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Dear Prof. Heinze,

Thank you very much for your assistance with our manuscript: “Simulation of factors affecting
E.huxleyi blooms in arctic and subarctic seas by CMIP5 climate models: model validation and
selection” by N. Gnatiuk, I. Radchenko, R. Davy, E. Morozov, and L. Bobylev.

We are very thankful to the anonymous reviewers and greatly appreciate their valuable comments and
suggestions that considerably improve our manuscript. Regarding the comments from both reviewers, we
decided to refuse from focusing on the E. huxleyi problematics per se and concentrate on the main goal
of the manuscript, which is a selection of those climate models that simulate most efficiently the state of
abiotic parameters relevant to living conditions of the phytoplankton communities inherent in a number
of seas at subpolar and polar latitudes. Accordingly, the Introduction is thoroughly recast. As both
reviewers suggested us to improve the “Results and Discussion” section, we moved the text related to the
description of the methodology and two figures to section “Materials and Methods”. Also, Figures 3, 5,
and 8 are deleted as they are either a mere modification of presentations of some other akin figures or
their presence in the manuscript is not so important. We also decided to add a new figure (#Figure 5a-e)
to section “Results and Discussion” as both reviewers suggested to cover in discussions all studied
parameters and seas. So, Figure 5 displays a spatial distribution of biases in five parameters between
models and reanalyses in six target seas. The biases are averaged over the vegetation season and
1979/1993-2005 period. We improved all sections following the comments from both reviewers.

Please kindly find attached the responses to the reviewers and effected revisions, as well as a detailed
specification of the changes we introduced.

We are looking forward to hearing from you considering these changes and await further instructions.
On behalf of the paper’s co-authors

Best regards,
Natalia Gnatiuk
(and co-authors)
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Response to Reviewers and Proposed Revisions

We are very grateful to both reviewers for their constructive and valuable comments and very pointful
suggestions, which helped greatly improve our manuscript.

Concerning the comments of both reviewers on the choice of factors controlling phytoplankton blooms
in general, and coccolithophore in particular, and other reviewers' comments directly related to the
coccolithophore blooms, we fully agree with the arguments provided by reviewer #2 in section “general
comments”:

“By not having a primary focus on E.huxleyi blooms in the Introduction, the reader will be able
to recognize the wider implications of this extensive intercomparison of climate models — it will also
alleviate some of the major issues of neglecting “what else” underpins coccolithophore blooms and their

’

occurrences.’

Actually, the main objective of the study was to analyze how CMIP5 climate models reproduce different
oceanographic and meteorological parameters in the arctic and subarctic seas as well as to form a
methodology for validation and selection of the optimal model sub-set. To have practical use of the results
we have chosen for case study oceanographic and meteorological parameters that influence
coccolithophores blooms in studied arctic and subarctic seas. Due to the fact that we did not consider in
the article all the factors (including biotic ones) that influence coccolithophores bloom, we mistakenly
paid too much attention to coccolithophores and the factors affecting their blooms. This resulted in
shifting the paper’s focus away from the main goal of the study, i.e. to develop a methodology of
validation and selection of climate models that simulate most accurately the abiotic conditions within the
target marine areas.

To mend the situation, we decided to refuse from focusing specifically upon the issue of coccolithophore
blooms and put at the forefront the methodology of validation and selection of climate models.

In the absence of a close connection to coccolithophores, the article indeed gains greater clarity and
becomes focused on the substance of the research done on the comparative effectiveness of global climate
models for specific marine objects. We corrected the manuscript according to the recommendations of
the reviewers and tried to make the goal of our research clear and precise. Below we have presented all
the answers to the comments and all text changes.

We earnestly thank the reviewers for their critical comments.



Reviewer #1

General comments
e G.C.1: In my opinion, the choice of the variables to be validated in the models is incomplete and the
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chosen subset is not obvious when thinking about the factors controlling phytoplankton blooms. First,
all possible drivers should be carefully introduced in the introduction (it is nowhere clearly stated in
the manuscript what factors impact phytoplankton dynamics in general). Important variables such as
(macro/micro) nutrients and carbonate chemistry modeling at all and it is not even thoroughly
discussed why. Motivating the choice of drivers to be analyzed in this paper simply by referring to an
individual study (Kondrik et al., 2019) which is currently in review for publication in Biogeosciences
is not sufficient in my opinion. Additionally, reviewers of the manuscript by Kondrik et al. (2019) have
raised similar concerns with regard to the chosen drivers considered in the analysis. In my view, the
choice made for the manuscript at hand is a missed opportunity as the evaluated models can provide
more comprehensive information on factors impacting phytoplankton/coccolithophore growth than the
variables the authors chose here.

G.C.1 answer: As mentioned above, we believe that focusing on factors affecting coccolithophore

blooms will take the readers away from the true purpose of the publication. Also, as we provide an
incomplete list of factors controlling phytoplankton blooms, we have decided not to use in the
manuscript formulations like "factors controlling/affecting coccolithophore blooms". Instead, in the
article, we will emphasize that we analyze the models for a number of meteorological and
oceanographic parameters. We believe that in this case the results may be of interest to a wider
readership.

We would like to add that at the beginning of the research we also planned to consider different
biogeochemical variables. However, CMIP5 models have only monthly outputs for ocean
biogeochemical variables, whereas, in this study to develop a methodology for selecting climate
models, we employed daily data.

G.C.2: In the current version of the manuscript, a discussion of the results is completely missing. While
section 3 is called “Results & Discussion”, it currently only represents a description of the Figures,
without putting the results into the context of previous literature or how the results impact the overall
motivation for the study (assessing the potential future development of E. huxleyi blooms). It is not
clear to me e.g. what modellers should take away from their analysis. In a revised version of the
manuscript, I suggest to include a thorough discussion on e.g. the sensitivity of the resulting model
combinations on chosen thresholds in the ranking, the impact of the identified model biases on
coccolithophore blooms, the impact of neglecting important forcing factors (nutrients, carbonate
3
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chemistry) or biotic interactions (which cannot be assessed with this approach as opposed to when
coccolithophores are included as an explicit functional type to the model).
G.C.2 answer: We agree and we improved section Results and Discussion.

G.C.3: Regarding choices of the presentation of the results, I would personally like to see more than
just temperature in the Barents Sea to be included in the main text (the choice of the figures could be
reconsidered, especially given the title of the manuscript). The current choice makes it very hard for
the reader to assess how the representation of present-day coccolithophore blooms in these models is
potentially affected by biases of all variables impacting phytoplankton dynamics (and not just
temperature). Including more detail in the study at hand will also make the assessment in a follow-up
paper on future changes easier.

G.C.3 answer: Based on one example — the temperature in the Barents Sea, we aimed to describe the
methodology of climate model validation and selection in detail. Of course, from the point of view of
assessing how climate models represent present-day coccolithophore blooms, such choices of

presentation of the results is very uninformative. However, we have tried to illustrate with this example
each step of the model's validation and the selection and to show the spread of the model’s values for
each selection criterion. Using this approach, we intended to prove the need for a comprehensive
analysis that is not confined solely either to the seasonal cycle or inter-annual variability or trends or
spatial errors.

G.C.4: Overall, I think that the literature review in the introduction on factors controlling
coccolithophore blooms in the arctic/subarctic (or North Atlantic) and possible drivers for observed
changes in their distributions is not comprehensive enough in its current form. In my detailed
comments below, I suggested a few papers that could be considered in my view — a result of a very
brief literature search I have done (as I am not 100% familiar with the literature of the arctic/subarctic),
but this list is by no means exhaustive. The authors should revise the manuscript accordingly, as this
might also help to motivate why certain variables are (or are not) considered in their study.

G.C.4 answer: We agree and we improved the Introduction part.

G.C.5: Throughout the manuscript, the writing needs to be more concise and to the point. Often, it is
not clear to the reader why certain information is given, i.e. what the relevance is for the study at hand
or what the take-away message is (see detailed comments below of e.g. the introduction). The authors
should especially revise the result section, which is currently a list of brief descriptions of the Figures
without making it clear enough why they were chosen to be included and what the key message for
each Figure is, which makes this section quite hard to read in its current form. Ultimately, all figure
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captions are currently incomplete as they do not describe what is actually shown in the respective
figures.
G.C.5 answer: We improved the manuscript and the Results and Discussion section accordingly.

Detailed comments of Reviewer #1:

Abstract:

D.C.1 p. 1, L. 9: Please add ocean acidification here. It is not only the effect of global warming that can
be expected to impact future coccolithophore blooms.

D.C.2 90 p. 1, L. 10: I find this statement on the aim of the paper misleading, as none of these models (or
very few) includes an explicit parametrization of coccolithophores to the best of my knowledge. I think
it you need to state more clearly what exactly you do here. You don’t actually assess the blooms, but only
how well the models reproduce the present-day environmental conditions that favour coccolithophore
blooms. Also, please be precise here what you mean by “optimum combination”.

D.C.3 p. 1, L. 11: This last statement of the paragraph is misleading because you don’t actually address
this in the study. Please point out that this is future work that can/will be done following this study.
Additionally, please add a “potential” in the last part of the sentence 100 “[...] potential future changes
[...] can be assessed.”

D.C.1-3 Answer:
We thank the reviewer for the comments and re-wrote the paragraph:

“Currently, there are a large number of climate models that give projections for various oceanic and meteorological
parameters in the Arctic. However, their estimates often differ in absolute values in specific sea areas in comparison
with the historical reanalysis data. The main goal of this research was to find out the methodology of selection of
the optimal model ensemble that most accurately reproduces the state of abiotic parameters inherent in six target
arctic and sub-arctic seas, viz. the Barents, Bering, Greenland, Labrador, North and Norwegian seas.”

Specific comments of Reviewer #1:

p. 1, L. 14: Please delete the “complex” or describe what methodology you’re using. I suggest to rephrase
to something along these lines “Here, we present the validation of 34 CMIP models over the historical
period. Furthermore, we present the procedure for model selection, which is based on their skill to
represent important forcing factors for coccolithophore blooms.”

Answer: We agree and rephrased the sentence in the following form:

“Here we describe the complex methodology used for the validation of 34 CMIPS5 climate models, and the selection
of models that best represent the regional features of the oceanographic and meteorological factors affecting
E.huxleyi blooms in arctic 15 and subarctic seas: sea surface (i) temperature and (ii) salinity; (iii) wind speed at a
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height of 10 m above the surface; (iv) ocean surface current speed; and (v) surface downwelling shortwave
radiation.”

p. 1, L. 15: Are these five factors really known to be the dominant factors impacting coccolithophore
dynamics in the arctic and subarctic?

Answer: We consider these five factors as one of the important abiotic controlling factors in the studied
seas without a direct reference to coccolithophore ecology. Since we changed the focus of the article, we
no longer use the word “factors”.

p. 1, L. 16: The chosen set of environmental factors to be validated in the models is not obvious to me.
There is no rationale from my point of view as to why one would completely neglect nutrient fields and
carbonate chemistry in the validation of the models (see general comments and detailed comments further
down). Furthermore, I suggest to include a brief description what the environmental conditions wind
speed, current speed, and salinity are proxies for as phytoplankton growth in these models is not a direct
function of these variables.

Answer: We agree that nutrients and carbonate chemistry are important for phytoplankton. However, we
aim to select the appropriate CMIP5 models for one of the important abiotic factors. We added the
following sentence:

“The main goal of this research was to find out the methodology of selection of the optimal model ensemble that
most accurately reproduces the state of abiotic parameters inherent in six target arctic and sub-arctic seas, viz. the
Barents, Bering, Greenland, Labrador, North and Norwegian seas.”

p. 1, L. 16: Please check throughout the text: are you using sea surface salinity (as stated e.g. in the abstract
and introduction) or the salinity averaged over the top 30m (as e.g. stated in section 2.1 or the caption of
Figure 9)?

Answer: We thank the reviewer for this comment. We added this information in the Abstract:

“...the sea surface (i) water temperature and (ii) salinity (averaged over the top 30 m)...”

p. 1, L. 20: “best models” in what respect? Please be precise here.

Answer: In Introduction we add text

“... an ensemble of the best models from the entire set of available climate models based on a comparison with
observational data for a historical period.”

p. 1, L. 22: I don’t understand this the statement about “30 combinations of most-skillful models were
selected”. Selected for what? Additionally, I suggest to state how many models are considered within
each combination.
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p. 1, L. 23: “common” is used in what sense here? I don’t understand this. How do you define “high
skill”? This is rather subjective. I suggest to rephrase.

Answer: We thank the reviewer for the above two comments. The sentences are now modified as follows:
“The validation of the GCMs against reanalysis data includes analysis of the interannual variability, seasonal cycle,
spatial biases and temporal trends of the simulated parameters. In total, 30 combinations of high-skilful models
were selected for 5 variables over 6 study regions. The results show that there is no mutually optimal combination
of models, nor is there a one top-model, that has a skill in reproducing either the regional climatic-relevant features
of the whole Arctic region or all combinations of the considered parameters in target seas. Thereby, according to
our methodology for each ‘variable — target sea’ combination, a unique best model subset was selected with the
number of included models varying from 7 to 11.”

p. 1, L. 25: What should e.g. modelers conclude from your analysis? I miss a statement on the broader
implications of your study in the abstract.
Answer: We decided to remove this paragraph as Reviewer #2 suggested us to do it.

Introduction:

Note: The generalized answer will be given for the listed below Reviewer’s comments:

p. 2, L. 2-5: Please include a brief description on how exactly coccolithophores impact the carbon cycle
(as done for the sulfur cycle). Additionally, I don’t think Rivero-Calle et al. (2015) and Winter et al.
(2013) are appropriate references for the biogeochemical impact of coccolithophores here, as these only
describe changes in the biogeography and occurrence over time. Check e.g. Iglesias-Rodriguez et al.
(2002) or Balch (2018) (and references therein) for the biogeochemical imprint of this phytoplankton
group.

p. 2, L. 3: Please delete the “additionally”. You describe the impact on the sulphur cycle here.

p. 2, L. 6: Itis not only essential to study E. hux. blooms, but coccolithophore blooms in general. E.huxleyi
has not yet been introduced in this line of the text. Please change to “coccolithophores” instead of “E.
huxleyi”

p. 2, L. 7: Please introduce the abbreviation “E. huxleyi” here.

p. 2, L. 9: Please add a reference to the temperature and salinity tolerance.

p. 2, L. 10: I suggest to add the more recent reference “Krumhardt et al. (2017)” here, as they provide the
most recent compilation of the global present-day distribution of coccolithophores (to my knowledge).
p. 2, L. 11: Have coccolithophores really expanded because of ecosystem changes in the Arctic? Don’t
you mean “as a result of recent changes in environmental conditions, coccolithophores have expanded
poleward”? Please revise the logic in this sentence.

p. 2, L. 12: Henson et al. (2018) is not an appropriate reference here (they don’t talk about the changes in

E. huxleyi blooms in the cited paper). Please consider adding e.g. Rivero-Calle et al. (2015) here.
7
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p. 2, L. 12: Winter et al. (2013) suggest that that the poleward expansion is mainly driven by temperature,
salinity, or nutrients, but Rivero-Calle et al. (2015) and Krumhardt et al. (2016) suggest that carbonate
chemistry matters as well. Please be more comprehensive in the discussion of possible drivers for the
expansion.

p. 2, L. 14: Please be more precise here: When you say “E. huxleyi blooms have a high positive correlation
with [...]”, do you mean the occurrence, their size, their duration...?

p. 2, L. 14: The description of controls on E. huxleyi blooms (and causes for its changes) is not
comprehensive enough. I only did a very brief 10-minute search in the literature and found a number of
papers that could be relevant for the introduction of this paper (only focusing on those of the northern
hemisphere, i.e. disregarding the wealth of recent literature on Southern Ocean coccolithophore dynamics,
see e.g. Balch et al., 2016, Nissen et al., 2018 and references therein): please have a look at e.g. Daniels
et al. (2015), Harada et al. (2012), Oziel et al. (2017), and Smyth et al. (2004) (and references therein). I
suggest to first describe the factors that contribute to phytoplankton/coccolithophore blooms in general
(these are currently not introduced) and to then discuss what has been suggested for coccolithophores in
general and in the (sub)arctic in particular. Please motivate why you think nutrients and carbonate
chemistry are not important as this is not at all obvious.

p. 2, L. 12-20: Please clearly differentiate between discussing drivers of present-day coccolithophore
blooms as opposed to possible drivers of observed/future changes in coccolithophore distributions and
bloom dynamics.

p. 2, L. 20-32: I find it problematic to focus so much on a single paper here, especially as the discussed
paper by Kondrik et al. (2019) has not yet been accepted. One of the main criticisms by the reviewers of
that paper was the neglect of important variables as potential drivers of coccolithophore blooms (such as
e.g. carbonate chemistry). I think the study at hand can be much more generally motivated, without going
into the details of this specific one. To that aim, and similarly to the points raised in the review of Kondrik
et al. (2019), the analysis in the manuscript by Gnatiuk et al. should be more comprehensive in the
assessment of potential drivers of coccolithophore blooms, especially because the output from models is
assessed here, which can provide information on all environmental variables impacting phytoplankton
growth. There should not be a a-priori-restriction to the drivers assessed here without giving a good reason
to do so. Please revise the introduction and the analysis in that respect.

p. 2, L. 2-32: The whole first part of the introduction does not provide a comprehensive summary of what
is known about drivers of coccolithophore bloom dynamics and does not naturally result in the knowledge
gap that will be assessed in this study. From my point of view, it should be substantially revised following
the comments made above. Additionally, the models are not properly introduced. E.g. no reference to the
CMIP is given. Furthermore, it should be clearly stated that none (or maximum a few, to be
doublechecked) of the CMIP5 models includes an explicit parametrization of coccolithophores, which is
why it is currently only possible to project potential changes of their blooms based on changes in
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environmental conditions (but note the recent paper by Krumhardt et al., 2019). This comes with the
limitation that biotic interactions cannot be assessed, which should be clearly stated in the discussion
section (see also Krumhardt et al., 2017).

Answer:

We thank the reviewer for the valuable and constructive comments for Introduction (page 2) of the
manuscript. In view of the reviewer’s comments, we decided to remove the first three paragraphs in the
Introduction and we concentrated on the main goal of this manuscript, i.e. a selection and validation of
the CMIP5 climate models against the available reanalysis data for the important abiotic parameters that
influence phytoplankton blooms in six sub-arctic and arctic seas (Barents, Bering, Greenland, Norwegian,
North and Labrador Seas). We changed it to the following:

“Today climate models are state-of-the-art tools for the prediction of the future status of the climate system
components on decadal and centennial time scales (Otero et al., 2018; Taylor et al., 2012). In particular, the modern
coupled atmosphere-ocean General Circulation Models (GCMs) include the main climate system components such
as the atmosphere, ocean, land and sea-ice, and therefore, represent more realistically the processes of their
interactions. Thus, the fifth phase of the Coupled Model Intercomparison Project (CMIP5) gives the opportunity to
use data of more than 30 GCMs (Taylor et al., 2012). The GCMs provide a large number of the meteorological and
oceanographic parameters allowing to perform a comprehensive assessment of possible climate change impacts on
marine ecosystems in the future. However, most of the studies addressing the CMIP models intercomparison show
that the GCMs outputs usually vary significantly (Almazroui et al., 2017; Fu et al., 2013; Gleckler et al., 2008).
Therefore, it is important to find a reliable approach for both model quality intercomparison and selection of optimal
models for each specific scientific task and region.”

p. 3: The first paragraph does not link well with the above. Please work on your flow in the introduction.
Additionally, this whole page reads like it should be in the method section. Please revise and consider
moving at least parts of it to the method section.

Answer: Thank you for the comment. Since we changed the focus of the paper, we decided to leave this
information in the Introduction. This part reviews the previous experience in the field of climate models
validation and selection, that leads to formulating of a scientific task.

p. 3, L. 7: How are the “best models” defined here? Please be precise what you mean.

Answer: We modified it as follows:

“There are two main approaches to employing climate model ensembles: (i) use of the full-ensemble average data
(Flato et al., 2013; Gleckler et al., 2008; Knutti et al., 2010b; Reichler and Kim, 2008); and (ii) selection of an
ensemble of the best models from the entire set of available climate models based on a comparison with
observational data for a historical period (Herger et al., 2018; Knutti et al., 2010b; Taylor, 2001).”
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p. 3, L. 8: Please revise the sentence “These two approaches usually give a good result”. Good in what
respect? Please add references.

Answer: We improved the sentence as follows:

“These two approaches are equally used depending on a specific scientific task: (i) full-ensemble averaging for
future trends analysis, and (ii) selection of the best models ensembles for regional climate features analysis.”

p. 3, L.11: Choosing this method implies the assumption that whatever model is representing present-day
conditions best will also do the best job in projecting these into the future, doesn’t it? I think this is
important to state here.

Answer: Thank you for the comment, we modified it as follows:

“We assume that a climate model that successfully represents the present-day conditions will also succeed in the
future projections. Therefore, we chose the second approach, e.g., a selection of climate models that properly
simulate the current regional features, including the spatial distribution, of the meteorological and oceanographic
parameters under study (sea surface temperature and salinity, surface wind speed at 10 m, ocean surface current
speed, and surface downwelling shortwave radiation). At that, it was important to define the appropriate
methodology for selection of the best model ensembles.”

p. 3, L. 16-21: It is not clear to me what the take-away message of this paragraph is. How does the first
approach, assessing how well models do in representing air temperature, sea level pressure, and
precipitation help in the assessment of environmental factors impacting phytoplankton/coccolithophore
growth? Please work on this paragraph and make it more specific to the goal of your work. Consider
combining it with the next to avoid having a 2-sentence paragraph with no clear take-away message.

p. 3, L. 21 —p. 4, L.2: Again, the take-away message in context of your specific goals for the paper are
not clear. Please re-write.

Answer for above 2 comments: We think that now the information p. 3, L. 16-21 (version 1) suits to the
new version of the manuscript. We modified the paragraphs as follows:

“There are many approaches for the selection of an optimal set of climate models. One approach suggests choosing
the models with focus only on some key climatological parameters, such as air temperature, precipitation and sea
level pressure (Almazroui et al., 2017; Duan and Phillips, 2010; Pierce et al., 2009; Sarr and Sarr, 2017). This
approach assumes that if the models skillfully reproduce these key parameters, they also must be good at
reproducing the regional climate in general. Another approach, which is used in this study, is to select a unique
combination of models for each study variable (Agosta et al., 2015; Anav et al., 2013; Fu et al., 2013; Gleckler et
al., 2008). In order to select such a unique combination of models, it is necessary, firstly, to perform a validation
of climate models through comparing GCMs outputs with the respective observations over a historical period, and
then to identify the appropriate climate models based on statistical measures, i.e. to sort or rank the tested models.
However, there are no generally accepted solutions for this task. For example, Agosta et al. (2015) ranked the
CMIP5 models using only one statistical metric, viz, a climate prediction index, which is the ratio of the root mean

square error to the standard deviation of observation data. Gleckler et al. (2008) evaluated the CMIP5 models and
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ranked them through analyzing the climatology of the annual cycle, inter-annual variability, and relative errors.
They found that the performance of the analysed models varies for different parameters. Das et al. (2018) assessed
34 CMIP5 models using the following three criteria: the mean seasonal cycle, temporal trends, and spatial
correlation. On this basis the models were selected using a cumulative ranking approach. Fu et al. (2013) and Ruan
etal. (2019) applied a score-based method using multiple criteria for the assessment of CMIP5 model performance:
mean value, standard deviation, normalized root mean square error, linear correlation coefficient, Mann-Kendall
test statistic Z, Sen’s slope, and significance score. Further, Ruan et al. (2019) selected the top 25% ranked CMIP5
models for composing a multi-model ensemble for air temperature projections over the Lower Mekong Basin. Fu
et al. (2013) and Ruan et al. (2019) ranked the employed models using a weight criterion from 0.5 to 1.0. Ruan et
al. (2019) reported that the introduction of multiple criteria results in less uncertainties in the models’ performance
in comparison with the respective observation data. However, Fu et al. (2013) and Ruan et al. (2019) did not
consider the feature of spatial distribution of variables.”

p. 4, L. 3: Why do you conclude that? This is not clear to me from what you have presented so far in the
introduction.

Answer: We deleted this sentence. We describe more clearly which available ideas we adopted in the
developing of our methodology of climate model validation and selection. We added the following
information:

“We decided to compile and improve the previously applied approaches that is to employ the multiple criteria
ranking method following Fu et al. (2013) and Ruan et al. (2019) studies but (i) taking into consideration the Agosta
et al. (2015) climate prediction index, (ii) analysing the features of spatial distribution of target variables (spatial
biases and trends), (iii) ranking the models with the percentile method (25th,50th, 75th) that is widely used in
statistical analysis, and, finally, (iv) selecting the top 25% ranked CMIP5 models following Ruan et al. (2019).”

p. 4, L. 3-5: You have not presented the differences in environmental conditions of the different focus
areas. Please revise the introduction accordingly. I don’t understand what the second half of the sentence
means: How can areas have a wide range of parameters?

Answer: We agree that the formulation is not very good, and we modified it. Here is the new version of
the whole paragraph:

“As the target arctic and subarctic seas differ in physical and geographical conditions, we performed the validation
and selection model procedure for each sea individually. Moreover, we analyzed the specific marine areas with the
stable localizations of intense growth of phytoplankton species both in spring (e.g. diatoms) and in summer-autumn
(e.g. coccolithophores Kondrik et al., 2017; Smyth et al., 2004). Thus, the target regions permitted to identify the
CMIP5 models that represented most closely the cumulative state of the physical environmental factors (abiotic
parameters) characterizing the conditions, under which the aforementioned blooms occurred. Such a specific task
eventuated in the results that can be useful for further improvements of marine ecological models encompassing
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the phytoplankton community as well as for modelling the dynamics of physical parameters relevant to surface
water environment at high-latitude seas under conditions of changing climate.”

Methods

p-4, L. 17-19: As mentioned before, I don’t understand based on what grounds you neglect the assessment
of nutrients and the carbonate chemistry in the models.

Answer: We agree that nutrients and the carbonate chemistry are important for coccolithophores bloom.
Since the focus of the manuscript is changed, we do not analyze all factors influencing coccolithophores
bloom, we analyze only abiotic parameters. We added additional sentences and modified the sentence as
follows:

“Thirty-four CMIP5 GCMs outputs for the historical period 1979-2005 were used in this study. The data are freely
available on the ESGF portal (https://esgf-node.llnl.gov). The list of climate models used is presented in Table 1.
We analyzed five oceanographic and meteorological variables, namely the sea surface temperature (SST) and
salinity averaged over 0-30 m (SSS), surface wind speed at a height of 10 m (WS), ocean surface current speed
(OCS), and shortwave downwelling solar radiation (SDSR). These abiotic parameters are known to affect the
phytoplankton life cycle in sub-polar and polar latitudes (Iglesias-Rodriguez et al., 2002; Raitsos et al., 2006;
Winter et al., 2013).”

p. 4, L. 23-25: Did you include regional models, e.g. CORDEX? I can’t find it in Table 1. If you didn’t
include those models, don’t make that statement here. I am bit confused. Please distinguish between
regional and global models and state which kind you considered.

p. 4, L. 25: Did you only consider global models in the end? This is not clear from your description in
this section. Please clarify.

Answer for two above comments: We did not include regional models, we used only global models. We
deleted this sentence.

p. 4, L. 25-26: I suggest to give the range of models available: number available for FFs ranged from X1
for variable Y1 to X2 for variable Y2 (see Table 1). What do you mean by “main characteristics”? Please
rephrase.

Answer: We added the following sentence:

“The availability of the CMIP5 GCMs analysed in this study are listed in Tablel: in total, we used 25 models for
OCS, 28 for SSS, SST, SDSR, and 30 for WS.”

Also we modified the sentence that included the phrase “main characteristics” as follows: “The list of
climate models used is presented in Table 1.”

p. 5, L. 4: replace “has been shown” by “have been shown”.

Answer: We changed it.
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p. 5, L. 6: Please choose a better description in the title than simply “methods”, maybe something like
“model evaluation metrics™?
Answer: We changed it to “Study regions” and “Model evaluation metrics”

p. 5, L. 7: Please rewrite “regions under the study”. Add “Sea” behind “Norwegian”.
Answer: We changed it: “The target regions are six arctic and subarctic seas: the Barents, Bering, Greenland,
Labrador, North and Norwegian seas.”

p. 5, L. 7-8: How do you define a bloom here? Please state this and add references. Additionally, you
don’t state what data you base Fig. 1 on to define the blooms. Please clarify in the text and the figure
caption. [ suggest to draw the study regions into Fig. 1. To help the reader localize the different subregions.
Answer: We changed the sentence as follows:

“Only specific areas were selected in each target sea relying on the results obtained by Kazakov et al. (2018) for
the coccolithophore Emiliania huxleyi blooms based on the Ocean Colour Climate Change Initiative dataset version
3.0 (https://esa-oceancolour-cci.org/) for the period from 1998 to 2016.”

We changed the figure caption accordingly.

p. 5, L. 11: Do you mean model output here when you say “data? Please clarify.
Answer: We clarified it at the beginning of the section as follows:
“Thirty-four CMIP5 GCMs outputs for the historical period 1979-2005 were used in this study.”

p. 5, L. 12: T have a hard time believing that the blooming period lasts from January-December in the
Bering Sea. What bloom definition is used for this?

Answer: We modified the sentences and added some information:

“Besides, the periods for model validation were selected based on a sea-specific blooming periods, which include
all summer months and, in some cases, beyond them: June-September for the Barents and Labrador seas, June-
August for the Greenland Sea, May-July for the North Sea, May-August for the Norwegian Sea, and January-
December for the Bering Sea (Kazakov et al., 2018).”

p. 5, L. 10-14: I don’t fully understand why you’re restricting the analysis to the times and locations of
identified E. huxleyi blooms under present-day environmental conditions for each sea (if the models do
not necessarily reproduce the environmental conditions at these exact locations and times). Don’t you
want to restrict the analysis to the observed environmental conditions at the times/locations of the blooms
(i.e. the observed environmental niche)? As a consequence, I am wondering why don’t you define each
subregion as a slightly larger area than currently done.
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Answer: First, we conducted an analysis for the entire territory of the seas and found a significant
difference if we consider the whole sea and the area we are interested in. Trying to answer the question
that the reviewer has raised here, we entered the following sentences into the text:

“Thus, it is noteworthy that the results of the performed comparison of models can be used not only in terms of
marine ecology-related issues but also for the purposes of forecasting of the region-specific climate interactions
during the vegetation season, taking into account that the selection of the climate models was carried out
individually for each sea/sea zone.”

p. 5, L. 17: The interannual variability of what exactly? The seasonal cycle/amplitude, summer average,
average over blooming period, ...? Please be precise here.

Answer: We modified the sentence here:

“The validation methodology for the GCMs outputs included the analysis of the climatological-mean seasonal
cycle, interannual variability and trends, and analysis of spatial distributions of climatological-mean biases and
trends for selected parameters averaged over the blooming period in each sea.”

p. 5, L. 18: The seasonal cycles |[...]
Answer: We changed it.

p. 5, L. 19: “but the interannual variability “ of what?

p. 5, L. 19: Replace “sea” by “subregion”

p. 5, L. 25-26: Rephrase to something like “For the assessment/evaluation of the interannual variability
[...]”

Answer for the two above comments: We changed it to:

“b) The interannual variability of the parameters was analyzed based on monthly variables solely for blooming
periods (the sample size varied according to sub-region and parameter combination, e.g., a sample size for SST in
the Barents Sea was 108 — monthly variables from June to September during 1979-2005). The same statistical
measures for analysis of the seasonal cycle were used, viz. RMSD, r, SD, and CPL.”

p. 5, L. 23: Can you rephrase “RMSD-observations standard deviation ratio”? I have a hard time
understanding what you mean here. Please consider to add the formulas to make it very clear.

Answer: We changed the sentence:

“In addition, following Agosta et al. (2015) we calculated the climate prediction index (CPI) for the seasonal cycle,
which is a ratio of the model root mean square error to the standard deviation of observation data.”

p. 5, L. 26: Do you mean the difference in the spatial distribution of temporal trends between the model
output and the reanalysis data? This sentence is not clear to me. Please rephrase to clarify.
Answer: We changed it to the following sentence:
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“c) The spatial distribution of biases and trends between the model outputs and the reanalysis data were calculated
for temporal-averaged data in each grid point of the target marine zone.”

p. 5, L. 26-27: What exactly is “your percentile score-based model ranking method”? This method is
defined nowhere in the method section up to this point. In particular, the description of this ranking
method should be very clear (e.g. by including an overview listing the metrics are included in the ranking),
as the main result of your study is based on this ranking.

315p. 5, L. 31: Less than 25% of what? Please be precise. What do you base these thresholds on? It seems
rather subjective to me. What is the effect of the choice on the outcome? This needs to be discussed
somewhere in the text.

p. 6, L. 4: Again, choosing 25% seems random to me (see previous comment).

Answer for the three above comments: We modified the text as follows:

“For ranking models and selection of the best model sub-set, we proposed and employed the percentile score-based
model ranking method, which is a compilation of the previously applied model ranking and the selection
approaches with some modifications (see also Introduction). Following Fu et al. (2013) and Ruan et al. (2019), we
used the multiple criteria for model selection (RMSD, r, SD). Following Agosta et al. (2015) we analysed the
climate prediction index (CPI), and considered the differences in spatial distributions of biases and trends between
the model outputs and the respective reanalysis data. Further, we ranked the models based on the percentile method
(25th, 50th, 75th) for each obtained statistical metrics based on the amplitude of its values. Finally, we selected the
top 25% ranked CMIP5 models following Ruan et al. (2019) for each considered oceanographic and meteorological
parameter, and target region. Thus, for example, for a sample of 28 models, the top 25% is a sub-set of 7 models
that showed the best total-score. However, if two or more models show the same score they all are included in the
selected best model sub-set. Thus, the number of included models in selected best model subsets varying from 7 to
11.”

Results & Discussion

p. 6, L. 6: Personally, I find it a bit unfortunate that only results for temperature and the Barents Sea are
presented in the main text. Isn’t there a better way to synthesize the results and present more than just one
tiny subarea and one forcing factor?

Answer: We agree with the reviewer, and added an additional figure to sections Results and Discussion
with the spatial distribution of biases in five parameters between models and reanalysis data in six target
seas. The biases are averaged over the vegetation season and the time period 1979/1993-2005. We added
new Figure 5 a-e and following description:

“In order to analyse how well the selected best-model sub-sets represent five studied parameters, we analysed the
spatial distribution of biases between the selected model ensemble and the respective reanalysis data in six target
seas, viz, the Barents, Bering, Labrador, Greenland, Norwegian and North seas (Figure 5a-¢). Thus, fewer biases
in SSS are determined in the case of the Labrador, Greenland and Norwegian seas (0.5 psu); high positive biases
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observed in the Bering Sea next to the coastline: up to 1.5-4 psu, this overestimation is possibly due to insufficiently
accurate parameterization of the river runoff in the sub-arctic region (Figure 5a). SSS is underestimated in waters
next to the coastline in the Barents and North seas (1.5-2.5 psu), which is probably due to some overestimation of
river runoff or underestimation of salty atlantic water. The selected CMIP5 models simulate SDSR (Figure 5b) well
almost in all target seas: the biases in SDSR in the Barents Sea vary from 5 to 14 W m-2 (=4-10 %), in the Bering
Sea — from 2 to10 W m-2 (=2-9 %), in the Greenland Sea — from 0 to 12 W m-2 (=0-7 %), in the North Sea — from
1 tol7 W m-2 (=0-7 %), in the Norwegian Sea — from 4 to 9 W m-2 (=2-5 %), only in the Labrador Sea the CMIP5
models overestimate SDSR and the biases much higher — from 20 to 29 W m-2 (=11-15 %). The selected GCMs
simulate WS well in all studied seas: the biases in WS are not more than 1 m s-1, only in some places of the Bering
and North Seas’ coastal regions, the biases in WS simulations are up to about 1.5 m s-1 (Figure 5¢). Concerning
SST, we also obtained quite good results for the selected models. Low biases were observed mainly over the entire
territory of the North and Norwegian seas constituting +0.5° C (Figure 5d). Near the English Channel models
overestimate the temperature by =2° C in the North Sea probably due to the influence of warm water from the
English Channel, and models slightly underestimate the temperature by =1° C near the coastline in the Norwegian
Sea. In the Labrador Sea, the CMIP5 models simulate SST with lower biases in the northern and north-western
parts of the sea — +0.5° C (Figure 5d). However, in the southern and south-western parts of the sea, the models
underestimate SST by =1-2° C, which is possibly due to the influence of the cold Labrador Current. In the
Greenland Sea, the models underestimate SST by =1-1.5° C in the west probably also due to the influence of the
cold Greenland Current and overestimate SST by =~2° C in the south apparently due to overestimation of
contribution of the warm Atlantic water (the North-Atlantic Current). In the Barents Sea, the models overestimate
north-western part of the sea probably due to the influence of the warm atlantic water, and in the southern part of
the study area, the models underestimate SST by ~1-2° C probably due to some underestimation of the influence
of coming warm atlantic waters. Finally, the CMIP5 models simulate the surface ocean current speed with rather
large biases, especially in the Bering Sea and closer to the Bering Strait (-0.19...0.14 m s-1), where the models
mainly overestimate OCS (Figure 5¢). Smaller biases in the modeling of the OCS by CMIP5 models found for the
Barents and Greenland seas — from -0.06 to 0.03 m s-1. The biases in the other studied seas vary from -0.17 to 0.06
ms-1.”

Below we present Figure 5 (a-¢):
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Figure 5a. Spatial distribution of biases in sea surface salinity models and reanalysis in six target seas averaged over the
vegetation season and the time period 1993-2005.
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Figure 5b. Spatial distribution of biases in surface downwelling solar radiation between models and reanalysis in six target
seas averaged over the vegetation season and the time period 1979-2005.
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Figure 5c. Spatial distribution of biases in near-surface wind speed between selected model ensemble and reanalysis in six
target seas averaged over the vegetation season and the time period 1979-2005.
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Figure 5d. Spatial distribution of biases in sea surface temperature models and reanalysis in six target seas averaged over the
vegetation season and the time period 1979-2005.
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Figure 5e. Spatial distribution of biases in surface ocean current speed models and reanalysis in six target seas averaged over
the vegetation season and the time period 1993-2005.

p. 6, L. 9-11: I don’t think a Taylor diagram needs to be explained in the result section. I suggest to rather
briefly explain when the agreement between model and reference data set is good (i.e. how to interpret
the plot) instead of simply stating what can be seen (see comment on L. 15-17).

p. 6, L. 11/12: Please add “[...] capture the climatological seasonal cycle [...]”. Furthermore, please
explain how it can be seen from the plot that the seasonal cycle is represented better than the interannual
variability (see previous comment).

p. 6, L. 14: Are these numbers really unitless? If so, define somewhere that you plot normalized SD and
RSMD (method section, consider adding formula there) and state that here by saying e.g. “the SD and
RMSD normalized by XX are between ...”. This will help the reader to follow.

p. 6, L. 15-17: This is the information you should start your paragraph with (see previous comments).
First explain to the reader how to interpret the plot. However, the statement that “the closer the model
data is to the x-axis, the better the correlation coefficient” is not entirely correct, as the correlation
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coefficient is shown on the radial axis. A point with RMSD/SD/CorrCoeff of 0.1/0.1/0.1 is closer to the
x-axis than a point with 1.0/0.8/0.9 (note that this is under the assumption that RMSD is on the x-axis,
SD on the y-axis and the correlation coefficient on the radial axis, see comment on the Figure further
down)— but the correlation coefficient of the second point is higher. Please be precise in the description.
Also, a correlation coefficient is high/low and not good/bad.

p. 6, L. 17: Replace “climate parameter” by “e.g. SST”.

p.6, L. 17-18: Please revise the grammar of this sentence.

p. 6, L. 18-20: This statement is redundant with the method section.

p. 6, L. 9-20: For the whole description of the Taylor diagram, please add the names of models here that
show the highest/lowest correlation coefficients, RMSD etc. to make it easier for the reader to extract the
information from the plot.

Answer to above 8 comments:

Our intention was to describe our methodology using Figures 2-8. We decided to delete the Taylor
diagram as it only illustrates the root mean square deviation, standard deviation and correlation together;
but we analyzed these statistical metrics separately in the form of a table. Thus, we deleted the second
paragraph from page 6 and moved Figures 4 to section Methodology section. In addition, we deleted
Figure 5 as well, since the analysis is very similar to Figure 4, and Figure 8.

p. 6, L. 21-23: If you say you show the “spatial distribution”, I expect maps. Do you mean the spatial
variability of the climatological SST bias across the subregion? Please be more precise throughout the
description.

Answer: We modified the sentence as follows: “Figure 3 illustrates the box plots of the spatial variability of

SST biases in the selected area of the Barents Sea for the vegetation season (June-September) during 1979-2005
and the time period 1979-2005.”

p. 6, L. 22: I see median biases that are >0 (e.g. for the model 2). Please double-check.

p. 6, L. 24: Do you mean the maximum bias? I don’t understand “amplitude bias” (throughout paragraph).
Similar to above, please add the names of the models showing the numbers you’re stating to make it easier
for the reader to find the information you’re stating in the plot.

Answer to the above 2 comments: Thank you for this correction. We changed it as follows:

“For ranking models based on the obtained differences in the spatial distributions of biases and trends between
model outputs and reanalysis, we analysed the absolute values of the median and the amplitude of the spatial
variation in model biases. For example, Figure 3 displays the box plots of spatial variability in SST biases relevant
to the target area in the Barents Sea for the vegetation season (June-September) and the study period 1979-2005.
The median bias varies from -6.6 (model #20) to 1.5 K (model #24) among the models, whereas the amplitude bias
has a wide spread of values from 7.3 (model #21) to 16.5 K (model #3).”
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p. 6, L. 24-25: Please revise this statement, e.g. simply stating that the comparison shows large variability
across the models.
Answer: We changed it as follows:

“Thus it can be concluded from Fig. 3 that the analysis of spatial distribution of biases is very important, e.g., if we
compare model #2 (ACCESS1-3) with model #3 (CanESM2), we can see that the medians of these two models
have a small difference (0.28 K), while, the amplitude of spatial values for model #3 is much higher than that for
model #2. Application of the percentile score-based method to modes #2 (ACCESS1-3) and #3 (CanESM?2) resulted
in inclusion of the former in the best-model sub-set, whereas the latter was placed beyond it (Fig. 4).”

p. 6, L. 27-29: Where is this seen? This is not included in Fig. 4. If you’re referring to a different plot
here, please add the reference.

Answer: We changed it as follows:

“Application of the percentile score-based method to modes #2 (ACCESS1-3) and #3 (CanESM?2) resulted in
inclusion of the former in the best-model sub-set, whereas the latter was placed beyond it (Fig. 4).”

p. 6, L. 29: Similar to above, be more precise in your description. From just the wording “spatial
distribution of annual trends”) the reader expects maps here, not box plots.

p. 6, L. 31: How are “significant trends” defined here? How can that be seen in the plot? Please be precise.
What models show a significant trend? What is an “unrealistic trend” for you here?

p. 7, L. 1: How do you know that? As mentioned above, I think it is important to state in the method
section that this is the assumption you make (a model that reproduces the observations best over the
historical period (however you define “best”), also gives the “best” projections for the future).

Answer to the above 3 comments: We deleted the figure plotting the spatial variability of the trends as
the procedure of the analysis is similar to the figure displaying the spatial variability of biases. Also, we
will move Figure 4 to section Method.

p. 7, L. 9-12: Is the +/- 1K the average over the domain? Currently, the reader at this point has totally
forgotten why you’re doing this exercise. I suggest to always relate your analysis back to your goal of
projecting potential future changes in coccolithophore blooms. I understand that this will be a follow-up
paper, but this paper would gain a lot if you speculated at least. How can these biases be expected to
impact these estimates? You could do some basic calculations using a Q10 function (see e.g. Nissen et
al., 2018) or a temperature optimum function (see e.g. Krumhardt et al., 2017) describing the impact of
temperature on phytoplankton growth.

Answer: We modified it as follows:

“To examine our percentile score-based model ranking method we analysed the spatial distribution of biases and
trends for the full-model ensemble, selected best-model sub-set and top-model vs. reanalysis data for each target
sea and parameter combination. Figure 6 illustrates the case for SST in the Barents Sea, and in the Supplements we
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present maps for all variables and target regions. As seen in Fig. 6a, the full 28-model ensemble underestimates the
SST in the target region while the top-model, MIROC-ESM, overestimates it. The selected 8-model ensemble
shows smaller biases (+ 1 K) in SST for the most part of the sea”

p. 7, L. 13: What error do you mean here? Please be precise and make sure that all the metrics you present
are carefully introduced in the method section.

p. 7, L. 15-16: Please revise the grammar of this sentence.

p. 7, L. 13-17: Similar to above, I don’t understand from the current presentation of the results what these
mean.

Answer: We modified the sentence as follows:

“Illustrated in Fig. 5b, the spatial distribution of SST trends (the difference between model data and reanalysis data)
indicates that the full 28-model ensemble overestimates the trends for the whole sea (model-reanalysis errors are
0.03-0.07 K yr-1), the top-model MIROC-ESM partly underestimates the SST trend, but for the larger area it
reveals reanalysis small trends (£ 0.01 K yr-1) that are similar to Era-Interim.”

p- 7, L. 24-28: This is repetitive with the method section and what should be in the figure caption. There
is no need to state it this detailed in the main text.

Answer: We modified the sentence as follows:

“The selected best CMIP5 model sub-sets for five oceanographic and meteorological variables, viz. the sea surface temperature
(SST) and salinity averaged over 0-30 m (SSS), surface wind speed at a height of 10 m (WS), ocean surface current speed
(OCS), and shortwave downwelling solar radiation (SDSR) in the Barents, Bering, Greenland, Labrador, North and Norwegian
seas are presented in Fig. 4.”

p. 7, L. 28-30: Does it surprise you that the model combinations vary?
Answer: In many studies that use climate model data, vast regions are considered, in particular, the entire
Arctic. Most studies also use the approach when one set of models is selected for different parameters.
Our results confirm that the same model does not properly reproduce the distribution features of all the
parameters we examined and is not suitable for the analysis of large regions. It is one of our messages to
readers to be more careful when to choose climate models at the study.

p. 8, L. 3-5: How is “better performance” defined here? Is not clear to me how you conclude this.
Answer: We modified the sentence as follows:

“Analysis of comparison of all selected model sub-sets (see Supplements) shows that, in general, the selected best-
model ensemble assures somewhat better performance (with regard to the biases between model and reanalysis
data) than either the full-model ensemble or the single top-model do. Comparing the full-model ensemble, selected
sub-set models or/and top-model performance in terms of biases and trends, the selected best-model ensembles are
more skilful in parameter simulations, respectively in 74% (biases) and 83% (trends) cases. The performance of
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the selected models proved to be equal to the full-model ensemble and top-model efficiency, respectively in 13%
(biases) and 10% (trends) cases, and they are less skilful in the simulations in 13% (biases) and 7% (trends) cases.”

Conclusions

p- 8, L. 13-16: The statement that the Arctic is often considered as a single region in other studies is never
made in the introduction, but should be included there as a motivation to look at subregions. Furthermore,
you don’t actually assess the whole area, so I suggest to revise this statement, as you don’t actually
compare the performance over the whole area to the smaller subareas.

Answer: We agree that we do not show results for all Arctic, but we study 6 seas, and we didn’t find
models same good for such a large area. We modified the sentence as follows:

“Despite the fact that the Arctic is often considered as one single region in many studies, our results show that
CMIPS climate models do not have consistent performance across such a large area. However, the selected best
model ensembles show quite good results with lesser biases in smaller study regions, i.e., some specific arctic seas.”

p. 8, L. 18: What about the temporal development of the environmental conditions?
Answer: We suppose that trends are responsible for the temporal development of environmental
conditions.

p. 8, L. 18-21: Are more important than what? Please be precise. I cannot follow your logic here. Please
revise to clarify, taking also into account the comments I made in the result Section.

Answer: We modified the sentence as follows: “Therefore, we suppose that the spatial distribution of
biases and trends in the considered parameters are as well important as other statistical metrics within the
framework of the model selection procedure performed. Based on our results, we can also conclude that
it is essential not only to analyse spatially averaged values, but also the spatial distribution of their
amplitudes.”

p. 8, L. 24: And the time series is even shorter for SSS and ocean currents, isn’t it? What is “out-of-
sample” testing? Please try to avoid introducing concepts in the conclusion section which were not
discussed before. Why did you not test by excluding certain time periods from the analysis?

Answer: We agree with the reviewer and deleted the following sentences: “Due to the short sample period
of reanalysis data (1979-2005), we did this evaluation without out-of-sample testing. Definitely, it is better
to test any model ranking method on another historical period. It will be possible to consider the period
1950-2014 with the release of new data, e.g., CMIP6, ERAS.”

We consider the period is very short to be divided into two independent periods for the analysis.

p. 8, L. 27: important for what? Please be precise.
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Answer: We modified the sentence as follows: “We can conclude that the range of different factors is
important for model selection, including the spatial pattern of model biases, and the proposed
methodology is a way of enhancing the model selection procedures sophistication that promises a better
chance to identify more skilful models for the features we are interested in.”

p. 8, L. 31: Why only at regional scales?

Answer: We modified the sentence as follows: “Thus, the proposed method can be used for analyses
regarding other regions with the purpose to evaluate climate model performance with respect to various
atmospheric and oceanic parameters at different scales.”

Figures/Tables

Fig. 1: You don’t simply show the “locations of the blooming areas” here, but the spatial distribution of
the frequency of blooms. Please be more precise. I suggest to show the subregions in the plot directly (put
names and add e.g. a black contour to show the extent). Please add to the caption what data this map is
based on and how you define a bloom.

Answer: We corrected it as follows: “Figure 1: Spatial distribution of Emiliania huxleyi blooms
occurrence based on the Ocean Colour Climate Change Initiative dataset version 3.0 (Kazakov et al.,
2018) for the Barents, Bering, Labrador, Greenland, North, and Norwegian seas. Black lines confine the
territories where blooms occurred more than one 8-day period and show target sea areas.”

Fig. 2: Be more precise in caption, a lot of information on what is seen in the plot is missing. What is the
unit of the RMSD?

Answer: We corrected the caption as follows: “Figure 2: A schematic representation of the percentile
score-based model ranking method (Division of RMSD values distribution of 28 models into four groups
that are limited by 25th, 50th and 75th percentiles and the relative assignment of scores from 3 to 0 to
each group accordingly - very good, good, satisfactory and unsatisfactory).”

Fig. 3: The way I know it, a Taylor diagram shows the RMSD (normalized by the standard deviation of
the reference data set) on the x-axis, the standard deviation (normalized) on the y-axis and the correlation
coefficient on the radial axis. It is not clear to me what exactly you’re showing. Please add labels to the
plot (y-axis, grey circles) and also say what you’re showing in the caption (including units or state if you
normalize by something). Also, please add panel labels to the plot and the caption.

Answer: We decided to delete the Taylor diagram as it only illustrates root mean square deviation,
standard deviation and correlation together; however, we analyzed these statistical metrics separately in
the form of a table.
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Fig. 4 & 5: Possibly replace “distribution” by “variability”? Be precise in what you show. What are the
orange line and the whiskers? How is the bias defined (Fig. 4)? What trend is shown Fig. 5; trend in
average over blooming period averaged over subregion?)?

Answer: We corrected the caption of Figure 4 as follows: “Figure 3: Box plots of the spatial variability
of SST biases, which are calculated as the difference between the model and reanalysis data in the Barents
Sea over the vegetation season and the time period 1979-2005. Each box spreads from the lower quartile
QI to the upper quartile Q3 of biases, the orange lines represent the medians. The lower “whiskers” are
represented as Q1-1.5 Standard deviation and the upper “whiskers” are represented as Q3+1.5 Standard
deviation.”

We decided to delete Fig. 5, since it illustrates a similar analysis procedure as that in Figure 4. After
revision, it is Figure 3 that we moved to the section Method.

Fig. 6: Restate blooming period in caption, add unit of SST bias.
Answer: We changed the caption as follows: “Figure 6a: Spatial distribution of biases in SST (K) between
models and reanalysis data in the Barents Sea; the biases are averaged over June-September.”

Fig. 7: What error are you showing here? Please add the unit of the SST trend in the caption.

The colorbar currently states that you’re showing SST (K) — please double-check. Please restate the
blooming period.

Answer: We corrected the caption as follows: “Figure 6b: Spatial distribution of errors, which are
calculated as the difference between model and reanalysis values of annual SST trends (K yr-1) in the
Barents Sea (June-September)”

Fig. 8: In my view, it is not really common to plot SST in Kelvin, consider changing it to °C. Please add
the units of the variables in the figure caption. Explain what the fit is, exchange “x” and “y” by the actual
variables you fitted. Please don’t use black/dashed for all fits, I suggest to change the color of each fit to
the color of the respective full time series.

Answer: We deleted this figure to avoid overloading of the paper with figures as it is not that much
important in the manuscript.

Fig. 9: Please briefly summarize what the numbers for each model-variable combination represent and
refer back to the method section and Fig. 2. Please also explain in the caption what the white areas are
and refer back to Table 1. Please add the units to the variables in the Figure caption.

Answer: We modified the caption as follows: “Figure 4: Heat map with the final model scores obtained
using the percentile score-based model ranking method for the five variables (sea surface temperature
(SST, K) and salinity averaged over 0-30 m (SSS, psu), surface wind speed at 10 m (WS, m s-1), ocean
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surface current speed (OCS, m s-1), and shortwave downwelling solar radiation (SDSR, W m-2) for the
Barents, Bering, Greenland, Labrador, North, and Norwegian seas based on different statistical metrics
(Figure 2, Table 2). The white areas indicate that the model was not considered due to partial or complete
unavailability of hindcasts, and future projections (RCP4.5, RCP8.5) data..”

Table 1: Replace “concrete” by “respective. Please define all abbreviations in the Figure caption (e.g.
SST, WS...) and add units.

Answer: We corrected accordingly: “Table 1. CMIP5 models used for simulation of selected parameters: SST
— sea surface temperature in K, WS — near-surface wind speed in m s-1, SDSR — surface downwelling shortwave
solar radiation in W m-2, SSS — sea surface salinity (averaged over 30 m) in psu, OCS — surface ocean current
speed in m s-1 (models available for respective variable are marked as “+7)”

Table 2: Please add units in the Figure caption. What is SDdif? This is never explained in the text (method
section). Please be consistent with the use of underscores in caption and Table (e.g. Trm vs Trm). What
does “modulus of standard deviation difference” mean? I don’t understand this. Please use the exact same
names as introduced in the method section.

Answer: We improved this part in the section Method. We corrected the caption as follows:

“Table 2. Results of the CMIP5 model performance for SST in the Barents Sea.

(Numbers in brackets indicate the models' scores. RMSD is the root-mean-square deviation, K; r is the
correlation coefficient between models and reanalysis; RSR is the RMSD-observations standard deviation
ratio; |SDdif] is the modulus of the standard deviation difference (model minus reanalysis), K; |Trm| is the
modulus of spatial trend median difference (the model minus reanalysis), K yr-1; [Tra| is the modulus of
spatial trend amplitude difference (the model minus reanalysis), K yr-1; [Brm| is the modulus of spatial
bias median difference (the model minus reanalysis), K; [Bra| is the modulus of spatial biases amplitude
difference (the model minus reanalysis), K).”
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General comments — Reviewer #2

This study evaluates (and ranks) the performance of 34 climate models in simulating 5 physical
parameters [namely, sea surface temperature (SST) and salinity averaged over 0-30 m (SSS); surface
wind speed at a height of 10 m (WS); ocean surface current speed (OCS); shortwave downwelling solar
radiation (SDSR)] on a sub-regional scale in the Arctic and Subarctic regions. These 5 parameters are
selected as “forcing factors (FFs) controlling E. huxleyi blooms in arctic and subarctic seas” (p. 2, line
21) and tested in six seas (Barents, Bering, Greenland, Labrador, North and Norwegian seas) where the
coccolithophore Emiliania huxleyi is known to form blooms.

I believe the core of the study is interesting and merits publication, but I think the authors could and
should do a better job at discussing (all) the results. By not having a primary focus on E. huxleyi blooms
in the Introduction, the reader will be able to recognize the wider implications of this extensive
intercomparison of climate models — it will also alleviate some of the major issues of neglecting “what
else” underpins coccolithophore blooms and their occurrences. Nothing wrong with mentioning your
motivation for selecting the regions of interest and the potentially relevant abiotic parameters, but as is,
the reader is expecting more than is actually presented re. coccolithophore blooms (see below).

Specific comments

The authors explain that this study is a precursor for another study (in prep/planned by Kondrik et al.), in
which these FFs will be applied to “model the future dynamics of E.huxleyi blooms” — so in fact, the
current study has very little to do with E. huxleyi blooms apart from being the motivation for the presented
set-up. There is no objection to test the model performance of the selected parameters, but the authors
should do a better job at explaining why these factors were selected, and others ignored (i.e. because they
cannot be assessed in the models? I wonder). Because it could be easily argued that the authors miss a
crucial parameter in their line-up of FFs — nutrient availability — that arguably underpins any
phytoplankton bloom (i.e. sustained exponential growth). Any biotic factors (e.g. grazing pressure) are
ignored herein.

Indeed, it is unclear what correlations are sought between the various FFs and E. huxleyi blooms — what
do you mean with “affecting”? — e.g., the onset (triggers), the duration/maintenance of blooms, other
affects?

After reading the ms, I felt that the study is a valid and interesting intercomparison of climate models,
raising important issues in simulating abiotic parameters, but that the initial focus on E. huxleyi seems
too specific here; i.e. without it, all results could be presented just as well — or even better as these
parameters surely affect more than just E. huxleyi, thus giving the study a wider relevance. In fact the
authors conclude rather generally, without discussing specific implications for the next/planned study by
Kondrik et al. — so that also gives the impression that the initial motivation need not take central stage in
this ms (or the title). Still, I don’t fully understand what the strategy would be in “selecting the best
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models” for such follow-up study, given the multivariate outcomes, this could/should be better explained
in the final discussion and conclusion.

Figure 9 (“heat map”) is a good visual representation of the amount of work performed and the complexity
of the outcomes; not only does it show the range in performance between the listed models (1-34), but
also how within one model the chosen parameters are simulated at different strengths — and, possibly even
more intriguing (disconcerting?) that a model that performs very well for one sea, does not in another (for
example, compare model 1, ACCESS1-3 in Barents and Bering Seas). Indeed, the authors conclude that
the results “show that there is no optimal model ensemble or one top-model which could best simulate all
factors across all of the study regions. Despite the fact that the Arctic is often considered as one single
region in many studies, our results show that CMIPS5 climate models do not have consistent performance
across such a large area” (p.8, L. 12-15).

What I miss, is an in-depth discussion why these inter-model, inter-parameter and inter-subregional
differences exist — is this due to issues of spatial resolution, initial parameterization of each model (what
it was built for) or real physical differences between the seas that models cannot address/capture? Again,
I don’t know, but would be interested to learn what factors could underpin the results in Fig. 9. Currently,
the “results and discussion” section reads as a list of figure descriptions rather than highlighting the main
take-home messages (while figure captions could do with more information). Moreover, only one of the
5 factors is highlighted (SST) as “an example” — I believe the paper would have a much greater impact if
the other parameters get equal treatment or at least their highlights mentioned and discussed in the main
text, not only in a supplement.

Reply to Reviewer # 2:

We thank reviewer #2 for very helpful comments. We fully agree with the arguments regarding the
suitability of application of the proposed climate models selection methodology based on parameters that
impact blooms not only E. huxleyi but also other phytoplankton in the study areas. Therefore, we decided
to change the focus from the coccolithophore and concentrate on the methodology of choosing climate
models. This step is fully justified, since this work, in its essence, is certainly not connected with the work
performed by Kondrik et al. (2019) of simulating conditions that modulate the intensity of
coccolithophore blooms. In the absence of a close connection to coccolithophores, the article indeed gains
greater clarity and becomes focused on the substance of the research done on the comparative
effectiveness of global climate models for specific marine objects.

We improved all manuscript sections. Also we consider to move Fig. 4 and related text from the Results
section to Materials and method, and delete Figures 3, 5, 8 due to either their resemblance to some akin
figures or because their presence is not so important in the manuscript. In addition, we decided to add to
the section Results and Discussion a new figure displaying the spatial distribution of biases in five
parameters between the models and reanalysis data in target studied seas; the biases are averaged over the
vegetation season and the time period 1979/1993-2005. We added Figure 5a-e, and following description:
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“In order to analyse how well the selected best-model sub-sets represent five studied parameters, we analysed the spatial
distribution of biases between the selected model ensemble and the respective reanalysis data in six target seas, viz, the Barents,
Bering, Labrador, Greenland, Norwegian and North seas (Figure 5a-e). Thus, fewer biases in SSS are determined in the case
of the Labrador, Greenland and Norwegian seas (£0.5 psu); high positive biases observed in the Bering Sea next to the
coastline: up to 1.5-4 psu, this overestimation is possibly due to insufficiently accurate parameterization of the river runoff in
the sub-arctic region (Figure 5a). SSS is underestimated in waters next to the coastline in the Barents and North seas (1.5-2.5
psu), which is probably due to some overestimation of river runoff or underestimation of salty atlantic water. The selected
CMIPS models simulate SDSR (Figure 5b) well almost in all target seas: the biases in SDSR in the Barents Sea vary from 5
to 14 W m-2 (=4-10 %), in the Bering Sea — from 2 to10 W m-2 (=2-9 %), in the Greenland Sea — from 0 to 12 W m-2 (=0-7
%), in the North Sea — from 1 to17 W m-2 (=0-7 %), in the Norwegian Sea — from 4 to 9 W m-2 (=2-5 %), only in the Labrador
Sea the CMIP5 models overestimate SDSR and the biases much higher — from 20 to 29 W m-2 (=11-15 %). The selected
GCMs simulate WS well in all studied seas: the biases in WS are not more than 1 m s-1, only in some places of the Bering and
North Seas’ coastal regions, the biases in WS simulations are up to about 1.5 m s-1 (Figure 5¢). Concerning SST, we also
obtained quite good results for the selected models. Low biases were observed mainly over the entire territory of the North
and Norwegian seas constituting £0.5° C (Figure 5d). Near the English Channel models overestimate the temperature by ~2°
C in the North Sea probably due to the influence of warm water from the English Channel, and models slightly underestimate
the temperature by ~1° C near the coastline in the Norwegian Sea. In the Labrador Sea, the CMIP5 models simulate SST with
lower biases in the northern and north-western parts of the sea — £0.5° C (Figure 5d). However, in the southern and south-
western parts of the sea, the models underestimate SST by ~1-2° C, which is possibly due to the influence of the cold Labrador
Current. In the Greenland Sea, the models underestimate SST by =1-1.5° C in the west probably also due to the influence of
the cold Greenland Current and overestimate SST by ~2° C in the south apparently due to overestimation of contribution of
the warm Atlantic water (the North-Atlantic Current). In the Barents Sea, the models overestimate north-western part of the
sea probably due to the influence of the warm atlantic water, and in the southern part of the study area, the models underestimate
SST by =1-2° C probably due to some underestimation of the influence of coming warm atlantic waters. Finally, the CMIP5
models simulate the surface ocean current speed with rather large biases, especially in the Bering Sea and closer to the Bering
Strait (-0.19...0.14 m s-1), where the models mainly overestimate OCS (Figure Se). Smaller biases in the modeling of the OCS
by CMIP5 models found for the Barents and Greenland seas — from -0.06 to 0.03 m s-1. The biases in the other studied seas
vary from -0.17 to 0.06 m s-1.”

Below we present Figure 5 (a-¢):
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Figure 5a. Spatial distribution of biases in sea surface salinity models and reanalysis in six target seas averaged over the
vegetation season and the time period 1993-2005.
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Figure 5b. Spatial distribution of biases in surface downwelling solar radiation between models and reanalysis in six target
seas averaged over the vegetation season and the time period 1979-2005.
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Figure 5c. Spatial distribution of biases in near-surface wind speed between selected model ensemble and reanalysis in six
target seas averaged over the vegetation season and the time period 1979-2005.
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Figure 5d. Spatial distribution of biases in sea surface temperature models and reanalysis in six target seas averaged over the
vegetation season and the time period 1979-2005.
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Figure 5e. Spatial distribution of biases in surface ocean current speed models and reanalysis in six target seas averaged over

the vegetation season and the time period 1993-2005.

Abstract: first sentence, shortly name the reasons; why only carbon cycle mentioned here, as opposed to

carbon and sulphur cycles in first sentence of Intro?
Answer: We removed the first paragraph of Abstract in order to concentrate on the main goal of our
10 manuscript. We changed the first paragraph as follows:
“Currently, there are a large number of climate models that give projections for various oceanic and meteorological
parameters in the Arctic. However, their estimates often differ in absolute values in specific sea areas in comparison
with the historical reanalysis data. The main goal of this research was to find out the methodology of selection of
the optimal model ensemble that most accurately reproduces the state of abiotic parameters inherent in six target
15 arctic and sub-arctic seas, viz. the Barents, Bering, Greenland, Labrador, North and Norwegian seas.”
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Line 25 (last paragraph): too much information (and acronyms) for abstract. Remove.
Answer: We removed the last paragraph.

Intro, p. 4. Lines 8 -14 - this paragraph "goes without saying"; what follows is generic order of methods,
results, discussion.
Answer: We agree with the Reviewer and we deleted this paragraph.

Intro/Methods: What is a CMIP5 climate model / the CMIPS5 project? Define and describe — currently not
done anywhere.

Answer: We introduced “CMIP5” in the first paragraph of the Introduction as follows:

“Thus, the fifth phase of the Coupled Model Intercomparison Project (CMIP5) gives the opportunity to use data of more than
30 GCMs (Taylor et al., 2012).”

Figure 1 (if kept as motivation for selected regions), please state what type of data are shown and cite
data sources in caption.

Answer: We corrected it as follows:

“Figure 1: Spatial distribution of E. huxleyi blooms occurrence based on the Ocean Colour Climate Change
Initiative dataset version 3.0 (Kazakov et al., 2018) for the Barents, Bering, Labrador, Greenland, North, and
Norwegian seas. Black lines confine the territories where blooms occurred more than one 8-day period and show
target sea areas.”

General: Many figure captions need more details for reader to follow or identify data Sources.

Answer: We improved the figures captions as follows:

“Figure 2: A schematic representation of the percentile score-based model ranking method (Division of RMSD
values distribution of 28 models into four groups that are limited by 25th, 50th and 75th percentiles and the relative
assignment of scores from 3 to 0 to each group accordingly - very good, good, satisfactory and unsatisfactory).

Figure 3: Box plots of the spatial variability of SST biases, which are calculated as the difference between the
model and reanalysis data in the Barents Sea over the vegetation season and the time period 1979-2005. Each box
spreads from the lower quartile Q1 to the upper quartile Q3 of biases, the orange lines represent the medians. The
lower “whiskers” are represented as Q1-1.5 Standard deviation and the upper “whiskers” are represented as Q3+1.5
Standard deviation.

Figure 4: Heat map with the final model scores obtained using the percentile score-based model ranking method
for the five variables (sea surface temperature (SST, K) and salinity averaged over 0-30 m (SSS, psu), surface wind
speed at 10 m (WS, m s-1), ocean surface current speed (OCS, m s-1), and shortwave downwelling solar radiation
(SDSR, W m-2) for the Barents, Bering, Greenland, Labrador, North, and Norwegian seas based on different
statistical metrics (Figure 2, Table 2). The white areas indicate that the model was not considered due to partial or

complete unavailability of hindcasts, and future projections (RCP4.5, RCP8.5) data.
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Figure 6a: Spatial distribution of biases in SST (K) between models and reanalysis data in the Barents Sea; the
biases are averaged over June-September.

Figure 6b: Spatial distribution of errors, which are calculated as the difference between model and reanalysis values
of annual SST trends (K yr-1) in the Barents Sea (June-September)”

Technical corrections

If you decide to keep Emiliania huxleyi in, know to write the full species name the first time the species
is introduced in the text, as well as any time you start a sentence with “E. huxleyi” (change to “Emiliania
huxleyi”). Also put space between E. and huxleyi. Alternatively, as motivation you could mention
“coccolithophore blooms” as a more generic way — and comment that many of the blooms in the Arctic
and Subarctic are indeed formed by one species.

Check: Winter et al., publication year is 2014?

Answer: We thank the Reviewer; we have corrected ‘Emiliania’ word writing in the text; the correct form
is Winter et. al (2013)

p. 5, Line 7: delete “the” between “under” and “study” / and consider replacing as “under investigation”.
Add “seas” after list of sea names.

Answer: We corrected the sentence as follows:

“The target regions are six arctic and subarctic seas: the Barents, Bering, Greenland, Labrador, North and
Norwegian seas. Only specific areas were selected in each target sea relying on the results obtained by Kazakov et
al. (2018) for the coccolithophore Emiliania huxleyi blooms based on the Ocean Colour Climate Change Initiative
dataset version 3.0 (https://esa-oceancolour-cci.org/) for the period from 1998 to 2016.”

Line 18: add: “The” seasonal cycle

p. 7, Line 32: models (plural)

p. 8, Line 28: add “the” before proposed methodology
Answer: We corrected it.

Below we present the proposed changes and modifications in the manuscript, and we will improve it

further.
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Simulation of facters—affecting E/uxleyi bloomsoceanographic and

meteorological parameters in arctic and subarctic seas by CMIPS
climate models: model validation and selection

Natalia Gnatiuk!, Iuliia Radchenko', Richard Davy?, Evgeny Morozov!, Leonid Bobylev'

'Nansen International Environmental and Remote Sensing Centre, St. Petersburg, 199034, Russia
“Nansen Environmental and Remote Sensing Center, Bergen, N-5006, Norway

Correspondence to: Natalia Gnatiuk (natalia.gnatiuk@niersc.spb.ru)

Here—we—deseribe—Currently, there are a large number of climate models that give projections for various oceanic and

meteorological parameters in the eemplex-Arctic. However, their estimates often differ in absolute values in specific sea areas

in comparison with the historical reanalysis data. The main goal of this research was to find out the methodology used-forof

selection of the optimal model ensemble that most accurately reproduces the state of abiotic parameters inherent in six target

arctic and sub-arctic seas, viz. the Barents, Bering, Greenland, Labrador, North and Norwegian seas.

Here, we present the validation of 34 CMIP5 ehimate-models-and-theselection-of medels-that bestatmosphere-ocean General

Circulation Models (GCM) over the historical period 1979-2005. Furthermore, we propose a procedure of model ranking and

selection, which is based on the model’s skill to represent the—regional-features-ofthe-several important oceanographic and
meteorological faetors-affeeting£-huxleyi blooms—in-parameters in the arctic and subarctic seas: the sea surface (i) water

temperature and (ii) salinity: (averaged over the top 30 m); (iii) wind speed at a height of 10 m above the surface; (iv) ocean
surface current speed; and (v) surface downwelling shortwave radiation. The validation of the EMIRS-Atmesphere-Oecean
General-Cirenlation ModelsGCMs against reanalysis data includes analysis of the interannual variability, seasonal cycle,

spatial biases and temporal trends of the simulated foreingfactors-—Here-we-propose-apercentile score-based-meode

foreingfactors-atfecting-the-coceolithophore-blooms-parameters. In total, 30 combinations of mesthigh-skilful models were

selected-_for 5 variables over 6 study regions. The results show that there is no eemmenmutually optimal combination of
models, nor is there a one top-model, that has higha skill in reproducing either the regional climatic-relevant features aeress

the—combinationof the whole Arctic region or all combinations of the five—considered fereingfactors—and-all-aretic—and
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CMSA-ERAIPSE-CMSA-MRIPSL-CMS5B-LR-MIROCS;-MRI-ESM1—-Thereby, according to our methodology for each

‘variable — target sea’ combination, a unique best model subset was selected with the number of included models varying from

7to11.

The paper presents a comparison of the selected best-model sub-sets and the ensemble of all available models with the

respective reanalysis data. The selected best-model sub-sets show a better performance vs. full-model ensemble in more than

70% cases that confirms the advisability of using the proposed model ranking method.

1 Introduction
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25 Today climate models are state-of-the-art tools for the prediction of the future status of the climate system components on

decadal and centennial time scales (Otero et al., 2018; Taylor et al., 2012). In particular, the modern coupled atmosphere-ocean

General Circulation Models (GCMs) include the main climate system components such as the atmosphere, ocean, land and

sea-ice, and therefore, represent more realistically the processes of their interactions. Thus, the fifth phase of the Coupled

Model Intercomparison Project (CMIP5) gives the opportunity to use data of more than 30 GCMs (Taylor et al., 2012). The

30 GCMs provide a large number of the meteorological and oceanographic parameters allowing to perform a comprehensive

assessment of possible climate change impacts on marine ecosystems in the future. However, most of the studies addressing
the CMIP models intercomparison show that the GCMs outputs usually vary significantly (Almazroui et al., 2017; Fu et al.,
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2013; Gleckler et al., 2008). Therefore, it is important to find a reliable approach for both model quality intercomparison and

selection of optimal models for each specific scientific task and region.

The main goal of the paper is to find a reliable approach for CMIP5 model selection, in particular, those climate models that

simulate most efficiently the state of abiotic parameters relevant to living conditions of phytoplankton communities inherent

in a number of seas at subpolar and polar latitudes (viz. the Barents, Bering, Greenland, Labrador, North and Norwegian seas).

Such a specific task is selected as a case study to have the results that would be applied for projections of abiotic factors

affecting the dynamics of phytoplankton communities.

It is well established that the method of ensemble averaging can be used to reduce systematic model biases in the individual

climate models (Flato et al., 2013 Gleckler et al., 2008; Knutti et al., 2010; Pierce et al., 2009; Reichler and Kim, 2008 Stocker

et al., 2010). Furthermore, in case it is not possible to calibrate a model for a selected region, one of the main recommendation

from climate model developers is to take into consideration more than one climate model (Flato et al., 2013; Gleckler et al.,

2008; Pierce et al., 2009; Stocker et al., 2010). There are two main approaches to employing climate model ensembles: (i) use

of the full-ensemble average data (Flato et al., 2013; Gleckler et al., 2008; Reichler and Kim, 2008; Stocker et al., 2010); and

(ii) selection of an ensemble of the best models from the entire set of available climate models based on a comparison with

observational data for a historical period (Herger et al., 2018; Stocker et al., 2010; Taylor, 2001). These two approaches are

equally used depending on a specific scientific task: (i) full-ensemble averaging for future trends analysis, and (ii) selection of

the best models ensembles for regional climate features analysis. However, when there are many climate models available

(e.g.. in our study the number of models available varied from 25 to 30 depending on the climate variable), then the averaging
method will result in very strong smoothing of data, and poor reproduction of the interannual variability. So that only the long-

term trend of a given variable will be well captured. We assume that a climate model that successfully represents the present-

day conditions will also succeed in the future projections. Therefore, we chose the second approach, e.g., a selection of climate

models that properly simulate the current regional features, including the spatial distribution, of the meteorological and

oceanographic parameters under study (sea surface temperature and salinity, surface wind speed at 10 m, ocean surface current

speed, and surface downwelling shortwave radiation). At that, it was important to define the appropriate methodology for

selection of the best model ensembles.

There are many approaches for the selection of an optimal set of climate models. One approach suggests choosing the models

basedwith focus only on thesome key climatological parameters, e-gsuch as air temperature, precipitation and sea level

pressure (Almazroui et al., 2017; Duan and Phillips, 2010; Pierce et al., 2009; Sarr and Sarr, 2017)-bekeving. This approach
assumes that if the models skillfully reproduce these key parameters, thea-they also haveskill-Hamust be good at reproducing
the regional climate in general. Another approach, which is eften-used_in this study, is to select a unique combination of models

for each parameterstudy variable (Agosta et al., 2015; Anav et al., 2013; Fu et al., 2013; Gleckler et al., 2008).
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al—(2013)-and Ruan-et-al(2049) In order to select such a unique combination of models, it is necessary, firstly, to perform a

validation of climate models through comparing GCMs outputs with the respective observations over a historical period, and

then to identify the appropriate climate models based on statistical measures, i.e. to sort or rank the tested models. However,

there are no generally accepted solutions for this task. For example, Agosta et al. (2015) ranked the CMIP5 models using only

one statistical metric, viz, a climate prediction index, which is the ratio of the root mean square error to the standard deviation

of observation data. Gleckler et al. (2008) evaluated the CMIP5 models and ranked them through analyzing the climatology

of the annual cycle, inter-annual variability, and relative errors. They found that the performance of the analysed models varies

for different parameters. Das et al. (2018) assessed 34 CMIP5 models using the following three criteria: the mean seasonal

cycle, temporal trends, and spatial correlation. On this basis the models were selected using a cumulative ranking approach.

Fu et al. (2013) and Ruan et al. (2019) applied a score-based method using multiple criteria for the assessment of CMIP5

model performance: mean value, standard deviation, normalized root mean square error, linear correlation coefficient, Mann-
Kendall test statistic Z, Sen’s slope, and significance score. Further, Ruan-et-al(2019)-selected-the-top-25% ranked CMIPS
modelsforthe-ereation-efFurther, Ruan et al. (2019) selected the top 25% ranked CMIP5 models for composing a multi-model
ensemble for air temperature projections over the Lower Mekong Basin. Fu et al. (2013) and Ruan et al. 2649)ranked-meodels

from 0.5 to 1.0. Ruan et al. (2019) reported that the introduction of multiple criteria results in less uncertainties in the models’

performance in comparison with the respective observation data. However, Fu et al. (2013) and Ruan et al. (2019) did not

consider the feature of spatial distribution of variables.
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We decided to compile and improve the previously applied approaches that is to employ the multiple criteria ranking method

following Fu et al. (2013) and Ruan et al. (2019) studies but (i) taking into consideration the Agosta et al. (2015) climate

prediction index, (ii) analysing the features of spatial distribution of target variables (spatial biases and trends), (iii) ranking

the models with the percentile method (25%,50%, 75™) that is widely used in statistical analysis, and, finally, (iv) selecting the
top 25% ranked CMIP5 models following Ruan et al. (2019).

As the target arctic and subarctic seas differ in physical and geographical conditions, we performed the validation and selection

model procedure for each sea individually. Moreover, we analyzed the specific marine areas with the stable localizations of

intense growth of phytoplankton species both in spring (e.g. diatoms) and in summer-autumn (e.g. coccolithophores Kondrik

etal., 2017; Smyth et al., 2004). Thus, the target regions permitted to identify the CMIP5 models that represented most closely

the cumulative state of the physical environmental factors (abiotic parameters) characterizing the conditions, under which the

aforementioned blooms occurred. Such a specific task eventuated in the results that can be useful for further improvements of

marine ecological models encompassing the phytoplankton community as well as for modelling the dynamics of physical

parameters relevant to surface water environment at high-latitude seas under conditions of changing climate.

2 Materials and method

2.1 Data

are:Thirty-four CMIP5 GCMs

outputs for the historical period 1979-2005 were used in this study. The data are freely available on the ESGF portal

(https://esgf-node.llnl.gov). The list of climate models used is presented in Table 1. We analyzed five oceanographic and

meteorological variables, namely the sea surface temperature (SST) and salinity averaged over 0-30 m (SSS), surface wind

speed at a height of 10 m (WS), ocean surface current speed (OCS), and shortwave downwelling solar radiation (SDSR). Eer
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for Medium-Range-Weather Foreeasts-(https://apps-eemwiint) These abiotic parameters are known to affect the phytoplankton

life cycle in sub-polar and polar latitudes (Iglesias-Rodriguez et al., 2002; Raitsos et al., 2006; Winter et al., 2013). The
availability of the CMIP5 GCMs analysed in this study are listed in Tablel: in total, we used 25 models for OCS, 28 for SSS,

SST, SDSR, and 30 for WS. For validation of the climate models outputs we used atmospheric and oceanic reanalyses: (i) Era-

Interim from the European Centre for Medium-Range Weather Forecasts (https://apps.ecmwf.int) (Dee et al., 2011)—Fhe- for

the surface wind speed at 10 m, sea surface temperature, and shortwave downwelling solar radiation for the period from 1979

to 2005; and (ii) GLORYS2V4
withreselutiont—x1)-from the European Copernicus Marine Environment Monitoring Service éhttp—#mafm%eepeﬂﬁe&&eu}

Seleeted(http://marine.copernicus.eu) for the sea surface salinity and ocean surface current speed for the period 1993-2005.

The period for verification of the employed climate models was chosen based on the length of the reanalysis data and the

limitations inherent in the “historical” runs of the GCMs, which usually terminate in 2005. The selected reanalyses are widely
used in the literature and hashave been shown to be consistent with independent observational data (Agosta et al., 2015; Dee

etal.,, 2011; Garric et al., 2017; Geil et al., 2013).

2.2 Study regions-and-Metheds

InThe target regions are six arctic and subarctic seas: the Barents, Bering, Greenland, Labrador, North and Norwegian seas.

Only specific areas were selected in each target sea relying on the results obtained by Kazakov et al. (2018) for the

coccolithophore Emiliania huxleyi blooms based on the Ocean Colour Climate Change Initiative dataset version 3.0

(https://esa-oceancolour-cci.org/) for the period from 1998 to 2016. The selection of the listed seas and the specific areas within

them was prompted by several reasons: firstly, in the context of global climate change, the subarctic and arctic seas are
characterized by one of the most pronounced changes in environmental parameters due to the so called Arctic amplification,
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and, secondly, in the target water areas, summer-autumn phytoplankton blooms (e.g. Emiliania huxleyi) have a steady

localization, while in other parts of the investigated seas the localization of phytoplankton blooms is variable from year to

year. For identifying the specific study areas, on the raster image with all blooming events during 1998-2016 we masked
polygons that confine the territories seas where blooms occurred more than one 8-day period (Fig. 1). Besides, the periods for

model validation were selected based on a sea-specific blooming periods, which include all summer months and, in some

cases, beyond them: June-September for the Barents and Labrador seas, June-August for the Greenland Sea, May-July for the

North Sea, May-August for the Norwegian Sea, and January-December for the Bering Sea (Kazakov et al., 2018). Thus, it is

noteworthy that the results of the performed comparison of models can be used not only in terms of marine ecology-related

issues but also for the purposes of forecasting of the region-specific climate interactions during the vegetation season, taking

into account that the selection of the climate models was carried out individually for each sea/sea zone.

2.3. Model evaluation metrics

The CMIPS5 climate models were validated against the reanalysis data in order to assess how well EMIRS-elimate-models-they

reproduce the regional features of the EEs-distribution they-w
the—reanalysis—data-the selected parameters/variables. The validation methodology effor the walidationef-GCMs_outputs

included the analysis of the climatological-mean seasonal cycle-and, interannual variability efFFEsferand trends, and analysis

of spatial distributions of climatological-mean biases and trends for selected parameters averaged over the blooming period in

each sea.-Seasonal

a) The seasonal cycle was anabysedanalyzed using the multi-year averaged monthly variables for all months of the-year (i.e.,

a sample size of 129 butinterannuabvariabitinwasanahsed-basedonrmonthhaariablestorthe blooming-periods-onh-tsamp

fromJune-to-September-during1979-2005).). Basic statistical measures were usedfor-beth-analyses:calculated, such as the

root-mean-square deviation (RMSD), the correlation coefficient between-GEMs-and-reanalysis-(1), rootmean-square-deviation
RMSDB),andand the standard deviation (SD) (Fu et al., 2013; Gleckler et al., 2008; Kumar et al., 2015; Ruan et al., 2019).

on e ed RN D_obge on nd d-de on o—{(R 2 one—o he maod =
YW arcta -0 S aatra—-d O O > S S Sis = O

tonsln addition, following Agosta et al. (2015) we calculated the climate

prediction index (CPI) for the seasonal cycle, which is a ratio of the model root mean square error to the standard deviation of

observation data. This model evaluation statistics weighs the simulated data against the observations and often used to validate

model data (Agosta et al., 2015; Golmohammadi et al., 2014; Moriasi et al., 2007; Murphy et al., 2004; Stocker, 2004).-Eer
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b) The interannual variability of the parameters was analyzed based on monthly variables solely for blooming periods (the

sample size varied according to sub-region and parameter combination, e.g., a sample size for SST in the Barents Sea was 108

— monthly variables from June to September during 1979-2005). The same statistical measures for analysis of the seasonal

cycle were used, viz. RMSD., r, SD, and CPI.

¢) The spatial distribution of biases and trends between the model outputs and the reanalysis data were calculated for

temporal-averaged data in each grid point of the target marine zone.

2.4. Percentile score-based model ranking method

For ranking models and selection of the best model sub-set, we proposed and employed the percentile score-based model
ranking method, which is a compilation of the previously applied model ranking and the selection approaches with some

modifications (see also Introduction). Following Fu et al. (2013) and Ruan et al. (2019), we used the multiple criteria for model

selection (RMSD. r, SD). Following Agosta et al. (2015) we analysed the climate prediction index (CPI), and considered the

differences in spatial distributions of biases and trends between the model outputs and the respective reanalysis data. Further,

we ranked the models based on the percentile method (25th, 50th, 75th) for each obtained statistical metrics based on the

amplitude of its values. Finally, we selected the top 25% ranked CMIP5 models following Ruan et al. (2019) for each

considered oceanographic and meteorological parameter, and target region. Thus, for example, for a sample of 28 models, the

top 25% is a sub-set of 7 models that showed the best total-score. However, if two or more models show the same score they

all are included in the selected best model sub-set. Thus, the number of included models in selected best model subsets varying

from 7 to 11.

Figure 2 illustrates an example of the percentile score-based ranking approach applied to RMSD of the sea surface temperature

in the Barents Sea. We divided the obtained statistical measures into 4 groups based on the amplitude of the values and assigned

a score to each model according to its group: (i) models considered as very good (less than 25%)25th percentile of the statistical

metrics distribution) were assignedgiven a score of 3; (ii) good models (between 50%50th and 25%)25th percentile) were

asstgnedgiven a score of 2; (iii) satisfactory models (between 75%75th and 58%)50th percentile) were assignedgiven a score
of 1; and (iv) unsatisfactory models (more than 75%)75th percentile) were assignedgiven a score of 0. In the case of the
correlation coefficient, it is vice versa, very good models with correlations scores above 0.75 ranked-with-asecore-of3;-and-se

regionwere ranked with a score of 3, and so forth.
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Forranking —shebestmredelonsomblar o cnel oo idaead
factorand-sea—Therestefmodels based on the obtained results-aresummariseddifferences in the supplementary-material:

------- HERE 005—Ferthe-medel ranking, we analysed the absolute values of beththe median bias

5

and the amplitude of the spatial variation in model biases. For example, Figure 3 displays the box plots of spatial variability in

SST biases relevant to the target area in the Barents Sea for the vegetation season (June-September) and the study period 1979-
2005. The median bias varies from 6-te—-6.6 K(model #20) to 1.5 K (model #24) among the models, whereas the amplitude
bias has a wide spread of values from 10-87.3 (model #21) to 19-816.5 K—We- (model #3). Thus it can eeneludebe concluded

from Fig. 43 that the analysis of spatial distribution of biases is very important, e.g., if we compare the-model #2 (ACCESS1-
3) with the-model #3 (CanESM2), we can see that the medians of these two models have a small difference (0.28 K), while,
the amplitude of spatial values for the-model #3 is much higher than that for model #2. Afterthe-applicationApplication of the

percentile score-based method;-the-medel to modes #2 (ACCESS1-3) was-ineluded-into-the-optimal-ensemblewhereasand

netreveal any-trend-in-the EraInterim reanalysis,whilefor the-medelsresulted in inclusion of the former in the best-model
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in-the-trends:(Fig. 4).

Table 2 presents all calculated statistics that were used to rank GCMs for SST in the Barents Sea as well as the final total score
for each model. The spread of the total assigned scores is from 9 to 35. Based on this range we selected the top 25% of GCMs.
Thus, the best model ensemble for SST for the Barents Sea is the 8-model set: ACCESS1-0; ACCESS1-3; GFDL-CM3;
HadGEM2-AO:HadGEM2-ES; MIROC-ESM; MIROC-ESM-CHEM; MPI-ESM-LR; MPI-ESM-MR. Additionally, we

identified the top-model for SST in this region — MIROC-ESM. The same procedure was performed for other target seas/zones

and variables.

3 Results and discussion

FEigure-6-showsThe selected best CMIP5 model sub-sets for five oceanographic and meteorological variables, viz. the spatial

distributionsea surface temperature (SST) and salinity averaged over 0-30 m (SSS), surface wind speed at a height of 10 m

(WS), ocean surface current speed (OCS), and shortwave downwelling solar radiation (SDSR) in the Barents, Bering,

Greenland, Labrador, North and Norwegian seas are presented in Fig. 4. Each number of the heat map shows the final skill

score for one model-variable intersection. For each individual column, its own colour gradation was applied based on percentile

ranking approach; therefore, the same numbers can have different colours on the heat map. For example, for OCS in the Barents

Sea, the spread of the final model scores is from 7 to 26, whereas for SSS it is from 8 to 34. Therefore, even model #3 CanESM2
has the total score 26 for SSS (which is higher than that (25) for OCS), this model was not included in the SSS best model sub-

set and has red color, whereas for OSC it is included in the best model sub-set and has green color. The final skill scores of

the models, which were selected as the best model sub-sets are highlighted in bold blue, and their total number is indicated at

the bottom of each column.

Analysing the heat map, one can conclude, that there is no an optimal model ensemble. or a one top-model, which could

properly simulate all parameters over target seas/regions. However, some climate models show good results for many cases,
e.g., biasesfor SST-ACCESS1-3; ACCESS1-0; GFDL-CM3:; GISS-E2-R; GISS-E2-R-CC; HadGEM2-AO; HadGEM2-CC;

HadGEM2-ES; INMCM4. The models that have higher biases across the majority of the target regions are CMCC-CM;
FGOALS-g2; IPSL-CM5A-LR; IPSL-CM5A-MR; IPSL-CM5B-LR; MIROC5; MRI-ESM1.

Such heterogeneity of climate models ability to equally reproduce the regional climate features residing in different seas can

be explained by various reasons. Climate models are often tuned to adequately reproduce global processes and globally

averaged values. An insufficient number of long time series of observations is available for model calibration, especially for

marine tracts. GCMs errors increase to the poles because of the convergence of meridians at the poles. In addition, the target

arctic and sub-arctic seas are essentially different in terms of their physical and geographical conditions, which could also

cause the ability of the GCMs to reproduce well the conditions in some seas and fail in others.
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In order to analyse how well the selected best-model sub-sets represent five studied parameters, we analysed the spatial

distribution of biases between models-and-reanalysisinthe bloem-the selected model ensemble and the respective reanalysis

data in six target seas, viz, the Barents, Bering, Labrador, Greenland, Norwegian and North seas (Figure 5a-¢). Thus, fewer

biases in SSS are determined in the case of the Labrador, Greenland and Norwegian seas (£0.5 psu); high positive biases

observed in the Bering Sea next to the coastline: up to 1.5-4 psu, this overestimation is possibly due to insufficiently accurate

parameterization of the river runoff in the sub-arctic region (Figure 5a). SSS is underestimated in waters next to the coastline

in the Barents and North seas (1.5-2.5 psu), which is probably due to some overestimation of river runoff or underestimation

of salty atlantic water. The selected CMIP5 models simulate SDSR (Figure 5b) well almost in all target seas: the biases in
SDSR in the Barents Sea vary from 5 to 14 W m™ (=4-10 %), in the Bering Sea — from 2 to10 W m™ (=2-9 %), in the Greenland
Sea — from 0 to 12 W m (=0-7 %), in the North Sea — from 1 to17 W m™? (=0-7 %), in the Norwegian Sea — from 4 to 9 W m-
% (=2-5 %). only in the Labrador Sea the CMIP5 models overestimate SDSR and the biases much higher — from 20 to 29 W m-

2 (=11-15 %). The selected GCMs simulate WS well in all studied seas: the biases in WS are not more than 1 m s\, only in

some places of the Bering and North Seas’ coastal regions, the biases in WS simulations are up to about 1.5 m s™' (Figure 5¢).

Concerning SST, we also obtained quite good results for the selected models. Low biases were observed mainly over the entire

territory of the North and Norwegian seas constituting £0.5° C (Figure 5d). Near the English Channel models overestimate the

temperature by ~2° C in the North Sea probably due to the influence of warm water from the English Channel, and models
slightly underestimate the temperature by =1° C near the coastline in the Norwegian Sea. In the Labrador Sea, the CMIP5

models simulate SST with lower biases in the northern and north-western parts of the sea — +0.5° C (Figure 5d). However, in

the southern and south-western parts of the sea, the models underestimate SST by =1-2° C, which is possibly due to the

influence of the cold Labrador Current. In the Greenland Sea, the models underestimate SST by =1-1.5° C in the west probably

also due to the influence of the cold Greenland Current and overestimate SST by =2° C in the south apparently due to

overestimation of contribution of the warm Atlantic water (the North-Atlantic Current). In the Barents Sea, the models

overestimate north-western part of the sea probably due to the influence of the warm atlantic water, and in the southern part of

the study area-in-the BarentsSea, the models underestimate SST by ~1-2° C probably due to some underestimation of the

influence of coming warm atlantic waters. Finally, the CMIP5 models simulate the surface ocean current speed with rather

large biases, especially in the Bering Sea and closer to the Bering Strait (-0.19...0.14 m s™"), where the models mainl

overestimate OCS (Figure 5e¢). Smaller biases in the modeling of the OCS by CMIP5 models found for the Barents and

Greenland seas — from -0.06 to 0.03 m s™'. The biases in the other studied seas vary from -0.17 to 0.06 ms™..

To examine our percentile score-based model ranking method we analysed the spatial distribution of biases and trends for the

full-28-model ensemble, selected 8best-model ensemble;sub-set and top-model_vs. reanalysis data for each target sea and

parameter combination. Figure 6 illustrates the case for SST in the Barents Sea, and in the Supplements we present maps for

all variables and target regions. As we-ean-seeseen in Fig. 6a, the full 28-model setensemble underestimates the SST in the
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studytarget region while the top-model, MIROC-ESM, overestimates it. The selected 8-model ensemble shows smaller biases
(£ 1 K) in SST for the majoritymost part of the bleemareasea. [llustrated in Fig. 5b, the BarentsSea-

Fhe-spatial distribution of errers#1+-SST trends (the difference between medelsmodel data and reanalysis #data) indicates that
the study-regionispresented-inFig—7The-full 28-model ensemble overestimates the trends for the whole stady-regionsea
(model-reanalysis errors are 0.03-0.07 K yr'"), the top-model MIROC-ESM partly underestimates the SST trend, but maiakyfor
the larger area it reveals similarto-Era-Interim-reanalysis insignificantsmall trends (+ 0.01 K yr''):) that are similar to Era-

Interim. As for the selected 8-model ensemble, the spatial variability of errors in trends forin SST varies from -0.01 to 0.06 K

yrl although for the major part of the study region the errors are in the range -0.01 to 0.02 K yr!

{see-Supplements)—In general, the selected best-model ensemble showsassures somewhat better performance (with regard to

the biases between model and reanalysis data) than either the full-model ensemble or the single top-model-—Fhe do. Comparing

the full-model ensemble, selected sub-set models or/and top-model performance in terms of biases and trends, the selected

best-model ensembles are bettermore skilful in parameter simulations, respectively in 74% (biases) and 83%:;% (trends) cases.

The performance of the selected models proved to be equal to the full-model ensemble and top-model efficiency, respectively

in 13% (biases) and 10% (trends) cases, and wezsethey are less skilful in the simulations in 13% and-7%-efcases-than-the-full-

#(biases) and 7% (trends) cases.
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4 Conclusions

A percentile score-based model ranking method has been presented for the-selection of the optimal model ensembles; from a
total of 34 CMIP5 models, for five different climate-relevant variables that-have-previeushybeenidentified-as-inflaencing
Ehuxleyiblooms(SST, WS, SSS, OCS, SDSR) in six arctic and subarctic seas<, viz. the Barents, Bering, Labrador, Greenland,
North, and Norwegian)- seas. The eptimatbest model ensembles for each faeterparameter and each target sea were selected (in

total 30 combinations of most-skilful models) based on different statistical measures:_the root mean square error, correlation
coefficient, standard deviation, RMSD-observations standard deviation ratio, spatial biases and trends. Our results show that
there is no any optimal model ensemble or a one top-model, which could best simulate all factersparameters across all efthe
study—regionstarget seas. Despite the fact that the Arctic is often considered as one single region in many studies, our results
show that CMIP5 climate models do not have consistent performance across such a large area. However, the selected

optimalbest model ensembles show quite good results with lesser biases in smaller study regions, i.e., individual-Aretiesome
specific arctic seas.

ingTo assure best implementation of the dynamies-ofEhcteri

bleems-in-the-futuremodel selection results, it is essential to select climate models that properly simulate the spatial distribution

of the EEs.chosen variables. Therefore, we suppose that the spatial distribution of biases and trends in EEs-the considered

parameters are mereas well important #-as other statistical metrics within the framework of the model selection procedure-
Erem performed. Based on our results, we can also conclude that it is essential to-not only to analyse spatially averaged values,

but also the amplitade-ofthe-spatial distribution_of their amplitudes.

The results of examiningexamination of ewrthe percentile score-based model ranking method proposed in thethis paper
generally shewreveal a better performance of the selected best model ensemble vs. the full-model ensemble or a single best-

model for different variables and target regions.

We can conclude that athe range of different factors areis important for model selection, including the spatial pattern of model

biases, and that the proposed methodology is enea way we-eeuld-inereaseof enhancing the sephistieation-ef-model selection
procedures te—give—ussophistication that promises a better chance at-seleetingto identify more skillful models for thesethe
features in-whieh-we are interested_in. Thus, the proposed method can be appliedused for the-analysisinanalyses to be done

for other seas/regions with the purpose to evaluate elimate—medelthe performance forclimate models in terms of various

atmospheric and oceanic parameters at regionaldifferent scales.
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Table 1. CMIPS5 models used for simulation of fereingfactors-influenecing E-huxleyi-bloemsselected parameters: SST — sea surface

temperature in K, WS — near-surface wind speed in m s”!, SDSR — surface downwelling shortwave solar radiation in W m™2, SSS — sea

surface salinity (averaged over 30 m) in psu, OCS — surface ocean current speed in m s”! (models available for coneretefactorrespective

variable are marked as “+”)

S S S |O
Modelling Center Resolution W |D
Model ID o o S S [C
(acronym, full name, and country) (°lon x °lat) S IS
T R S IS
ACCESSI.0 1 CSIRO-BOM, Commonwealth Scientific and Industrial + |+ |+ [+ |+
Research Organisation, Australia and Bureau of 1.25x 1.875
ACCESS1.3 2 | Meteorology, Australia + |+ [+ [+ |+
CCCma, Canadian Centre for Climate Modelling and 2.7906 x
CanESM2 3 Analysis, Canada 2.8125 T L
CMCC-CM 4 CMCC, Centro euro-Mediterraneo sui Cambiamenti 0.7484 x 0.75 M
CMCC-CMS 5| Climatici, ltaly 3711x375 | + [+ |+ [+ |+
CNRM-CERFACS, Centre National de Recherches 1.4008 x
CNRM-CM5 6 | Meteorologiques, France and Centre Europeen de Recherche ’ + [+ [+ [+ |+
. L 1.40625
et Formation Avancees en Calcul Scientifique, France
CSIRO-QCCCE, Commonwealth Scientific and Industrial
CSIRO-Mk3.6.0 7 | Research Organization, Australia and Queensland Climate 1.8653 x 1.875 + |+ [+ |+
Change Centre of Excellence, Australia
EC-EARTH 8 | EC-EARTH, EC-EARTH consortium, Europe 1.1215x 1.125 | +
GFDL-CM3 9 + |+ |+ |+ |+
NOAA GFDL, National Oceanic and Atmospheric
GFDL-ESM2G 10| Administration, Geophysical Fluid Dynamics Laboratory, 2x25 + [+ [+ [+ |+
USA
GFDL-ESM2M 11 + [+ [+ [+ |+
GISS-E2-H 12 + [+ [+ [+ |+
GISS-E2-H-CC Bl Nasa GISS, National Aeronautics and Space 2%2.5 M
GISS-E2-R 14 Administration, Goddard Institute for Space Studies, USA e 1+ 1+ 1s
GISS-E2-R-CC 15 + [+ [+ [+ |+
HadCM3 16 2.5x3.75 +
HadGEM2-AO 17 . + |+ |+ |+ |t
MOHC INPE, Met Office Hadley Centre, UK and Instituto
HadGEM2-CC 18 Nacional de Pesquisas Espaciais, Brasil 125 x 1.875 [N I I P O
HadGEM2-ES 19 + |+ |+ |+ |t
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IPSL-CMS5A-LR 20 + [+ [+ [+ |+

IPSL-CM5A-MR 21| IPSL, Institut Pierre-Simon Laplace, France 1.8947 x 3.75 + |+ |+ [+ |+

IPSL-CM5B-LR 22 + [+ [+ [+ |+

. 1.4008 x

MIROC5 23| MIROC, Atmosphere and Ocean Research Institute, the 1.40625 + |+ |+ |+
University of Tokyo, National Institute for Environmental )
Studies, and Japan Agency for Marine-Earth Science and 0.5616 x

MIROC4h 24| Technology, Japan 0.5625 +

MIROC-ESM 25| MIROC, Japan Agency for Marine-Earth Science and + [+ [+ |+
Technology, Atmosphere and Ocean Research Institute, the 2.7906 x

MIROC-ESM-CHEM |26 UnlYers1ty of Tokyo', and National Institute for 2.8125 A P P
Environmental Studies, Japan

MPI-ESM-LR 27 + |+ [+ [+ |+
MPI-M, Max Planck Institute for Meteorology, Germany 1.8653 x 1.875

MPI-ESM-MR 28 + [+ [+ [+ |+

MRI-CGCM3 29 112148 + |+ [+ [+ |+
MRI, Meteorological Research Institute, Japan 1'1 25 X

MRI-ESM1 30 ’ +

NorESM1-M 31 + + |+
NCC, Norwegian Climate Centre, Norway 1.8947x 2.5

NorESM1-ME 32 + + |+ |+

INM-CM4 33 INM, Russ1an Acader_ny of Sqences Marchuk Institute of 15x2 + |+
Numerical Mathematics, Russia
LASG-CESS, Institute of Atmospheric Physics, Chinese 2.7906 x

FGOALS-g2 34 Academy of Sciences; and Tsinghua University, China 2.8125 -

Total number of available CMIPS models 28130 |28 (28 |25
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Table 2. Results of the CMIPS model performance for SST in the Barents Sea.

(Numbers in brackets indicate the medelsmodels' scores. RMSD -is the root-mean-square deviation, K; r —is the correlation coefficient
between models and reanalysis; RSR —is the RMSD-observations standard deviation ratio; |[SDqif| —is the modulus of the standard deviation
difference (model minus reanalysis);), K: |Trm| -is the modulus of spatial trend median difference (the model minus reanalysis);), K yr-!: |Tra|
-is the modulus of spatial trend amplitude difference (the model minus reanalysis);), K yr'!: [Brm| -is the modulus of spatial trendbias median
difference (the model minus reanalysis);). K: [Bra| —is the modulus of spatial biases amplitude difference (the model minus reanalysis))-). K).

Seasonal cycle Interannual variability
——-—-—-— Hessopalecele ' Spatial trends (Tr) and biases (Br) Total
Model acronym | ID (averaged over the territory) (averaged over the territory) score
RMSD r RSR  |SDaif| | RMSD r RSR  [SDuif| | [Trm| |Tra |Brm| |Bra|
ACCESS1-0 110,26(3) 0,992) 0,13¢(3) 0,08¢3)|1,17¢3) 0,68(3) 0,81(3) 0,02¢(3) |0,06(2) 0,01(3) 0,07(3) 14,72) | 33
ACCESS1-3 210,37¢3) 0,9933) 0,19¢3) 0,03¢(3)|1,02¢3) 0,75(3) 0,71(3) 0,19¢3) |0,01(3) 0,01(33) 0,57¢(3) 16,1(1) 34
CanESM2 311,76(2) 0,98(2) 0,88(2) 0,28(0)|2,21(2) 0,64(3) 1,542) 1,12(3)|0,10¢1) 0,043) 0,853) 17,2(1) 24
CMCC-CM 415,150) 0,96(1) 2,58(0) 1,73(1)|7,06(0) 0,28(3) 4,90(0) 0,63(0) | 0,06(2) 0,18(0) 6,64(0) 13,1(2) 9
CMCC-CMS 514,4000) 097(2) 2,2000) 1,34(1)|5,94(0) 0,56(3) 4,12(0) 0,59(0) |0,01¢(3) 0,02(3) 5,58(0) 14,1(2) 14
CNRM-CM5 610,643) 0992) 0,32¢3) 0,55¢1)|1,59¢(3) 0,73¢3) 1,10¢3) 0,81(2) | 0,08¢(2) 0,003) 0,493) 16,4(1) 29
EC-EARTH 710,41¢(3) 0,992) 0,21(3) 0,13(2)|1,43(3) 0,64(3) 0,99(3) 0,38(3)|0,13¢1) 0,12(1) 0,14(3) 18,1(0) 27
GFDL-CM3 811,34(3) 0,99¢3) 0,67(3) 0,203) |1,71(3) 0,80¢(3) 1,19¢3) 0,22(3) | 0,00¢3) 0,09¢1) 1,3933) 11,1(3) 34
GFDL-ESM2G | 9(3,23¢1) 0,98(2) 1,62(1) 0,27(2) |3,72(1) 0,69(3) 2,58(1) 0,29(3) | 0,04¢(3) 0,04(3) 3,46(1) 13,9(2) 23
GFDL-ESM2M | 10| 2,60¢2) 0,99¢(2) 1,30(2) 0,61(3)| 3,42(2) 0,68(3) 2,37(2) 0,25(2)]| 0,01(3) 0,082) 3,102) 15,7(1) | 26
GISS-E2-H 113,39¢1) 0,97¢(3) 1,70¢1) 0,41(3)| 4,09¢1) 0,83(3) 2,84(1) 0,18¢3)| 0,05(2) 0,04(3) 3.,86(1) 1143) | 25
GISS-E2-H-CC | 12|3,68(1) 0,96(2) 1,84(1) 0,56(3)| 4,62(1) 0,72(3) 3,20¢1) 0,12(2)| 0,03(3) 0,02(3) 4,36(1) 10,8(3) | 24
GISS-E2-R 1313,34¢1) 0,96(2) 1,67(1) 0,04(1)| 3,83¢(1) 0,72(3) 2,66(1) 0,84(3)| 0,05(2) 0,07¢(2) 3,34(1) 15,1(2) | 20
GISS-E2-R-CC | 14|3,38¢1) 0,96(2) 1,69¢(1) 0,07(1)| 3,78(1) 0,75(3) 2,62(1) 0,83(3)| 0,03(3) 0,05(2) 3,29(2) 13,6(2) | 22
HadGEM2-AO | 15(1,28(3) 0,99(2) 0,64(3) 0,01(3)| 1,51(3) 0,73(3) 1,05¢3) 0,13(3)| 0,02(3) 0,05¢2) 1,33(3) 19,8(0) | 31
HadGEM2-CC | 16|1,70¢2) 0,99¢(2) 0,85(2) 0,16(2)| 2,34(2) 0,62(3) 1,62(2) 0,35¢(3)| 0,05(2) 0,05(2) 1,66(3) 19,1(0) | 25
HadGEM2-ES 17/ 0,30¢3) 0,99¢(3) 0,15(3) 0,08(3)| 0,98(3) 0,77(3) 0,68¢(3) 0,00(3)| 0,052) 0,04(3) 0,09¢3) 17,5(1) | 33
IPSL-CMS5A-LR | 18] 3,66¢(1) 0,98(2) 1,83¢(1) 0,31(3)| 4,59¢(1) 0,70¢3) 3,19¢1) 0,18(3)| 0,01(3) 0,03(3) 4,32(1) 18,4(0) | 22
IPSL-CM5A-MR| 19| 2,22¢2) 0,99¢(2) 1,11(2) 0,67(1)| 2,57(2) 0,73(3) 1,78(2) 0,80(2)| 0,06(2) 0,05(2) 1,91(2) 16,0(1) | 23

IPSL-CMS5B-LR | 20[5,03(0) 0,96(1) 2,52(0) 1,71(1)| 6,90(0) 0,36(3) 4,79(0) 0,69(0)| 0,00(3) 0,03(3) 6,51(0) 17,6(0) | 11

MIROC-ESM | 21| 1,40(3) 0,99¢3) 0,70(3) 0,04(3)| 1,63(3) 0,82(3) 1,13(3) 0,06(3)| 0,01(3) 0,08(2) 1,51(3) 11,83) | 35

g/'}[I};gf'ESM' 22(0,97(3) 0,99(3) 0,49(3) 0,05(3)| 1,34(3) 0,82(3) 0,93(3) 0,13(3)| 0,07(2) 0,05(3) 1,083) 151(2) | 34

MIROCS 23(2,42(0) 0,98(2) 1,21(0) 0,51(1)| 5,69(2) 0,51(3) 3,95(2) 0,64(2)| 0,18(0) 0,08(2) 5,14(0) 19.8(0) | 14
MPI-ESM-LR | 24]1,27(3) 0,993) 0,63(3) 0,04(3)| 1,54(3) 0,81(3) 1,07(3) 0,21(3)| 0,02(3) 0,043) 1333) 163(1) | 34
MPI-ESM-MR | 25]0,91(3) 0,99(2) 0,45(3) 0,05(3)| 1,47(3) 0,71(3) 1,02(3) 0,11(3)| 0,0522) 0,04(3) 0,96(3) 17.2(1) | 32
MRI-CGCM3 | 26]2,882) 0,993) 144(2) 0,08(2)| 2,54(1) 0,82(3) 1,77(1) 0,34(3)| 0,003) 0,07(2) 2,302) 11,93) | 27
NorESMI-M  [271,53(2) 0,992) 0,77(2) 0,76(2)| 2,56(2) 0,64(3) 1,78(2) 0,31(2)| 0,052) 007(2) 2.33(2) 13,72 | 25
NorESMI-ME |28/ 1,72(2) 0,99(2) 0,86(2) 0,78(2)| 2,79¢2) 0,57(3) 1,94(2) 0,392)| 0,023) 0,02(3) 2,58(2) 15,02) | 27
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: Spatial distribution of Emiliania huxleyi blooms occurrence based on the Ocean Colour Climate Change Initiative dataset version
3.0 (Kazakov et al., 2018) for the Barents, Bering, Labrador, Greenland, North, and Norwegian seas. Black lines confine the
territories where blooms occurred more than one 8-day period and show target sea areas.
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Figure 2: A schematic representation of the percentile score-based model ranking method-_(Division of RMSD values

distribution of 28 models into four groups that are limited by 25th, 50th _and 75th percentiles and the relative assignment of scores

from 3 to 0 to each group accordingly - very good, good, satisfactory and unsatisfactory).
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Figure 5: Boxplots-of spatial distribution-of SST-trendsmodel and reanalysis data in the Barents Sea-
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Figure 94: Heat map with the final model scores obtained using the percentile score-based model ranking method for the five foreing
factorsvariables (sea surface temperature (SST, K) and salinity averaged over 0-30 m (SSS, psu), surface wind speed at 10 m (WS,
m s'"), ocean surface current speed (OCS, m s™), and shortwave downwelling solar radiation (SDSR, W m?) for the Barents, Bering,

Greenland, Labrador, North, and Norwegian seas: based on different statistical metrics (Figure 2, Table 2). The white areas indicate
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that the model was not considered due to partial or complete unavailability of hindcasts. and future projections (RCP4.5, RCP8.5)

data.
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5 Figure 5a. Spatial distribution of biases in sea surface salinity models and reanalysis in six target seas averaged over the vegetation
season and the time period 1993-2005.
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Figure 5b. Spatial distribution of biases in surface downwelling solar radiation between models and reanalysis in six target seas averaged over
the vegetation season and the time period 1979-2005.
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Figure Sc. Spatial distribution of biases in near-surface wind speed between selected model ensemble and reanalysis in six target

seas averaged over the vegetation season and the time period 1979-200S.
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5 Figure 5d. Spatial distribution of biases in sea surface temperature models and reanalysis in six target seas averaged over the

vegetation season and the time period 1979-2005.
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Figure Se. Spatial distribution of biases in surface ocean current speed models and reanalysis in six target seas averaged over the
vegetation season and the time period 1993-2005.
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Figure 6a: Spatial distribution of biases in SST (K) between models and reanalysis data in the Barents Sea; the biases are averaged

over June-September.
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Figure 6b: Spatial distribution of errors, which are calculated as the difference between model and reanalysis values of annual SST

trends (K vr) in the Barents Sea (June-September)
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