrations were the lowest
291 observed during the past ten years. Considering the classical view of N₂O consumption via
292 denitrification under hypoxic and anoxic conditions, we inferred that denitrification accounted
293 for low N₂O concentrations in the bottom layer. However, the question still remains where the
294 low-N₂O-concentration water in the upper layers came from.

295 In September 2016, low N₂O concentrations were only observed in the bottom waters where the
296 anoxia occurred. However, the situation was different in the following months. During
297 October/November 2016, N₂O concentrations were homogeneously distributed in the water
298 column. Although the stratification gradually started to break down in late autumn, the density
299 gradient was still strong enough to keep the bottom waters at anoxic conditions and prevented
300 the low-N₂O-concentration to reach the surface. Thus we inferred that the unusual low N₂O
301 concentrations in the upper layers (above 20 m) were probably resulting from advection of
302 adjacent waters. Due to the fact that the upper layers were well-mixed and oxygenated, in situ
303 N₂O consumption in the water column could be neglected. We suggest therefore, that the N₂O
304 depleted waters were resulting from consumption of N₂O in bottom waters elsewhere and then
305 they were upwelled and transported to BE. Hence, N₂O consumption via denitrification might
306 have been, directly or indirectly, responsible for the low N₂O concentrations during October–
307 November 2016.

308 In December 2016, the bottom waters were ventilated with O₂. Although N₂O consumption by
309 denitrification should have been inhibited by the high concentrations of O₂ (Codispoti et al.,
310 2001), the N₂O concentrations did not restore to their normal level under suboxic conditions.
311 Since January 2017, the whole water column was well mixed and oxygenated. Usually a
312 significant nutrient supply could be observed starting in November (Fig. 4) as a result of
313 remineralization and vertical mixing, but the average NO₂[−] and NO₃[−] concentrations during
314 November 2016–April 2017 were 0.2 and 1.4 μM, respectively, which was about 50% and 60%
315 lower than in other years. Ammonium (NH₄⁺) and chlorophyll *a* concentrations during this
316 period were comparable to that of other years (Fig. S1). Secchi depth, a proxy of water
317 transparency, was 3.8 m in March 2017, which is only slightly lower compared to the monthly
318 average value for March (4.5±1.8 m). There is no exceptional spring algae bloom and thus we
319 infer that assimilative uptake of nutrients by phytoplankton was not responsible for the low
320 nutrients concentrations. The nutrient deficiency might be attributed to enhanced nitrogen
321 removal processes like denitrification or anammox (Voss et al., 2005; Hietanen et al., 2007;
322 Hannig et al., 2007) during the prolonged period of anoxia in autumn 2016. During the low N₂O
323 event, we found that N₂O concentrations were positively correlated with both NO₂[−]
324 ($[N_2O]=7.02[NO_2^-]+7.36$, $R^2=0.29$, $n=24$, $p<0.01$) and NO₃[−] ($[N_2O]=0.80[NO_3^-]+7.36$, $R^2=0.51$,
325 $n=24$, $p<0.0001$). These results indicate that the development and maintenance of the low-N₂O-
326 concentration was closely associated with nutrient deficiency. Especially after the breakdown of

327 the stratification, when denitrification was no longer a significant N_2O sink, nutrients might have
328 become a limiting factor for N_2O production.

329 In general, the low- N_2O -concentration event during October 2016–April 2017 can be divided
330 into two parts: in the stratified waters during October–November 2016, O_2 played a dominant
331 role and N_2O was consumed via denitrification under anoxic conditions. In the well-mixed water
332 column during December 2016–April 2017, nutrient deficiency seemed to have constrained N_2O
333 production via nitrification under suboxic/oxic conditions.

334 In recent years a novel biological N_2O consumption pathway, called N_2O fixation, which
335 transforms N_2O into particulate organic nitrogen via its assimilation, has been reported (Farías et
336 al., 2013). This process can take place under extreme environmental conditions even at very low
337 N_2O concentrations. Cornejo et al. (2015) reported that N_2O fixation might play a major role in
338 the coastal zone off central Chile where seasonally occurring surface N_2O undersaturation was
339 observed. The relatively high N_2 fixation rates in the Baltic Sea (Sohm et al., 2011) highlight the
340 potential role of N_2O fixation (Farías et al., 2013). However, we cannot quantify the role of
341 biological N_2O fixation for the N_2O depletion in the Baltic Sea due to the absence of N_2O
342 assimilation measurements.

343 **3.4.2 High N_2O concentrations in November 2017**

344 High N_2O concentrations were observed at the BE Time-Series Station in November 2017. The
345 average value reached $35.4 \pm 1.5 \text{ nM}$, which was the highest concentration measured during the
346 entire sampling period from 2005 to 2017. Dissolved N_2O was homogeneously distributed in the
347 water column, but this event did not last long. In December, dissolved N_2O returned to normal
348 levels and the average concentration in the water column was comparable to that of other years.
349 Average N_2O saturation in November 2017 was $322 \pm 10\%$, which was also the highest for the
350 past 12.5 years. This value was much higher than the maximum surface N_2O saturation reported
351 by Rönner (1983) in the central Baltic Sea, but was comparable to the results observed in the
352 southern Baltic Sea (312%, Bange et al., 1998). Bange et al. (1998) linked the enhanced N_2O
353 concentrations to riverine runoff because those samples were collected in an estuarine area,
354 however, the riverine influence around the BE Time-Series Station is negligible. As a result, the
355 impact of fresh water input can be excluded.

356 Dissolved O_2 seemed to play a dominant role in the high N_2O concentrations. Enhanced N_2O
357 production usually occurred at the oxic/anoxic interface, which was closely linked to the
358 development of water column stratification. In general the breakdown of the stratification is
359 faster than its establishment at the BE Time-Series Station. As a result, it took about half a year
360 for bottom O_2 saturation to gradually decrease from ~80% to almost 0% (i.e. anoxia), but only
361 two months to restore normal saturation level in 2010 (Fig. 6). In late autumn, surface water
362 penetrated into the deep layers via vertical mixing and eroded the oxic/anoxic interface. The
363 entire water column quickly became oxygenated and the enhanced N_2O production was stopped.

364 Hypoxia/anoxia at BE is usually observed in the bottom waters in autumn, but in September
365 hypoxic water (O_2 saturation < 20 %, which was close to the criterion for hypoxia, see
366 Naqvi et al., 2010) was found in the subsurface layer (10 m) as well. Surface O_2 saturation was
367 only ~50%, which was the lowest during the sampling period 2005–2017. The density gradient
368 of the water column in September 2017 was much lower than in other years. These results
369 indicate the occurrence of an upwelling event at BE Time-Series Station in autumn 2017, which
370 might be a result of the saline water inflow from the North Sea considering the change of salinity
371 in the water column (Fig. S1). Strong vertical mixing has interrupted the hypoxia/anoxia and
372 bottom O_2 saturation reached ~60% in October 2017. The presence of O_2 prevented N_2O
373 consumption via denitrification, as a result, we did not observe a significant N_2O decline during
374 that period (Fig. 5).

375 Considering the fact that a significant autumn algae bloom was observed in autumn 2017 (as
376 indicated by high chlorophyll a concentrations, see Fig. S1), severe O_2 depletion in the bottom
377 water could be expected. Although the bottom O_2 saturation was only slightly lower in
378 November than in October, we speculate that even lower O_2 saturation (but not anoxia) might
379 have occurred between October and November. The “W-shaped” O_2 saturation curve (see Fig. 6)
380 suggests that the stratification did not completely break down in October and that there might
381 have been a reestablishment of the oxic/anoxic interface providing favorable conditions for
382 enhanced N_2O production. Due to the degradation of organic nitrogen, NH_4^+ is released from the
383 sediment into bottom waters (Dale et al., 2011), especially in autumn when O_2 is low (Fig. S2).
384 NH_4^+ concentrations in November 2017 were lower than in other years (Fig. S1), and NO_2^-
385 concentrations were higher (Fig. 5), indicating that nitrification occurred in bottom waters. To
386 this end, we suggest that the reestablishment of the oxic/anoxic interface promoted ammonium
387 oxidation (the first step of nitrification). In this case, N_2O could have temporary accumulated
388 because its consumption via denitrification was blocked. Meanwhile, the relatively low density
389 gradient (i.e. low stratification) allowed upward mixing of the excess N_2O to the surface.
390 However, we inferred that that this phenomenon would only last for a few days due to the rapid
391 breakdown of stratification at the BE Time-Series Station.

392 Due to the development of the pronounced stratification, the oxic/anoxic interface prevailed in
393 summer/early autumn as well, but we did not observe N_2O accumulation during these months.
394 One of the potential explanations is that enhanced N_2O production only took place within
395 particular depths where strong O_2 gradient existed, but our vertical sampling resolution was too
396 low to capture this event. Also enhanced N_2O production might be covered by the weak mixing
397 which brought low- N_2O water from the bottom to the surface.

398 The upwelling event played different roles in autumn 2016 and 2017. First, upwelling took place
399 somewhere else but at BE because of the strong density and O_2 gradient in the water column
400 during autumn 2016. Second, bottom water remained anoxic in autumn 2016, while the
401 compensated water for upwelling in 2017 penetrated through stratification and brought O_2 into
402 bottom water (Fig. 6), which caused enhanced N_2O production. Similarly, autumn upwelling was

403 detected in 2011 and 2012 when we found relatively low O₂ concentrations in subsurface layers
404 (10 m) (Fig. 2), but we did not observe an increase in bottom O₂ concentrations and N₂O
405 concentrations remained low during that time. These upwelling events seem to be driven by
406 saline water inflow considering the prominent increase in salinity, but the mechanism dominates
407 O₂ input into bottom water before the stratification break down remains unclear.

408 3.5 Flux density

409 During 2005–2017, surface N₂O saturations at the BE Time-Series Station varied from 56 % to
410 314 % (69–194 % excluding the extreme values discussed in Sect. 3.4), with an average of
411 111±30 % (111±20 % without the extreme values). Generally the water column at BE was
412 slightly oversaturated with N₂O. Our results are in good agreement with the estimated mean
413 surface N₂O saturation for the European shelf (113%, Bange, 2006).

414 We found a weak seasonal cycle for surface N₂O concentrations, with high N₂O concentrations
415 occurring in winter/early spring and low concentrations occurring in summer/autumn, but no
416 such cycle for N₂O saturation (Fig. 4; Fig. 7). The seasonality in concentration but not in
417 saturation could be largely attributed to the effect of temperature on N₂O solubility: In summer
418 when surface N₂O concentrations are low, N₂O saturations are increased by the relative high
419 temperature; and vice versa in winter. Although salinity also affects N₂O solubility, its
420 contribution is negligible compared to temperature. Temperature alleviated the fluctuation of
421 surface N₂O saturation and thus affected the sea-to-air N₂O fluxes. We conclude that temperature
422 plays a modulating role for N₂O emissions.

423 The wind speed (u₁₀) at the BE Time-Series Station ranged from 1.1 to 14.0 m s⁻¹, with an
424 average of 7.0±2.7 m s⁻¹. N₂O flux densities varied from -19.0 to 105.7 µmol m⁻² d⁻¹ (-14.1–30.3
425 µmol m⁻² d⁻¹ without the extreme values), with an average of 3.5±12.4 µmol m⁻² d⁻¹ (3.3±6.5
426 µmol m⁻² d⁻¹ without the extreme values). However, the true emissions might have been
427 underestimated because our monthly sampling resolution is insufficient to capture short-term
428 N₂O accumulation events due to the fast breakdown of stratification in autumn. The uncertainty
429 introduced in the flux density computation was estimated to be 20% (Wanninkhof, 2014). The
430 flux densities at the BE Time-Series Station are comparable to those reported by Bange et al.
431 (1998, 0.4–7.1 µmol m⁻² d⁻¹) from the coastal waters of the southern Baltic Sea, but are slightly
432 lower than the average N₂O flux density reported by Rönner (1983, 8.9 µmol m⁻² d⁻¹) from the
433 central Baltic Sea. Please note that the results of Rönner (1983) were obtained only from the
434 summer season and therefore are probably biased because of missing seasonality.

435 In December 2014, a strong saline water inflow from the North Sea was observed, which was the
436 third strongest ever recorded (Mohrholz et al., 2015). Although the salinity in December 2014
437 was comparable to other years, a remarkable increase in salinity was observed in the following
438 several months. However, we did not detect a significant N₂O anomaly or enhanced emission
439 during that time. Similarly, Walter et al. (2006) investigated the impact of the North Sea water

440 inflow on N₂O production in the southern and central Baltic Sea in 2003. The oxygenated water
441 ventilated the deep Baltic Sea and shifted anoxic to oxic condition which led to enhanced N₂O
442 production, but the accumulated N₂O was unlikely to reach the surface due to the presence of a
443 permanent halocline (Walter et al., 2006).

444 Although we observed extremely high N₂O flux density in November 2017, the low-N₂O-
445 concentration (<10 nM) events have become more and more frequent during the past ten years
446 (Fig. 2). This phenomenon seldom occurred before 2011, but remarkable low N₂O
447 concentrations can be seen in 2011 and 2013, and to a less extent in 2012 and 2014. Similar
448 events lasted for several months in 2015 and for even more than half a year during 2016–2017.
449 The most striking was that the low-N₂O-concentration water was not only detected in bottom
450 waters, but also at surface which would significantly impact the air-sea N₂O flux densities.
451 Although the MKT result did not give a significant trend for the N₂O flux densities, the data
452 presented in Fig. 8 suggest a potential decline of N₂O flux densities from the coastal Baltic Sea,
453 challenging the conventional view that N₂O emissions from coastal waters would most probably
454 increase in the future, which was based on the hypothesis of increasing nutrient loads into coastal
455 waters. Due to an effective reduction of nutrient inputs, the severe eutrophication condition in the
456 Baltic Sea has been alleviated (HELCOM, 2018b), but ongoing deoxygenation points to the fact
457 that it will take a longer time for coastal ecosystems to feedback to reduced nutrient inputs
458 because other environmental changes such as warming may override decreasing eutrophication
459 (Lennartz et al., 2014).

460 **4. Conclusions**

461 The seasonal and inter-annual N₂O variations at the BE Time-Series Station from July 2005 to
462 December 2017 were driven by the prevailing O₂ regime and nutrients availability. We found a
463 pronounced seasonal cycle with low N₂O concentrations (undersaturations) occurring in
464 hypoxic/anoxic bottom waters in autumn and enhanced concentrations (supersaturations) all over
465 the water column in winter/early spring. Significant decreasing trends for N₂O concentrations
466 were found for few months, while most of the year, no significant trend was detectable in the
467 period of 2005–2017. During 2005–2017, no significant trends were present for O₂ and nutrients
468 either, but these parameters all show significant decreasing trends on longer time scales (~60
469 years) at BE. Our results show the strong coupling of N₂O with O₂ and nutrient concentrations,
470 and suggest similar changes on comparable time scales. Further monitoring of N₂O at BE time
471 series station is thus important to detect changes. Further studies on N₂O
472 production/consumption by nitrification and denitrification and analysis of the characteristic N₂O
473 isotope signature might be very helpful to decipher the potential roles of O₂/nutrients for N₂O
474 cycling.

475 Temperature plays a modulating role for the N₂O emission at the BE Time-Series Station.
476 Although the hydrographic condition at BE is generally dominated by the inflow of saline North
477 Sea water, this did not affect N₂O production and its emissions to the atmosphere. It seems that

478 events with extremely low N₂O concentrations and thus reduced N₂O emissions became more
479 frequent in recent years. Our results provide a new perspective onto potential future patterns of
480 N₂O distribution and emissions in coastal areas. Continuous measurement at the BE Time-Series
481 Station with a focus on late autumn would be of great importance for monitoring and
482 understanding the future changes of N₂O concentrations and emissions in the southwestern Baltic
483 Sea.

484 **Data availability**

485 Data are available from the Boknis Eck Database: www.bokniseck.de

486 **Author contribution**

487 X.M., S.T.L. and H.W.B. designed the study and participated in the fieldwork. N₂O
488 measurements and data processing were done by X.M. and S.T.L. X.M. wrote the manuscript
489 with contributions from S.T.L. and H.W.B.

490 **Competing interests**

491 The authors declare that they have no conflict of interest.

492 **Acknowledgments**

493 The authors thank the captain and crew of the RV *Littorina* and *Polarfuchs* as well as the many
494 colleagues and numerous students who helped with the sampling and measurements of the BE
495 time-series through various projects. Special thanks to A. Kock for her help with sampling,
496 measurements and data analysis. The time-series at BE was supported by DWK
497 Meeresforschung (1957–1975), HELCOM (1979–1995), BMBF (1995–1999), the Institut für
498 Meereskunde (1999–2003), IfM-GEOMAR (2004–2011) and GEOMAR (2012–present). The
499 current N₂O measurements at BE are supported by the EU BONUS INTEGRAL project which
500 receives funding from BONUS (Art 185), funded jointly by the EU, the German Federal
501 Ministry of Education and Research, the Swedish Research Council Formas, the Academy of
502 Finland, the Polish National Centre for Research and Development, and the Estonian Research
503 Council. The Boknis Eck Time-Series Station (www.bokniseck.de) is run by the Chemical
504 Oceanography Research Unit of GEOMAR, Helmholtz Centre for Ocean Research Kiel. Data
505 from BE are available from www.bokniseck.de/database-access. The N₂O data presented here
506 have been archived in MEMENTO (the MarinE MethanE and NiTrous Oxide database:
507 <https://memento.geomar.de>). X. Ma is grateful to the China Scholarship Council for providing
508 financial support (File No. 201306330056) and the EU BONUS INTEGRAL project.

509 **References**

510 Bange, H. W.: Nitrous oxide and methane in European coastal waters, *Estuar. Coast. Shelf S.*, 70,
511 361–374, <https://doi.org/10.1016/j.ecss.2006.05.042>, 2006.

512 Bange, H. W., Dahlke, S., Ramesh, R., Meyer-Reil, L. A., Rapsomanikis, S., and Andreae, M. O.:
513 Seasonal study of methane and nitrous oxide in the coastal waters of the southern Baltic Sea,
514 *Estuar. Coast. Shelf S.*, 47, 807–817, <https://doi.org/10.1006/ecss.1998.0397>, 1998.

515 Battaglia, G. and Joos, F.: Marine N_2O emissions from nitrification and denitrification
516 constrained by modern observations and projected in multimillennial global warming simulations,
517 *Global Biogeochem. Cy.*, 32, 92–121, <https://doi.org/10.1002/2017GB005671>, 2018.

518 Bonin, P., Gilewicz, M., and Bertrand, J. C.: Effects of oxygen on each step of denitrification on
519 *Pseudomonas nautica*, *Can. J. Microbiol.*, 35, 1061–1064, <https://doi.org/10.1139/m89-177>, 1989.

520 Breitburg, D., Levin, L. A., Oschlies, A., Grégoire, M., Chavez, F. P., Conley, D. J., Garçon, V.,
521 Gilbert, D., Gutiérrez, D., Isensee, K., Jacinto, G. S., Limburg, K. E., Montes, I., Naqvi, S. W. A.,
522 Pitcher, G. C., Rabalais, N. N., Roman, M. R., Rose, K. A., Seibel, B. A., Telszewski, M.,
523 Yasuhara, M., and Zhang, J.: Declining oxygen in the global ocean and coastal waters, *Science*,
524 359, eaam7240, <http://dx.doi.org/10.1126/science.aam7240>, 2018.

525 Capelle, D. W., Hawley, A. K., Hallam, S. J., and Tortell, P. D.: A multi-year time-series of N_2O
526 dynamics in a seasonally anoxic fjord: Saanich Inlet, British Columbia, *Limnol. Oceanogr.*, 63,
527 524–539, <https://doi.org/10.1002/lno.10645>, 2018.

528 Carstensen, J., Andersen, J. H., Gustafsson, B. G., and Conley, D. J.: Deoxygenation of the
529 Baltic Sea during the last century, *P. Natl. Acad. Sci. USA*, 111, 5628–5633,
530 <https://doi.org/10.1073/pnas.1323156111>, 2014.

531 Codispoti, L. A., Elkins, J. W., Yoshinari, T., Fredrich, G., Sakamoto, C., and Packard, T.: On
532 the nitrous oxide flux from productive regions that contain low oxygen waters, in: *Oceanography*
533 of the Indian Ocean, edited by Desai, B. N., Oxford Univ. Press, New York, 271–284, 1992.

534 Codispoti, L. A., Brandes, J. A., Christensen, J. P., Devol, A. H., Naqvi, S. W. A., Paerl, H. W.,
535 and Yoshinari, T.: The oceanic fixed nitrogen and nitrous oxide budgets: Moving targets as we
536 enter the anthropocene? *Sci. Mar.*, 65, 85–105, <https://doi.org/10.3989/scimar.2001.65s285>, 2001.

537 Codispoti, L. A., Yoshinari, T., and Devol, A. H.: Suboxic respiration in the oceanic water
538 column, in: *Respiration in aquatic ecosystems*, edited by del Giorgio, P. A. and Williams, P. J.,
539 Oxford Univ. Press, New York, 225–247, 2005.

540 Conley, D. J., Carstensen, J., Aigars, J., Axe, P., Bonsdorff, E., Eremina, T., and Lannegren, C.:
541 Hypoxia is increasing in the coastal zone of the Baltic Sea, *Environ. Sci. Technol.*, 45, 6777–
542 6783, doi: 10.1021/es201212r, 2011.

543 Cornejo, M., Murillo, A. A., and Farías, L.: An unaccounted for N_2O sink in the surface water of
544 the eastern subtropical South Pacific: Physical versus biological mechanisms, *Prog. Oceanogr.*,
545 137, 12–23, <https://doi.org/10.1016/j.pocean.2014.12.016>, 2015.

546 Dale, A. W., Sommer, S., Bohlen, L., Treude, T., Bertics, V. J., Bange, H. W., Pfannkuche, O.,
547 Schorp, T., Mattsdotter, M., and Wallmann, K.: Rates and regulation of nitrogen cycling in
548 seasonally hypoxic sediments during winter (Boknis Eck, SW Baltic Sea): Sensitivity to
549 environmental variables, *Estuar. Coast. Shelf S.*, 95, 14–28,
550 <https://doi.org/10.1016/j.ecss.2011.05.016>, 2011.

551 Ducklow, H. W., Doney, S. C., and Steinberg, D. K.: Contributions of long-term research and
552 time-series observations to marine ecology and biogeochemistry, *Annu. Rev. Mar. Sci.*, 1, 279–
553 302, <https://doi.org/10.1146/annurev.marine.010908.163801>, 2009.

554 Farías, L., Castro-González, M., Cornejo, M., Charpentier, J., Faúndez, J., Boontanon, N., and
555 Yoshida, N.: Denitrification and nitrous oxide cycling within the upper oxycline of the eastern
556 tropical South Pacific oxygen minimum zone, *Limnol. Oceanogr.*, 54, 132–144,
557 <https://doi.org/10.4319/lo.2009.54.1.0132>, 2009.

558 Farías, L., Faúndez, J., Fernández, C., Cornejo, M., Sanhueza, S., and Carrasco, C.: Biological
559 N_2O fixation in the Eastern South Pacific Ocean and marine cyanobacterial cultures, *Plos one*, 8,
560 e63956, <https://doi.org/10.1371/journal.pone.0063956>, 2013.

561 Farías, L., Besoain, V., and García-Loyola, S.: Presence of nitrous oxide hotspots in the coastal
562 upwelling area off central Chile: an analysis of temporal variability based on ten years of a
563 biogeochemical time series, *Environ. Res. Lett.*, 10, 044017, doi:10.1088/1748-
564 9326/10/4/044017, 2015.

565 Goreau, T. J., Kaplan, W. A., Wofsy, S. C., McElroy, M. B., Valois, F. W., and Watson, S.W.:
566 Production of NO_2^- and N_2O by nitrifying bacteria at reduced concentrations of oxygen, *Appl.*
567 *Environ. Microb.*, 40, 526–532, 1980.

568 Grasshoff, K., Kremling, K., and Ehrhardt, M.: *Methods of seawater analysis*, 3rd edition,
569 WILEY-VCH, Weihheim, Germany, 1999.

570 Hannig, M., Lavik, G., Kuypers, M. M. M., Woebken, D., Martens-Habbema, W., and Jürgens,
571 K.: Shift from denitrification to anammox after inflow events in the central Baltic Sea, *Limnol.*
572 *Oceanogr.*, 52, 1336–1345, 2007.

573 Hansen, H. P., Giesenhagen, H. C., and Behrends, G.: Seasonal and long-term control of bottom
574 water oxygen deficiency in a stratified shallow-coastal system, *ICES J. Mar. Sci.*, 56, 65–71, doi:
575 10.1006/jmsc.1999.0629, 1999.

576 HELCOM: Sources and pathways of nutrients to the Baltic Sea, *Baltic Sea Environ. Proc.*, 153,
577 2018a.

578 HELCOM: State of the Baltic Sea - Second HELCOM holistic assessment 2011–2016, *Baltic*
579 *Sea Environ. Proc.*, 155, <http://stateofthebalticsea.helcom.fi/>, 2018b.

580 Hietanen, S., and Lukkari, K.: Effects of short-term anoxia on benthic denitrification, nutrient
581 fluxes and phosphorus forms in coastal Baltic sediment, *Aquat. Microb. Ecol.*, 49, 293–302,
582 <https://doi.org/10.3354/ame01146>, 2007.

583 Hsu, S. A., Meindl, E. A., and Gilhousen, D. B.: Determining the power-law wind-profile
584 exponent under near-neutral stability conditions at sea, *J. Appl. Meteorol.*, 33, 757–765,
585 [https://doi.org/10.1175/1520-0450\(1994\)033<0757:DTPLWP>2.0.CO;2](https://doi.org/10.1175/1520-0450(1994)033<0757:DTPLWP>2.0.CO;2), 1994.

586 IPCC: Climate Change 2013: The physical science basis. Contribution of Working Group I to the
587 fifth assessment report of the Intergovernmental Panel on Climate Change, Cambridge
588 University Press, Cambridge, UK and New York, NY, 2013.

589 Landolfi, A., Somes, C. J., Koeve, W., Zamora, L. M., and Oschlies, A.: Oceanic nitrogen
590 cycling and N₂O flux perturbations in the Anthropocene, *Global Biogeochem. Cy.*, 31, 1236–
591 1255, doi:10.1002/2017GB005633, 2017.

592 Lennartz, S. T., Lehmann, A., Herrford, J., Malien, F., Hansen, H. P., Biester, H., and Bange, H.
593 W.: Long-term trends at the Boknis Eck time series station (Baltic Sea), 1957–2013: does
594 climate change counteract the decline in eutrophication? *Biogeosciences*, 11, 6323–6339,
595 <https://doi.org/10.5194/bg-11-6323-2014>, 2014.

596 Löscher, C. R., Kock, A., Könneke, M., LaRoche, J., Bange, H. W., and Schmitz, R. A.:
597 Production of oceanic nitrous oxide by ammonia-oxidizing archaea, *Biogeosciences*, 9, 2419–
598 2429, <https://doi.org/10.5194/bg-9-2419-2012>, 2012.

599 Kock, A., Arévalo-Martínez, D. L., Löscher, C. R., and Bange, H. W.: Extreme N₂O
600 accumulation in the coastal oxygen minimum zone off Peru, *Biogeosciences*, 13, 827–840, doi:
601 10.5194/bg-13-827-2016, 2016.

602 Kroeze, C., and Seitzinger, S. P.: Nitrogen inputs to rivers, estuaries and continental shelves and
603 related nitrous oxide emissions in 1990 and 2050: a global model, *Nutr. Cycl. Agroecosys.*, 52,
604 195–212, 1998.

605 Kulkarni, A., and Von Storch, H.: Monte Carlo experiments on the effect of serial correlation on
606 the Mann-Kendall test of trend, *Meteorol. Z.*, 4, 82–85, 1995.

607 Martinez-Rey, J., Bopp, L., Gehlen, M., Tagliabue, A., and Gruber, N.: Projections of oceanic
608 N₂O emissions in the 21st century using the IPSL Earth system model, *Biogeosciences*, 12,
609 4133–4148, doi: 10.5194/bg-12-4133-2015, 2015.

610 Meier, H. M., Väli, G., Naumann, M., Eilola, K., and Frauen, C.: Recently accelerated oxygen
611 consumption rates amplify deoxygenation in the Baltic Sea, *J. Geophys. Res.-Oceans.*, 123,
612 3227–3240, <https://doi.org/10.1029/2017JC013686>, 2018.

613 Mohrholz, V., Naumann, M., Nausch, G., Krüger, S., and Gräwe, U.: Fresh oxygen for the Baltic
614 Sea-An exceptional saline inflow after a decade of stagnation, *J. Marine Syst.*, 148, 152-166,
615 <https://doi.org/10.1016/j.jmarsys.2015.03.005>, 2015.

616 Naqvi, S. W. A., Jayakumar, D. A., Narvekar, P. V., Naik, H., Sarma, V. V. S. S., D'souza, W.,
617 Joseph, S., and George, M. D.: Increased marine production of N_2O due to intensifying anoxia
618 on the Indian continental shelf, *Nature*, 408, 346, 2000.

619 Naqvi, S.W.A., Bange, H.W., Farías, L., Monteiro, P.M.S., Scranton, M.I., and Zhang, J.: Marine
620 hypoxia/anoxia as a source of CH_4 and N_2O , *Biogeosciences*, 7, 2159–2190,
621 <https://doi.org/10.5194/bg-7-2159-2010>, 2010.

622 Nevison, C., Butler, J. H., and Elkins, J. W.: Global distribution of N_2O and the $\Delta\text{N}_2\text{O}$ -AOU
623 yield in the subsurface ocean, *Global Biogeochem. Cy.*, 17,
624 <https://doi.org/10.1029/2003GB002068>, 2003.

625 Nightingale, P., G. Malin, C. S. Law, A. J. Watson, P. S. Liss, M. I. Liddicoat, J. Boutin, and R.
626 C. Upstill-Goddard: In situ evaluation of air-sea gas exchange parameterizations using novel
627 conservative and volatile tracers, *Global Biogeochem. Cy.*, 14, 373–387,
628 <https://doi.org/10.1029/1999GB900091>, 2000.

629 Rabalais, N. N., Cai, W.-J., Carstensen, J., Conley, D. J., Fry, B., Hu, X., Quinones-Rivera, Z.,
630 Rosenberg, R., Slomp, C. P., Turner, R. E., Voss, M., Wissel, B., and Zhang, J.: Eutrophication-
631 driven deoxygenation in the coastal ocean, *Oceanography*, 27, 172–183,
632 <https://doi.org/10.5670/oceanog.2014.21>, 2014.

633 Ravishankara, A. R., Daniel J., S., and Portmann, R. W.: Nitrous oxide (N_2O): the dominant
634 ozone-depleting substance emitted in the 21st century, *Science*, 326, 123–125, doi:
635 10.1126/science.1176985, 2009.

636 Rönner, U.: Distribution, production and consumption of nitrous oxide in the Baltic Sea,
637 *Geochim. Cosmochim. Ac.*, 47, 2179–2188, [https://doi.org/10.1016/0016-7037\(83\)90041-8](https://doi.org/10.1016/0016-7037(83)90041-8),
638 1983.

639 Schlittgen, R., and Streitberg, B. H. J.: *Zeitreihenanalyse*, Oldenburg Wissenschaftsverlag,
640 Munich, Germany, 2001.

641 Seitzinger, S. P., and Kroeze, C.: Global distribution of nitrous oxide production and N inputs in
642 freshwater and coastal marine ecosystems, *Global Biogeochem. Cy.*, 12, 93–113, 1998.

643 Siedler, G., and Peters, H.: Properties of sea water, in: Oceanography, edited by Sündermann J.,
644 Springer, Berlin, Heidelberg, 233–264, 1986.

645 Simone, F.: Mann-Kendall Test, MathWorks,
646 <https://ww2.mathworks.cn/matlabcentral/fileexchange/25531-mann-kendall-test>, 2009.

647 Sohm, J. A., Webb, E. A., and Capone, D. G.: Emerging patterns of marine nitrogen fixation, *Nat.*
648 *Rev. Microbiol.*, 9, 499–508, doi: 10.1038/nrmicro2594, 2011.

649 Torrence, C., and Compo, G. P.: A practical guide to wavelet analysis, *B. Am. Meteorol. Soc.*,
650 79, 61–78, [https://doi.org/10.1175/1520-0477\(1998\)079<0061:APGTWA>2.0.CO;2](https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2), 1998.

651 Torrence, C., and Compo, G. P.: Wavelet analysis, <http://paos.colorado.edu/research/wavelets/>,
652 2004.

653 Voss, M., Emeis, K. C., Hille, S., Neumann, T., and Dippner, J. W.: Nitrogen cycle of the Baltic
654 Sea from an isotopic perspective, *Global Biogeochem. Cy.*, 19, doi: 10.1029/2004GB002338,
655 2005.

656 Walter, S., Breitenbach, U., Bange, H. W., Nausch, G., and Wallace, D. W.: Distribution of N₂O
657 in the Baltic Sea during transition from anoxic to oxic conditions, *Biogeosciences*, 3, 557–570,
658 <https://doi.org/10.5194/bg-3-557-2006>, 2006.

659 Wanninkhof, R.: Relationship between wind speed and gas exchange over the ocean revisited,
660 *Limnol. Oceanogr.: Methods*, 12, 351–362, <https://doi.org/10.4319/lom.2014.12.351>, 2014.

661 Weiss, R. F., and Price, B. A.: Nitrous oxide solubility in water and seawater, *Mar. Chem.*, 8,
662 347–359, [https://doi.org/10.1016/0304-4203\(80\)90024-9](https://doi.org/10.1016/0304-4203(80)90024-9), 1980.

663 Wilson, S. T., Ferrón, S., and Karl, D. M.: Interannual variability of methane and nitrous oxide in
664 the North Pacific Subtropical Gyre, *Geophys. Res. Lett.*, 44, 9885–9892,
665 <https://doi.org/10.1002/2017GL074458>, 2017.

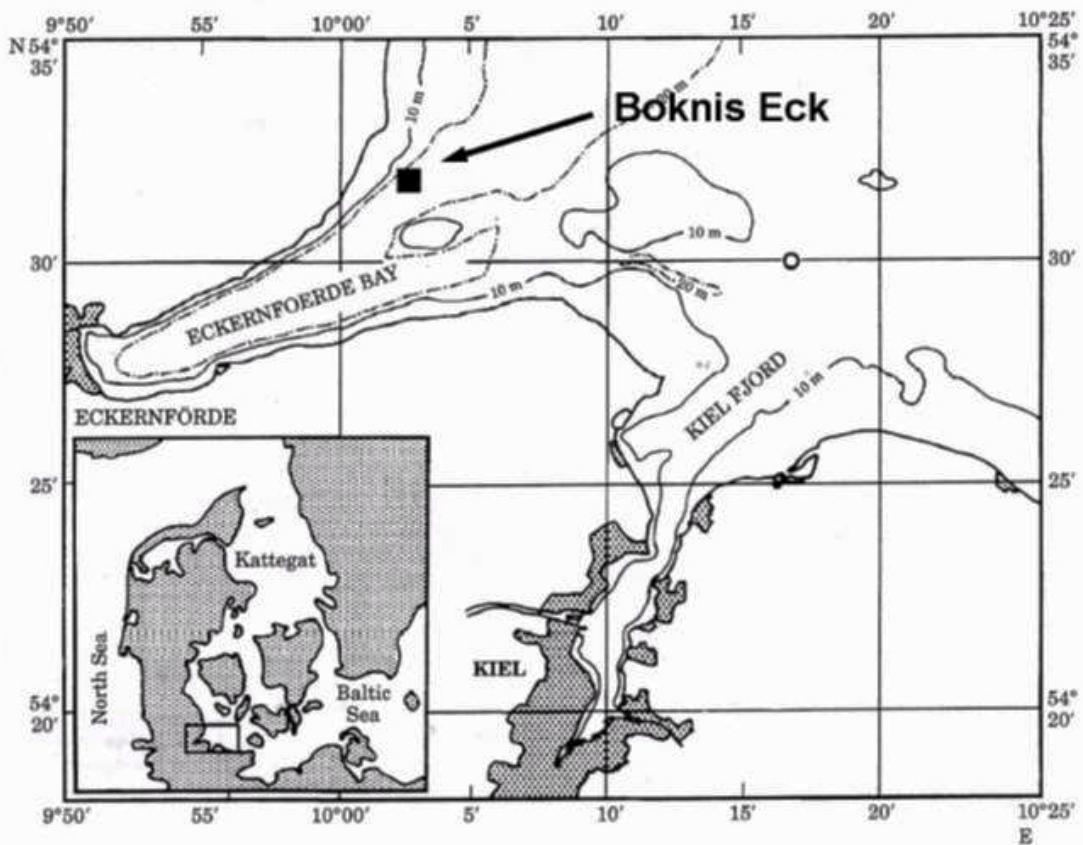
666 Xu, Z. X., Takeuchi, K., and Ishidaira, H.: Monotonic trend and step changes in Japanese
667 precipitation, *J. Hydrol.*, 279, 144–150, [https://doi.org/10.1016/S0022-1694\(03\)00178-1](https://doi.org/10.1016/S0022-1694(03)00178-1), 2003.

668 Yang, D., Li, C., Hu, H., Lei, Z., Yang, S., Kusuda, T., Koike, T., and Musiake, K.: Analysis of
669 water resources variability in the Yellow river of China during the last half century using the
670 historical data, *Water Resour. Res.*, 40, 1–12, <https://doi.org/10.1029/2003WR002763>, 2004.

671 Zhang, G.-L., Zhang, J., Liu, S.-M., Ren, J.-L., and Zhao, Y.-C.: Nitrous oxide in the Changjiang
672 (Yangtze River) estuary and its adjacent marine area: Riverine input, sediment release and
673 atmospheric fluxes, *Biogeosciences*, 7, 3505–3516, <https://doi.org/10.5194/bg-7-3505-2010>,
674 2010.

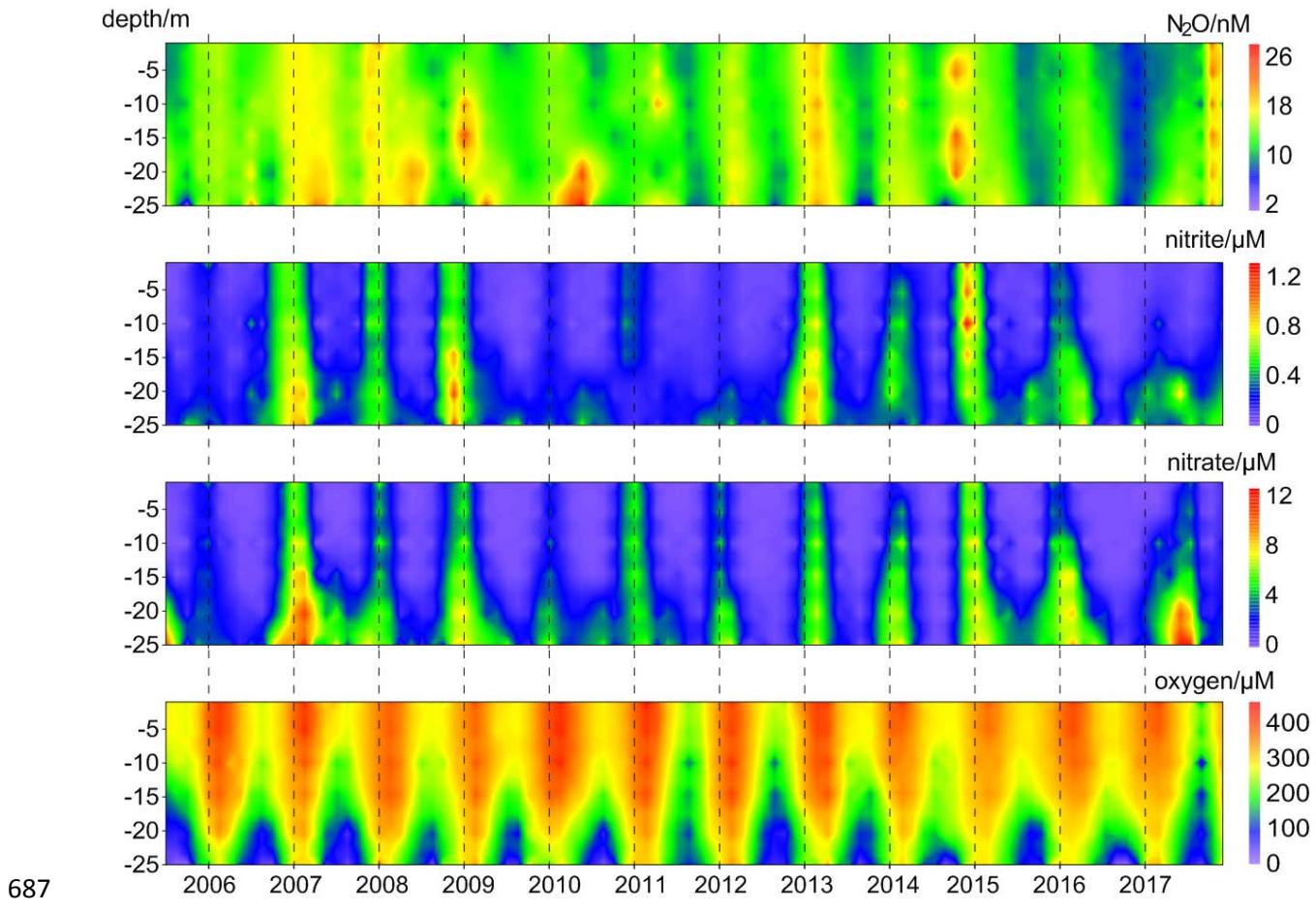
675 Table 1. The results of the Mann-Kendall test for the surface and bottom N₂O concentrations and
676 saturations of the 12 individual months.

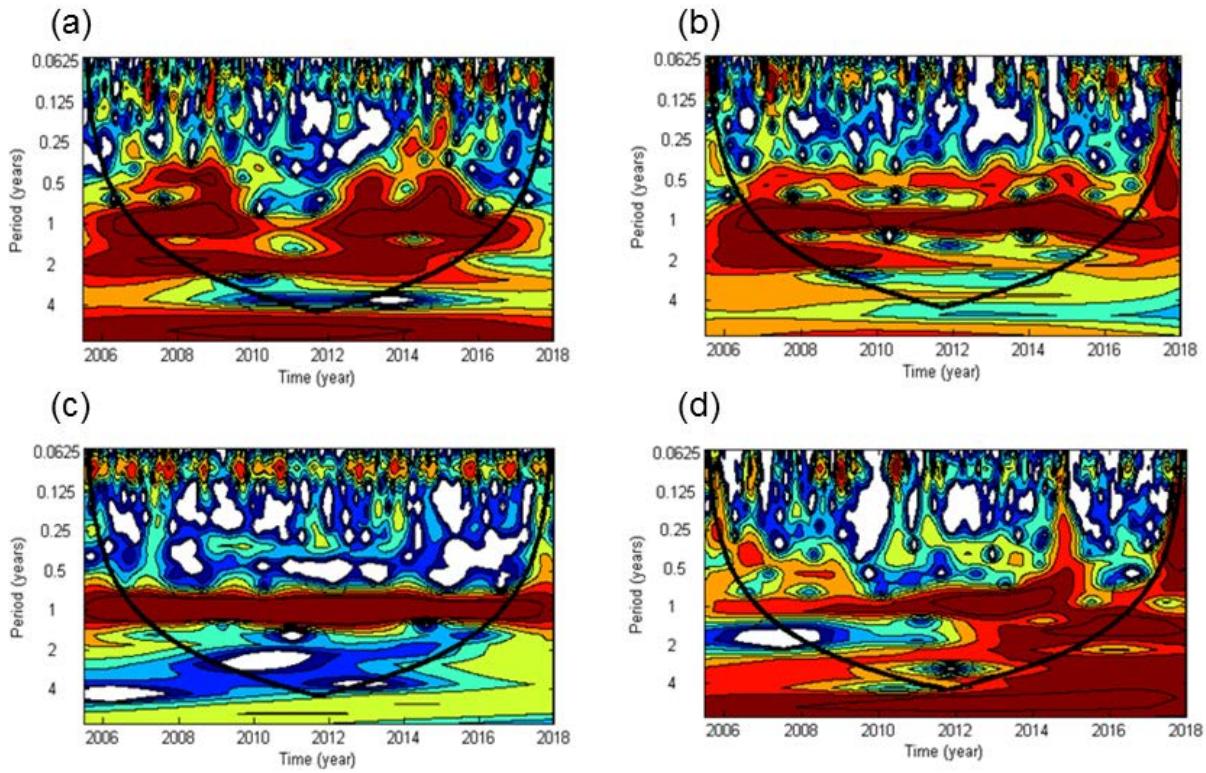
677 Table 1a. MKT results for N₂O concentrations


Month	January		February		March		April	
Depth/m	1	25	1	25	1	25	1	25
p	0.09	0.19	0.11	0.03(-)	0.19	0.63	0.09	0.30
Month	May		June		July		August	
Depth/m	1	25	1	25	1	25	1	25
p	0.63	0.24	0.15	0.95	0.16	0.16	0.20	0.03(-)
Month	September		October		November		December	
Depth/m	1	25	1	25	1	25	1	25
p	0.25	0.76	0.36	0.76	0.67	0.16	0.10	0.30

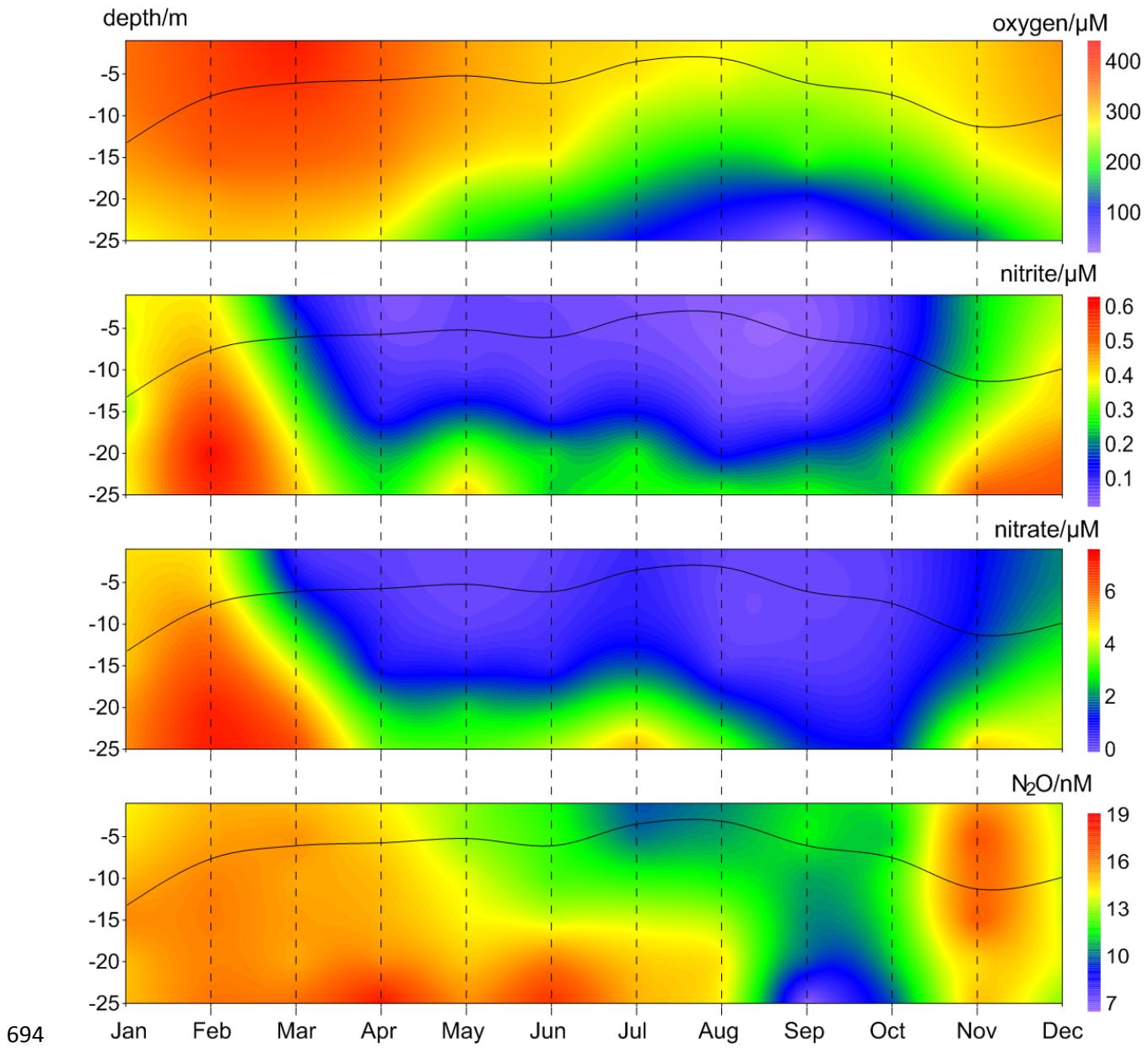
678
679

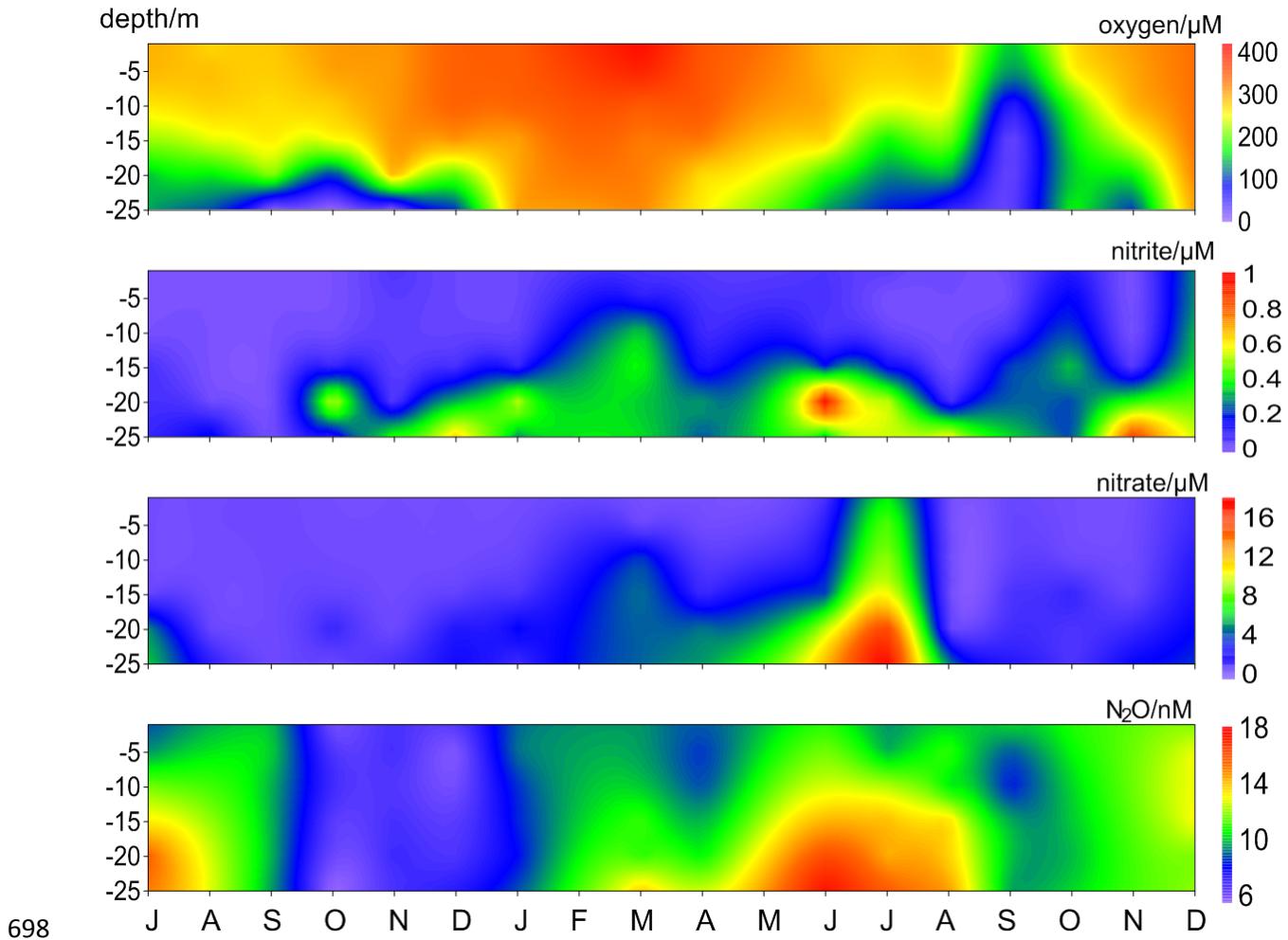
Table 1b. MKT results for N₂O saturations


Month	January		February		March		April	
Depth/m	1	25	1	25	1	25	1	25
p	0.37	0.24	0.15	0.15	0.19	0.63	0.11	0.19
Month	May		June		July		August	
Depth/m	1	25	1	25	1	25	1	25
p	0.19	1	0.37	0.54	0.10	0.43	0.20	0.02(-)
Month	September		October		November		December	
Depth/m	1	25	1	25	1	25	1	25
p	0.04(-)	0.85	0.06	0.43	0.20	0.03(-)	0.16	0.36

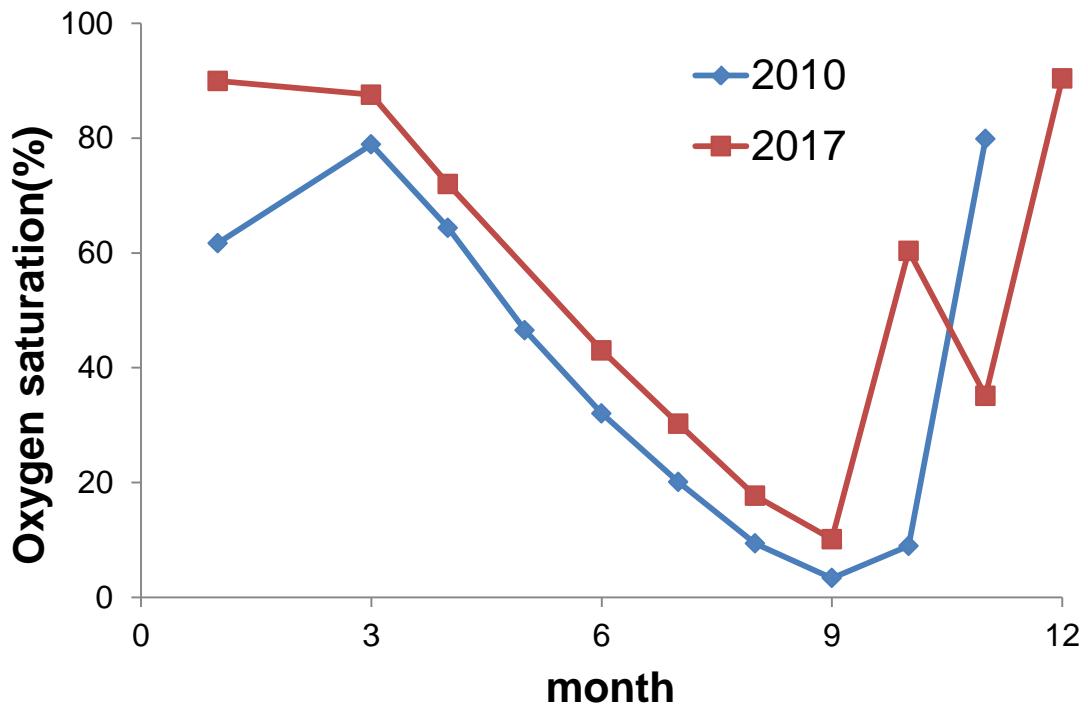

680
681 p indicates the p-value of the test, which is the probability, under the null hypothesis, of obtaining a value of
682 the test statistic as extreme or more extreme than the value computed from the sample.
683 (-) indicates a rejection of the null hypothesis at α significance level and a decreasing trend is detected.

684


685 Fig. 1 Location of the Boknis Eck Time-Series Station in the Eckernförde Bay, southwestern Baltic Sea. (Map
 686 from Hansen et al., 1999)



690


691 Fig. 3 Wavelet power spectra of NO_2^- (a), NO_3^- (b), dissolved O_2 (c) and N_2O (d) from the BE Time-Series
 692 Station. Red areas indicate high, blue indicate low power. The black conic line indicates the significant area
 693 where boundary effects can be excluded.

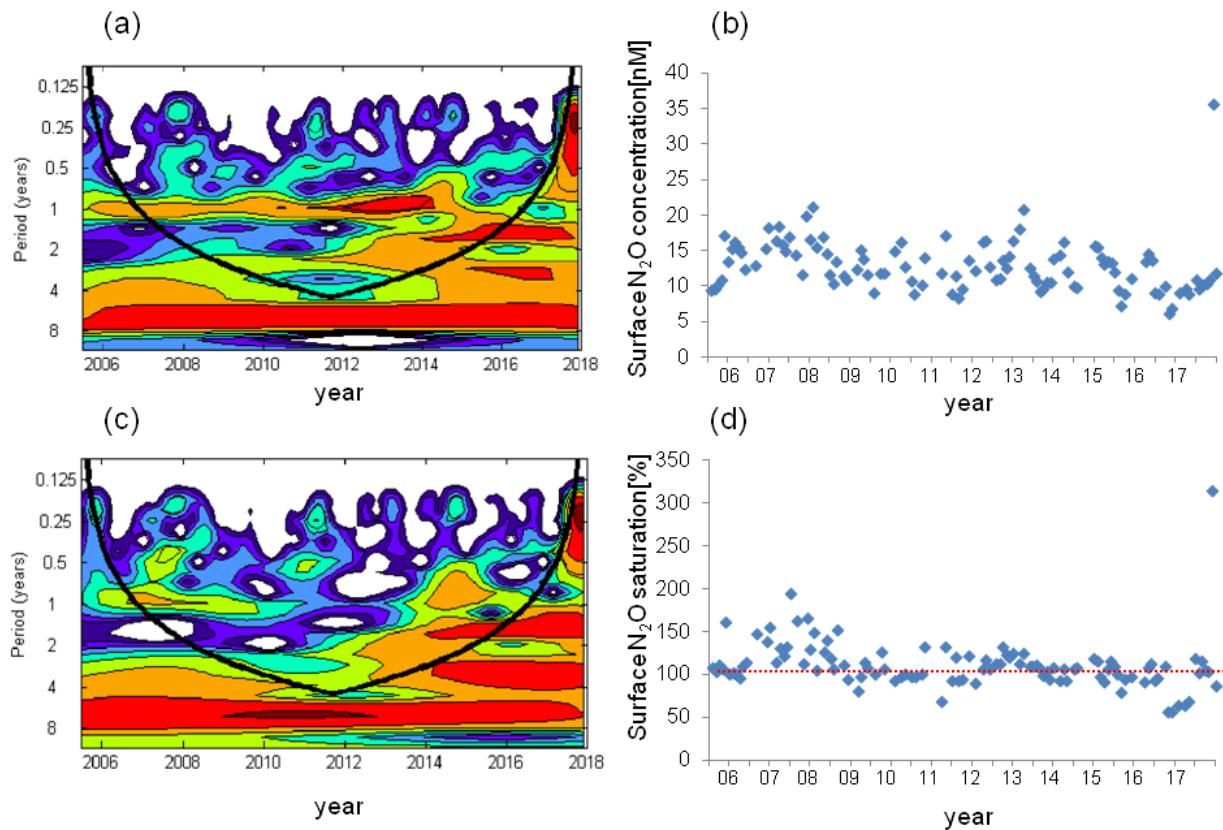
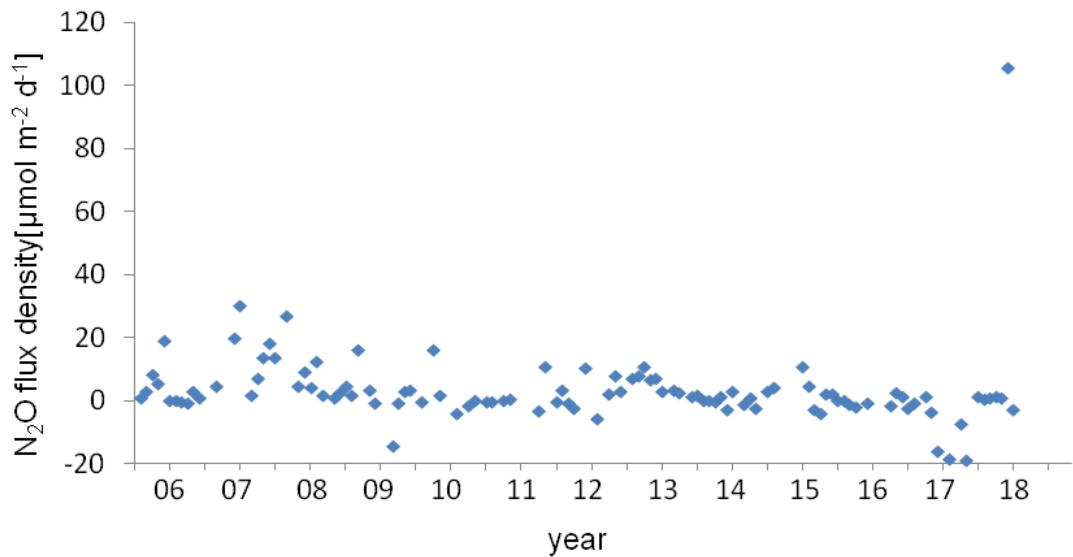

698
699
700
701

Fig. 5 Vertical distribution of dissolved O_2 , NO_2^- , NO_3^- , and N_2O from the BE Time-Series Station during July 2016–December 2017. Please note that the high N_2O concentrations in November 2017 were removed for better visualization.


702

703 Fig. 6 Variations of bottom O₂ saturation in 2010 (blue) and 2017 (red).

704

705 Fig. 7 Wavelet analysis and the variation of surface N_2O concentrations (a, b) and surface N_2O saturations (c,
706 d). The dashed red line in (d) indicates the saturation of 100%.

707

708 Fig. 8 Variation of N_2O flux density at the BE Time Series-Station during 2005–2017. Negative values
 709 indicated N_2O influx from the atmosphere and positive values indicated N_2O efflux to the atmosphere.