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Abstract 

The capacity of Amazon forests to sequester carbon is threatened by climate change-induced shifts in 30 

precipitation patterns. However, the relative importance of plant physiology, ecosystem structure, and 

trait composition responses in determining variation in gross primary productivity (GPP), remain 

largely unquantified, and vary among models. We evaluate the relative importance of key climate 

constraints to GPP, comparing direct plant physiological responses to water availability and indirect 

structural and trait responses (via changes to leaf area index (LAI), roots and photosynthetic capacity). 35 

To separate these factors we combined the Soil-Plant-Atmosphere model with forcing and observational 

data from seven intensively studied forest plots along an Amazon drought stress gradient. We also used 

machine learning to evaluate the relative importance of individual climate factors across sites. Our 

model experiments showed that variation in LAI was the principal driver of differences in GPP across 

the gradient, accounting for 33% of observed variation. Differences in photosynthetic capacity (Vcmax 40 

and Jmax) accounted for 21% of variance, and climate (which included physiological responses) 

accounted for 16%. Sensitivity to differences in climate was highest where shallow rooting depth was 

coupled with high LAI. On sub-annual timescales, the relative importance of LAI in driving GPP 

increased with drought stress (R2=0.72), coincident with decreased importance of solar radiation 

(R2=0.90). Given the role of LAI in driving GPP across Amazon forests, improved mapping of canopy 45 

dynamics is critical, opportunities for which are offered by new satellite-based remote sensing missions 

such as GEDI, Sentinel and FLEX. 
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1. Introduction 55 

As the entry point for carbon into the biosphere, gross primary productivity (GPP) is central to the 

global carbon cycle. Tropical rainforests alone account for one third of total terrestrial GPP, assimilating 

~41 Pg of carbon each year (Beer et al., 2010). Carbon fluxes across the tropics are tightly coupled to 

climate, and water availability is a principal driver of spatial and temporal variation in GPP (Fisher et 

al., 2007, Von Randow et al., 2013, Beer et al., 2010, Malhi et al., 2015, Guan et al., 2015). Across 60 

Amazon forests, GPP decreases linearly with increasing seasonal water deficit (Malhi et al., 2015). 

Shifts in precipitation patterns as a result of anthropogenic climate change are predicted to have a major 

impact on Amazon GPP (Phillips et al., 2009, Malhi et al., 2008, Meir and Woodward, 2010, Zhang et 

al., 2015, Meir et al., 2015a). Longer and more intense dry seasons are projected, together with an 

increased frequency and severity of drought events (Joetzjer et al., 2013, Boisier et al., 2015, Duffy et 65 

al., 2015). Given the biogeochemical influence of Amazon forests at regional and global scales (Liu et 

al., 2017), accurately predicting GPP response to drought stress is critical.  

Dynamic global vegetation models (DGVMs) disagree on the effects of projected precipitation change 

on Amazon carbon dynamics. Galbraith et al. (2010) found future shifts in precipitation patterns had 

little effect on model estimates of biomass change (for two of the three models tested), reflecting poorly 70 

the observed sensitivity of Amazon forests to water availability illustrated by through-fall exclusion 

experiments and natural drought events (Rowland et al., 2015a, Nepstad et al., 2007, Phillips et al., 

2009). Substantial progress has been made in model development to capture the impact of drought stress 

on plant physiology. By coupling stomatal conductance and plant hydraulic theory, models have proved 

better able to predict ecosystem functioning and mortality (Eller et al., 2018, Fisher et al., 2018, Fisher 75 

et al., 2006, Fisher et al., 2007, Bonan et al., 2014). However, the interactions between drought stress, 

ecosystem structure (e.g. canopy dynamics and rooting depth) and trait composition (e.g. Vcmax, Jmax, 

leaf lifespan and leaf mass per unit area (LMA)), are typically absent from models, despite having a 

major impact on simulated GPP (Fauset et al., 2012, Sakschewski et al., 2016, Lee et al., 2013). 

Furthermore, changes in canopy dynamics have been identified as a likely cause for the disparity 80 

between field observations and model predictions (Restrepo‐Coupe et al., 2017, Powell et al., 2013). 
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The relative importance of plant physiology, ecosystem structure, and trait composition responses in 

determining variation in GPP, remain largely unquantified in data-constrained analysis (Meir et al., 

2015b). Plant physiological responses to drought stress include stomatal conductance, which is limited 

by water availability and atmospheric demand. Stomatal conductance constrains GPP via changes in 85 

CO2 supply, but is considered a short (varying on sub-hourly timescales), rather than long-term response 

to climate forcings (Sperry et al., 2002). Changes to both ecosystem structure and traits, such as leaf 

area index (LAI), rooting depth and carboxylation capacity, are expected to be more longstanding (Meir 

et al., 2015a).  

Extensive evidence links spatial and temporal variation in drought stress with ecosystem structure 90 

(across sub-annual and annual timescales). LAI typically decreases with increasing drought stress (Iio 

et al., 2014, Meir et al., 2015b, Brando et al., 2008, Grier and Running, 1977, Wright et al., 2013). 

Across the wet-dry tropical forest transition, LAI declines on average ~1.4 m2m-2 (Iio et al., 2014). 

Brando et al., (2008) report a 21-26% decline in LAI following five years of drought onset at the 

Amazon throughfall exclusion experiment at Tapajós National Forest, Pará, Brazil. Growth of near 95 

surface root mass, length and surface area decline with seasonal drought stress (and increase during 

periods of high soil water availability to exploit available resources), whilst deep roots can support 

water supply during dry periods (Nepstad et al., 1994, Metcalfe et al., 2008). Root depth, mass and traits 

influence hydraulic supply and consequently stomatal conductance.  

Leaf traits similarly exhibit spatial and temporal variation with changing water availability. Leaf 100 

nitrogen content (per unit mass), light- and CO2-saturated photosynthetic rates (per unit mass) increase 

with drought stress across tropical precipitation gradients, as  ψ50 (the water potential at which 50% of 

hydraulic conductivity is lost) declines (Wright et al., 2004, Santiago et al., 2004, Anderegg, 2015). 

Leaf traits affect GPP via photosynthetic capacity (Vcmax and Jmax) (Bahar et al., 2017, Fyllas et al., 

2017), and through their influence on canopy carbon economics, via leaf growth and maintenance costs 105 

(Bloom et al., 1985).  

Field observations show variation in Amazon GPP is correlated with physiological, ecosystem structure 

and trait composition responses to climate (Restrepo-Coupe et al., 2013, Goulden et al., 2004, Hutyra 
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et al., 2007, Wu et al., 2017, Wagner et al., 2017). Modelling approaches have similarly highlighted the 

role of canopy dynamics and leaf traits in driving spatial and temporal variation in GPP (Mercado et 110 

al., 2011, Castanho et al., 2013, Restrepo-Coupe et al., 2013, Rodig et al., 2018), however their relative 

effects have not been explicitly isolated and quantified. Quantifying the direct effect of discrete 

photosynthetic drivers has been limited by the need for detailed field measurements of carbon fluxes, 

canopy dynamics and traits. A deserved research effort has focused on the importance of nutrient 

availability in driving spatial variation in GPP (Mercado et al., 2011, Castanho et al., 2013), however 115 

the role of ecosystem responses to water availability has received less attention (Green et al., 2019). In 

light of projected changes in rainfall patterns across the basin, capturing responses to water availability 

in ecosystem models is critical to reducing current uncertainty around Amazon climate-vegetation 

feedbacks. We aim to reduce the uncertainty by assessing the relative effects of physiological, structural 

and trait responses to water availability on GPP across monthly to annual timescales.   120 

We apply an ecosystem model to plots across the Amazon, spanning a large drought stress gradient 

(herein, the term drought stress refers to seasonal water deficit), and a range in forest types from moist 

equatorial to seasonally dry tropical forests. Process modelling allows the links between climate, 

ecosystem structure and leaf traits to be quantified explicitly, and separated, across timescales (Figure 

1). The soil plant atmosphere model (SPA) (Williams et al., 1996, Williams et al., 1998, Fisher et al., 125 

2006, Fisher et al., 2007, Rowland et al., 2015b) is well suited to this investigation given its prior use 

in accurately simulating carbon and water fluxes in Amazon tropical forests. We calibrate and validate 

the model using field data gathered over multiple years (2009-2010) on permanent sample plots from 

the Global Ecosystems Monitoring (GEM) network (Doughty et al., 2015a, Malhi et al., 2015). The 

datasets comprise detailed measurements of carbon fluxes, carbon stocks and leaf traits. We simulate 130 

the effect of forest structure and leaf trait distributions along the drought stress gradient, and explore 

the covariation of observed leaf traits (leaf N content (a proxy for photosynthetic capacity) and LMA) 

and those derived from model calibrations (leaf lifespan), before using SPA to address the following 

questions:  
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1. Is spatial variation in GPP across the drought stress gradient principally driven by the direct 135 

effects of climate and soils, which include physiological responses to water availability via 

hydraulic transport and stomatal conductance? Alternatively, are indirect effects of climate, via 

structural and trait responses to water availability (LAI, rooting biomass, root depth and 

photosynthetic capacity i.e Vcmax and Jmax), more important? 

2. Does the sensitivity of GPP to differences in climate, LAI, photosynthetic capacity (Vcmax and 140 

Jmax) and rooting depth vary across the drought stress gradient? 

3. What drives seasonal variation in GPP across an Amazon forest drought stress gradient? 

Linked to question one, we hypothesise that indirect effects of climate via structural and trait responses 

are more important than the direct effects (via physiological responses), in explaining spatial variation 

in GPP across the drought stress gradient (Figure 1).  We further posit that LAI is the principal driver 145 

of differences in GPP among Amazon forests, effected through the observed increase in leaf area with 

decreasing drought stress.  

For question two, we predict that the sensitivity of GPP to differences in climate, LAI, photosynthetic 

capacity (Vcmax and Jmax) and rooting depth will vary dependent on water demand (via LAI and stomatal 

conductance) and supply (climate and root depth and biomass; Figure 1). We expect that forests under 150 

lower drought stress will be most sensitive to differences in LAI and photosynthetic capacity within the 

bounds of observations across the gradient. We predict that forests under higher drought stress will be 

more sensitive to differences in rooting depth. We expect forests with high LAI but shallow rooting 

depth will be most sensitive to differences in climate, due to their higher transpiration demand but low 

capacity for water supply.  155 

For question three, we hypothesise that on monthly timescales, climate will be more important than 

canopy dynamics in driving GPP. Across the drought stress gradient, we expect that solar radiation will 

be relatively more important during the wet season. VPD will be more important during the dry season, 

reflecting seasonal shifts in light and water availability. Due to differences in dry season length, we 

predict that for forests experiencing lower drought stress, solar radiation will be most important in 160 

driving sub-annual variation in GPP. For forests under higher drought stress, VPD will be the dominant 
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driver.  

By combining detailed plot-level timeseries data with a hydrodynamic terrestrial ecosystem model, we 

are able to use an innovative model experimentation approach to understand the drivers of spatial 

variation in GPP, beyond correlative effects. We are able to apportion variation in GPP to the direct and 165 

indirect effects of climate (Figure 1), across sub-annual and annual timescales (Q1 and Q3). 

Furthermore, by performing a sensitivity analysis within the context of observed variation in parameters 

across the Amazon (Q2) we identify areas potentially more vulnerable to changes in precipitation 

regime.  

2. Methods  170 

Plot characteristics are summarised in Table 1, and detailed in full in the supplementary material. We 

characterise plot water status using mean Maximum Climatological Water Deficit (MCWD)  and not 

annual precipitation, as water deficit is more closely linked to the mechanisms constraining GPP, than 

total water input. MCWD is the maximum cumulative water deficit reached within a year. A water 

deficit estimate for each month is calculated as the difference between precipitation and transpiration 175 

(which ground measurements estimate at ∼100 mm month−1, see Aragao et al. (2007)). Therefore, the 

forest is in water deficit if monthly precipitation falls below 100mm. Maximum cumulative water deficit 

is calculated as the sum of sequential monthly water deficits (for equations see supplementary material). 

More negative MCWD values indicate higher drought stress.  

 180 

2.1 The Soil Plant Atmosphere model (SPA) 
The Soil-Plant-Atmosphere model (SPA) is a hydrodynamic terrestrial ecosystem model, which has 

been calibrated and evaluated for moist tropical forests in Manaus and Caxiuanã (Williams et al., 1996, 

Williams et al., 1998, Fisher et al., 2007). In SPA, carbon and water fluxes are estimated through 

process-based modelling of radiative transfer, boundary layer and stomatal conductance, plant and leaf 185 

ecophysiology and soil-plant energy and water balance (Smallman et al., 2013, Williams et al., 1996). 

Plant physiological responses to water availability are well represented in SPA due to the stomatal 
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conductance algorithm being coupled directly to plant water use (Fisher et al., 2006). As a result, higher 

evaporative demand under increased LAI drives increased root water uptake and consequently a 

depletion in soil moisture.  Within SPA, C allocation between structural tissue and the non-structural C 190 

(NSC) pool is executed via the sub model DALECcanopy (Bloom and Williams, 2015) (Figure 2). 

DALECcanopy was updated on daily timesteps and in this study, forced using LAI observation data. 

Constraining simulated LAI was integral to the model experiments conducted. It allowed the 

quantification of direct effects of different LAI timeseries on GPP under different plot conditions. 

However, the capacity of SPA to accurately simulate canopy dynamics is demonstrated by both López‐195 

Blanco et al. (2018) and Sus et al. (2010). To force modelled LAI, LMA (gC m-2) and daily LAI 

estimates were used to calculate the foliar C stock. Leaf NPP was calculated as the difference between 

the foliar C stock of the current and previous timestep. Leaf NPP was calculated as the difference 

between the foliar C stock of the current and previous timestep. Leaf NPP was allocated prior to other 

plant components, and if the leaf NPP requirement exceeded total NPP for the given timestep, the non-200 

structural C pool was drawn upon (where total NPP was calculated as the difference between simulated 

GPP and autotrophic respiration) (see supplementary material). The NSC pool serves functions 

additional to the seasonal redistribution of C (e.g. phloem transport and osmoregulation; Dietze et al., 

2014). As such, we assume the NSC pool is stable over time. If the NSC pool becomes depleted, a 

fraction of NPP is redirected towards NSC storage. Allocation towards NSC storage is executed in 205 

subsequent time steps when leaf NPP does not exceed total NPP. Root and wood NPP were calculated 

from the NPP remaining after leaf allocation. Leaf maintenance respiration was calculated as a function 

of leaf N content (Reich et al., 2008) and total leaf C stock (see supplementary material). Within SPA, 

wood and fine root maintenance respiration were simulated as a function of component C stock and a 

plot specific respiration coefficient. Growth respiration was calculated as fixed fraction of net primary 210 

productivity (NPP; 0.28) (Waring and Schlesinger, 1985). Model inputs and outputs are listed in Table 

2. 
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2.2 Model Calibration  

Following data collation to parameterise SPA, the model was calibrated and validated for each plot 

prior to conducting model experiments. Measurements used to parameterise SPA include: soil texture, 215 

soil C stock, leaf N content, LMA, photosynthetic capacity, the fraction of NPP allocated to fine roots 

and wood, root depth, and foliar, wood and fine root C stocks (Table 2). Soil, wood and fine root C 

stocks (single point measurements, not timeseries) were initial model inputs and allowed to vary 

thereafter dependent on simulated C dynamics. Plot specific field measurements of leaf N content are 

presented in Fyllas et al. (2009), or where absent were retrieved from trait databases using plot species 220 

composition (Kattge et al., 2011; Poorter and Bongers, 2006). Photosynthetic capacity estimates (Vcmax 

and Jmax) were derived from leaf N content (Walker et al., 2014), or field measurements (Caxiuanã 

only). Wood and root respiration measurements were used together with component C stocks to 

estimate plot specific wood and root respiration coefficients.  

The model was driven using hourly meteorological data, retrieved from local weather stations. The 225 

number of missing hourly field meteorological measurements across the timeseries varied from 2-40% 

across sites, whilst the frequency of gaps varied from 2-99 yr-1. Gaps less than 6 hours in length 

accounted for between 20-100% of total gaps across plots. Short gaps in air temperature, wind speed, 

shortwave radiation and vapour pressure deficit measurements (<6 hours), were filled by spline 

interpolation between existing data. Where local meteorological data was unavailable for a longer 230 

period of time, or for gaps in precipitation measurements, hourly spline-interpolated ERA-Interim data 

were used (Dee et al., 2011). The interpolation of solar radiation estimates accounted for the solar zenith 

angle. MCWD was calculated for the years 2009-2010, and was consistent with previously published 

estimates for all plots excluding Caxiuanã, which were calculated across different years (Malhi et al., 

(2015), Caxiuanã -203mm, Tambopata -259mm, Kenia -386mm, Tanguro -482mm; this study, 235 

Caxiuanã -85±65mm, Tambopata -265±59mm, Kenia 342±146mm, Tanguro 451±73mm).  

The simulation of soil water drainage in SPA was calibrated against timeseries of field measurements 

of soil moisture. Initial investigations comparing modelled soil moisture to monthly field data 

highlighted an overestimation by SPA. Pre-calibration, SPA soil moisture estimates were on average 



10 
 

11-68% higher than field measurements across plots. The difference between model and field soil 240 

moisture estimates increased significantly with MCWD (R2=0.69, p=0.04). The empirical model used 

in SPA to relate soil texture to water retention  (Saxton et al., 1986, eqn. 10) was then calibrated by 

adjusting the slope of the interaction to better represent soil moisture across tropical soils (to within 

standard error estimates of mean annual soil moisture).  

Leaf litterfall parameters (day of peak leaf fall, leaf fall period and leaf lifespan) were calibrated against 245 

field data to accurately simulate litterfall period and amplitude (within standard error estimates of 

annual litterfall). Wood and fine root biomass turnover rates were assumed proportional  to NPP, given 

the maturity of stands and their disturbance history: 

 𝑡𝑢𝑟𝑛𝑜𝑣𝑒𝑟 𝑟𝑎𝑡𝑒𝑖  ∝   
𝑁𝑃𝑃𝑖

𝐶 𝑠𝑡𝑜𝑐𝑘𝑖
  

Where i is wood or fine roots.  250 

Local, monthly LAI estimates derived from hemispherical photographs were scaled to daily estimates 

via linear interpolation, and used to force simulated LAI. The vertical distribution of leaf area is kept 

constant, as current field data is insufficient to provide an accurate depiction of how vertical 

distributions change with canopy density across the MCWD gradient. 

 We calculate model uncertainty as a result of input parameters. SPA was forced with the observed LAI 255 

timeseries plus and minus the standard error for each plot. Model uncertainty estimates were limited to 

that derived from LAI as the availability of uncertainty estimates for leaf traits, root depth and root 

biomass were variable and plot dependent, and there were no uncertainty estimates for hourly 

meteorological data or soil properties. Model structural uncertainty was not calculated and we recognise 

that the model error estimates presented are therefore underestimated.   With respect to model structural 260 

uncertainty, we highlight that the stomatal conductance algorithm embedded within SPA is consistent 

with leaf and canopy scale observations, and surpasses the performance of the Ball-Berry model where 

soils experience moisture-stress (Bonan et al., 2014). However, model (and empirical) uncertainty 

remains around the role of non-structural carbon in regulating water-transport in large trees during 
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drought periods (O’Brien et al., 2014) Furthermore, SPA does not account for hydraulic lift and 265 

redistribution of water through the soil profile, which is known to impact water fluxes across the soil-

plant-atmosphere continuum in Amazon trees (Oliveira et al, 2005; Wang et al., 2011). 

2.3 Model Validation 
Observation constrained SPA simulations were validated against biometric field measurements of C 

fluxes (i.e. from infra-red gas analysers, dendrometers, root ingrowth cores litterfall traps etc.). Linear 270 

regression models were constructed to compare modelled estimates and independent field 

measurements of GPP, autotrophic respiration and total NPP. A comprehensive comparison of model 

estimates and independent field measurements of component NPP and respiration were also made.  

Validation of the SPA model against biometric data lent confidence to subsequent analyses, where the 

model was used to explore C fluxes under non-observed conditions.  275 

2.4 Model Experiments  

Our aim was to isolate the direct effects of climate and soils (via physiological responses), and the 

indirect effects via ecosystem structure, and leaf traits, on simulated GPP. To avoid capturing the 

feedback effects of changing photosynthate supply (i.e. as a result of changes in climate, soils, 

ecosystem structure or traits) on ecosystem structure, model experiments were conducted in the absence 280 

of C cycle feedbacks. Thus, within model experiments, C stocks for each component (leaves, wood, 

fine root, coarse root) were constrained to observations unless otherwise stated.  

2.4.1 Experiment 1. Drivers of Spatial Variation in GPP  

Through a series of model input alternations, we used SPA to quantify the effects of (i) climate, (ii) soil 

properties, (iii) LAI, (iv) root biomass and (v) rooting depth, and (vi) trait responses driven by 285 

photosynthetic capacity (Vcmax and Jmax), on simulated GPP. Model inputs for each driver were 

alternated at each plot, to that of all other plots, and annual GPP values for each of the two years 

retrieved. For example, plot CAX04 was simulated with the climate, soil properties, LAI, root biomass, 

root depth and photosynthetic capacity of CAX06, TAM05, TAM06, KEN01, KEN02, and Tanguro 

etc. (Figure S1). SPA simulated GPP for a total of 462 combinations (for climate, 7 plots × 3 alternations 290 

× 2 years, plus for the remaining drivers, 5 drivers × 7 plots × 6 alternations × 2 years) were combined 
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with 14 annual GPP estimates from observation constrained (control) runs (7 plots × 2 years). A factorial 

ANOVA was applied to the difference between GPP from each model run and its control simulation 

(n=476, i.e. 462 +14) (Galbraith et al., 2010). The proportions of variation in GPP explained by climate, 

soil properties, LAI, photosynthetic capacity, root biomass and rooting depth, were then calculated as 295 

the conditional sum of square divided by the total sum of squares.  

2.4.2 Experiment 2. Variation in Forest Sensitivity to Drivers of GPP 

We quantified how the relative sensitivity of GPP to differences in LAI, climate, photosynthetic 

capacity and rooting depth varied across the MCWD gradient. For example, we tested whether forests 

occupying lower drought stress zones were more sensitive to differences in LAI than forests in higher 300 

drought stress zones, etc. We used model outputs generated in Experiment 1 to calculate the sensitivity 

of GPP to drivers at each plot, within the bounds of observations across the MCWD gradient. Root 

biomass and soil properties were not included in the analysis as across the MCWD gradient they 

explained little variation in GPP (Experiment 1, Table 6). The sensitivity of GPP to drivers at each plot 

was calculated as the absolute range in simulated GPP values under each driver alternation i.e. the 305 

sensitivity of CAX04 to variation in LAI was calculated as the maximum GPP minus the minimum 

GPP simulated by alternating LAI to that of all other plots etc.  Plots were grouped by location 

(Caxiuanã, Tambopata, Kenia and Tanguro) to compare how the sensitivity of GPP to LAI, climate, 

photosynthetic capacity and rooting depth varies across the MCWD gradient.  

2.4.3 Experiment 3. Drivers of Sub-Annual Variation in GPP 310 

We quantified the role of climate and LAI in explaining variation in sub-annual GPP. We used the 

random forest technique to compute the relative importance of LAI, VPD, solar radiation, precipitation 

and air temperature driving variation in monthly GPP (n=168; 7 plots × 24 months), where GPP 

estimates were derived from SPA simulations. To quantify the effects of LAI and climate variables on 

monthly GPP we used the random forest machine learning technique applied by means of the Python 315 

Scikit-Learn module (Breiman, 2001, Pedregosa et al., 2011). The approach uses multiple mathematical 

decision tree predictors to describe a dependent variable as a function of selected independent variables. 

An importance value between 0 and 100 was assigned to each driver based on a tree-wise comparison 
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of explanatory power (Moore et al., 2018, López-Blanco et al., 2017). We calculated the average relative 

importance of drivers at each plot to determine the principal drivers of variation in sub-annual GPP and 320 

investigated the seasonality of driver importance.  

3. Results 

3.1 Model Calibration  

Calibrated SPA soil water content corresponded well to field measurements from the GEM network 

(Figure 3). Simulated mean annual soil moisture estimates were within field measurement standard 325 

error for all plots. The timing of observed peak soil moisture was captured by SPA simulations 

(R2=0.98, p<0.001, RMSE=1 month). A positive, but non-significant, correlation existed between 

model and field estimates of seasonal soil moisture range (R2=0.35, p=0.21, RMSE=5%).Notably, for 

some plots such as Kenia, the magnitudes of seasonal peak soil water fluxes were not captured by SPA 

simulations (up to 39% lower than field estimates). For Tanguro, peak soil water lasted 3 months longer 330 

in SPA simulations than was measured in the field.  

SPA was also successfully calibrated to simulate local leaf litterfall accurately. The calibration of leaf 

fall cycle parameters in SPA using GEM leaf litterfall timeseries (Table 4), resulted in the magnitude 

and timing of leaf litterfall being well represented by the model for all plots (monthly leaf litterfall range 

for GEM measurements and SPA simulations R2=0.54, p=0.009, RMSE= 11.2 gC m-2 yr-1; timing of 335 

leaf litterfall peak R2=0.96, p<0.001, RMSE=1.1 months) (Figure 4). SPA-simulated mean annual leaf 

litterfall correlated significantly with GEM estimates (R2=0.99, p=<0.001, RMSE=9.0 gC m-2 yr-1).  

3.2 Model Validation  

Estimates of ecosystem-scale C fluxes from SPA model runs were validated against biometrically 

derived estimates from the GEM network. GPPSPA and GPPGEM estimates were correlated across plots, 340 

though not significantly (R2=0.36, p=0.15; Figure 5a). Along the MCWD gradient, GPPSPA estimates 

varied across plots by 1137 gC m-2 yr-1, in line with GPPGEM estimates which varied by 1202 gC m-2 yr-

1. Error bars overlap between GPPSPA and GPPGEM estimates for all plots except KEN01 and TAM06, 
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though marginally (difference KEN01 115 gC m-2 yr-1, TAM06 50 gC m-2 yr-1). GPPGEM error bars are 

field estimate standard error, and GPPSPA error bars represent simulated GPP variance under LAI 345 

standard error. Across plots, GPPSPA estimates were 0.57% higher than GPPGEM estimates. The 

correlation between GPP and MCWD was similar for GPPSPA (R2=0.64, p=0.03, slope=2.4) and GPPGEM 

estimates (R2=0.52, p=0.07, slope=2.00).  

NPPSPA estimates (the sum of model simulated root and wood NPP and data-constrained leaf NPP) were 

also correlated with NPPGEM measurements across plots (R2=0.38, p=0.14), though not significantly due 350 

to differences in Kenia plots (on exclusion of Kenia plots R2=0.92, p= 0.01, RMSE=42 gC m-2 yr-1) 

(Figure 5b). NPPSPA estimates were 7.9% lower than field measurements across plots on average. RaSPA 

(the sum of predicted leaf respiration, and parameterised root and wood respiration) were significantly 

correlated with biometric measurements (RaGEM) across plots (R2=0.59, p=0.04; Figure 5c), though 

were on average 5.3% higher.  355 

Leaf respiration estimates simulated as a function of leaf nitrogen content were correlated with field 

measurements, though not significantly (R2=0.47, p=0.09; Table 5). Parameterised wood and fine root 

respiration, together with fine root NPP, correlated significantly with field measurements. SPA 

estimates of wood NPP did not correlate significantly with GEM measurements due to underestimation 

at KEN01 (on exclusion R2=0.78, p=0.02, RMSE=7.5 gC m-2 yr-1). Further comparisons of SPA 360 

estimates and GEM measurements of component NPP and respiration are presented in Table 5. 

3.4 LAI and Leaf Traits Trends along the MCWD gradient  

Field estimated mean annual LAI ranged from 2.2 to 5.2 m2 m-2, and increased (though not significantly) 

with MCWD across plots (R2=0.35, p=0.16; Table 3). A negative, non-significant correlation existed 

between calibrated leaf lifespan and MCWD (R2=0.50, p=0.08). Photosynthetic capacity (Vcmax and 365 

Jmax) estimates derived from measured leaf N content similarly exhibited a negative non-significant 

correlation with MCWD (R2=0.51, p=0.07 and R2=0.53, p=0.06 respectively). A positive non-

significant correlation existed between model-calibrated leaf lifespan, measured LMA (log-log 

R2=0.39, p=0.14), and LAI (R2=0.28, p=0.22). Model-calibrated leaf lifespan exhibited a negative, non-
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significant correlation with photosynthetic capacity estimates (Vcmax R
2=0.46, p=0.09; Jmax R

2=0.47, 370 

p=0.09). A significant positive correlation existed between mean annual LAI and LMA (R2=0.85, 

p=0.003).  

3.5 Model Experiments 

3.5.1 Experiment 1. Drivers of Spatial Variation in GPP  

Structural and trait responses to water availability explained more variation in GPP across the MCWD 375 

gradient than did climate. LAI accounted for the largest proportion of variance in mean annual GPP 

across plots (32.8%, Table 6).Differences in photosynthetic capacity explained 21.3% of variance. 

Photosynthetic capacity increased with decreasing MCWD; this relationship partially offset the 

decrease in GPP linked to declining LAI. The direct effects of climate on GPP (which included 

physiological responses to water availability including stomatal conductance) accounted for 16.2% of 380 

plot variation in mean annual GPP. Rooting depth did not vary directionally with MCWD and 

consequently only had a small effect on GPP (4.1%). Soil properties and root biomass accounted for a 

very small fraction of variance (<2%).  

3.5.2 Experiment 2. Variation in Forest Sensitivity to Drivers of GPP 

The relative sensitivity of GPP to drivers varied across the MCWD gradient (Figure 6). GPP was most 385 

sensitive to changes in LAI (per unit m-2 leaf area) for plots located at Caxiuanã, which experience the 

least negative MCWD and have large rooting depth. The sensitivity of GPP to LAI exhibited a positive, 

non-significant correlation with MCWD (R2=0.88, p=0.06). Reflecting LAI trends, the sensitivity of 

GPP to differences in photosynthetic capacity (per unit µmol C g s-1) was similarly highest at Caxiuanã, 

and decreased linearly (though not significantly) across the MCWD gradient (R2=0.83, p=0.09). 390 

Tambopata plots, which have high LAI but shallow rooting depth, were most sensitive to differences in 

climate (per unit MCWD mm). Kenia plots, which have similarly shallow rooting depth but low LAI, 

were the least sensitive. The sensitivity of GPP to differences in rooting depth (per m rooting depth) 

was highest at Tanguro and Tambopata, and lowest at Caxiuanã and Kenia. 
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3.5.3 Experiment 3. Drivers of Sub-Annual Variation in GPP 395 

In contrast to drivers of spatial variation in GPP, on a sub-annual timescale LAI had less explanatory 

power than climate (Tables 6 and 7). The relative importance of solar radiation in driving monthly GPP 

increased significantly with MCWD (R2 = 0.90, p=<0.001), as the relative importance of LAI declined 

(R2=0.72, p=0.015). The relative importance of VPD did not vary directionally across the MCWD 

gradient (R2=0.10, p=0.49). Both precipitation and air temperature had little effect on monthly GPP, 400 

though it is noted that a significant interaction existed between both precipitation and VPD (p<0.001) 

and air temperature and shortwave radiation (p<0.001). Furthermore, temperature varied least across 

plots in comparison to other climate forcings (standard deviation as a percentage of the mean; 

temperature 9.8%, VPD 73%, precipitation 192%, shortwave radiation 34%). As such, seasonal changes 

in the relative importance of temperature and precipitation were not investigated further. The relative 405 

importance of LAI, VPD and solar radiation shifted seasonally, reflecting changes in the availability of 

light and water. Solar radiation was typically the most important driver of monthly GPP during the wet 

season, whilst VPD was more important during the dry season (Figure 7). The relative importance of 

LAI forcings peaked before dry season onset for forests under lower drought stress (Caxiuanã and 

Tambopata), and during the dry season for forests under higher drought stress (Kenia and Tanguro). 410 

Notably, LAI was also more important during the dry season at KEN02, which occupies shallow soil 

(<1m) in comparison to KEN01.   

4. Discussion  

4.1 LAI and Leaf Traits along the MCWD gradient  

Leaf trait parameters retrieved from SPA litterfall calibrations suggest a wide range of potential leaf 415 

lifespans across the MCWD gradient (~1-3 years), and are in accordance with estimates for Amazon 

tree species, reported by Reich et al. (1991) of between two months and four years (Table 4). Leaf trait 

estimates co-varied across the MCWD gradient, in line with leaf economic theory (Wright et al., 2004). 

However, the interactions were often not significant. We suggest that in instances where R2 values 

indicate a large proportion of variation is explained, high p-values may have occurred as a result of a 420 
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small sample size (i.e. 7 plots).  As drought stress increased, a shift towards deciduous strategies resulted 

in reduced leaf lifespan, but higher photosynthetic capacity. The co-variation of leaf traits along the 

MCWD gradient shapes both the rate of carbon assimilation (via photosynthetic capacity), and the 

carbon economics of canopy dynamics (via LMA, leaf lifespan and metabolic rate). Coincident with 

changes in leaf traits, mean annual LAI increased with decreasing drought stress. Research efforts have 425 

focused on mapping LAI (Iio et al., 2014) and leaf trait (Kattge et al., 2011, Asner et al., 2015) 

distributions across climatic gradients, however their covariance has not yet been explored. Given the 

role of leaf traits in shaping canopy carbon economics, the mechanisms underpinning LAI and leaf trait 

distributions across the resource availability gradient could prove important in understanding the effect 

of changes in precipitation regime on future Amazon carbon dynamics.  430 

4.2 Drivers of Spatial Variation in GPP  

Indirect effects of climate via ecosystem structure and long-term trait responses to water availability 

accounted for 54% of variation in GPP (Q1; Figure 1). Direct effects of climate (which included 

physiological responses to water availability) accounted for only 16% of observed variance (Table 6). 

Our results are consistent with previous reports on the importance of ecosystem structure and traits in 435 

determining spatial variation in GPP (Rodig et al., 2018, van de Weg et al., 2013, Reichstein et al., 

2014), but go further to quantify the direct contribution of discrete drivers to observed variation in 

carbon assimilation. LAI explained the greatest proportion of variation in GPP, followed by 

photosynthetic capacity. Root and soil properties had little explanatory power.  

Evidence of changes in LAI in response to precipitation regime has been presented across multiple 440 

ecosystems and over time (Grier and Running, 1977, Schleppi et al., 2011, Iio et al., 2014, Dobbertin 

et al., 2010, Wright et al., 2013). Amazonian forest throughfall exclusion experiments identified a 

decline in LAI with the onset of reduced soil water (Fisher et al., 2007, Meir et al., 2008, Brando et al., 

2008). At Caxiuanã, over a 4-year period, observed leaf area was 20-30% lower than the control stand 

(Meir et al., 2009), with long-term reductions estimated at between 10-15% (Rowland et al., 2015a). 445 

Investigations show that declines in LAI are not caused by increased leaf turnover due to drought stress, 

but instead are the result of lower leaf production (Nepstad et al., 2002, Schuldt et al., 2011), suggesting 
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an active response of plant allocation strategy to water availability. Concurrently, after 15 years under 

throughfall exclusion, Rowland et al. (2018) found that leaf litterfall still remained consistently lower. 

Reported trends in canopy dynamics are therefore in accordance with our findings, and indicate that 450 

LAI is a key response mechanism to precipitation regime. Other studies such as da Costa et al. (2018) 

have similarly pointed towards structural responses as the principal determinant of variation in GPP, 

however, they identify changes in sapwood area as the main driver, rather than LAI. We suggest that 

whilst sapwood area may be more important in shaping the response to short term changes in 

precipitation, over longer timescales emergent canopy properties (LAI) drive GPP trends.  455 

Photosynthetic capacity also proved an important driver of spatial variation in GPP across the MCWD 

gradient. Our results are consistent with a number of Amazon-based studies linking leaf traits to 

productivity (Aragao et al., 2009, Cleveland et al., 2011, Castanho et al., 2013). Interestingly, the 

observed shifts in photosynthetic capacity along the gradient had a compensatory effect on the GPP-

MCWD interaction. Reductions in GPP under high drought stress were alleviated by higher 460 

photosynthetic capacitance. Similarly, shifts in photosynthetic capacity in response to temperature have 

been reported to reduce spatial variation in GPP across a tropical elevation gradient (Bahar et al., 2017, 

van de Weg et al., 2013). Consistent with Fyllas et al. (2017), our results also show that the effect of 

climatic forcings on carbon fluxes can be successfully captured through spatial variation in canopy 

dynamics and leaf traits. However, as we have focused on the role of leaf traits in the absence of carbon 465 

cycle feedbacks, we do not take into account the effect of concurrent shifts in LMA and leaf lifespan, 

which together influence canopy carbon economics (Wright et al., 2004, Osnas et al., 2013, McMurtrie 

and Dewar, 2011).  

Root depth, root biomass and soil properties had little direct effect on spatial variation in GPP. We 

recognise that the difficulty in measuring root depth and biomass (Metcalfe et al., 2007) adds 470 

uncertainty to our results, however, the findings do not reflect the importance of belowground 

functioning highlighted by other studies (Fisher et al., 2007, Metcalfe et al., 2008, Baker et al., 2008, 

Phillips et al., 2009, Ichii et al., 2007). Notably, a number of GEM plots had hard pan layers (Quesada 

et al., 2012) so they may be acclimated to operate in shallow rooting zones, and are therefore not 
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necessarily representative of other Amazon forests under the same precipitation regime. Differences in 475 

root depth and biomass can alleviate water constraints to photosynthesis via the direct physiological 

pathway (i.e stomatal conductance). But in the absence of C cycle feedbacks, changes in root depth and 

biomass do not drive changes in emergent canopy properties (i.e. LAI) which proved most important in 

determining GPP. It is therefore likely that if feedbacks were enabled within analyses, root and soil 

properties would prove to have a stronger effect.  480 

4.3 Variation in Forest Sensitivity to Drivers of GPP 

The sensitivity of GPP to differences in LAI, climate, photosynthetic capacity and rooting depth varied 

across the MCWD gradient with evaporative potential and water uptake capacity (Q2; Figure 6). As the 

model experiment was conducted in the absence of carbon cycle feedbacks, sensitivities reflect shorter 

rather than long-term effects of changes in forcings. The sensitivity of GPP to differences in LAI and 485 

photosynthetic capacity was greatest for forests occupying the lowest drought stress zone and declined 

with increasing drought stress. Our results are in agreement with findings from Wright et al. (2013), 

who reported that GPP was most sensitive to decreases in leaf area when water availability was highest. 

Forests with a high LAI (and therefore high evaporative potential) but shallow rooting depth were most 

sensitive to differences in climate. Our results suggest that where rooting depth is relatively shallow, 490 

and unable to ameliorate the effects of drought stress as seen elsewhere (Nepstad et al., 2007, Malhi et 

al., 2009a), forests with a high LAI could be more vulnerable to reduced precipitation. Investigations 

into the vulnerability of Amazon forests to drought have put a deservedly large emphasis on the role of 

physiological responses (Choat et al., 2012, Phillips et al., 2009, Bennett et al., 2015, Corlett, 2016). 

However, our results indicate that the role of ecosystem structure could also prove important, and that 495 

forests with a high evaporative potential (high LAI) but low water uptake capacity (shallow rooting 

depth) should be a focus for future studies.  

4.4 Drivers of Sub-Annual Variation in GPP 

Seasonal (i.e. sub-annual) variation in GPP was driven by changes in solar radiation, VPD and LAI. 

The relative importance of these factors was dependent on MCWD (Q3; Figure 7). Shortwave radiation 500 
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was the dominant driver of sub-annual variation in GPP across plots, but its relative importance was 

greater for moister forests (Table 7). The relative importance of LAI in driving sub-annual GPP 

increased with drought stress. In accordance with our findings, a number of studies report that for 

Amazon forests in higher rainfall zones, GPP increases in line with solar radiation, and for forests 

subject to significantly low annual rainfall GPP declines with increased VPD (Von Randow et al., 2013, 505 

Goulden et al., 2004, Hutyra et al., 2007, Saleska et al., 2003, Rowland et al., 2014, Carswell et al., 

2002). Our results suggest that LAI is not the principal driver of sub-annual variation in GPP, in contrast 

to its role in driving spatial variation across the MCWD gradient. However, while other studies agree 

that leaf area alone does not drive variation in sub-annual GPP (Wu et al., 2017, Wu et al., 2016, Brando 

et al., 2010, Restrepo-Coupe et al., 2013, Bi et al., 2015), we do not account for potential shifts in 510 

photosynthetic capacity with leaf age.  The coordination of leaf age (via leaf flushing and new leaf 

emergence) with climatic drivers such as solar radiation is thought to exceed the effects of LAI in non-

water limited forests (Myneni et al., 2007). We further recognise the uncertainty introduced through 

using leaf N content to derive photosynthetic capacity estimates (for five of the seven plots), given the 

distribution of leaf N between photosynthetic and non-photosynthetic proteins is not fixed (Onoda et 515 

al., 2017). However, notwithstanding temporal variation in photosynthetic capacity, we demonstrate 

that the relative importance of LAI dynamics and climatic forcing driving variation in GPP shift with 

light and water availability.  

Our results indicate that with respect to drought stress, annual GPP is constrained via indirect pathways 

(i.e. ecosystem structure and traits) across spatial scales, but is limited via direct pathways (i.e. 520 

physiology) across sub-annual timescales (Figure 1). In a study on net ecosystem exchange (NEE), 

Richardson et al., (2007) found that indirect pathways became progressively more important in driving 

NEE as the period of integration was lengthened (for a spruce-dominated forest in Maine, USA). The 

authors reasoned that the shift from direct to indirect pathways (as the period of integration transitions 

through day-week-month-seasonal-annual), reflected the timescales over which these processes 525 

operate. Stomata vary at hourly time scales with meteorology and soil conditions. The shift in direct to 

indirect pathways driving GPP variance reported here can similarly be explained by the difference in 
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timescales over which responses to drought stress operate. LAI varies over monthly timescales, 

constrained by C and nutrient investment requirements over years. As a result, over monthly timescales, 

up to one third of variation in GPP was explained by indirect effects of climate (i.e. LAI; Table 7), but 530 

direct effects (via physiological responses) remained the dominant driver (consistent with Richardson 

et al., 2007). Across the drought stress gradient, structural and trait responses to water availability 

(across annual to decadal timescales) result in indirect pathways dominating the GPP response, and the 

direct effects of climate are less important.    

4.5 Limitations and Opportunities  535 

As nutrient dynamics are not directly accounted for in SPA, we are unable to quantify the impact of soil 

nutrients on the GPP-MCWD interaction. Soil nutrient availability varied widely across plots (Table 1). 

We recognise that nutrient limitation likely impacts GPP across the MCWD gradient, effected through 

both nutrient availability and plants acquisition capacity (which is dependent on moisture-stress). 

However, there was no significant interaction between GPP and soil phosphorous (GEM R2= 0.1, 540 

p=0.48; SPA R2=0.01, p=0.81) or soil nitrogen (GEM R2=0.37, p=0.14; SPA R2=0.31, p=0.19). 

Furthermore, we expect to capture soil nutrient effects via the inclusion of site specific leaf nutrient 

estimates as a model inputs (which influence simulated photosynthetic and metabolic rate).   

We recognise that the lack of significant correlation between SPA and GEM GPP estimates could 

impact the interpretation of our results. However, we argue that five of the seven plot estimates were 545 

within the error bounds of field measurements, and that the inferential statistics used were limited by 

our small sample size (n=7). We also note that GEM GPP error estimates (calculated as the propagated 

standard error of component NPP and respiration measurements) do not account for assumptions used 

in scaling biometric measurements to plot level (e.g. uncertainty in using estimated total woody surface 

area to scale stem CO2 efflux measurements).  550 

Given the importance of LAI in driving variation in GPP, data on canopy dynamics is critical to 

constrain carbon flux estimates across the Amazon basin. Our approach utilised field estimates of LAI 

from hemispherical photographs to constrain model simulations. The accuracy and spatial validity of 
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indirect estimates of LAI has been questioned at higher leaf areas (Bréda, 2003, Jonckheere et al., 2004, 

Weiss et al., 2004). In this study, we expect that if field measurements of LAI were underestimated at 555 

higher leaf areas, the proportion of spatial variation in GPP explained by LAI would increase, as a result 

of increased variation in both field-measured and model simulated GPP. Yet, our highest estimates of 

LAI (Caxiuanã 5.11 ± 1.41 m2m-2) align with destructive sampling measurements from a terra-firme 

Amazon forest (McWilliam et al. (1993) 5.7 ± 0.5 m2m-2). Furthermore, a comparison of LAI estimation 

approaches (Asner et al., 2003) suggested that indirect methods were appropriate for broadleaved 560 

forests, and presented no statistical difference between destructive harvesting and indirect methods. 

However, the use of ground measurements is limited to smaller spatial scales, and LAI estimates across 

the basin are needed to constrain carbon flux estimates. Though  the interpretation of forest responses 

to drought stress through remote sensing approaches have caused controversy (Asner and Alencar, 

2010, Saleska et al., 2007, Samanta et al., 2010), an increase in canopy mapping through satellite 565 

missions could be instrumental to efforts aiming to better understand LAI dynamics. Current and 

upcoming satellite missions including FLEX (FLuorescence EXplorer), GEDI (Global Ecosystem 

Dynamics Investigation) and Sentinel will offer opportunity for new insights into changes in leaves in-

situ, vertical canopy structure, and temporal variability via repeat measurements (Morton, 2016, Drusch 

et al., 2017, Pettorelli et al., 2018). Efforts to map trait distributions will also prove important (Kattge 570 

et al., 2011, Asner et al., 2015) given their role in driving variation in GPP. 

5. Conclusion 

We show that indirect effects of climate (via ecosystem structure and trait responses) exceed direct 

effects (via physiological responses) in driving spatial variation in GPP across an Amazon MCWD 

gradient (Q1). Conversely, across sub-annual timescales, the reverse was true (Q3). The relative 575 

sensitivity of GPP to changes in direct and indirect forcings shifted across the MCWD gradient and was 

dependent on water availability, demand and acquisition potential (Q2). We identify the potential 

vulnerability of forests with a high evaporative potential (i.e. high LAI), but low water uptake capacity 

(i.e. shallow rooting depth), to changes in precipitation regime. Given the role of LAI in driving GPP 

across the drought stress gradient, we highlight a requisite for improved mapping of canopy dynamics 580 
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(via remote sensing). We propose that ecosystem model development should focus on the integration 

of structural and trait responses to drought stress (alongside physiological responses).  The inclusion of 

both direct and indirect effects of climate in ecosystem models, would reduce current uncertainty in 

predicted annual and sub-annual GPP for tropical forests. 

Supplementary Material 585 

Supplementary material is included in a separate document.  
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Tables 

Table 1. Amazonian Forest Inventory Network (RAINFOR) site code and environmental characteristics 

of GEM network Amazon permanent sample plots across the MCWD gradient. Meteorological data is 1000 

from local weather stations, gap filled with ERA interim data for the years 2009-2010 (Dee et al., 2011).  

 

 

 

Plot name Caxiuanã 

Control 

Caxiuanã 

Tower 

Tambopata 

V 

Tambopata 

VI 

Kenia 

Wet 

Kenia 

Dry 

Tanguro 

Control 

RAINFOR-  

site code 

CAX04 CAX06 TAM05 TAM06 KEN01 KEN02 --- 

Latitude -1.716 -1.737 -12.831 -12.839 -16.016 -16.016 -13.077 

Longitude -51.457 -51.462 -69.271 -69.296 -62.73 -62.73 -52.386 

Elevation 

(m.a.s.l) 

47 223 384 385 

Mean Maximum 

Climatological 

Water Deficit  

(mm) 

-85.5 -256 -342 -498 

Mean annual air 

temperature (ºC) 

26.1 24.6 23.4 25.4 

Soil Type Vetic 

Acrisol 

Ferralsol Cambisol Alisol Cambisol Cambisol Ferralsol 

Soil N (%) 0.06 0.13 0.16 0.17 0.22 0.17 0.16 

Soil Ptotal
  

(mg kg-1) 

37.4 178.5 256.3 528.8 447.1 244.7 147 
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 1005 

Table 2. Summary of the relationship between model variables and field data. Values are either a SPA 

model parameter (input) or output. Model parameters may be initial conditions, a fixed value, or a time-

series, whereby the parameter value at each time point is prescribed to the model. Model outputs are 

generated on either an hourly or daily time-step and are presented in the text as the mean annual sum 

(2009-2010), unless otherwise stated. Model outputs are calibrated or evaluated using field data. Values 1010 

are specific to each of the seven GEM Amazonian permanent sample plots.  

Value Model Parameter or Output Source of Value or Calibration/Validation 

Data 

LMA 

 

parameter (single fixed) GEM plot-measured value or literature-based 

estimate from plot species list 

 

Vcmax 

 

parameter (single fixed) (estimate from) GEM plot-measured value or 

TRY database estimate from plot species list 

 

Jmax 

 

parameter (single fixed) (estimate from) GEM plot-measured value or 

TRY database estimate from plot species list 

 

Leaf N content  

 

parameter (single fixed) GEM plot-measured value or TRY database 

estimate from plot species list  

 

LAI 

 

parameter (timeseries fixed) GEM monthly plot-measured value 

Leaf NPP 

 

 

output model calibration to GEM plot-measured leaf 

litterfall and LAI 
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Wood NPP 

fraction of total 

NPP 

 

total wood NPP 

 

 

parameter (single fixed) 

 

 

output  

 

 

GEM plot-measured value 

 

 

simulated value validated against GEM field-

measured total wood NPP  

 

Root NPP 

fraction of total 

NPP 

 

total root NPP 

 

parameter (single fixed) 

 

 

output 

 

 

GEM plot-measured value 

 

 

simulated value validated against GEM field-

measured total root NPP 

 

Leaf turnover parameter (single fixed; function 

of three individual fixed 

parameters relating to the leaf 

litterfall cycle) 

 

model calibration to GEM plot-measured leaf 

litterfall 

Root turnover parameter (single fixed) estimated using root NPP assuming steady state 

conditions 

 

Wood turnover parameter (single fixed) estimated using wood NPP assuming steady state 

conditions 

 

Foliar C stock parameter (timeseries fixed) product of LAI and LMA 
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Wood C stock parameter initial condition; 

thereafter output 

initial condition uses GEM plot-measured DBH 

values converted to C stock using allometric 

equation 

output calculated in SPA as simulated wood C 

stock plus NPP minus turnover   

 

Root C stock parameter initial condition; 

thereafter output 

initial condition used GEM plot-measured root 

stock values or literature-based estimate  

output calculated in SPA as simulated root C 

stock plus NPP minus turnover   

 

 

Leaf 

respiration  

output sum of leaf maintenance and growth respiration; 

maintenance respiration generated using 

measured leaf N content, foliar C stock and the 

Reich et al., (2008) leaf respiration model, 

validated against GEM estimates; growth 

respiration calculated in SPA as leaf NPP × 0.28 

 

Wood 

respiration 

 

output sum of wood maintenance and growth 

respiration; maintenance respiration calculated as 

a function of wood C stock, the coefficient being 

derived from GEM estimates; growth respiration 

calculated in SPA as wood NPP × 0.28 
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Root 

respiration 

 

output sum of root maintenance and growth respiration; 

maintenance respiration calculated as a function 

of root C stock, the coefficient being derived from 

GEM estimates; growth respiration calculated in 

SPA as root NPP × 0.28 

 

Respiration output sum of simulated leaf, wood and root respiration, 

evaluated against GEM data 

 

GPP output generated through SPA process-based modelling 

of GPP using detailed parameters, evaluated 

against GEM data 

 

NPP output calculated in SPA as GPP minus autotrophic 

respiration, evaluated against GEM data  
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Table 3. Field estimated mean annual leaf area index (LAI), leaf traits, maximum rooting depth and fine 

root biomass for Amazon permanent sample plots along a MCWD gradient. LAI estimates were derived 

from monthly hemispherical photographs. LAI, leaf trait and rooting depth estimates were used to 

constrain SPA model runs. Estimate standard errors are presented in brackets. Fine root C stock 1025 

estimates were absent for Tanguro plots.  

 
LAI 

(m
2
 m

-2
) 

LMA 

(g m
-2

) 

leaf N content 

(g m
-2

) 

Maximum 

Rooting 

Depth (m) 

Fine Root 

C Stock 

(g C m
-2

) 

CAX04 4.99 (± 1.07) 93 (± 17) 1.82 (± 0.43) 8 345 

CAX06 5.23 (± 0.92) 87 (± 54) 2.12 (± 0.7) 10 433 

TAM05 4.85 (± 0.81) 101 (± 24) 2.38 (± 0.56) 1 770 

TAM06 4.64 (± 0.77) 96 (± 21) 2.51 (± 0.64) 1 500 

KEN01 2.77 (± 0.17) 53 (± 13) 2.12 (± 0.25) 2 818 

KEN02 2.22 (± 0.14) 42 (± 13) 2.31 (± 0.31) 1 607 

Tanguro 4.13 (± 1.01) 64 (± 13) 2.01 (± 0.52) <10 - 

 

 

 

 1030 
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 1035 

Table 4. SPA calibrated leaf litterfall parameters for plots across an Amazon MCWD gradient. Peak 

leaf fall is the day of year leaf litterfall reaches its maximum, leaf lifespan reflects maximum lifespan 

of leaves and leaf fall period is the number of days over which systematic increases in leaf fall occur. 

Leaf litterfall parameters were calibrated against GEM field estimates to capture leaf litterfall and 

timing.   1040 

 
Peak Leaf Fall  

(day of year) 

Leaf Lifespan 

(years) 

Leaf Fall Period 

(days) 

CAX04 210 3.00 150 

CAX06 190 1.45 100 

TAM05 220 1.30 130 

TAM06 230 1.42 100 

KEN01 200 1.05 100 

KEN02 180 1.01 100 

Tanguro 180 1.04 120 

 

 

 

 

 1045 
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Table 5. A comparison of GEM field measurements and SPA process-based modelling estimates of 1050 

component autotrophic respiration and NPP. We present the R2, p-value, and root mean square error 

(RMSE) of the interaction between SPA and GEM annual estimates, together with the range in GEM 

biometrically derived estimates across seven sample plots at four locations in the Amazon basin.  

Component R
2
 p-value RMSE Range in Field Estimates 

(gC m
-2

 yr
-1

) 

Respiration     

   Foliage  0.47 0.09 92.0 454-830 

   Wood  0.75 0.01 100.5 411-1054 

   Fine Root  0.91 <0.001 74.1 232-1041 

NPP     

   Foliage 0.99 <0.001 9.0 150-491 

   Wood 0.21 0.30 25.3 189-292 

   Fine Root  0.59 0.04 49.5 189-418 

 

 1055 

 

 

 

 

 1060 
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Table 6. The proportion of variation in GPP across seven GEM Amazonian permanent sample plots 

explained by photosynthetic drivers in SPA. Model drivers were alternated individually at each plot to 

that of all other plots and the resultant change in GPP retrieved. Proportion of variance explained was 1065 

calculated as conditional sum of squares divided by the total sum of squares (n=476; where the 

conditions were LAI, photosynthetic capacity, rooting depth, root biomass, climate and soil).  

Driver Percentage of Variation 

Explained (%) 

LAI 32.8 

Photosynthetic capacity 21.3 

Climate 16.2 

Root depth 4.1 

Soil 1.2 

Root biomass 0.7 

 

 

 1070 

 

 

 

 

 1075 
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Table 7. The relative importance of LAI, VPD, solar radiation, precipitation and air temperature (Tair) 

in driving monthly variation in GPP (%). Monthly GPP estimates are derived from calibrated SPA 1080 

simulations for seven permanent sample plots across an Amazon MCWD gradient, constrained using 

monthly field LAI measurements. Relative importance values were derived from analyses using the 

random forest technique (n=168).  

 

Plot LAI VPD Solar 

Radiation 

Precipitation Tair 

CAX04 13 17 58 8 5 

CAX06 6 16 64 8 5 

TAM05 17 22 53 3 5 

TAM06 17 21 53 3 7 

KEN01 16 21 45 10 8 

KEN02 32 14 42 4 8 

Tanguro 33 20 24 6 10 

 1085 

 

 

 

 

 1090 
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Figures 1095 

 

  

Figure 1. A schematic of the direct and indirect effects of drought stress via soil moisture and VPD on 

GPP. Drought stress affects GPP directly via stomatal conductance, and indirectly through its 

determinant effect on plant traits and structural properties. Plant processes are represented by circles, 1100 

traits are represented by triangles and vegetation properties (i.e. ecosystem structure) are represented 

by rectangles. Dashed boxes identify interactions driving the direct and indirect pathways through 

which drought stress impacts GPP. We note that other climate forcings (e.g. shortwave radiation and 

temperature) impact GPP but are not included here.  

 1105 
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Figure 2. A schematic of DALECcanopy, the carbon allocation sub-model integrated within the soil-plant-1110 

atmosphere model. Carbon moves between pools (solid boxes) via fluxes (solid arrows). Leaf carbon 

fluxes are constrained by field measurements (black dashed boxes). An effect of climate, carbon pools 

or fluxes on another carbon flux is shown by a red dashed arrow, whereby red dotted boxes indicate a 

collective impact of the contained carbon pools or fluxes. Black flux bars indicate that the carbon 

pathway is prioritised within the model above pathways from the same node. Climate is a model input, 1115 

and soil moisture is simulated within SPA. Carbon pools (C), allocation (A) and litterfall (L) are 

separated by component: w = wood, cr = coarse roots, r = fine roots, f = foliage, lab = labile (or non-

structural carbon), with to and from used for labile carbon.  
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1120 

Figure 3. SPA estimated soil volumetric water content compared to GEM measured values for six of 

the seven sample plots at four locations across the Amazon basin.  Data presented is for the time period 

2009-2010. Field data for CAX04 was limited to a shorter time period and for CAX06 was unavailable. 

R2, p-value and RMSE estimates presented are derived from linear regressions between monthly GEM 

measurements and SPA simulations.  1125 

R2=0.58, p=0.004, RMSE=3.1% 

 

R2=0.56, p=<0.001, RMSE=6.5% 

 

R2=0.36, p=0.002, RMSE=8.9% 

 

R2=0.42, p<0.001, RMSE=5.9% 

 

R2=0.46, p<0.001, RMSE=5.4% 

 

R2=0.36, p=0.002, RMSE=4.8% 
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Figure 4. Field estimated monthly LAI, leaf litterfall (GEM), and standard error, compared with SPA 

simulated leaf litterfall for seven plots at four locations across the Amazon basin. SPA leaf litterfall was 

calibrated against GEM estimates to derive three fixed model drivers relating to the leaf cycle (peak 1130 

leaf fall timing, leaf fall period and leaf lifespan). GEM leaf litterfall data was available for 2009-2010 

for CAX04, CAX06, TAM05, TAM06 and for 2010 only for KEN01, KEN02 and Tanguro. R2, p-value 

and RMSE estimates presented are derived from linear regressions between monthly GEM 

measurements and SPA simulations. 

R2=0.08, p=0.17, RMSE=6.0gCm-2yr-1 

 

R2=0.45, p<0.001, RMSE=14.8gCm-2yr-1 

 

R2=0.69, p<0.001, RMSE=10.2gCm-2yr-1 

 

R2=0.49, p<0.001, RMSE=13.1gCm-2yr-1 

 

R2=0.69, p<0.001, RMSE=8.4gCm-2yr-1 

 

R2=0.34, p=0.04, RMSE=7.6gCm-2yr-1 

 

R2=0.73, p<0.001, RMSE=12.5gCm-2yr-1 
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Figure 5. Carbon flux estimates (gC m-2 yr-1) of (a) GPP, (b) NPP and (c) autotrophic respiration, derived 

from process-based modelling (SPA) and biometric methods (GEM) for seven permanent sample plots 

at four locations across the Amazon basin. Estimates are mean annual values representative of the years 

2009-2010. GEM error bars represent standard error from field carbon flux measurements. SPA error 1140 

bars represent simulated C fluxes under the upper and lower field LAI standard error. R2, p values and 

RMSE represent the interaction between SPA and GEM C flux estimates.  

 

R2=0.36, p=0.15, RMSE=337.6 gC m-2 yr-1 

R2=0.38, p= 0.14, RMSE=125 gC m-2 yr-1 

R2= 0.59, p= 0.04, RMSE =240 gC m-2 yr-1 
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   1145 

 

     

Figure 6. The sensitivity of GPP to model driver alternations in SPA at each location. Model drivers 

LAI, climate (characterised by MCWD), photosynthetic capacity (characterised by Vcmax) and rooting 

depth, derived from field observations, were alternated individually at each plot to that of all other plots 1150 

and the resultant GPP retrieved. Solid lines represent SPA simulated GPP under the named driver 

alternations, and the dashed line represents the simulated value under observed conditions. SPA GPP 

Δ 537 gC m-2 yr-1 Δ 1.78 gC m-2 yr-1 

Δ 27 gC m-2 yr-1 Δ 28 gC m-2 yr-1 

Δ 353 gC m-2 yr-1 Δ 3.44 gC m-2 yr-1 

Δ 18 gC m-2 yr-1 Δ 79 gC m-2 yr-1 

Δ 345 gC m-2 yr-1 

Δ 18 gC m-2 yr-1 

Δ 1.64 gC m-2 yr-1 

Δ 20 gC m-2 yr-1 

Δ 286 gC m-2 yr-1 

Δ 16 gC m-2 yr-1 

Δ 2.77 gC m-2 yr-1 

Δ 114 gC m-2 yr-1 
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estimates presented are location averages. Climate and LAI were input to the model as timeseries. 

Photosynthetic capacity and rooting depth were fixed values. Plots are ordered to reflect soil moisture-

stress which increases from Caxiuanã >Tambopata>Kenia>Tanguro. The range in GPP estimates under 1155 

each set of driver alternations, for each location is presented (i.e. ∆ values).   
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 1175 
Figure 7. The relative importance (%) of LAI, vapour pressure deficit (VPD) and solar radiation (solar 

rad) in driving SPA estimated monthly photosynthesis at permanent sample plots across an Amazon 

MCWD gradient. Relative importance was calculated using random forest machine learning. Shaded 

regions represent the dry season, where monthly precipitation was below 100mm. Plots are ordered to 

reflect drought stress which increased from Caxiuanã> Tambopata> Kenia> Tanguro.  1180 


