10

15

20

25

The Importance of Physiological, Structural and Trait

Responses to Drought Stress in Driving Spatial and Temporal

Variation in GPP across Amazon erestsLeafAreatndex

| = - |
Stress-Gradient

SophieFlackPrairt, Patrick Meit? Yadvinder Malhf, Thomas Luke Smallmaf Mathew

Williams®3

1 School of GeoSciences, University of Edinburgh, Edinburgh, UK

2 Research School of Biology, Australian National University, Canberra, ACT, Australia

3 National @ntre for Earth Observation, University of Edinburgh, UK

4 Environmental Change Institute, School of Geography and the Environment, University of Oxford,

Oxford, UK

Correspondence t@Sophie FlackPrain(s.flackprain@ed.ac.uk
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variations across an Amazon Drought Stress Gradient is
surprising as LAI generally scaedl with GPP, and hence
you would expect the changes to do so as well. Moreove
also stated in the manuscript, the changes of LAl are affe
by drought stress, and thus it is indirectly the drought stre
that is causing the variation in GPP. Lagdhg title does not
fully cover all three research questions made by the auth
in the manuscript, although it points towards your most
interesting finding. However, | would suggest that you
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The authors put forward an alternatiieA G £ S W¢ K
of physiological, structural and trait responses to drought
stress in driving spatial and temporal variation in GPP ac
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Abstract

The capacity of Amazon forests to sequester carbon is threatened by climateictincge shifts in

precipitation patterns. However, the relative importance of plant physiology, ecosystem structure, and

trait composition responses in determining variatiorgross primary productivity GPP), remain Commented [FS2]: R1 AR32. in response to reviewer
02YYSyid a[AyS oH ! 00NBJAL

largely unguantified, and vary among models. We evaluate the relative importance of key climate
constraints togress—primary-—productivitfGPP, comparing direct plant physiological responses to
water availabity and indirect structural and trait responses (via changes to leaf area index (LAI), roots
and photosynthetic capacity). To separate these factors we combined-#haBgtmosphere model

with forcing and observational data from seven intensivelgistl forest plots along an Amazon
drought stresgradient. We also used machine learning to evaluate the relative importance of individual
climate factors across sites. Our model experiments showed that variation in LAl was the principal
driver of differences in GPP across the gradient, accounting for 33% of observed variation. Differences
in photosynthetic capacity ¢Waxand ) accounted for 21% of variance, and climate (which included
physiological responses) accounted for 16%. Sensitivigifferences in climate was highest where

shallow rooting depth was coupled with high LAI. On suinual timescales, the relative importance

of LAl in driving GPP increased witbrought stresgR?=0.72), coincident withdecreaseavhilst-the Commented [FS3]: R1 AR3L. In response to reviewer
02 Y Y Siygéneral, Please reconsider the usage of the

importance obolar radiatiomdecrease(R?=0.90). Given the role of LAl in driving GPP across Amazon | word whilstc it reads a little pretentious.
Adjustments throughout

forests, improved mapping of canopy dynamics is critical, opportunities for which are offered by new

satellitebased remote sensing missions such as GEDI, SentinEL&x]

Keywords Canopy Dynamics, Leaf Traits, Tropical Rainforests, Precipitation, Gross Primary

Productivity
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1. “ ntrOdUCtiOﬂ] § Commented [FS4]: R2 ARL. In response to the reviewer

02 Y Y S yhia fewr instances, which | will describe below
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IAq the entry point for carbon into the biosphere, gross primary productivity (GPP) is central to th Edited in accordance with specific comments

Commented [FS5]: R1 AR2. In response to the reviewer

global carbon cycle. Tropical rainforests alone account for one third of total ternestriabynthesis commentd ¢ KNR dzZ3K2dzi GKS YI ydz

hypothesis/conclusions are repeated (abstract, introducti

GPP assimilating ~41 Pg of carbon each yfBeer et al., 2010)Carbon fluxes across the tropics are | discussion, and conclusion). This takes up a lot of space

tightly coupled to climate, and water availability is a primtigriver of spatial and temporal variation

in phetesynthesi&SPP (Fisher et al., 2007, Von Randow et al., 2013, Beer et al., 2010, Malhi et al.

could otherwise have been used elsewhere in the
manuscript. Therefore, | urge you to delete salaf these
repeated paragraphs. Please see the specific comments
0S5t 26
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The repetition of hypotheses and conclusions has been

2015, Guan et al., 201%)cross Amazon forests, GPP decreases linearly with increasing seasonal wat| revised as per the specific comments (see AR7, AR8, AR

and AR17).

deficit (Malhi et al., 2015) Shifts in precipitation patterns as a result of anthropogenic climate change
are predicted to have a major impact on Amazon @R#lips et al., 2009, Malhi et al., 2008, Meir
and Woodward, 2010, Zhang et al., 2015, Meir et al., 201%ager and more intense dry seasons are
projected, together with an increased frequency and severity of drought @astiger et al., 2013,
Boisier et al., 2015, Duffy et al.,025) Given thebiogeochemical influence of Amazon forests at
regional and global scalékiu et al., 2017) accurately predicting GPP responsaltought stresss

critical.

Dynamic global vegetation models (DGVMs) disagree on the effects of projected precipitation change
on Amazon carbon dynamicSalbraith et al. (2010fpund future shifts in precipitation patterns had

little effect on model estimates of biomass change (for two of the three models tested), reflecting poorly
the observed sensitivity of Amazon forests to water availability illustrated by thfaligixclusion
experiments and natural drought evef®ewland et al., 2015a, Nepstad et al., 2007, Phillips et al.,
2009) Substantial progress has been made in model development to capture the ionpaghtfstress

on plant physiology. By coupling stomatal conductance and plant hydizedint models have proved
better able to predict ecosystem functioning and mortgiter et al., 2018, Fisher et al., 2018, Fisher

et al., 2006, Fisher et al., 2007, Bonan et al., 20dd)vever the interactions betweeliought stress
ecosystem structure (e.g. canopy dynamics and rooting depth) and trait compositionmg. gna¥

leaflifespan and leaf mass per unit area (LMA)), are typically absent from models, despite having a
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major impact on simulated GPfFauset et al., 2012, Sakschewski et al., 20 et al., 2013
Furthermore, changes in canopy dynamics have been identified as a likely cause for the disparity
2017,

between field observations and model predictorRe st r epo Coupe et al .,

The relative importance of plant physiology, ecosystem structure, and trait composition responses in

Powel

et

al

determining variation in GPP, remain largely unquantified in-datestrained analysiéMeir et al.,

2015b) Plant physiological responsesdimught stresgiclude stomatal conductance, which is limited

by water availability and atmospheric demand. Stomatal conductance constrains GPP via changes in

COzsupply, but is considered a short (varyingsab-hourly timescales), rather than loteym response

to climate forcinggSperry et al., 2002jChanges to both ecosystemusture and traits, such &sf

area index I(Al), rooting depth and carboxylation capacity, are expected to be more

longstandingh

capacity—are-expected-to-be-mbmegstandindMeir et al., 2015a)

Extensive widence links spatial and temporal variationdrought stressvith ecosystem structure

(acoss sukannual and annual timescalesaf-area-indexi(Al) typically decreases with increasing

drought stresflio et al., 2014, Meir et al., 2015b, Brando ef 2008, Grier and Running, 1977, Wright

et al., 2013)

wet-dry tropical forest transitiorL Al declines on average ~1.4°m (lio et al., 2014)Brando et al.,

(2008) report a 226% decline in LAI following five years of drought onset at the Amazon throughfall

exclusion experiment at Tapajos National Forest, Para, Bamwth of riNear surface root mass,

length and surface area decline with seasdrought stresg¢and increase during periods of high soil
water availability to exploit available resources), whilst deep roots can support water supply during d
periods(Nepstad et al., 1994, Metcalfe et al., 2008pot depth, mass and traits influence hydraulic

supply and consequently stomatal conductance.

Leaf traits similarly exhibit spatial and temporal variation with changing water availability. Leaf
nitrogen content (per unit mass), ligahd CQ-satura¢d photosynthetic rates (per unit mass) increase

with drought stresacross tropical precipitation gradiedmust@jp 150](the water potential at which

Commented [FS6]: R1 ARG. In response to reviewer
commeri 4[ AyS yy OFy 6S NBIF
Conventionally, LAl is not considered a trait (you could ut
max LAl), but rather relates to the ecosystem structure.
Thus, for clarification could you please consider rephrasii
the sentence to e.g.: @hges to both ecosystem structure
and traits, such as LAI, rooting depth and carboxylation
capacity, are expected to be more longstanding (Meir et ¢
HAMpLl O ®¢

Corrected as suggested

“| Commented [FS7]: R2 ARS5. In response to reviewer
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We have now included detail on the relevant timescale.
Evidence exists across sabnual (AraujeMurakami et al.,
2014, Xu et al., 2016) and annual timescales (Brando et

2008, Meir et al., 2009).

| Commented [FS8]: R1 AR33. In regsnse to reviewer

02 Y Y SLiA¢i 88 Abbreviate LAl in line 88, not ling 90

Commented [FS9]: R2 ARG. In response to reviewer
02YYSyl G[AYS dnod ¢KA& LI
therefore vague. Please explain how strong the response
I NB d¢

Quantitative details have now been added to this section

With respect to near surface root mass, length and surfac
area growth declines with seasonal water deficit, the pap
referenced (Metcalfe et al., 2008) does not provide
estimates on the strengtbf the response, only that is it
significant (p<0.001). However, from the figure presented
can estimate that root mass, length and surface area gro
decline by up to 75%, 65% and 25% respectively

6F LILWINREAYLF GSR dzaAy3 ¥FA3dzN.

Commented [FS10]: R1 AR31. In response to reviewer
02 Y Y Siygéneral, Please reconsider the usage of the
word whilstg it reads a little pretentious.

Adjustments throughout

50% of hydraulic conductivity is lost) declin@d/right et al., 2004, Santiago et al., 2004, Anderegg,

4
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2015) Leaf traits affect GPP via photogthetic capacity (Mnaxand hay (Bahar et al., 2017, Fyllas et

al., 2017) and through their influence on canopy carbon economics, via leaf growth and maintenance

Field observations show variation in Amazon GPP is correlated with physiologicalsesnsgructure
and trait composition responses to clim@estrepeCoupe et al., 2013, Goulden et al., 2004, Hutyra

et al., 2007, Wu et al., 2017, Wagner et al., 20M0delling approaches have similarly highlighted the

role of canopy dynamics and leaf traits in driving spatial and temporal variation if{M&EP&ado et

al., 2011, Castanhet al., 2013, RestrepBoupe et al., 2013, Rodig et al., 201&)wever their relative

Commented [FS12]: R2 ARYIn response to the reviewer
02YYSyid a[AyS wmnnY dzyRSN&
empty sentence. Please make it more concrete by stating
6KIG dzyRSNEGFYRAY3I A& YAA
On reflection this sentence repeated (but with less specif
theSI NI ASNJ &l GSYSyid 2F acr
physiology, ecosystem structure, and trait composition
responses in determining variation in GPP, remain largel:
unquantified in dataconstrained analysis (Meir et al.,

HAMPOO®E 2SS KI @Bit. G KSNBF2N.

effects have not been explicitly isolated and quantified. Quantifying the direct effect of discrete

photosynthetic drivers has been limited by the need for detailed field measurements of carbon fluxes,

canopy dynamics antraits. Furthermore—whilstAa deserved research effort has focused on the

importance of nutrient availability in driving spatial variation in GiRfercado et al., 2011, Castanho

Commented [FS13]: R1 AR3L1. In response to reviewer
02 Y Y Siygeneral, Please reconsider the usage of the
word whilstg it reads a little pretentious.

Adjustments throughout

et al., 2013)howeverthe role of ecosystem responses to water availability has received less attention

(Green et al., 2019). In light of projected changes in rainfall patterns across the basin, capturing

responses to water availability in ecosystem models is critical to regaairent uncertainty around

Amazon climatevegetation feedbacks. We aim to reduce the uncertainty by assessing the relative

effects of physiological, structural and trait responses to water availability on GPP across monthly

annual timescales.

We applya-validatedecosysteran ecosystenmodel to plots across the Amazon, spanning a large

drought stresgradient(herein, the term drought stress refer seasonal water defigitand a range in

forest types from moist equatorial to seasonallytdygical forests. Process modelling allows the links
between climate, ecosystem structure and leaf traits to be quantified explicitly, and separated, acr
timescales (Figure 1). The soil plant atmosphere model (BR#M)ams et al., 1996, Williams et al.,
1998, Fisher et al., 2006, Fisher et al., 2007, Rod/let al., 2015k} well suited to this investigation
given its prior use in accuratefimulating carbon and water fluxes in Amazon tropical forg¥esink

the-medelling-toalibrate and validate the model using fidata gathered over multiple years (2009

Commented [FS14]: R2 AR3. In response to the reviewe
02 Y Y S yniiss & discussion on the temporallscaf the
NBalLlRyasSaod ¢KS | dzi K2 NE dzd
data. They find that indirect responses dominate. |
understand that the paper describes equilibrium responst
to an existing drought stress gradient. Still indirect respor
probably neel some time to develop, while droughts are
often intermittent. If | do not fully understand how the
authors see this, it may indicate the need to discuss this
Ad&adzS SELX AOAGT & ot

We thank the reviewer for highlighting an important issue
around the definitim of drought stress. In the presented
study we focused on seasonal drought stress, and compi
GPP drivers across seasons and across a gradient in se:
drought stress. In the original version of the manuscript a
clear distinction between seasonal dght stress (our focus
and drought events (not addressed in the manuscript) we
not made. By defining drought stress in the context of ou
study early on we hope to ensure our references to droug
stress are not ambiguous. The temporal scale of respons
can then be discussed by comparing model experiments
and 3. We appreciate that the comparison was somewha
limited in the original version of the manuscript and as su
have expanded the discussion (on from line 516).
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2010) on permanent sample plots from the Global Ecosystems Monitoring (GEM) néDeoadhty

et al., 2015a, Malhi et al., 2015)he datasets comprise detailed measurements of carbon fluxes, carbd

stocks and leaf traitsand-were-used-to-constrain-the-SPA-molMe simulate the effect of forest
structure and leaf trait distributions along tireught stresgradient, and explore the covariation of
observed leaf traits (leaf N content (a proxy for photosynthetic capacity) and LMA) and those deriv¢

from model cabrations (leaf lifespan), before using SPA to address the following questions:

1. Is spatial variation in GPP across ti@ught stresgradient principally driven by the direct

effects of climate and soils, which include physiological responses to waiahdity via

hydraulic transport and stomatal conductance? Alternativelyndirect effects of climate, via

structural and trait responses to water availability (LAI, rooting biomass, root depth and

photosynthetic capacity i.ecMaxand hay), more inportant?
2. Does the sensitivity of GPP to differences in climate, LAI, photosynthetic capaeity évid
Jnay) and rooting depth vary across tieught stresgradient?

3. What drives seasonal variation in GPP across an Amazon éooesght stresgradient?

Linked to question one, we hypothesise thdirect effects of climate vistructural and trait responses
are more important than the direct effects (via physiological responses), in explaining spatial variati
in GPP across thdrought stresgradien (Figure 1). We further posit that LAl is the principal driver

of differences in GPP among Amazon forests, effected through the observed increase in leaf area

decreasinglrought stress
For question two, we predict that the sensitivity of GPP fferéinces in climate, LAI, photosynthetic

capacity (Mmaxand Jay) and rooting depth will vary dependent on water demand (via LAl and stomatal

Commented [FS15]: R2 AR8. In response to reviewer
comSyd da[AyS mHT® 2SS fAy]
Additionally, 2 years is really the minimal number of multi
8SINE® /2dAf RyQi &2dz d&aS |
how fast ecosystems respond to and recover from droug|
How do you capture transit responses and how do you
know those 2 years are representative for average (or no
SEGNBYSO O2yRAGAZ2Yy&AKE
Sentence edited.

With respect to the reviewers comment on drought
response and recovery please see AR 3. In response to |
reviewers question att using a longer data set. We were
limited by the length of the timeseries available across pl:
of different data streams.

Commented [FS16]: R2 AR2. In response to the reviewe
02 Y Y S yhiny dpinion research question 3 adds little
value to the paper and the correspding results are
relatively shallow relative to the existing literature. The
results are quite obvious. | suggest removing this rq and
corresponding results. It will make the paper sharper and
Y2NB (2 GKS LRAy(DE

28 G118 2y 02| NRwith ghrdsNERDS.
1 26 SPSNE GKS NBEJASESNDRE a
discussion on the temporal scale of responses prompted
additions to the manuscript which we feel highlights the
importance of RQ3s inclusion (see AR 3).

conductance) and supply (climate and root depth and biomass; Figure 1). We expect that forests under

lower droudht stressill be most sensitive to differences in LAl and photosynthetic capacity within the
bounds of observations acrase—gradierihe gradientWe predict that forests under higlizought

stresswill be more sensitive to differences in rooting depiVe expect forests with high LAI but

shallow rooting depth will be most sensitive to differences in climate, due to their higher transpiration

demand but low capacity for water supply.




For question three, we hypothesise that on monthly timescalestelilbbe more important than

165 canopy dynamics in driving GPP. Across tlheught stresgradient, we expect that solar radiation will

be relatively more important during the wet seasanilst| VPD will be more important during the dry Commented [FS17]: R1 AR3L. In response &viewer
02 Y Y Siygeneral, Please reconsider the usage of the

season, reflecting seasonal shifts in light and water availability. Due to differences in dry season leng word whilstg it reads a little pretentious.
Adjustments throughout

we predict that for forests experiencing lowleought stresssolar radiation will be most important in
driving subannual variation irsPR-whilstforGPP. Forforests under highairought stressvPD will

170  be the dominant driver.
By combining detailed plelevel timeseries data with a hydrodynamic terrestrial ecosystem model, we
are able to use an innovei model experimentation approach to understand the drivers of spatial
variation in GPP, beyond correlative effects. We are able to apportion variation in GPP to the direct and
indirect effects of climate (Figure 1), across sunual and annual timescalé®1 and Q3).

175  Furthermore, by performing a sensitivity analysis within the context of observed variation in parameters
across the Amazon (Q2) we identify areas potentially more vulnerable to changes in precipitation

regime.

2. Methods

180

2009-2010-Plot characteristics are summarisedrable 1, anddetailedin full in the supplementary

material M WD-indicate

higherdrought-stressWe usedcharacterise plot water status usimgan Maximum Climatological

Water Deficit (MCWDMEWD instead-ofand noannualprecipitation as water deficit is more closely

185 linked tothemechanisms constraining GRPan total water inpu[MCWD is the maximum cumulative

water deficit reached within a year. A water deficit estimate for each month is calculated as the

difference letween precipitation and transpiration (which ground measurements estima@anm

monthH?, seeAragao et al. (2007) Therefore, the forest is in water deficit if monthly precipitation falls

below 100mm. Maximum cumulative water deficit is calculated as the sum of sequential monthly water
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deficits for equatios see supplementary materiaNlore negative MCWNDvaluesindicate higher

drought stress

2.1The Soil Plant Atmosphere model (SPA)

Commented [FS18]: R2 AR9. In response to reviewer
02YYSyhy& mTtmod tfSFHaS RST
Also see supplementary material.

Commented [FS19]: R1AR7&8. In response to reviewer
02 YYSy i & -167As théintroduation is already ver
long, and much of your hypothesis is repeated later in the
manuscript, | would highly recommend deleting these
LI NI INJ LKA d¢

And

& [ A y-$81 Wiese lines are almost identical to your
scientific research questions listed in the introduction. Ple
02yaARSNI RSt SGAy3 2yS 2NJ
Removed as suggested

The SoitPlantAtmosphere model (SPA) is a hydrodynamic terrestrial ecosystem model, which h
been calibrated and evaluated for moist tropical forests in Manaus and CgX¥ilidiaéns et al., 1996,
Williams et al., 1998, Fisher et al., 200Th SPA, carbon and water fluxes are estimated through
processbased modelling of radiative transfer, boundary layer and stomatalatande, plant and leaf
ecophysiology and seplant energy and water balan@mallman et al., 2013, Willianmet al., 1996)
Plant physiological responses to water availability are well represented in SPA due to the stomg
conductance algorithm being qaiad directly to plant water ugEisher et al., 2006Aga result, higher

evaporative demand under increased LAI drives increased root water uptake and consequent|

depletion in soil moisturéWithin SPA, C allocation between structural tissue and thestroictural C

(NSC) pool is executed via the sub model DAL&Gpy (Bloom and Williams, 2015)Figure 2). {

DAL ECpanopy Was updated on daily timestepndin this study.forced usingLAl observation data.”

Constraining simulated LAl was integral to the model experiments conducted. It allowed th

quantification of direct effects of different LAl timeseries on Gifeler different plot conditions.

However, he capacity of SPA to accurately simulateagy dynamics is demonstrated by both p ez

Blanco et al. (2018and Sus et al. (2010)To force modelled LAILMA (gC m? and daily LAI

estimatesvere used to calculate the foliar C stdckaf NPP was calculated as the difference between

the foliar C stock of theurrentand previoudgimestep.Leaf NPP was calculated as the difference

between the foliar C stock of tlearrent andgorevious timestep. Leaf NPP was allocated prior to other

Commented [FS20]: R1 ARA4. In response to the reviewe
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indirect structural effect from changes in soil moisture. Fr
there, it follows that it is LAl which drives the GPP across
MCWD gradient. A strong emphasis is throughout the
manuscript put on LAl and LAl as a driver of GPP, while
strongly impacted by drought stress. However, the model
forced with LAI from hemispherical photographs, but the
authors do not explain how the forced LAl is linked to anc
impact the simulated soil moisture content. From Fig. 2 it
follows that LAlmpacts the foliage carbon pool, and this
pool together with carbon pool of fine roots and soil
moisture impacts GPP, but the link between the forced L/
and soil moisture is not well explained for your model set
tftSFrasS Ot NATe (GKAA Ay (K

The link between LAI and soil moisture within the model i
y26 RSAONKOGSR Ay (GKS WYHomMm
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Formatted: Subscript }

Commented [FS21]: R1 AR9. In response to the reviewe
02 Y'Y SLjAéi 232234 You state that the mapping of
canopy dynamics is critical, @that changes in canopy
dynamics cause disparity between field observations and
model predictions; how well is canopy dynamics simulate
by SPA? How is the LAI forced over the canopy layers in
Please elaborate on these aspects in the manuscript and
explain how your study improve these shortcomirgs.

See insertion for performance of SPA.

On the subject of how the presented study improves curr
shortcomings in LAl modelling:

The authors outline a need for model development aroun
structural and tait responses to drought stress. An
exploration of the model structures which would more
accurately simulate LAl was outside the scope of the
manuscript, but is the subject of ongoing research by the
authors.

In addition see other AR9 responses.
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plart components, and if the leaf NPP requirement exceeded total NPP for the given timestep, the non

structural C pool was drawn upon (where total NPP was calculated as the difference between simulated

GPP_and autotrophic respiratiof§ee supplementary mat#i The NSC pool serves functions

additional to the seasonal redistribution ofeCg.phloem transport andsmoregulationDietze et al.,

Commented [FS22]: R1 AR11n response to the reviewe
02 Y Y SLjAéi 23%This sentence is not cléar.

Edited and expanded to detail additional functions of the
NSC pool such as phloem transport and osmoregulation.

2014) As such, we assume the NSC pool is stable over time. If the NSC pool becomes depleteg

fraction of NPPis redirected towards NSC storaffdlocation towards NSC storage is executed in

subsequent time steps wheaf NPPdoes not exceed total NFRoot and wood NPP were calculated

from the NPP remaining after leaf allocatilbeaf maintenance respiration was calculated as a function

of leaf N contenfReich et al., 2008and total leaf C stock (see supplementary material). Within SPA,
wood and fine root maintenance respiration were simulated as a function of component C stock an

plot specific respiration coefficient. Growth respiration was catedl as fixed fraction afet primary

productivity NPP,+0.28)(Waring and Schlesinger, 1985)odel inputs and outputs are listed in Table

2.

2.2 Model Calibration

Following data collation to parameterise SPA, the model was calibrated and validated for each p
prior to conducting model experiments. Measurements used to parameterise SPA sodlteldure,

soil C stock, leaf N content, LMA, photosynthetic capacity, the fraction of NPP allocated to fine root
and wood, root depth, and foliar, wood and fine root C stoEhblé2). Soil, wood and fine root C
stocks (single point measurements, tinteseries) were initial model inputs and allowed to vary
thereafter dependent on simulated C dynamics. Plot specific field measurements of leaf N content
presented in Fyllas et al. (2009), or where absent were retrieved from trait databases uspegie®
composition (Kattge et al., 2011; Poorter and Bongers, 2006). Photosynthetic capacity estignates (V
and Jay were derived from leaf N content (Walker et al., 2014), or field measurements (Caxiuan
only). Wood and root respiration measurementse used together with component C stocks to

estimate plot specific wood and root respiration coefficients.

The model was driven using hourly meteorological data, retrieved from local weather sns.

number of missing hourly field meteorologicaéasurements across the timeseries varied frd®p2

9

Commented [FS23]: R1 ARS. In response to the reviewe
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(line 232 to 241, Fig. 2 and Supplement material). In the 1
you state that allocation to NPPleaf occurs first. Normally
NPP is considered a flux, and normally you would allocat
a pool. Thus, do you mean that allocatianthe foliar stock
occurs first? If assimilation does not provide the C need f
allocation to support the LAI, you take from the labile/ron
structural carbon pool. However, in the supplement mate
in the last three equations, you state that if the lebpool
has been depleted you allocate from the total NPP. Surel
this must only be the case when you have enough NPP t
sustain the foliar stock as required by the LAI. Please cla
GKAE Ay GKS YI ydza ONX LI o¢
The reviewer is correct in their summationtbe C
allocation scheme. Allocation towards NSC storage is
executed in subsequent time steps when the NPPleaf
requirement does not exceed total NPP. This is now clari
in the manuscript.

Also see supplementary material.
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different drivers (LA, leaf traits, climate) for GPP at both
temporal and spatial scale across a drought stress gradie
the amazonian region using the SBlantAtmosphere (SPA
ecosystem modelThe SPA model is applied at 7 sites, usi
sites specific parameters and is forced with LAl observed
from hemispherical photographs. Simulation experiments
and machine learning techniques are used to investigate
their scientific questions. They find thadirect effects via
plant traits and ecosystem structural changes, here
expressed as LAI, are found to be the main driver of GPF
across a spatial drought gradient, but the sensitivity of Gi
to changes in these drivers varied with the gradient. On &
subannual timescale climatic drivers were found to be m¢
important for GPP. The authors discuss how these direct
physiological and indirect mechanism affect GPP but fail
explain the added value of forcing their model with obser
LAl and to explain in d&l how this forced LAl propagates
down the modelling structure of SPA. The manuscript is \
written and well structured, however, with many repetitior
that should be deleted to make space for more details on
your methods. As explained in detail in tbemments below
1 would like the authors to consider my questions and
comments, before | recommend the publication of this
Y ydza ONR LG &€

AR 1. The brief summary of how LAl is forced within the
model (lines 23237) has been expanded to provide a mc
in-deLJi K RSEONALIIA2Y S FyR AY
{2Af tflyd 'GY2aLKSNB Y2R
comments AR 5, 9 and 10). In addition, as suggested, we
outline the value of using LAI data to force the model.
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across sites, whilst the frequency of gaps varied fre®9 3r'. Gaps less than 6 hours in length

245  accounted for between 2M0% of total gaps across ploghort gaps in air temperature, wind speed, { commented [FS26]: R2 AR10. In response to the review
O2YYSYVhy& unyod |26 FNBI dzS
shortwave radiation and vapour pressure deficit measurements (<6 hours), were filled by splil Statistics on the frequency of data gaps has now been ac

to the manuscript.

interpolation between existing data. Where local meteorological data was unavailable for a longer

period of time, or for gaps in precipitation measurements, yeptineinterpolated ERANnterim data
were use@Dee et al., 2011)he interpolation of solar d&tion estimates accounted for the solar zenith

250 angle. MCWD was calculated for the years 2Q09Q and as-the-minimum-meonthly-water—deficit
reached—within—the—vyear—where monthly—water deficit is equal to t

WBwas consistent with

previously publiskd estimatefor all plots excludingCaxiuandwhich were calculated across different
years(Malhi et al., (2015), Caxiuan203mm,Tambopata259mm, Kenia386mm,Tanguro-482mm;

255 this study, Caxiuan@85+t65mm, Tambopate265+59mm, Kenia 342+146mmanguro451+73mm)

The simulation of soil water drainage in SPA was calibrated against timeseries of field measurements
of soil moisture. Initial investigations comparing modelled soil moisture to monthly field data

highlighted an overestimation by SPRrecalibration, SPA soil moisture estimates were on average

11-68% higher than field measurements across plots. The difference between model and field soil

260 moisture estimates increased significantly with MCWB=R69, p=0.04)The empirical model used Commented [FS27]: R2 AR11. In response to the
reviewers c Y S y-iine®22. . . .overestimation. . . plea
in SPA to relate soil texture to water retenti@®axton et al., 1986, eqn. 10) was then calibrated by |lj dz YU A T & ®¢

adjusting the slope of the interaction to better represent soil moisture across tropical soils (to within

standard error estimates of mean annual soil moisture).

Leaf litterfall parameters (day peak leaf fall, leaf fall period and leaf lifespan) were calibrated against
265 field data to accurately simulate litterfall period and amplitude (within standard error estimates of
annual litterfall). Wood and fine root biomass turnover rates ashigatecassuned proportionalg

each-forest-ecosystem-was-at-steady-staldPP,given the maturity of stands and their disturbance

history:
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Wherei is wood or fine roots.

Local,_monthy LAI estimates derived from hemispherical photographs {&itedo daily estimates

via linear interpolation, andsed to force simulated LAThe vertical distribution of leaf area is kept

constant, as current field data is insufficient to provideaaourate depiction of how vertical

distributions change with canopy density across the MCWD grddient.

Commented [FS28]: R1 AR10. In response to the

NB GA S 6 S NENPBI2Af WeS valculated as the
difference between the foliar C stock of the previous time
step and that which would equate to field measured OAk
field measured LAI has a monthly resolution. In principle
would have foliar C stock that could change at every moc
time step. But if the foliar C stock already equates to the
field measured LAI, because the resolution of the forced
is monthly NPPLeaf would just be zefo.

This is now clarified in the manuscript.

| Commented [FS29]: R1 AR9. In response to the reviewe

02 Y Y SLiA¢ 232234 You state that the mapping of
canopy dynamics is critical, and that changes in canopy
dynamics cause disparity between fieldservations and
model predictions; how well is canopy dynamics simulate
by SPA? How is the LAI forced over the canopy layers in
Please elaborate on these aspects in the manuscript and
explain how your study improve these shortcomiigs.

In additionsee other AR9 responses.

allocation.[We calculate model uncertainty as a result of input parasie®A was forced with the

observed LAl timeseries plus and minus $tendarderror for each plot. Model uncertainty estimates

were limited to that derived from LAI as theadlability of uncertainty estimates for le&fits, root

depth and root biomasgerevariable and plot dependent, and there were no uncertainty estimates fq

hourly meteorological dater soil propertiesModel structural uncertainty was not calculated and we

recognise that the model error estimatesMereforamderestimatedMlith respect to model

structural uncertaintywe highlight thathe stomatal conductance algorithm embedded within SPA is

consistent with leaf and canopy scale observations, and surpasses the performance eBtreyBall

model where soils experience moistgteess (Bonan et al., 2014). However, model (and empirical)
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calibration constraint by an upper and lower sample errot
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The model was forced using the observed tirtAeseries plus
and minus thestandarderror for each plot. This is now
clarified in the text.
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LAl upper and lowestandarderror were used to calculate
an estimate of SPA uncertainty based on model input dat
With regards to other model inputs, the availability of trait
uncertainty estimates was variable and plot dependent, a
there were no uncertainty estimates for hourly
meteorological data. We were consequently limited to LA
estimates.

uncertainty remains around the role of fsbructural carbon in regulating watteansport in large trees

during drought per iFattdesmore,GBAdods Bohace®int faa tydraulic RftGarid4

redistribution of water through the soil profile, which is known to impact water fluxes across the soi

plantatmosphere continuum in Amazon trees (Oliveira et al, 2005; Wang et al.| 2011)
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another section to the discussion, you will also have to
address the uncertainties from the iimisic model
behaviour. You recognised already in line 245 that the m
uncertainty is underestimated due to the lack of intrinsic
model error. However, during your discussion this is not

a d at all. Please assess these uncertainties in par
in relation to the moisture stress and how the plant
hydraulics is modelled in SPA and acknowledge its
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2.3Model Validation

of LAl

quantify

estimatespresented-are-underestimadbdervation constrained SPA simulations wessvalidated

against biometric field measurements of C fluxes (i.e. from-rddagas analysers, dendrometers, root
ingrowth cores litterfall traps etc.). Linear regression models were constructed to compare modelled
estimates and independent field measurements of GPP, autotrophic respiration and total NPP. A
comprehensive comparison of model estimates and indeperelémhéasurements of component NPP
and respiration were also made. Validation of the SPA model against biometric data lent confidence to

subsequent analyses, where the model was used to explore C fluxes uroleserord conditions.

2.4Model Experimerst

Our aim was to isolate the direct effects of climate and soils (via physiological responses), and the

indirect effects via ecosystem structure, and leaf traits, on simulated®GPém-was-to-iselate-the

simulated-GPHTo avoid capturing the feedback effects of changing photosynthate supply (i.e. as{ commented [FS32]: R2 AR12. In response to the
NB JA S ¢ S NE- Lie25YThiy senteince confused nr
result of changes in climate, soils, ecosystem structure or traits) on ecosystenrestimcilel initially, it sounds like you are only focussed on clikeffects.
tfSI&aS NBLKNI &S0
experiments were conducted in the absence of C cycle feedbacks. Thus, within model experimentd Rephrased.

stocks for each component (leaves, wood, fine root, coarse root) were constrained to observations unless

otherwise stated.

2.4.1 Experiment 1. Drivers of Spatial Variation in GPP

Through a series of model input alternations, we used SPA to quantify the effects of (i) climate, (ii) soil
properties, (iii) LAI, (iv) root biomass and (v) rooting depth, and (vi) trait responsesndoye
photosynthetic capacity (Max and &ay, on simulated GPP. Model inputs for each driver were
alternated at each plot, to that of all other plots, and annual GPP values for each of the two years
retrieved. For example, plot CAX04 was simulated withdlimate, soil properties, LA, root biomass,

root depth and photosynthetic capacity of CAX06, TAM05, TAM06, KENO1, KENO02, and Tanguro
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etc.(Figure S1)SPA simulated GPP for a total&®2combinations (for climate, 7 plots x 3 alternations

x 2 years, pls for the remaining drivers, 5 drivers x 7 plots x 6 alternations x 2 years) were combined
with 14 annual GPP estimates from observation constrained (control) runs (7 plots x 2 years). A factorial
ANOVA was applied to the difference between GPP from eactiel run and its control simulation
(n=476, i.e. 462 +14Galbraith et al., 2010 he proportions of variation in GPP explained by climate,

soil properties, LAI, photosynthetic capacity, root biomass and rooting depth, were then calculated as

the conditional surof square divided by the total sum of squares.

2.4.2 Experiment 2. Variation in Forest Sensitivity to Drivers of GPP

We quantified how the relative sensitivity of GPP to differences in LAI, climate, photosynthetic
capacity and rooting depth varied acrdss MCWD gradient. For example, we tested whether forests
occupying lowerrought stresgones were more sensitive to differences in LAl than forests in higher
drought stresgones, etc. We used model outputs generatBdperiment o calculate the sensitivity

of GPP to drivers at each plot, within the bounds of observations across the MCWD gradient. Root
biomass and soil properties were not included in the analysis as across the MCWD gradient they
explained little variation in GPEXxperiment 1Table 6). The sensitivity of GPP to drivers at each plot
was calculated as the absolute range in simulated GPP values under each driver alternation i.e. the
sensitivity of CAX04 to variation in LAl was calculated as the maximum GPP minusitiimmum

GPP simulated by alternating LAl to that of all other plots etc. Plots were grouped by location
(Caxiuand, Tambopata, Kenia and Tanguro) to compare how the sensitivity of GPP to LAI, climate,

photosynthetic capacity and rooting depth varies adtwes MCWD gradient.

2.4.3 Experiment 3. Drivers of Stnnual Variation in GPP

We quantified the role of climate and LAl in explaining variation in-anbual GPP. We used the
random forest technique to compute the relative importance of LAI, VPD radiation, precipitation

and air temperature driving variation in monthly GPP (n=168; 7 plots x 24 months), where GPP
estimates were derived from SPA simulations. To quantify the effects of LAI and climate variables on
monthly GPP we used the random fonestchine learning technique applied by means of the Python

Scikit-Learn moduléBreiman, 2001, Pedregosa et al., 20The approach uses multiple mathematical
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decision tree predictors to describe a dependent variable as a function of selected independent variables.
An importance value between 0 and 100 was assigned to each driver based -ovise tteenparison

of explanatory poweiMoore et al., 2018, LépeBlanco et al., 2017)We calculated the average relative
importance of drivers at each plot to determine the principal drivers of variation-ansubal GPP and

investigated the seasonality of driver importance.

3. Results

its Commented [FS33]: R1 AR13. N response to reviewer
02 Y Y SLiA¢i 304802 These lines are repetitions, and ni

empute th{ needed. Please consider deletifig.

Deleted as suggested

3.1 Model Calibration

Calibrated SPA soil water content corresponded well to field measurements from the GEM network

(Figure 3). Simulated mean annual soil moisture estimates were within field measurement standard

error for all plotsg[The timing of observegeak soil moisture wasaptured by SPA simulations Commented [FS34]: R1 AR36. In response to reviewer
02 Y'Y LiA¢i 30BAdd a spatetween the two
(R?=0.98, p<0.001, RMSE=month) |A positive, but norsignificant, correlation existed between sentences

model and field estimates of seasonal soil moisture rarigé 5, p=0.21, RMSE=5%8PA simulated

{R?=0.35, =021 RMSE=5¥Notably, for some plots such as Kenia, the magnitudes of seasonal peal commented [FS35]: R1 AR14. In response to reviewer
02 Y Y Sjhéi30&iThere is something wrong with the
soil waterfluxes were not captured by SPA simulations (up to 39% lower than field eshmaitést structure of this sentencé. wSg2NJ SR | a @

ﬂor Tanguro, peak soil water lasted 3 months longer in SPA simulations than was measured in-{ commented [FS36]: R1 AR3L. In response to reviewer
02 Y'Y Siygeneral, Please reconsider the usage of the
field. word whilstg it reads a little pretentious.

Adjustments throughout

SPA was also successfully calibrated to simulate ligedllitterfall accurately. The calibration of leaf
fall cycle parameters in SPA using GEM leaf litterfall timeseries (Table 4), resulted in the magnitude
and timing of leaf litterfall being well represented by the model for all plots (monthly leafdittenige

for GEM measurements and SPA simulatiods@54, p=0.009, RMSE= 11.2 gC?mr?; timing of
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leaf litterfall peak R=0.96, p<0.001, RMSE=1.1 months) (Figure 4). SfAulated mean annual leaf

litterfall correlated significantly with GEM estimaté®?=0.99, p=<0.001, RMSE=9.0 gCwyr?).

3.2 Model Validation

Estimates of ecosystestale C fluxes from SPA model runs were validated against biometrically
derived estimates from the GEM network. GRARnd GPRem estimates were correlated across plots

though not significantlf{R?=0.36 p=0.15 Figure 5a). Along the MCWD gradient, GBRestimates

varied across plots by 1137 gCyr?, &vhﬂstin line with GPRsem estimateswhichh/aried by 1202 gC Commented [FS37]: R1 AR3L. In response to reviewer
02 Y Y Siygeneral, Please reconsider the usage of the
m? yr. Error bars overlap between GRRand GPRew estimates for all plots except KENO1 and | word whilstg it reads a little pretentious.
Adjustments throughout

TAMOG, though marginally (difference KENO1 115 gCgrt, TAMO6 50 gC nt yr'). GPRsem error

bars are field estimate standard error, and s ror bars represent simulated GPP variance under
LAl standard error. Across plots, GE&R estimates were 0.57% higher than GRPestimates. The
correlation between GPP and MCWD was similar for &R@R?=0.64, p=0.03, slope=2.4) and G2k

estimates (R=0.52, p=0.07, slope=2.00).

NPRspaestimates (the sum of model simulated root and wood NPP andatestrained leaf NPP) were
also correlated with NRf2w measurements across plot$£R.38 p=0.14, though not significantly due

to differences in Kenia pts (on exclusion of Kenia plots*80.92, p= 0.01, RMSE=42 gChyr?)
(Figure 5b). NPEka estimates were 7.9% lower than field measurements across plots on avesage. Ra
(the sum of predicted leaf respiration, and parameterised root and wood regpivatiesignificantly
correlated with biometric measurements R4 across plots (RR0.59 p=0.04 Figure 5c), though

were on average 5.3% higher.

Leaf respiratiorestimatesimulated as a function of leaf nitrogen conterte correlatedwith field
measuements though not significantlyR?=0.47, p=0.09Table 5). Parameterised wood and fine root
respiration, together with fine root NPP, correlated significantly with field measurements. SPA
estimates of wood NPP did not correlate significantly with GEMsaeements due to underestimation

at KENO1 (on exclusion R0.78, p=0.02, RMSE=7.5 ¢gC fyr?). Further comparisons of SPA

estimates and GEM measurements of component NPP and respiration are presented in Table 5.
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3.4 LAl and Leaf Traits Trends along the MCWD gradient

Field estimated mean annual LAl ranged from 2.2 to 5@ and increase@hough not significantly)
with MCWD across plots (R0.35, p=0.16Table 3. A negative, norsignificant correlatiorexisted
between alibrated leaf lifespamnd MCWD (R?=0.50, p=0.08). Photosynthetic capacity4\ and
Jnay €stimates derived from measured leaf N content simitathybited a negative nesignificant
correlation with MCWD (R?=0.51, p=0.07 and R0.53, p=0.06 respectively). A positivaon
significant correlation existed between modsllibrated leaf lifespan, measured LMA (g
R?=0.39, p=0.14), and LAI (R0.28, p=0.22). Modetalibrated leaf lifespaexhibited a negatiyeon
significant correlaton with photosynthetic capacity estimates.4y R?>=0.46, p=0.09; & R?>=0.47,
p=0.09). A significant positive correlation existed between mean annual LAl and L¥#0.85,

p=0.003).
3.5 Model Experiments

3.5.1 Experiment 1. Drivers of Spatial Variation in GPP

Structural and trait responses to water availability explained more variation in GPP across the MCWD

gradient than did climate. LAI accounted for the largest proportion of variance in mean annual GPP

across plots (32.8%rable 9.—whilst-Differences in _photosynthetic capacity explair&h3% of

variancevas—explained-by-differences-in-phetosynthetic-capacity(FablPt&tosynthetic capacity

increased with decreasing MCWiDable-3) this relationship partially offset the decrease in GPP linked

to declining LAI. The direct effects of climate on GPP (which included physiological responses to wat
availability including stomatal conductance) accounted for 16.2% of plot variation inaneaal GPP.
Rooting depth did not vary directionally with MCWD and consequently only had a small effect on GP

(4.1%). Soil properties and root biomass accounted for a very small fraction of variance (<2%).

3.5.2 Experiment 2. Variation in Forest Sensiyi to Drivers of GPP

Commented [FS38]: R1 AR3L. In response toet
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fThe relative sensitivity of GPP to drivers varied across the MCWD gradient (Figure 6). GPP was most

sensitive to changes in LAper unit n? leaf areafor plots located at Caxiuana, which experience the

least negative MCWD and halarge rooting deptiC-a—xi—u-an«— L AI537g@mPspi*¥si vi ty
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overall —mean 2330gdcmsyeth The sensitivity of GRP to LAexhibited a positive,
nonsignificant correlatiorwith MCWD (R?=0.88, p=0.06— Fa-h-guro L 286CEyws i t i
Keni3d5g6pm’yw— T amb 8533 natyrtp Reflecting LAI trends, the sensitivity of GPP

to differences in photosynthetic capadiper unit umol C g ¥ was similarly highest at Caxiuana

Bty v
p20gC-mPyr*: Table-3) and decreased linearfhoughnot significantly)across the MCWD gradient
(R?=0.83, p=0.09— Tanguro photosyntHegCimorcalpaddg@nygrs en
I T amb-48p6w°ar*)gambopata plots, which have high LAl but shallow rooting depth, were
most sensitive to differences in climdfeer unit MCWD mm):3-44gC-ar*-yr '), -whilst. [Kenia plots,
which have similarly shallow rooting depth but low LAI, were the least senditeeia—climate
s—e-A-si—BbAgCrryr T a nB-L7goonryp'— Ca xi1L78g@ri’yd). The sensitivity

of GPP todifferences in rooting deptfper mrooting depth was highest at Tanguro and Tambopata
(Fanguro rootinglidep’tyt —sTearmbd7f getindg ywth gnd lowest at

Caxiuand and Kenig-C-a—xi—t-a-n«—Fo0-o-t-i—128gC tep't - h K e @ig@nrdri)v i t y

3.5.3 Experiment 3. Drivers of Sé#imnual Variation in GPP
In contrast to drivers of spatial variation in GPP, on aaulual timescale LAl had less explanatory
power than climate (Tables 6 and 7). The relative importanselaf radiation in driving monthly GPP

increased significantly with MCWD @R= 0.90, p=<0.001)whilstasthe relative importance of LAI

declined (R=0.72, p=0.015). The relative importance of VPD did not vary directionally across the

MCWD gradient (R=0.10, p=0.49). Both precipitation and air temperature had little effect on monthly

vity o

sitivity o
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GPP, though it is noted that a significant interaction existed between both precipitation and VPD

(p<0.001) and air temperature and shortwave radiation (p<0.001). Furtbetemperature varied least

across plots in comparison to other climate forcings (standard deviation as a percentage of the mean;

temperature 9.8%, VPD 73%, precipitation 192%, shortwave radiation 34%). As such, seasonal changes

in the relative importancef temperature and precipitation were not investigated further. The relative

importance of LAI, VPD and solar radiation shifted seasonally, reflecting changes in the availability of

light and water. Solar radiation was typically the most important driveromthly GPP during the wet
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season, whilst VPD was more important during the dry season (Figure 7). The relative importance of
LAI forcings peaked before dry season onset for forests under inoeght stresgCaxiuana and
Tambopata), and during the dry season for forests under higheght stres¢Kenia and Tanguro).
Notably, LAl was also more important during the dry season at KENO2, which occupies shallow soil

(<1m) in comparison to KENO1.

4. Discussion

vhich

Commented [FS43]: R1 AR17. In response to reviewer
02 Y Y SLjA¢ 40#10 This paragph sounds like a

. . conclusion, and since you have a Conclusion section, wk
4.1 LAl and Leaf Traits along the MCWD gradlent this is also stated, | would suggest you delete this
paragraphé 5 Sf SUSR Fa adza3sads

Leaf trait parameters retrieved from SPA litterfall calibrations suggest a wide range of potential leaf
lif espans across the MCWD gradient-@-ears), and are in accordance with estimates for Amazon
tree species, reported Reich et al. (19919f between two months and four years (Tabld&gftrait
estimatexo-varied across the MCWD gradiei line with leaf economic theoright et al., 2004)
However, the interactions were often not significalfe suggestthat in instances where?Ralues
indicate a large proportion of variation is explained, higlalnesmayhaveoccuredas a result o&

small sample size (i.e. 7 plot$)s droudht stressncreased, a shift towards deciduous strategies resulted
in reduced leaf lifespan, but higher photosynthetic capacity. Tvaration of leaf traits along the
MCWD gradient shapes both the rate of carbon assimilation (via photosynthetic capacity)e and t

carbon economics of canopy dynamics (via LMA, leaf lifespan and metabolic rate). Coincident with
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changes in leaf traits, mean annual LAl increased with decredsdoght streséthHs{—rBesearch

efforts have focused on mapping L@io et al., 2014)and laf trait (Kattge et al., 2011, Asner et al.,

2015)distributions across climatic gradierttsweveitheir covariance has not yet been explored. Given | commented [FS44]: R1 AR3L. In response to reviewer

02 Y Y Siygeneral, Please reconsider the usage of the
the role of leaf traits in shaping canopy carbon economics, the mechanisms underpinning LAI and I¢ word whilstg it reads a little pretentious.
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trait distributionsacross the resource availability gradient could prove important in understanding the

effect of changes in precipitation regime on future Amazon carbon dynamics.

4.2 Drivers of Spatial Variation in GPP

Indirect effects of climate viacesystem structurand longterm trait responses to water availability
accounted for 54% of variation in GPBJ(; Figure ). Direct effects of climate (which included
physiological responses to water availability) accounted for only 16% of observed v#fiahtze6)

Our results are consistent with previous reports on the importance of ecosystem structure and traits in
determining spatial variation in GRRodig et al., 2018, van de Weg et al., 2013, Reichstein et al.,
2014) but go further to quantify the direct contribution of discrete drivers to observed variation in

carbon assimilation. LAl explained the greatest proportion of variation in G#lBwed by

photosynthetic capaci;twhiisHjoot and soil properties had little explanatory pawer Commented [FS45]: R1 AR3L. In response to reviewer
02 Y Y Siygéneral, Please reconsider the usage of the
. . i T § word whilstg it reads a little pretentious.

[Ewdence of changes in LAl in response to precipitation regime has been presented across multi adjustments throughout

ecosystems and over ting@rier and Running, 1977, Schleppi et al., 2011, lio et all42Dobbertin Commented [FS46]: R1 AR18. In response to treviewer
comment
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a [ A y-849 iYau mention how changes in LAl is a respc
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changes in precipitation that explains the changes in GPI
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(Meir et al., 2009)with longterm reductions estimated at betweenl58 (Rowland et al., 2015a) delayed, but did you investigate lagged correlations and
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2008) At Caxiuana, over a-ylear period, observed leaf area was3R06 lower than the control stand

Investigations show that declines in LAl are not caused by increased leaf turnovedchuegtd stress ) )
With respect to annual timescales theldedata used were

across 2 years only, limiting the scope to test for lag effec
However, this could certainly prove an interesting

investigation for the future. Across sa@imnual timescales w
an active response of plant allocation strategy to water availability. Concurrently, after 15 years ung are unable to compare field estimates of GPP (due to the
nature of biometric estimates), however model experimer

throughfall exclusionRowland et al. (2018pund that leaf litterfall still remained consistently lower. | found tha(: the efffict of moisture stress was better capture
via VPD (line 392).

Reported trends in canopy dynamics are therefore in accordance with our findings, and indicate that

but instead are the result of lower leaf produt{Nepstad et al., 2002, Schuldt et al., 2QEliggesting

LAl is a key response mechanism to precipitation regist-cOther studies such afa Costa et al.
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(2018)have similarly pointed towards structural responses as the principal determinant of variation in

GPP howeverlthey identify changes in sapwood area as the main driver, rather thaWe/luggest

that whilst sapwood area may be more important in shaping the respésgésashort ternthanges
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in precipitation,ferforests-at-steady-stataver longer timescalesmergent canopy properties (LAI)

drive GPP trends.

Photosynthetic capacity also proved an important driver of spatial variation in GPP across the MCW

gradient. Our results are consistent with a number of Ambaead studies linking leaf traits to

Commented [FS48]: R1 AR19. In response to the review
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productivity (Aragao et al., 2009, Cleveland et al., 2011, Castanho et al.,.201&estingly, the

observed shifts in photosynthetic capacity along the gradient had a compensatory effect on the GPP

MCWD interaction. Reductions in GPP under hidhought stresswere alleviated by higher

photosynthetic capacitance. Similarly, shifts in photosynthetic capacity in response to temperature have

been reported to reduce spatial variation in GPP acrossieatrefevation gradier(Bahar et al., 2017,
van de Weget al., 2013) Consistent withFyllas et al. (2017)our results also show that the effect of

climatic forcings on carbon fluxes can be succelsfiaptured through spatial variation in canopy

dynamics and leaf traits. However, as we have focused on the role of leaf traits in the absence of carbon

cycle feedbacks, we do not take into account the effect of concurrent shifts in LMA and leaf lifespan

which together influence canopy carbon econorfésght et al., 2004, Osnas et al., 2013, McMurtrie

and Dewar, 2011) -

-we are
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Term omitted
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Root depth, root biomass and soil properties had little direct effect on spatial variatiBR iivGilst

Wiwe recognise that the difficulty in measuring root depth and biothstalfe et al., 2007xdds

uncertainty to our resultdhowever, the findings do not reflect the importance of belowground
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functioning highlighted by other studiéSisher etal., 2007, Metcalfe et al., 2008, Baker et al., 2008,

Phillips et al., 2009, Ichii et al., 200Mlotably, a number of GEM plots had hard pan lag&tsesada

et al., 2012)so they may be acclimated to operate in shallow rooting zones,a@e therefore not

‘| Commented [FS51]: R1 AR37. In response to reviewer
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necessarily representative of other Amazon forests under the same precipitation[D_dan

root depth and biomass can alleviate water constraints to photosynthesis via the direct physiological

pathway (i.e stomatal conducta®). But in the absence of C cycle feedbacks, changes in root depth and

biomass do not drive changes in emergent canopy properties (i.e. LAI) which proved most important in

determining GPPHewevertlt is therefordikely that given-these-drivers-are-largely-assoeiated with
the-acquisition-of water—ratherthan-cardibiigedbacks were enabled within analyses, root and soil

properties would prove to have a stronger effect.

4.3 Variation in Forest Sensitivity to Drivers oP8

The sensitivity of GPP to differences in LAI, climate, photosynthetic capacity and rooting depth varie

across the MCWD gradient with evaporative potential and water uptake caegiBidure 6). As the

model experiment was conducted in the absencarbibn cycle feedbacks, sensitivities reflect shorter
rather than longerm effects of changes in forcings. The sensitivity of GPP to differences in LAl and
photosynthetic capacity was greatest for forests occupying the |dmesght stresgone and desied

with increasingdrought stressOur results are in agreement with findings fréfmght et al. (2013)
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who reported that GPP was most sensitive to decreases in leaf area when water availability was highest.

Forests with a high LAl (and therefore high evaporapetential) but shallow rooting depth were most

sensitive to differences in climate. Our results suggest that where rooting depth is relatively shallow,

and unable to ameliorate the effectslofught stresas seen elsewhefiepstad et al., 2007, Malhi et

al., 2009a) forests with a high LAI could be more vehable to reduced precipitation. Investigations

into the vulnerability of Amazon forests to drought have put a deservedly large emphasis on the role of

physiological responsé€hoat et al., 2012, Phillips et al., 2009, Bennett et al., 2015, Corlett,.2016)

However, our results indicate that the role of ecosystem structure could also prove important, and that

forests with a high evaporative potential (high LAI) but low water uptake capacity (shallow rooting

depth) should be a focus for future studies.
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4 .4 Drivers of SubAnnual Variation in GPP

Seasonali.e. subannual)variation in GPP was driven by changes in solar radiation, VPD and LAI

Tthe relative importance efhichthese factorsvas dependent on MCW[@3; Figure 7). Shortwave

radiation was the doimant driver of sukannual variation in GPP across platagbutits relativeeffeet

importancewas greater for moister forestereased-with-decreasiryought-stres¢Table 7) The

relative importance of LAl in driving sunnual GPP increased wihought stresgn accordance with

our findings, & number of studies report that for Amazon forestsject-to-significanth-low-annual

ifiggher rainfall zones

GPP increases in line with solar radiatiamd for forestsubject to significantly low annuaainfall

GPP declines with increased VR@on Randow et al., 2013, Goulden et al., 2004, Hutyra et al., 2007,

Saleska et al., 2003, Rowland et al., 2014, Carswell et al., 200R)esults suggest that LAl is not the
principal driver of sukannual varigonneein GPP, in contrast to its role in driving spatial variation
across the MCWD gradient. However, vesilother studies agree that leaf area alone does not drive
variation in subannual GPRWu et al., 2017, Wu et al., 2016, Brando et al., 2010, ResCeppe et

al., 2013, Bi et al., 2015vefail-do note account fopotentialshifts in photosynthetic capacity with
leaf age. The awdination ofleaf age (videaf flushing and new leaf emergeheeéth climatic drivers

such as solar radiation is thought to exceed the effects of LAl hwater limited forestgMyneni et

al., 2007) We further recognise the uncertainty introduced through using leaf N content to derive
photosynthetic capacity estimates (for five of the seven plots), given the distribution of leaf N between
photosynthetic and nephotosynthetic proteins is not fixed (Orocet al., 2017). However,
notwithstandinghe-effects-etemporal variation in photosynthetic capaciwe demonstrat¢hatthe
relativeimportanceof eanepyLAl dynamicsandclimatic forcing driving variationin GPR shift with

light andwateravailability.

Our results indicate that with respectitought stressannualGPP is constrained via indirect pathways

(i.e. ecosystem structure and traits) across spatial scales, but is limited via direct pathways (i.e.

physiology) across subnnual timescaleéFigure 1).In a study on net ecosystem excha(iEE)

Richardson et al., (20079und that indirecpathways became progressively more imporiadtiving
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NEE as the period of integration was lengthened (for a sgtap@nated forest in Maine, USA). The

authors reasoned that the shift from direct to indirect pathways (as the period of integration transitions

through dayweekmonthseasonaannual), reflected the timescales over which these processes

operateStomata vary at hourly time scales with metéagy and soil conditionsChe shift indirectto

indirect pathways driving GPP varianceportedherecan similarly be explained by the difference in

timescales over which responses to drousthéss operatel Al varies over monthly timescales,

constrained by C and nutrient investment requirenmrdsyearsAs a result, over monthly timescales,

up to one third of variation in GPP was explained by indirect effects of climate (i.e. LAl; Table 7), but

direct effects (vighysiological responses) remained the dominant driver (consistent with Richardson

et al., 2007). Across the drought stress gradient, structural and trait responses to water availability

(across annual to decadal timescatesult in indirect pathways dondting the GPP response, and the

direct effects of climatareless important.Ourresults-indicate-that- with-respeet-to-seil-meisture; GPP

4.5 Limitations and Opportunities

As nutrient dynamics are not directly accounted for in SPA, we are unable to quantify the impact of s

nutrients on the GRRICWD interactioh Soil nutrient availability varied widely across plots (Table 1).

We recogniséhat nutrient limitation likely impacts GPP across the MCWD gradient, effected through GPP: in comparison to the supply limit observed across <

both nutrient availability and plants acquisition capacity (which is dependent on mcisess).
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estimates as a model inputs (which influence simulated photosynthetic and metabolid rate).

We recognise that the lack of significant correlation between S®RIAGEM GPP estimates could

impact the interpretation of our results. However, we argue that five of the sevestpiats were
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within the errorboundsof field measurements, and that the inferential statistics used were limited by Discussion on nutrient limitation is now included.

our small sample siz@=7). We also note thaBEM GPP erroestimategcalculated as the propagated

standarcerror of component NPP and respiration measuremelatsjot account foassumptions used
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in scalingbiometric measurements to plot level (e.g. uncertainty in using estimated total woody surface

area to scale ste@0; efflux measurements) Commented [FS56]: R1 AR15. In response to the
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to concurrent shift towards higher photosynthetic capacity
Weiss et al., 2004)n this study, weaxpect that if field measurements of LAl were underestimated at | at drier sites.

from hemispherical photographs to constrain model simulations. The accuracy and spatial validity

higher leaf areas, the proportion of spatial variation in GPP explained by LAl would increase, as a result
of increased variation in both fielteasured and model simulated GPP. Yet, ourdsigbstimates of

LAl (Caxiuand5.11+ 1.41 ntm?) align with destructive sampling measurements from a-fieme

Amazon forestiicWilliam et al. (1993%5.7 + 0.5m?m ). Furthermore, a comparison of LAl estimation
approachegAsner et al., 2003yuggested that indirect methods were appropriate for broadleaved
forests, and presented no statistical difference between destructive harvesting and indirect methods.

However, the use of ground measurements is limited to smaller spatial scales, anihiaiesstcross

the basin are needed to constrain carbon flux estimatesst Thoughthe interpretation of forest Commented [FS57]: R1 AR3L. In response to reviewer
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Alencar, 2010, Saleska et al., 2007, Samantal.e2010) an increase in canopy mapping through
satdlite missions could be instrumental to efforts aiming to better understand LAl dynamics. Current
and upcoming satellite missions including FLEX (FLuorescence EXplorer), GEDI (Global Ecosystem
Dynamics Investigation) and Sentinel will offer opportunity ierv insights into changes in leaves

situ, vertical canopy structure, and temporal variability via repeat measurgiMentsn, 2016, Drusch

et al., 2017, Pettorelli et al., 201&fforts to map trait distributions will also prove importéikattge

et al., 201, Asner et al., 2015)iven their role in driving variation in GPP.

5. Conclusion
We show that indirect effects of climate (via ecosystem structure and trait responses) exceed direct

effects (via physiological responses) in driving spatial variation in GPP across an Amazon MCWD

gradient (Q1). Conversely, across s@mnual timescales, the reverse was tf@8). The relative
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sensitivity of GPP to changes in direct and indirect forcings shifted across the MCWD gradient and was

dependent on water availability, demand anduisitionpotential(Q2). We: identifying the potential Commented [FS58]: R1 AR24 In responsettee reviewer
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vulnerability of forests with a high evaporative potential (i.e. high LAI), but low water uptake capacitya Sy t Sy 0osa® tf SIFaS NBLKNI &
Rephrased.

(i.e. shallow rooting depth), to changes in precipitation regime. Given the role of LAl in driviRg GP
across thelrought stresgradient, we highlight a requisite for improved mapping of canopy dynamics
(via remote sensing)Ve propose that ecosystem model development should focus on the integration
of structural and trait responsestought stresgalongside physiological responsed)he inclusion of

both direct and indirect effects of climate in ecosystem models, would reduce current uncertainty in

predicted annual and s@mnual GPP for tropical forests.
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Supplementary material is included in a separate document.
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Table 2. Summary of the relationship between model variables and field data. Values are either a SPA

model parameter (input) or output. Model parameters may be initial congitibsequently-allowed
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plots.

Value Model Parameter or Output Source of Value or Calibration/Validation
Data

LMA parameter (singléxed) GEM plotmeasured value or literatubased
estimate from plot species list

Vemax parameter (single fixed) (estimate from) GEM plemeasured value ¢

TRY database estimate from plot species list
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Jmax parameter (single fixed) (estimate from) GB plot-measured value ¢

TRY database estimate from plot species list

Leaf N content parameter (single fixed) GEM plotmeasured value or TRY databs

estimate from plot species list

LAI parameter (timeseries fixed) GEM monthly plotmeasured value

Leaf NPP output model calibration to GEM plemeasured lea

litterfall and LAI

Wood NPP

fraction of total parameter (single fixed) GEM plotmeasured value

NPP

total wood NPP output simulated value validated against GEM fie
measured total wood NPP

Root NPP

fraction of total parameter (single fixed) GEM plotmeasured value

NPP

total root NPP  output simulated value validated against GEM fie

measured total root NPP
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Leaf turnover

Root turnover

Wood turnover

Foliar C stock

Wood C stock

Root C stock

parameter (single fixed; functio model calibration to GEM pleteasured lea

of three individual

parameters relating to the le

litterfall cycle)

parameter (single fixed)

parameter (single fixed)

fixed litterfall

parameter (timeseries fixed)

parameter initial  condition

thereafter output

parameter initial  condition

thereafter output

estimated using root NPP assuming stestdye

conditions

estimated using wood NPP assuming steady ¢

conditions

product of LAl and LMA

initial condition uses GEM planeasured DBH
values converted to C stock using allomet
equation

output calculated in SPA as simulated wooc

stock plus NPP minus turnover

initial condition used GEMplot-measured roo
stock values or literaturieased estimate
output calculated in SPA as simulated root

stock plus NPP minus turnover
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NPP output calculated in SPA as GPP minus autotrop

respiration, evaluated against GEM data

Table 3. Field estimated mean annual leaf area index (LAl), leaf traits, maximum rooting depth and fine

root biomass for Amazon permanent sample plots along a MCWD gradient. LAl estimates were derived

from monthly hemispherical photographs. LA, leaf traiid rooting depth estimates were used to

constrain SPA model runs. Estimate standard errors are presented in brackets. Fine root C stock

estimates were absent for Tanguro plots.

LAI LMA leaf N content  Maximum  Fine Root
(m? m?) (g m?) (g m?) Rooting C Stock
Depth (m) (g C nT?)
CAX04 499 (£1.07) 93(x17) 1.82(x043) 8 345
CAX06 5.23(+0.92) 87 (x54) 2.12 (+0.7) 10 433
TAMO5 485 (+0.81) 101 (x24) 2.38(+0.56) 1 770
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1510

1515

1520

TAMO6
KENO1
KENO2

Tanguro

4.64 (+0.77)
2.77 (£ 0.17)
2.22 (+0.14)

4.13 (+ 1.01)

96 (x 21)
53 (x 13)
42 (+ 13)

64 (+ 13)

251(£064) 1 500
212 (£0.25) 2 818
2.31(x0.31) 1 607

2.01(£0.52) <10 -

Table 4. SPA calibrated leaf litterfall parameters for plots across an Amazon MCWD gradient. Peak

leaf fall is the day of year leaf litterfall reaches its maximum, leaf lifespan reflects maximum lifespan

of leaves and leaf fall period is the number of daysr which systematic increases in leaf fall occur.

Leaf litterfall parameters were calibrated against GEM field estimates to capture leaf litterfall and

timing.
Peak Leaf Fall  Leaf Lifespan Leaf Fall Period
(day of year) (years) (days)
CAX04 210 3.00 150
CAX06 190 1.45 100
TAMO5 220 1.30 130
TAMO6 230 1.42 100
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Tanguro
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180
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1.01
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100

100
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1525

1530

Table 5. A comparison of GEM field measurements and SPA prbesssl modelling estimates of

component autotrophiespiration and NPP. We present tife [Rvalue, and root mean square error

1535 (RMSE) of the interaction between SPA and GEM annual estimates, together with the range in GEM

biometrically derived estimates across seven sample plots at four locations indherpasin.

Component R? p-value RMSE Range in Field Estimates
(9C m?yr)

Respiration

Foliage 0.47 0.09 92.0 454830

Wood 0.75 0.01 100.5 411-1054

Fine Root 0.91 <0.001 74.1 2321041
NPP

Foliage 0.99 <0.001 9.0 150491
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Wood 0.21 0.30 25.3 189292

Fine Root 0.59 0.04 49.5 189418

Table 6. The proportion of variation in GPP across seven GEM Amazonian permanent sample plots
explained by photosynthetic drivers in SPA. Model drivers were alternated individually at each plot to
that of all other plots and the resultant change in GRRvet. Proportion of variance explained was
calculated as conditional sum of squares divided by the total sum of squares (n=476; where the

conditions were LAI, photosynthetic capacity, rooting depth, root biomass, climate and soil).

Driver Percentage ofVariation

Explained (%)

LAI 32.8
Photosynthetic capacity 21.3
Climate 16.2
Root depth 4.1
Soil 12
Root biomass 0.7

67



1555
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Table 7. The relative importance of LAI, VPD, solar radiation, precipitation and air temperatyre (T

in driving monthly variation in GPP (%). Monthly GPP estimates are derived from calibrated SPA

simulations for seven permanent sample plots across an Amazon MCWD gradient, constrained using
1565 monthly field LAl measurements. Relative importance values Weried from analyses using the

random forest technique (n=168).

Plot LAI VPD Solar Precipitation Tair
Radiation

CAX04 13 17 58 8 5

CAX06 6 16 64 8 5

TAMO5 17 22 53 3 5

TAMO6 17 21 53 3 7

KENO1 16 21 45 10 8
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Tanguro 33 20 24 6 10
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Figure 1. A schematic of the direct and indirect effectdrofight stresfvia soil moistureand VPDon Commented [FS70]: R1 AR47. In response to reviewer
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this line¢

GPP. Drought stressaffects GPP directly via stomatal conductance, and indirectly through its

determinant effect on plant traits and structural properties. Plant processes are represented by circles,
traits are represented by triangles and vegetation properties (i.e. etosysieture) are represented

by rectangles. Dashed boxes identify interactions driving the direct and ingémtays through

which drought stresgmpactsGPP.We note that other climate forcings (e.g. shortwave radiation and

temperature) impact GPP but are not included here.
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Figure 2. A schematic of DALEGhpy the carbon allocation subodel integrated within the seplant
atmosphere model. Carbon nesvbetween pools (solid boxes) via fluxes (solid arrows). Leaf carbon
fluxes are constrained by field measurements (black dashed boxes). An effentité,carbon pools

or fluxes onanother carbon fluis shown by a red dashed arrow, wherebydettedboxes indicate a

Rhet

L

soil organic
matter

collective impact of the contained carbon pools or fluxes. Black flux bars indicate that the carbon

pathway is prioritised within the model above pathways from the smuiierle. Climate is a model

input, whilst-andsoil moisture is simulated within SP&arbon pools (C), allocation (A) and litterfall
(L) are separated by component: w = wood, cr = coarse roots, r = fine roots, f = foliage, lab = labile

nonstructural carbon), with to and from used for labile carbo
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Figure 3. SPA estimated soil volumetric water contemhpared to GEM measured values for six of

1605 the seven sample plots at four locations across the Amazon basin. Data presented is for the time period
20092010. Field data for CAX04 was limited to a shorter time period and for CAX06 was unavailable.
R?, p-value and RMSE estimates presented are derived from linear regressions between monthly GEM

measurements and SPA simulations.
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Figure 4. Field estimated monthly LAI, leaf litterfall (GEM), and standard error, compare®Ri#th

simulated leaf litterfall for seven plots at four locations across the Amazon basin. SPA leaf litterfall was

calibrated against GEM estimates to derive three fixed model drivers relating to the leaf cycle (peak

leaf fall timing, leaf fall period and & lifespan). GEM leaf litterfall data was available for 2.0

for CAX04, CAX06, TAMO5, TAMO6 and for 2010 only for KENO1, KENO2 and Tangurg pRvalue

and RMSE estimates presented are derived from linear regressions between monthly GEM

measurementand SPA simulations.
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1620 Figure 5. Carbon flux estimates (gGgr?) of (a) GPP, (b) NPP and (c) autotrophic respiratienived
from processhased modelling (SPA) and biometric methods (GEM) for seven permanent sample plots
at four locations across the Amazon basin. Estimates are mean annual values representative of the years
20092010. GEM error bars represent standardreirom field carbon flux measurements. SPA error
bars represent simulated C fluxes under the upper and lower field LAI standard &rpovaRes and

1625 RMSE represent the interaction between SPA and GEM C flux estimates.
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Figure 6. The sensitivity of GPP to model driver alternations in SPA at each location. Model drivers
LAI, climate (characterised by MCWD)hotosynthetic capacifgharacterised by May) and rooting

depth, derived from field observations, were alternated individually at each plot to that of all other plots

and the resultant GPP retrievegblid linesrepresent SPA simulated GPP under the named driver
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