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Dear Prof. Heinze, 

 

Thank you very much for your assistance with our manuscript: “Simulation of factors affecting 

E.huxleyi blooms in arctic and subarctic seas by CMIP5 climate models: model validation and 

selection” by N. Gnatiuk, I. Radchenko, R. Davy, E. Morozov, and L. Bobylev. 5 

We are very thankful to the anonymous reviewers and greatly appreciate their valuable comments and 

suggestions that considerably improve our manuscript. Regarding the comments from both reviewers, we 

decided to refuse from focusing on the E. huxleyi problematics per se and concentrate on the main goal 

of the manuscript, which is a selection of those climate models that simulate most efficiently the state of 

abiotic parameters relevant to living conditions of the phytoplankton communities inherent in a number 10 

of seas at subpolar and polar latitudes. Accordingly, the Introduction is thoroughly recast. As both 

reviewers suggested us to improve the “Results and Discussion” section, we moved the text related to the 

description of the methodology and two figures to section “Materials and Methods”. Also, Figures 3, 5, 

and 8 are deleted as they are either a mere modification of presentations of some other akin figures or 

their presence in the manuscript is not so important. We also decided to add a new figure (#Figure 5a-e) 15 

to section “Results and Discussion” as both reviewers suggested to cover in discussions all studied 

parameters and seas. So, Figure 5 displays a spatial distribution of biases in five parameters between 

models and reanalyses in six target seas. The biases are averaged over the vegetation season and 

1979/1993-2005 period. We improved all sections following the comments from both reviewers. 

Please kindly find attached the responses to the reviewers and effected revisions, as well as a detailed 20 

specification of the changes we introduced. 

We are looking forward to hearing from you considering these changes and await further instructions. 

On behalf of the paper’s co-authors  

 

Best regards, 25 

Natalia Gnatiuk 

(and co-authors) 
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Response to Reviewers and Proposed Revisions 

 

We are very grateful to both reviewers for their constructive and valuable comments and very pointful 

suggestions, which helped greatly improve our manuscript. 

Concerning the comments of both reviewers on the choice of factors controlling phytoplankton blooms 5 

in general, and coccolithophore in particular, and other reviewers' comments directly related to the 

coccolithophore blooms, we fully agree with the arguments provided by reviewer #2 in section “general 

comments”: 

“By not having a primary focus on E.huxleyi blooms in the Introduction, the reader will be able 

to recognize the wider implications of this extensive intercomparison of climate models – it will also 10 

alleviate some of the major issues of neglecting “what else” underpins coccolithophore blooms and their 

occurrences.” 

 

Actually, the main objective of the study was to analyze how CMIP5 climate models reproduce different 

oceanographic and meteorological parameters in the arctic and subarctic seas as well as to form a 15 

methodology for validation and selection of the optimal model sub-set. To have practical use of the results 

we have chosen for case study oceanographic and meteorological parameters that influence 

coccolithophores blooms in studied arctic and subarctic seas. Due to the fact that we did not consider in 

the article all the factors (including biotic ones) that influence coccolithophores bloom, we mistakenly 

paid too much attention to coccolithophores and the factors affecting their blooms. This resulted in 20 

shifting the paper’s focus away from the main goal of the study, i.e. to develop a methodology of 

validation and selection of climate models that simulate most accurately the abiotic conditions within the 

target marine areas. 

To mend the situation, we decided to refuse from focusing specifically upon the issue of coccolithophore 

blooms and put at the forefront the methodology of validation and selection of climate models. 25 

In the absence of a close connection to coccolithophores, the article indeed gains greater clarity and 

becomes focused on the substance of the research done on the comparative effectiveness of global climate 

models for specific marine objects. We corrected the manuscript according to the recommendations of 

the reviewers and tried to make the goal of our research clear and precise. Below we have presented all 

the answers to the comments and all text changes. 30 

We earnestly thank the reviewers for their critical comments. 
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Reviewer #1 

 

General comments 

● G.C.1: In my opinion, the choice of the variables to be validated in the models is incomplete and the 

chosen subset is not obvious when thinking about the factors controlling phytoplankton blooms. First, 5 

all possible drivers should be carefully introduced in the introduction (it is nowhere clearly stated in 

the manuscript what factors impact phytoplankton dynamics in general). Important variables such as 

(macro/micro) nutrients and carbonate chemistry modeling at all and it is not even thoroughly 

discussed why. Motivating the choice of drivers to be analyzed in this paper simply by referring to an 

individual study (Kondrik et al., 2019) which is currently in review for publication in Biogeosciences 10 

is not sufficient in my opinion. Additionally, reviewers of the manuscript by Kondrik et al. (2019) have 

raised similar concerns with regard to the chosen drivers considered in the analysis. In my view, the 

choice made for the manuscript at hand is a missed opportunity as the evaluated models can provide 

more comprehensive information on factors impacting phytoplankton/coccolithophore growth than the 

variables the authors chose here. 15 

G.C.1 answer: As mentioned above, we believe that focusing on factors affecting coccolithophore 

blooms will take the readers away from the true purpose of the publication. Also, as we provide an 

incomplete list of factors controlling phytoplankton blooms, we have decided not to use in the 

manuscript formulations like "factors controlling/affecting coccolithophore blooms". Instead, in the 

article, we will emphasize that we analyze the models for a number of meteorological and 20 

oceanographic parameters. We believe that in this case the results may be of interest to a wider 

readership. 

 

We would like to add that at the beginning of the research we also planned to consider different 

biogeochemical variables. However, CMIP5 models have only monthly outputs for ocean 25 

biogeochemical variables, whereas, in this study to develop a methodology for selecting climate 

models, we employed daily data. 

 

● G.C.2: In the current version of the manuscript, a discussion of the results is completely missing. While 

section 3 is called “Results & Discussion”, it currently only represents a description of the Figures, 30 

without putting the results into the context of previous literature or how the results impact the overall 

motivation for the study (assessing the potential future development of E. huxleyi blooms). It is not 

clear to me e.g. what modellers should take away from their analysis. In a revised version of the 

manuscript, I suggest to include a thorough discussion on e.g. the sensitivity of the resulting model 

combinations on chosen thresholds in the ranking, the impact of the identified model biases on 35 

coccolithophore blooms, the impact of neglecting important forcing factors (nutrients, carbonate 
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chemistry) or biotic interactions (which cannot be assessed with this approach as opposed to when 

coccolithophores are included as an explicit functional type to the model). 

G.C.2 answer: We agree and we improved section Results and Discussion. 

 

● G.C.3: Regarding choices of the presentation of the results, I would personally like to see more than 5 

just temperature in the Barents Sea to be included in the main text (the choice of the figures could be 

reconsidered, especially given the title of the manuscript). The current choice makes it very hard for 

the reader to assess how the representation of present-day coccolithophore blooms in these models is 

potentially affected by biases of all variables impacting phytoplankton dynamics (and not just 

temperature). Including more detail in the study at hand will also make the assessment in a follow-up 10 

paper on future changes easier. 

G.C.3 answer: Based on one example – the temperature in the Barents Sea, we aimed to describe the 

methodology of climate model validation and selection in detail. Of course, from the point of view of 

assessing how climate models represent present-day coccolithophore blooms, such choices of 

presentation of the results is very uninformative. However, we have tried to illustrate with this example 15 

each step of the model's validation and the selection and to show the spread of the model’s values for 

each selection criterion. Using this approach, we intended to prove the need for a comprehensive 

analysis that is not confined solely either to the seasonal cycle or inter-annual variability or trends or 

spatial errors. 

 20 

● G.C.4: Overall, I think that the literature review in the introduction on factors controlling 

coccolithophore blooms in the arctic/subarctic (or North Atlantic) and possible drivers for observed 

changes in their distributions is not comprehensive enough in its current form. In my detailed 

comments below, I suggested a few papers that could be considered in my view – a result of a very 

brief literature search I have done (as I am not 100% familiar with the literature of the arctic/subarctic), 25 

but this list is by no means exhaustive. The authors should revise the manuscript accordingly, as this 

might also help to motivate why certain variables are (or are not) considered in their study. 

G.C.4 answer: We agree and we improved the Introduction part. 

 

● G.C.5: Throughout the manuscript, the writing needs to be more concise and to the point. Often, it is 30 

not clear to the reader why certain information is given, i.e. what the relevance is for the study at hand 

or what the take-away message is (see detailed comments below of e.g. the introduction). The authors 

should especially revise the result section, which is currently a list of brief descriptions of the Figures 

without making it clear enough why they were chosen to be included and what the key message for 

each Figure is, which makes this section quite hard to read in its current form. Ultimately, all figure 35 
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captions are currently incomplete as they do not describe what is actually shown in the respective 

figures. 

G.C.5 answer: We improved the manuscript and the Results and Discussion section accordingly. 

 

 5 

Detailed comments of Reviewer #1: 

Abstract: 

D.C.1 p. 1, L. 9: Please add ocean acidification here. It is not only the effect of global warming that can 

be expected to impact future coccolithophore blooms. 

D.C.2 90 p. 1, L. 10: I find this statement on the aim of the paper misleading, as none of these models (or 10 

very few) includes an explicit parametrization of coccolithophores to the best of my knowledge. I think 

it you need to state more clearly what exactly you do here. You don’t actually assess the blooms, but only 

how well the models reproduce the present-day environmental conditions that favour coccolithophore 

blooms. Also, please be precise here what you mean by “optimum combination”. 

D.C.3 p. 1, L. 11: This last statement of the paragraph is misleading because you don’t actually address 15 

this in the study. Please point out that this is future work that can/will be done following this study. 

Additionally, please add a “potential” in the last part of the sentence 100 “[…] potential future changes 

[…] can be assessed.” 

 

D.C.1-3 Answer: 20 

We thank the reviewer for the comments and re-wrote the paragraph: 

“Currently, there are a large number of climate models that give projections for various oceanic and meteorological 

parameters in the Arctic. However, their estimates often differ in absolute values in specific sea areas in comparison 

with the historical reanalysis data. The main goal of this research was to find out the methodology of selection of 

the optimal model ensemble that most accurately reproduces the state of abiotic parameters inherent in six target 25 

arctic and sub-arctic seas, viz. the Barents, Bering, Greenland, Labrador, North and Norwegian seas.” 

 

Specific comments of Reviewer #1: 

p. 1, L. 14: Please delete the “complex” or describe what methodology you’re using. I suggest to rephrase 

to something along these lines “Here, we present the validation of 34 CMIP models over the historical 30 

period. Furthermore, we present the procedure for model selection, which is based on their skill to 

represent important forcing factors for coccolithophore blooms.” 

Answer: We agree and rephrased the sentence in the following form: 

“Here we describe the complex methodology used for the validation of 34 CMIP5 climate models, and the selection 

of models that best represent the regional features of the oceanographic and meteorological factors affecting 35 

E.huxleyi blooms in arctic 15 and subarctic seas: sea surface (i) temperature and (ii) salinity; (iii) wind speed at a 
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height of 10 m above the surface; (iv) ocean surface current speed; and (v) surface downwelling shortwave 

radiation.” 

 

p. 1, L. 15: Are these five factors really known to be the dominant factors impacting coccolithophore 

dynamics in the arctic and subarctic? 5 

Answer: We consider these five factors as one of the important abiotic controlling factors in the studied 

seas without a direct reference to coccolithophore ecology. Since we changed the focus of the article, we 

no longer use the word “factors”. 

 

p. 1, L. 16: The chosen set of environmental factors to be validated in the models is not obvious to me. 10 

There is no rationale from my point of view as to why one would completely neglect nutrient fields and 

carbonate chemistry in the validation of the models (see general comments and detailed comments further 

down). Furthermore, I suggest to include a brief description what the environmental conditions wind 

speed, current speed, and salinity are proxies for as phytoplankton growth in these models is not a direct 

function of these variables. 15 

Answer: We agree that nutrients and carbonate chemistry are important for phytoplankton. However, we 

aim to select the appropriate CMIP5 models for one of the important abiotic factors. We added the 

following sentence: 

“The main goal of this research was to find out the methodology of selection of the optimal model ensemble that 

most accurately reproduces the state of abiotic parameters inherent in six target arctic and sub-arctic seas, viz. the 20 

Barents, Bering, Greenland, Labrador, North and Norwegian seas.” 

 

p. 1, L. 16: Please check throughout the text: are you using sea surface salinity (as stated e.g. in the abstract 

and introduction) or the salinity averaged over the top 30m (as e.g. stated in section 2.1 or the caption of 

Figure 9)?  25 

Answer: We thank the reviewer for this comment. We added this information in the Abstract: 

“...the sea surface (i) water temperature and (ii) salinity (averaged over the top 30 m)...” 

 

p. 1, L. 20: “best models” in what respect? Please be precise here.  

Answer: In Introduction we add text 30 

“… an ensemble of the best models from the entire set of available climate models based on a comparison with 

observational data for a historical period.” 

 

p. 1, L. 22: I don’t understand this the statement about “30 combinations of most-skillful models were 

selected”. Selected for what? Additionally, I suggest to state how many models are considered within 35 

each combination. 
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p. 1, L. 23: “common” is used in what sense here? I don’t understand this. How do you define “high 

skill”? This is rather subjective. I suggest to rephrase. 

Answer: We thank the reviewer for the above two comments. The sentences are now modified as follows: 

“The validation of the GCMs against reanalysis data includes analysis of the interannual variability, seasonal cycle, 

spatial biases and temporal trends of the simulated parameters. In total, 30 combinations of high-skilful models 5 

were selected for 5 variables over 6 study regions. The results show that there is no mutually optimal combination 

of models, nor is there a one top-model, that has a skill in reproducing either the regional climatic-relevant features 

of the whole Arctic region or all combinations of the considered parameters in target seas. Thereby, according to 

our methodology for each ‘variable – target sea’ combination, a unique best model subset was selected with the 

number of included models varying from 7 to 11.” 10 

 

p. 1, L. 25: What should e.g. modelers conclude from your analysis? I miss a statement on the broader 

implications of your study in the abstract. 

Answer: We decided to remove this paragraph as Reviewer #2 suggested us to do it. 

 15 

 

Introduction: 

Note: The generalized answer will be given for the listed below Reviewer’s comments: 

p. 2, L. 2-5: Please include a brief description on how exactly coccolithophores impact the carbon cycle 

(as done for the sulfur cycle). Additionally, I don’t think Rivero-Calle et al. (2015) and Winter et al. 20 

(2013) are appropriate references for the biogeochemical impact of coccolithophores here, as these only 

describe changes in the biogeography and occurrence over time. Check e.g. Iglesias-Rodriguez et al. 

(2002) or Balch (2018) (and references therein) for the biogeochemical imprint of this phytoplankton 

group. 

p. 2, L. 3: Please delete the “additionally”. You describe the impact on the sulphur cycle here. 25 

p. 2, L. 6: It is not only essential to study E. hux. blooms, but coccolithophore blooms in general. E.huxleyi 

has not yet been introduced in this line of the text. Please change to “coccolithophores” instead of “E. 

huxleyi” 

p. 2, L. 7: Please introduce the abbreviation “E. huxleyi” here. 

p. 2, L. 9: Please add a reference to the temperature and salinity tolerance. 30 

p. 2, L. 10: I suggest to add the more recent reference “Krumhardt et al. (2017)” here, as they provide the 

most recent compilation of the global present-day distribution of coccolithophores (to my knowledge). 

p. 2, L. 11: Have coccolithophores really expanded because of ecosystem changes in the Arctic? Don’t 

you mean “as a result of recent changes in environmental conditions, coccolithophores have expanded 

poleward”? Please revise the logic in this sentence. 35 

p. 2, L. 12: Henson et al. (2018) is not an appropriate reference here (they don’t talk about the changes in 

E. huxleyi blooms in the cited paper). Please consider adding e.g. Rivero-Calle et al. (2015) here. 
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p. 2, L. 12: Winter et al. (2013) suggest that that the poleward expansion is mainly driven by temperature, 

salinity, or nutrients, but Rivero-Calle et al. (2015) and Krumhardt et al. (2016) suggest that carbonate 

chemistry matters as well. Please be more comprehensive in the discussion of possible drivers for the 

expansion. 

p. 2, L. 14: Please be more precise here: When you say “E. huxleyi blooms have a high positive correlation 5 

with […]”, do you mean the occurrence, their size, their duration…? 

p. 2, L. 14: The description of controls on E. huxleyi blooms (and causes for its changes) is not 

comprehensive enough. I only did a very brief 10-minute search in the literature and found a number of 

papers that could be relevant for the introduction of this paper (only focusing on those of the northern 

hemisphere, i.e. disregarding the wealth of recent literature on Southern Ocean coccolithophore dynamics, 10 

see e.g. Balch et al., 2016, Nissen et al., 2018 and references therein): please have a look at e.g. Daniels 

et al. (2015), Harada et al. (2012), Oziel et al. (2017), and Smyth et al. (2004) (and references therein). I 

suggest to first describe the factors that contribute to phytoplankton/coccolithophore blooms in general 

(these are currently not introduced) and to then discuss what has been suggested for coccolithophores in 

general and in the (sub)arctic in particular. Please motivate why you think nutrients and carbonate 15 

chemistry are not important as this is not at all obvious. 

p. 2, L. 12-20: Please clearly differentiate between discussing drivers of present-day coccolithophore 

blooms as opposed to possible drivers of observed/future changes in coccolithophore distributions and 

bloom dynamics. 

p. 2, L. 20-32: I find it problematic to focus so much on a single paper here, especially as the discussed 20 

paper by Kondrik et al. (2019) has not yet been accepted. One of the main criticisms by the reviewers of 

that paper was the neglect of important variables as potential drivers of coccolithophore blooms (such as 

e.g. carbonate chemistry). I think the study at hand can be much more generally motivated, without going 

into the details of this specific one. To that aim, and similarly to the points raised in the review of Kondrik 

et al. (2019), the analysis in the manuscript by Gnatiuk et al. should be more comprehensive in the 25 

assessment of potential drivers of coccolithophore blooms, especially because the output from models is 

assessed here, which can provide information on all environmental variables impacting phytoplankton 

growth. There should not be a a-priori-restriction to the drivers assessed here without giving a good reason 

to do so. Please revise the introduction and the analysis in that respect. 

p. 2, L. 2-32: The whole first part of the introduction does not provide a comprehensive summary of what 30 

is known about drivers of coccolithophore bloom dynamics and does not naturally result in the knowledge 

gap that will be assessed in this study. From my point of view, it should be substantially revised following 

the comments made above. Additionally, the models are not properly introduced. E.g. no reference to the 

CMIP is given. Furthermore, it should be clearly stated that none (or maximum a few, to be 

doublechecked) of the CMIP5 models includes an explicit parametrization of coccolithophores, which is 35 

why it is currently only possible to project potential changes of their blooms based on changes in 
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environmental conditions (but note the recent paper by Krumhardt et al., 2019). This comes with the 

limitation that biotic interactions cannot be assessed, which should be clearly stated in the discussion 

section (see also Krumhardt et al., 2017). 

 

Answer: 5 

We thank the reviewer for the valuable and constructive comments for Introduction (page 2) of the 

manuscript. In view of the reviewer’s comments, we decided to remove the first three paragraphs in the 

Introduction and we concentrated on the main goal of this manuscript, i.e. a selection and validation of 

the CMIP5 climate models against the available reanalysis data for the important abiotic parameters that 

influence phytoplankton blooms in six sub-arctic and arctic seas (Barents, Bering, Greenland, Norwegian, 10 

North and Labrador Seas). We changed it to the following:  

“Today climate models are state-of-the-art tools for the prediction of the future status of the climate system 

components on decadal and centennial time scales (Otero et al., 2018; Taylor et al., 2012). In particular, the modern 

coupled atmosphere-ocean General Circulation Models (GCMs) include the main climate system components such 

as the atmosphere, ocean, land and sea-ice, and therefore, represent more realistically the processes of their 15 

interactions. Thus, the fifth phase of the Coupled Model Intercomparison Project (CMIP5) gives the opportunity to 

use data of more than 30 GCMs (Taylor et al., 2012). The GCMs provide a large number of the meteorological and 

oceanographic parameters allowing to perform a comprehensive assessment of possible climate change impacts on 

marine ecosystems in the future. However, most of the studies addressing the CMIP models intercomparison show 

that the GCMs outputs usually vary significantly (Almazroui et al., 2017; Fu et al., 2013; Gleckler et al., 2008). 20 

Therefore, it is important to find a reliable approach for both model quality intercomparison and selection of optimal 

models for each specific scientific task and region.” 

 

p. 3: The first paragraph does not link well with the above. Please work on your flow in the introduction. 

Additionally, this whole page reads like it should be in the method section. Please revise and consider 25 

moving at least parts of it to the method section. 

Answer: Thank you for the comment. Since we changed the focus of the paper, we decided to leave this 

information in the Introduction. This part reviews the previous experience in the field of climate models 

validation and selection, that leads to formulating of a scientific task. 

 30 

p. 3, L. 7: How are the “best models” defined here? Please be precise what you mean. 

Answer: We modified it as follows:  
“There are two main approaches to employing climate model ensembles: (i) use of the full-ensemble average data 

(Flato et al., 2013; Gleckler et al., 2008; Knutti et al., 2010b; Reichler and Kim, 2008); and (ii) selection of an 

ensemble of the best models from the entire set of available climate models based on a comparison with 35 

observational data for a historical period (Herger et al., 2018; Knutti et al., 2010b; Taylor, 2001).” 
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p. 3, L. 8: Please revise the sentence “These two approaches usually give a good result”. Good in what 

respect? Please add references. 

Answer: We improved the sentence as follows: 

“These two approaches are equally used depending on a specific scientific task: (i) full-ensemble averaging for 

future trends analysis, and (ii) selection of the best models ensembles for regional climate features analysis.” 5 

 

p. 3, L.11: Choosing this method implies the assumption that whatever model is representing present-day 

conditions best will also do the best job in projecting these into the future, doesn’t it? I think this is 

important to state here. 

Answer: Thank you for the comment, we modified it as follows: 10 

“We assume that a climate model that successfully represents the present-day conditions will also succeed in the 

future projections. Therefore, we chose the second approach, e.g., a selection of climate models that properly 

simulate the current regional features, including the spatial distribution, of the meteorological and oceanographic 

parameters under study (sea surface temperature and salinity, surface wind speed at 10 m, ocean surface current 

speed, and surface downwelling shortwave radiation). At that, it was important to define the appropriate 15 

methodology for selection of the best model ensembles.” 

 

p. 3, L. 16-21: It is not clear to me what the take-away message of this paragraph is. How does the first 

approach, assessing how well models do in representing air temperature, sea level pressure, and 

precipitation help in the assessment of environmental factors impacting phytoplankton/coccolithophore 20 

growth? Please work on this paragraph and make it more specific to the goal of your work. Consider 

combining it with the next to avoid having a 2-sentence paragraph with no clear take-away message. 

p. 3, L. 21 – p. 4, L.2: Again, the take-away message in context of your specific goals for the paper are 

not clear. Please re-write. 

Answer for above 2 comments: We think that now the information p. 3, L. 16-21 (version 1) suits to the 25 

new version of the manuscript. We modified the paragraphs as follows: 

“There are many approaches for the selection of an optimal set of climate models. One approach suggests choosing 

the models with focus only on some key climatological parameters, such as air temperature, precipitation and sea 

level pressure (Almazroui et al., 2017; Duan and Phillips, 2010; Pierce et al., 2009; Sarr and Sarr, 2017). This 

approach assumes that if the models skillfully reproduce these key parameters, they also must be good at 30 

reproducing the regional climate in general. Another approach, which is used in this study, is to select a unique 

combination of models for each study variable (Agosta et al., 2015; Anav et al., 2013; Fu et al., 2013; Gleckler et 

al., 2008). In order to select such a unique combination of models, it is necessary, firstly, to perform a validation 

of climate models through comparing GCMs outputs with the respective observations over a historical period, and 

then to identify the appropriate climate models based on statistical measures, i.e. to sort or rank the tested models. 35 

However, there are no generally accepted solutions for this task. For example, Agosta et al. (2015) ranked the 

CMIP5 models using only one statistical metric, viz, a climate prediction index, which is the ratio of the root mean 

square error to the standard deviation of observation data. Gleckler et al. (2008) evaluated the CMIP5 models and 
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ranked them through analyzing the climatology of the annual cycle, inter-annual variability, and relative errors. 

They found that the performance of the analysed models varies for different parameters. Das et al. (2018) assessed 

34 CMIP5 models using the following three criteria: the mean seasonal cycle, temporal trends, and spatial 

correlation. On this basis the models were selected using a cumulative ranking approach. Fu et al. (2013) and Ruan 

et al. (2019) applied a score-based method using multiple criteria for the assessment of CMIP5 model performance: 5 

mean value, standard deviation, normalized root mean square error, linear correlation coefficient, Mann-Kendall 

test statistic Z, Sen’s slope, and significance score. Further, Ruan et al. (2019) selected the top 25% ranked CMIP5 

models for composing a multi-model ensemble for air temperature projections over the Lower Mekong Basin. Fu 

et al. (2013) and Ruan et al. (2019) ranked the employed models using a weight criterion from 0.5 to 1.0. Ruan et 

al. (2019) reported that the introduction of multiple criteria results in less uncertainties in the models’ performance 10 

in comparison with the respective observation data. However, Fu et al. (2013) and Ruan et al. (2019) did not 

consider the feature of spatial distribution of variables.” 

 

p. 4, L. 3: Why do you conclude that? This is not clear to me from what you have presented so far in the 

introduction. 15 

Answer: We deleted this sentence. We describe more clearly which available ideas we adopted in the 

developing of our methodology of climate model validation and selection. We added the following 

information: 

“We decided to compile and improve the previously applied approaches that is to employ the multiple criteria 

ranking method following Fu et al. (2013) and Ruan et al. (2019) studies but (i) taking into consideration the Agosta 20 

et al. (2015) climate prediction index, (ii) analysing the features of spatial distribution of target variables (spatial 

biases and trends), (iii) ranking the models with the percentile method (25th,50th, 75th) that is widely used in 

statistical analysis, and, finally, (iv) selecting the top 25% ranked CMIP5 models following Ruan et al. (2019).” 

 

p. 4, L. 3-5: You have not presented the differences in environmental conditions of the different focus 25 

areas. Please revise the introduction accordingly. I don’t understand what the second half of the sentence 

means: How can areas have a wide range of parameters? 

Answer: We agree that the formulation is not very good, and we modified it. Here is the new version of 

the whole paragraph: 

“As the target arctic and subarctic seas differ in physical and geographical conditions, we performed the validation 30 

and selection model procedure for each sea individually. Moreover, we analyzed the specific marine areas with the 

stable localizations of intense growth of phytoplankton species both in spring (e.g. diatoms) and in summer-autumn 

(e.g. coccolithophores Kondrik et al., 2017; Smyth et al., 2004). Thus, the target regions permitted to identify the 

CMIP5 models that represented most closely the cumulative state of the physical environmental factors (abiotic 

parameters) characterizing the conditions, under which the aforementioned blooms occurred. Such a specific task 35 

eventuated in the results that can be useful for further improvements of marine ecological models encompassing 
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the phytoplankton community as well as for modelling the dynamics of physical parameters relevant to surface 

water environment at high-latitude seas under conditions of changing climate.” 

 

Methods 

p. 4, L. 17-19: As mentioned before, I don’t understand based on what grounds you neglect the assessment 5 

of nutrients and the carbonate chemistry in the models. 

Answer: We agree that nutrients and the carbonate chemistry are important for coccolithophores bloom. 

Since the focus of the manuscript is changed, we do not analyze all factors influencing coccolithophores 

bloom, we analyze only abiotic parameters. We added additional sentences and modified the sentence as 

follows: 10 

“Thirty-four CMIP5 GCMs outputs for the historical period 1979-2005 were used in this study. The data are freely 

available on the ESGF portal (https://esgf-node.llnl.gov). The list of climate models used is presented in Table 1. 

We analyzed five oceanographic and meteorological variables, namely the sea surface temperature (SST) and 

salinity averaged over 0-30 m (SSS), surface wind speed at a height of 10 m (WS), ocean surface current speed 

(OCS), and shortwave downwelling solar radiation (SDSR). These abiotic parameters are known to affect the 15 

phytoplankton life cycle in sub-polar and polar latitudes (Iglesias-Rodríguez et al., 2002; Raitsos et al., 2006; 

Winter et al., 2013).” 

 

p. 4, L. 23-25: Did you include regional models, e.g. CORDEX? I can’t find it in Table 1. If you didn’t 

include those models, don’t make that statement here. I am bit confused. Please distinguish between 20 

regional and global models and state which kind you considered. 

p. 4, L. 25: Did you only consider global models in the end? This is not clear from your description in 

this section. Please clarify. 

Answer for two above comments: We did not include regional models, we used only global models. We 

deleted this sentence. 25 

 

p. 4, L. 25-26: I suggest to give the range of models available: number available for FFs ranged from X1 

for variable Y1 to X2 for variable Y2 (see Table 1). What do you mean by “main characteristics”? Please 

rephrase. 

Answer: We added the following sentence: 30 

“The availability of the CMIP5 GCMs analysed in this study are listed in Table1: in total, we used 25 models for 

OCS, 28 for SSS, SST, SDSR, and 30 for WS.” 

Also we modified the sentence that included the phrase “main characteristics” as follows: “The list of 

climate models used is presented in Table 1.” 

 35 

p. 5, L. 4: replace “has been shown” by “have been shown”. 

Answer: We changed it. 
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p. 5, L. 6: Please choose a better description in the title than simply “methods”, maybe something like 

“model evaluation metrics”? 

Answer: We changed it to “Study regions” and “Model evaluation metrics” 

 

p. 5, L. 7: Please rewrite “regions under the study”. Add “Sea” behind “Norwegian”. 5 

Answer: We changed it: “The target regions are six arctic and subarctic seas: the Barents, Bering, Greenland, 

Labrador, North and Norwegian seas.” 

 

p. 5, L. 7-8: How do you define a bloom here? Please state this and add references. Additionally, you 

don’t state what data you base Fig. 1 on to define the blooms. Please clarify in the text and the figure 10 

caption. I suggest to draw the study regions into Fig. 1. To help the reader localize the different subregions. 

Answer: We changed the sentence as follows: 

“Only specific areas were selected in each target sea relying on the results obtained by Kazakov et al. (2018) for 

the coccolithophore Emiliania huxleyi blooms based on the Ocean Colour Climate Change Initiative dataset version 

3.0 (https://esa-oceancolour-cci.org/) for the period from 1998 to 2016.” 15 

We changed the figure caption accordingly. 

 

p. 5, L. 11: Do you mean model output here when you say “data? Please clarify. 

Answer: We clarified it at the beginning of the section as follows: 

“Thirty-four CMIP5 GCMs outputs for the historical period 1979-2005 were used in this study.” 20 

 

p. 5, L. 12: I have a hard time believing that the blooming period lasts from January-December in the 

Bering Sea. What bloom definition is used for this? 

Answer: We modified the sentences and added some information: 

“Besides, the periods for model validation were selected based on a sea-specific blooming periods, which include 25 

all summer months and, in some cases, beyond them: June-September for the Barents and Labrador seas, June-

August for the Greenland Sea, May-July for the North Sea, May-August for the Norwegian Sea, and January-

December for the Bering Sea (Kazakov et al., 2018).” 

 

p. 5, L. 10-14: I don’t fully understand why you’re restricting the analysis to the times and locations of 30 

identified E. huxleyi blooms under present-day environmental conditions for each sea (if the models do 

not necessarily reproduce the environmental conditions at these exact locations and times). Don’t you 

want to restrict the analysis to the observed environmental conditions at the times/locations of the blooms 

(i.e. the observed environmental niche)? As a consequence, I am wondering why don’t you define each 

subregion as a slightly larger area than currently done. 35 
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Answer: First, we conducted an analysis for the entire territory of the seas and found a significant 

difference if we consider the whole sea and the area we are interested in. Trying to answer the question 

that the reviewer has raised here, we entered the following sentences into the text: 

“Thus, it is noteworthy that the results of the performed comparison of models can be used not only in terms of 

marine ecology-related issues but also for the purposes of forecasting of the region-specific climate interactions 5 

during the vegetation season, taking into account that the selection of the climate models was carried out 

individually for each sea/sea zone.” 

 

p. 5, L. 17: The interannual variability of what exactly? The seasonal cycle/amplitude, summer average, 

average over blooming period, …? Please be precise here. 10 

Answer: We modified the sentence here: 

“The validation methodology for the GCMs outputs included the analysis of the climatological-mean seasonal 

cycle, interannual variability and trends, and analysis of spatial distributions of climatological-mean biases and 

trends for selected parameters averaged over the blooming period in each sea.” 

 15 

p. 5, L. 18: The seasonal cycles […] 

Answer: We changed it. 

 

p. 5, L. 19: “but the interannual variability “ of what? 

p. 5, L. 19: Replace “sea” by “subregion” 20 

p. 5, L. 25-26: Rephrase to something like “For the assessment/evaluation of the interannual variability 

[…]” 

Answer for the two above comments: We changed it to: 

“b) The interannual variability of the parameters was analyzed based on monthly variables solely for blooming 

periods (the sample size varied according to sub-region and parameter combination, e.g., a sample size for SST in 25 

the Barents Sea was 108 – monthly variables from June to September during 1979-2005). The same statistical 

measures for analysis of the seasonal cycle were used, viz. RMSD, r, SD, and CPI.” 

 

p. 5, L. 23: Can you rephrase “RMSD-observations standard deviation ratio”? I have a hard time 

understanding what you mean here. Please consider to add the formulas to make it very clear. 30 

Answer: We changed the sentence: 

“In addition, following Agosta et al. (2015) we calculated the climate prediction index (CPI) for the seasonal cycle, 

which is a ratio of the model root mean square error to the standard deviation of observation data.” 

 

p. 5, L. 26: Do you mean the difference in the spatial distribution of temporal trends between the model 35 

output and the reanalysis data? This sentence is not clear to me. Please rephrase to clarify. 

Answer: We changed it to the following sentence: 



15 

 

 

“c) The spatial distribution of biases and trends between the model outputs and the reanalysis data were calculated 

for temporal-averaged data in each grid point of the target marine zone.” 

 

p. 5, L. 26-27: What exactly is “your percentile score-based model ranking method”? This method is 

defined nowhere in the method section up to this point. In particular, the description of this ranking 5 

method should be very clear (e.g. by including an overview listing the metrics are included in the ranking), 

as the main result of your study is based on this ranking. 

315 p. 5, L. 31: Less than 25% of what? Please be precise. What do you base these thresholds on? It seems 

rather subjective to me. What is the effect of the choice on the outcome? This needs to be discussed 

somewhere in the text. 10 

p. 6, L. 4: Again, choosing 25% seems random to me (see previous comment). 

Answer for the three above comments: We modified the text as follows:  

“For ranking models and selection of the best model sub-set, we proposed and employed the percentile score-based 

model ranking method, which is a compilation of the previously applied model ranking and the selection 

approaches with some modifications (see also Introduction). Following Fu et al. (2013) and Ruan et al. (2019), we 15 

used the multiple criteria for model selection (RMSD, r, SD). Following Agosta et al. (2015) we analysed the 

climate prediction index (CPI), and considered the differences in spatial distributions of biases and trends between 

the model outputs and the respective reanalysis data. Further, we ranked the models based on the percentile method 

(25th, 50th, 75th) for each obtained statistical metrics based on the amplitude of its values. Finally, we selected the 

top 25% ranked CMIP5 models following Ruan et al. (2019) for each considered oceanographic and meteorological 20 

parameter, and target region. Thus, for example, for a sample of 28 models, the top 25% is a sub-set of 7 models 

that showed the best total-score. However, if two or more models show the same score they all are included in the 

selected best model sub-set. Thus, the number of included models in selected best model subsets varying from 7 to 

11.” 

 25 

Results & Discussion 

p. 6, L. 6: Personally, I find it a bit unfortunate that only results for temperature and the Barents Sea are 

presented in the main text. Isn’t there a better way to synthesize the results and present more than just one 

tiny subarea and one forcing factor? 

Answer: We agree with the reviewer, and added an additional figure to sections Results and Discussion 30 

with the spatial distribution of biases in five parameters between models and reanalysis data in six target 

seas. The biases are averaged over the vegetation season and the time period 1979/1993-2005. We added 

new Figure 5 a-e and following description: 

“In order to analyse how well the selected best-model sub-sets represent five studied parameters, we analysed the 

spatial distribution of biases between the selected model ensemble and the respective reanalysis data in six target 35 

seas, viz, the Barents, Bering, Labrador, Greenland, Norwegian and North seas (Figure 5a-e). Thus, fewer biases 

in SSS are determined in the case of the Labrador, Greenland and Norwegian seas (±0.5 psu); high positive biases 
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observed in the Bering Sea next to the coastline: up to 1.5-4 psu, this overestimation is possibly due to insufficiently 

accurate parameterization of the river runoff in the sub-arctic region (Figure 5a). SSS is underestimated in waters 

next to the coastline in the Barents and North seas (1.5-2.5 psu), which is probably due to some overestimation of 

river runoff or underestimation of salty atlantic water. The selected CMIP5 models simulate SDSR (Figure 5b) well 

almost in all target seas: the biases in SDSR in the Barents Sea vary from 5 to 14 W m-2 (≈4-10 %), in the Bering 5 

Sea – from 2 to10 W m-2 (≈2-9 %), in the Greenland Sea – from 0 to 12 W m-2 (≈0-7 %), in the North Sea – from 

1 to17 W m-2 (≈0-7 %), in the Norwegian Sea – from 4 to 9 W m-2 (≈2-5 %), only in the Labrador Sea the CMIP5 

models overestimate SDSR and the biases much higher – from 20 to 29 W m-2 (≈11-15 %). The selected GCMs 

simulate WS well in all studied seas: the biases in WS are not more than 1 m s-1, only in some places of the Bering 

and North Seas’ coastal regions, the biases in WS simulations are up to about 1.5 m s-1 (Figure 5c). Concerning 10 

SST, we also obtained quite good results for the selected models. Low biases were observed mainly over the entire 

territory of the North and Norwegian seas constituting ±0.5° C (Figure 5d). Near the English Channel models 

overestimate the temperature by ≈2° C in the North Sea probably due to the influence of warm water from the 

English Channel, and models slightly underestimate the temperature by ≈1° C near the coastline in the Norwegian 

Sea. In the Labrador Sea, the CMIP5 models simulate SST with lower biases in the northern and north-western 15 

parts of the sea – ±0.5° C (Figure 5d). However, in the southern and south-western parts of the sea, the models 

underestimate SST by ≈1-2° C, which is possibly due to the influence of the cold Labrador Current. In the 

Greenland Sea, the models underestimate SST by ≈1-1.5° C in the west probably also due to the influence of the 

cold Greenland Current and overestimate SST by ≈2° C in the south apparently due to overestimation of 

contribution of the warm Atlantic water (the North-Atlantic Current). In the Barents Sea, the models overestimate 20 

north-western part of the sea probably due to the influence of the warm atlantic water, and in the southern part of 

the study area, the models underestimate SST by ≈1-2° C probably due to some underestimation of the influence 

of coming warm atlantic waters. Finally, the CMIP5 models simulate the surface ocean current speed with rather 

large biases, especially in the Bering Sea and closer to the Bering Strait (-0.19…0.14 m s-1), where the models 

mainly overestimate OCS (Figure 5e). Smaller biases in the modeling of the OCS by CMIP5 models found for the 25 

Barents and Greenland seas – from -0.06 to 0.03 m s-1. The biases in the other studied seas vary from -0.17 to 0.06 

m s-1.” 

Below we present Figure 5 (a-e): 
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Figure 5a. Spatial distribution of biases in sea surface salinity models and reanalysis in six target seas averaged over the 

vegetation season and the time period 1993-2005. 
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Figure 5b. Spatial distribution of biases in surface downwelling solar radiation between models and reanalysis in six target 

seas averaged over the vegetation season and the time period 1979-2005. 
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Figure 5c. Spatial distribution of biases in near-surface wind speed between selected model ensemble and reanalysis in six 

target seas averaged over the vegetation season and the time period 1979-2005. 
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Figure 5d. Spatial distribution of biases in sea surface temperature models and reanalysis in six target seas averaged over the 

vegetation season and the time period 1979-2005. 
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Figure 5e. Spatial distribution of biases in surface ocean current speed models and reanalysis in six target seas averaged over 

the vegetation season and the time period 1993-2005. 

 

p. 6, L. 9-11: I don’t think a Taylor diagram needs to be explained in the result section. I suggest to rather 5 

briefly explain when the agreement between model and reference data set is good (i.e. how to interpret 

the plot) instead of simply stating what can be seen (see comment on L. 15-17). 

p. 6, L. 11/12: Please add “[…] capture the climatological seasonal cycle […]”. Furthermore, please 

explain how it can be seen from the plot that the seasonal cycle is represented better than the interannual 

variability (see previous comment). 10 

p. 6, L. 14: Are these numbers really unitless? If so, define somewhere that you plot normalized SD and 

RSMD (method section, consider adding formula there) and state that here by saying e.g. “the SD and 

RMSD normalized by XX are between …”. This will help the reader to follow. 

p. 6, L. 15-17: This is the information you should start your paragraph with (see previous comments). 

First explain to the reader how to interpret the plot. However, the statement that “the closer the model 15 

data is to the x-axis, the better the correlation coefficient” is not entirely correct, as the correlation 
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coefficient is shown on the radial axis. A point with RMSD/SD/CorrCoeff of 0.1/0.1/0.1 is closer to the 

x-axis than a point with 1.0/0.8/0.9 (note that this is under the assumption that RMSD is on the x-axis, 

SD on the y-axis and the correlation coefficient on the radial axis, see comment on the Figure further 

down)– but the correlation coefficient of the second point is higher. Please be precise in the description. 

Also, a correlation coefficient is high/low and not good/bad. 5 

p. 6, L. 17: Replace “climate parameter” by “e.g. SST”. 

p.6, L. 17-18: Please revise the grammar of this sentence. 

p. 6, L. 18-20: This statement is redundant with the method section. 

p. 6, L. 9-20: For the whole description of the Taylor diagram, please add the names of models here that 

show the highest/lowest correlation coefficients, RMSD etc. to make it easier for the reader to extract the 10 

information from the plot. 

Answer to above 8 comments:  

Our intention was to describe our methodology using Figures 2-8. We decided to delete the Taylor 

diagram as it only illustrates the root mean square deviation, standard deviation and correlation together; 

but we analyzed these statistical metrics separately in the form of a table. Thus, we deleted the second 15 

paragraph from page 6 and moved Figures 4 to section Methodology section. In addition, we deleted 

Figure 5 as well, since the analysis is very similar to Figure 4, and Figure 8. 

 

p. 6, L. 21-23: If you say you show the “spatial distribution”, I expect maps. Do you mean the spatial 

variability of the climatological SST bias across the subregion? Please be more precise throughout the 20 

description. 

Answer: We modified the sentence as follows: “Figure 3 illustrates the box plots of the spatial variability of 

SST biases in the selected area of the Barents Sea for the vegetation season (June-September) during 1979-2005 

and the time period 1979-2005.” 

 25 

p. 6, L. 22: I see median biases that are >0 (e.g. for the model 2). Please double-check. 

p. 6, L. 24: Do you mean the maximum bias? I don’t understand “amplitude bias” (throughout paragraph). 

Similar to above, please add the names of the models showing the numbers you’re stating to make it easier 

for the reader to find the information you’re stating in the plot. 

Answer to the above 2 comments: Thank you for this correction. We changed it as follows: 30 

“For ranking models based on the obtained differences in the spatial distributions of biases and trends between 

model outputs and reanalysis, we analysed the absolute values of the median and the amplitude of the spatial 

variation in model biases. For example, Figure 3 displays the box plots of spatial variability in SST biases relevant 

to the target area in the Barents Sea for the vegetation season (June-September) and the study period 1979-2005. 

The median bias varies from -6.6 (model #20) to 1.5 K (model #24) among the models, whereas the amplitude bias 35 

has a wide spread of values from 7.3 (model #21) to 16.5 K (model #3).” 
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p. 6, L. 24-25: Please revise this statement, e.g. simply stating that the comparison shows large variability 

across the models. 

Answer: We changed it as follows: 

“Thus it can be concluded from Fig. 3 that the analysis of spatial distribution of biases is very important, e.g., if we 

compare model #2 (ACCESS1-3) with model #3 (CanESM2), we can see that the medians of these two models 5 

have a small difference (0.28 K), while, the amplitude of spatial values for model #3 is much higher than that for 

model #2. Application of the percentile score-based method to modes #2 (ACCESS1-3) and #3 (CanESM2) resulted 

in inclusion of the former in the best-model sub-set, whereas the latter was placed beyond it (Fig. 4).” 

 

p. 6, L. 27-29: Where is this seen? This is not included in Fig. 4. If you’re referring to a different plot 10 

here, please add the reference. 

Answer: We changed it as follows:  

“Application of the percentile score-based method to modes #2 (ACCESS1-3) and #3 (CanESM2) resulted in 

inclusion of the former in the best-model sub-set, whereas the latter was placed beyond it (Fig. 4).” 

 15 

p. 6, L. 29: Similar to above, be more precise in your description. From just the wording “spatial 

distribution of annual trends”) the reader expects maps here,  not box plots. 

p. 6, L. 31: How are “significant trends” defined here? How can that be seen in the plot? Please be precise. 

What models show a significant trend? What is an “unrealistic trend” for you here? 

p. 7, L. 1: How do you know that? As mentioned above, I think it is important to state in the method 20 

section that this is the assumption you make (a model that reproduces the observations best over the 

historical period (however you define “best”), also gives the “best” projections for the future). 

Answer to the above 3 comments: We deleted the figure plotting the spatial variability of the trends as 

the procedure of the analysis is similar to the figure displaying the spatial variability of biases. Also, we 

will move Figure 4 to section Method. 25 

 

p. 7, L. 9-12: Is the +/- 1K the average over the domain? Currently, the reader at this point has totally 

forgotten why you’re doing this exercise. I suggest to always relate your analysis back to your goal of 

projecting potential future changes in coccolithophore blooms. I understand that this will be a follow-up 

paper, but this paper would gain a lot if you speculated at least. How can these biases be expected to 30 

impact these estimates? You could do some basic calculations using a Q10 function (see e.g. Nissen et 

al., 2018) or a temperature optimum function (see e.g. Krumhardt et al., 2017) describing the impact of 

temperature on phytoplankton growth. 

Answer: We modified it as follows: 

“To examine our percentile score-based model ranking method we analysed the spatial distribution of biases and 35 

trends for the full-model ensemble, selected best-model sub-set and top-model vs. reanalysis data for each target 

sea and parameter combination. Figure 6 illustrates the case for SST in the Barents Sea, and in the Supplements we 



24 

 

 

present maps for all variables and target regions. As seen in Fig. 6a, the full 28-model ensemble underestimates the 

SST in the target region while the top-model, MIROC-ESM, overestimates it. The selected 8-model ensemble 

shows smaller biases (± 1 K) in SST for the most part of the sea” 

 

p. 7, L. 13: What error do you mean here? Please be precise and make sure that all the metrics you present 5 

are carefully introduced in the method section. 

p. 7, L. 15-16: Please revise the grammar of this sentence. 

p. 7, L. 13-17: Similar to above, I don’t understand from the current presentation of the results what these 

mean.  

Answer: We modified the sentence as follows: 10 

“Illustrated in Fig. 5b, the spatial distribution of SST trends (the difference between model data and reanalysis data) 

indicates that the full 28-model ensemble overestimates the trends for the whole sea (model-reanalysis errors are 

0.03-0.07 K yr-1), the top-model MIROC-ESM partly underestimates the SST trend, but for the larger area it 

reveals reanalysis small trends (± 0.01 K yr-1) that are similar to Era-Interim.” 

 15 

p. 7, L. 24-28: This is repetitive with the method section and what should be in the figure caption. There 

is no need to state it this detailed in the main text. 

Answer: We modified the sentence as follows: 

“The selected best CMIP5 model sub-sets for five oceanographic and meteorological variables, viz. the sea surface temperature 

(SST) and salinity averaged over 0-30 m (SSS), surface wind speed at a height of 10 m (WS), ocean surface current speed 20 

(OCS), and shortwave downwelling solar radiation (SDSR) in the Barents, Bering, Greenland, Labrador, North and Norwegian 

seas are presented in Fig. 4.” 

 

p. 7, L. 28-30: Does it surprise you that the model combinations vary? 

Answer: In many studies that use climate model data, vast regions are considered, in particular, the entire 25 

Arctic. Most studies also use the approach when one set of models is selected for different parameters. 

Our results confirm that the same model does not properly reproduce the distribution features of all the 

parameters we examined and is not suitable for the analysis of large regions. It is one of our messages to 

readers to be more careful when to choose climate models at the study. 

 30 

p. 8, L. 3-5: How is “better performance” defined here? Is not clear to me how you conclude this. 

Answer: We modified the sentence as follows:  

“Analysis of comparison of all selected model sub-sets (see Supplements) shows that, in general, the selected best-

model ensemble assures somewhat better performance (with regard to the biases between model and reanalysis 

data) than either the full-model ensemble or the single top-model do. Comparing the full-model ensemble, selected 35 

sub-set models or/and top-model performance in terms of biases and trends, the selected best-model ensembles are 

more skilful in parameter simulations, respectively in 74% (biases) and 83% (trends) cases. The performance of 
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the selected models proved to be equal to the full-model ensemble and top-model efficiency, respectively in 13% 

(biases) and 10% (trends) cases, and they are less skilful in the simulations in 13% (biases) and 7% (trends) cases.” 

 

Conclusions 

p. 8, L. 13-16: The statement that the Arctic is often considered as a single region in other studies is never 5 

made in the introduction, but should be included there as a motivation to look at subregions. Furthermore, 

you don’t actually assess the whole area, so I suggest to revise this statement, as you don’t actually 

compare the performance over the whole area to the smaller subareas. 

Answer: We agree that we do not show results for all Arctic, but we study 6 seas, and we didn’t find 

models same good for such a large area. We modified the sentence as follows: 10 

“Despite the fact that the Arctic is often considered as one single region in many studies, our results show that 

CMIP5 climate models do not have consistent performance across such a large area. However, the selected best 

model ensembles show quite good results with lesser biases in smaller study regions, i.e., some specific arctic seas.” 

 

p. 8, L. 18: What about the temporal development of the environmental conditions? 15 

Answer: We suppose that trends are responsible for the temporal development of environmental 

conditions. 

 

p. 8, L. 18-21: Are more important than what? Please be precise. I cannot follow your logic here. Please 

revise to clarify, taking also into account the comments I made in the result Section. 20 

Answer: We modified the sentence as follows: “Therefore, we suppose that the spatial distribution of 

biases and trends in the considered parameters are as well important as other statistical metrics within the 

framework of the model selection procedure performed. Based on our results, we can also conclude that 

it is essential not only to analyse spatially averaged values, but also the spatial distribution of their 

amplitudes.”  25 

 

p. 8, L. 24: And the time series is even shorter for SSS and ocean currents, isn’t it? What is “out-of-

sample” testing? Please try to avoid introducing concepts in the conclusion section which were not 

discussed before. Why did you not test by excluding certain time periods from the analysis? 

Answer: We agree with the reviewer and deleted the following sentences: “Due to the short sample period 30 

of reanalysis data (1979-2005), we did this evaluation without out-of-sample testing. Definitely, it is better 

to test any model ranking method on another historical period. It will be possible to consider the period 

1950-2014 with the release of new data, e.g., CMIP6, ERA5.”  

We consider the period is very short to be divided into two independent periods for the analysis. 

 35 

p. 8, L. 27: important for what? Please be precise. 
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Answer: We modified the sentence as follows: “We can conclude that the range of different factors is 

important for model selection, including the spatial pattern of model biases, and the proposed 

methodology is a way of enhancing the model selection procedures sophistication that promises a better 

chance to identify more skilful models for the features we are interested in.” 

 5 

p. 8, L. 31: Why only at regional scales? 

Answer: We modified the sentence as follows: “Thus, the proposed method can be used for analyses 

regarding other regions with the purpose to evaluate climate model performance with respect to various 

atmospheric and oceanic parameters at different scales.” 

 10 

Figures/Tables 

Fig. 1: You don’t simply show the “locations of the blooming areas” here, but the spatial distribution of 

the frequency of blooms. Please be more precise. I suggest to show the subregions in the plot directly (put 

names and add e.g. a black contour to show the extent). Please add to the caption what data this map is 

based on and how you define a bloom. 15 

Answer: We corrected it as follows: “Figure 1: Spatial distribution of Emiliania huxleyi blooms 

occurrence based on the Ocean Colour Climate Change Initiative dataset version 3.0  (Kazakov et al., 

2018) for the Barents, Bering, Labrador, Greenland, North, and Norwegian seas. Black lines confine the 

territories where blooms occurred more than one 8-day period and show target sea areas.” 

 20 

Fig. 2: Be more precise in caption, a lot of information on what is seen in the plot is missing. What is the 

unit of the RMSD? 

Answer: We corrected the caption as follows: “Figure 2: A schematic representation of the percentile 

score-based model ranking method (Division of RMSD values distribution of 28 models into four groups 

that are limited by 25th, 50th  and 75th percentiles and the relative assignment of scores from 3 to 0 to 25 

each group accordingly -  very good, good, satisfactory and unsatisfactory).” 

 

Fig. 3: The way I know it, a Taylor diagram shows the RMSD (normalized by the standard deviation of 

the reference data set) on the x-axis, the standard deviation (normalized) on the y-axis and the correlation 

coefficient on the radial axis. It is not clear to me what exactly you’re showing. Please add labels to the 30 

plot (y-axis, grey circles) and also say what you’re showing in the caption (including units or state if you 

normalize by something). Also, please add panel labels to the plot and the caption. 

Answer: We decided to delete the Taylor diagram as it only illustrates root mean square deviation, 

standard deviation and correlation together; however, we analyzed these statistical metrics separately in 

the form of a table.  35 
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Fig. 4 & 5: Possibly replace “distribution” by “variability”? Be precise in what you show. What are the 

orange line and the whiskers? How is the bias defined (Fig. 4)? What trend is shown Fig. 5; trend in 

average over blooming period averaged over subregion?)? 

Answer: We corrected the caption of Figure 4 as follows: “Figure 3: Box plots of the spatial variability 

of SST biases, which are calculated as the difference between the model and reanalysis data in the Barents 5 

Sea over the vegetation season and the time period 1979-2005. Each box spreads from the lower quartile 

Q1 to the upper quartile Q3 of biases, the orange lines represent the medians. The lower “whiskers” are 

represented as Q1-1.5 Standard deviation and the upper “whiskers” are represented as Q3+1.5 Standard 

deviation.” 

We decided to delete Fig. 5, since it illustrates a similar analysis procedure as that in Figure 4. After 10 

revision, it is Figure 3 that we moved to the section Method. 

 

Fig. 6: Restate blooming period in caption, add unit of SST bias. 

Answer: We changed the caption as follows: “Figure 6a: Spatial distribution of biases in SST (K) between 

models and reanalysis data in the Barents Sea; the biases are averaged over June-September.” 15 

 

Fig. 7: What error are you showing here? Please add the unit of the SST trend in the caption. 

The colorbar currently states that you’re showing SST (K) – please double-check. Please restate the 

blooming period. 

Answer: We corrected the caption as follows: “Figure 6b: Spatial distribution of errors, which are 20 

calculated as the difference between model and reanalysis values of annual SST trends (K yr-1) in the 

Barents Sea (June-September)” 

 

Fig. 8: In my view, it is not really common to plot SST in Kelvin, consider changing it to °C. Please add 

the units of the variables in the figure caption. Explain what the fit is, exchange “x” and “y” by the actual 25 

variables you fitted. Please don’t use black/dashed for all fits, I suggest to change the color of each fit to 

the color of the respective full time series. 

Answer: We deleted this figure to avoid overloading of the paper with figures as it is not that much 

important in the manuscript. 

 30 

Fig. 9: Please briefly summarize what the numbers for each model-variable combination represent and 

refer back to the method section and Fig. 2. Please also explain in the caption what the white areas are 

and refer back to Table 1. Please add the units to the variables in the Figure caption. 

Answer: We modified the caption as follows: “Figure 4: Heat map with the final model scores obtained 

using the percentile score-based model ranking method for the five variables (sea surface temperature 35 

(SST, K) and salinity averaged over 0-30 m (SSS, psu), surface wind speed at 10 m (WS, m s-1), ocean 



28 

 

 

surface current speed (OCS, m s-1), and shortwave downwelling solar radiation (SDSR, W m-2) for the 

Barents, Bering, Greenland, Labrador, North, and Norwegian seas based on different statistical metrics 

(Figure 2, Table 2). The white areas indicate that the model was not considered due to partial or complete 

unavailability of hindcasts, and future projections (RCP4.5, RCP8.5) data..” 

 5 

Table 1: Replace “concrete” by “respective. Please define all abbreviations in the Figure caption (e.g. 

SST, WS…) and add units. 

Answer: We corrected accordingly: “Table 1. CMIP5 models used for simulation of selected parameters: SST 

– sea surface temperature in K, WS – near-surface wind speed in m s-1, SDSR – surface downwelling shortwave 

solar radiation in W m-2, SSS – sea surface salinity (averaged over 30 m) in psu, OCS – surface ocean current 10 

speed in m s-1 (models available for respective variable are marked as “+”)” 

 

Table 2: Please add units in the Figure caption. What is SDdif? This is never explained in the text (method 

section). Please be consistent with the use of underscores in caption and Table (e.g. Trm vs Trm). What 

does “modulus of standard deviation difference” mean? I don’t understand this. Please use the exact same 15 

names as introduced in the method section. 

Answer: We improved this part in the section Method. We corrected the caption as follows: 

“Table 2. Results of the CMIP5 model performance for SST in the Barents Sea. 

(Numbers in brackets indicate the models' scores. RMSD is the root-mean-square deviation, K; r is the 

correlation coefficient between models and reanalysis; RSR is the RMSD-observations standard deviation 20 

ratio; |SDdif| is the modulus of the standard deviation difference (model minus reanalysis), K; |Trm| is the 

modulus of spatial trend median difference (the model minus reanalysis), K yr-1; |Tra| is the modulus of 

spatial trend amplitude difference (the model minus reanalysis), K yr-1; |Brm| is the modulus of spatial 

bias median difference (the model minus reanalysis), K; |Bra| is the modulus of spatial biases amplitude 

difference (the model minus reanalysis), K).” 25 
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General comments – Reviewer #2 

This study evaluates (and ranks) the performance of 34 climate models in simulating 5 physical 

parameters [namely, sea surface temperature (SST) and salinity averaged over 0-30 m (SSS); surface 

wind speed at a height of 10 m (WS); ocean surface current speed (OCS); shortwave downwelling solar 

radiation (SDSR)] on a sub-regional scale in the Arctic and Subarctic regions. These 5 parameters are 5 

selected as “forcing factors (FFs) controlling E. huxleyi blooms in arctic and subarctic seas” (p. 2, line 

21) and tested in six seas (Barents, Bering, Greenland, Labrador, North and Norwegian seas) where the 

coccolithophore Emiliania huxleyi is known to form blooms. 

I believe the core of the study is interesting and merits publication, but I think the authors could and 

should do a better job at discussing (all) the results. By not having a primary focus on E. huxleyi blooms 10 

in the Introduction, the reader will be able to recognize the wider implications of this extensive 

intercomparison of climate models – it will also alleviate some of the major issues of neglecting “what 

else” underpins coccolithophore blooms and their occurrences. Nothing wrong with mentioning your 

motivation for selecting the regions of interest and the potentially relevant abiotic parameters, but as is, 

the reader is expecting more than is actually presented re. coccolithophore blooms (see below). 15 

Specific comments 

The authors explain that this study is a precursor for another study (in prep/planned by Kondrik et al.), in 

which these FFs will be applied to “model the future dynamics of E.huxleyi blooms” – so in fact, the 

current study has very little to do with E. huxleyi blooms apart from being the motivation for the presented 

set-up. There is no objection to test the model performance of the selected parameters, but the authors 20 

should do a better job at explaining why these factors were selected, and others ignored (i.e. because they 

cannot be assessed in the models? I wonder). Because it could be easily argued that the authors miss a 

crucial parameter in their line-up of FFs – nutrient availability – that arguably underpins any 

phytoplankton bloom (i.e. sustained exponential growth). Any biotic factors (e.g. grazing pressure) are 

ignored herein. 25 

Indeed, it is unclear what correlations are sought between the various FFs and E. huxleyi blooms – what 

do you mean with “affecting”? – e.g., the onset (triggers), the duration/maintenance of blooms, other 

affects? 

After reading the ms, I felt that the study is a valid and interesting intercomparison of climate models, 

raising important issues in simulating abiotic parameters, but that the initial focus on E. huxleyi seems 30 

too specific here; i.e. without it, all results could be presented just as well – or even better as these 

parameters surely affect more than just E. huxleyi, thus giving the study a wider relevance. In fact the 

authors conclude rather generally, without discussing specific implications for the next/planned study by 

Kondrik et al. – so that also gives the impression that the initial motivation need not take central stage in 

this ms (or the title). Still, I don’t fully understand what the strategy would be in “selecting the best 35 
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models” for such follow-up study, given the multivariate outcomes, this could/should be better explained 

in the final discussion and conclusion. 

Figure 9 (“heat map”) is a good visual representation of the amount of work performed and the complexity 

of the outcomes; not only does it show the range in performance between the listed models (1-34), but 

also how within one model the chosen parameters are simulated at different strengths – and, possibly even 5 

more intriguing (disconcerting?) that a model that performs very well for one sea, does not in another (for 

example, compare model 1, ACCESS1-3 in Barents and Bering Seas). Indeed, the authors conclude that 

the results “show that there is no optimal model ensemble or one top-model which could best simulate all 

factors across all of the study regions. Despite the fact that the Arctic is often considered as one single 

region in many studies, our results show that CMIP5 climate models do not have consistent performance 10 

across such a large area” (p.8, L. 12-15). 

What I miss, is an in-depth discussion why these inter-model, inter-parameter and inter-subregional 

differences exist – is this due to issues of spatial resolution, initial parameterization of each model (what 

it was built for) or real physical differences between the seas that models cannot address/capture? Again, 

I don’t know, but would be interested to learn what factors could underpin the results in Fig. 9. Currently, 15 

the “results and discussion” section reads as a list of figure descriptions rather than highlighting the main 

take-home messages (while figure captions could do with more information). Moreover, only one of the 

5 factors is highlighted (SST) as “an example” – I believe the paper would have a much greater impact if 

the other parameters get equal treatment or at least their highlights mentioned and discussed in the main 

text, not only in a supplement. 20 

Reply to Reviewer # 2: 

We thank reviewer #2 for very helpful comments. We fully agree with the arguments regarding the 

suitability of application of the proposed climate models selection methodology based on parameters that 

impact blooms not only E. huxleyi but also other phytoplankton in the study areas. Therefore, we decided 

to change the focus from the coccolithophore and concentrate on the methodology of choosing climate 25 

models. This step is fully justified, since this work, in its essence, is certainly not connected with the work 

performed by Kondrik et al. (2019) of simulating conditions that modulate the intensity of 

coccolithophore blooms. In the absence of a close connection to coccolithophores, the article indeed gains 

greater clarity and becomes focused on the substance of the research done on the comparative 

effectiveness of global climate models for specific marine objects. 30 

We improved all manuscript sections. Also we consider to move Fig. 4 and related text from the Results 

section to Materials and method, and delete Figures 3, 5, 8 due to either their resemblance to some akin 

figures or because their presence is not so important in the manuscript. In addition, we decided to add to 

the section Results and Discussion a new figure displaying the spatial distribution of biases in five 

parameters between the models and reanalysis data in target studied seas; the biases are averaged over the 35 

vegetation season and the time period 1979/1993-2005. We added Figure 5a-e, and following description: 
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“In order to analyse how well the selected best-model sub-sets represent five studied parameters, we analysed the spatial 

distribution of biases between the selected model ensemble and the respective reanalysis data in six target seas, viz, the Barents, 

Bering, Labrador, Greenland, Norwegian and North seas (Figure 5a-e). Thus, fewer biases in SSS are determined in the case 

of the Labrador, Greenland and Norwegian seas (±0.5 psu); high positive biases observed in the Bering Sea next to the 

coastline: up to 1.5-4 psu, this overestimation is possibly due to insufficiently accurate parameterization of the river runoff in 5 

the sub-arctic region (Figure 5a). SSS is underestimated in waters next to the coastline in the Barents and North seas (1.5-2.5 

psu), which is probably due to some overestimation of river runoff or underestimation of salty atlantic water. The selected 

CMIP5 models simulate SDSR (Figure 5b) well almost in all target seas: the biases in SDSR in the Barents Sea vary from 5 

to 14 W m-2 (≈4-10 %), in the Bering Sea – from 2 to10 W m-2 (≈2-9 %), in the Greenland Sea – from 0 to 12 W m-2 (≈0-7 

%), in the North Sea – from 1 to17 W m-2 (≈0-7 %), in the Norwegian Sea – from 4 to 9 W m-2 (≈2-5 %), only in the Labrador 10 

Sea the CMIP5 models overestimate SDSR and the biases much higher – from 20 to 29 W m-2 (≈11-15 %). The selected 

GCMs simulate WS well in all studied seas: the biases in WS are not more than 1 m s-1, only in some places of the Bering and 

North Seas’ coastal regions, the biases in WS simulations are up to about 1.5 m s-1 (Figure 5c). Concerning SST, we also 

obtained quite good results for the selected models. Low biases were observed mainly over the entire territory of the North 

and Norwegian seas constituting ±0.5° C (Figure 5d). Near the English Channel models overestimate the temperature by ≈2° 15 

C in the North Sea probably due to the influence of warm water from the English Channel, and models slightly underestimate 

the temperature by ≈1° C near the coastline in the Norwegian Sea. In the Labrador Sea, the CMIP5 models simulate SST with 

lower biases in the northern and north-western parts of the sea – ±0.5° C (Figure 5d). However, in the southern and south-

western parts of the sea, the models underestimate SST by ≈1-2° C, which is possibly due to the influence of the cold Labrador 

Current. In the Greenland Sea, the models underestimate SST by ≈1-1.5° C in the west probably also due to the influence of 20 

the cold Greenland Current and overestimate SST by ≈2° C in the south apparently due to overestimation of contribution of 

the warm Atlantic water (the North-Atlantic Current). In the Barents Sea, the models overestimate north-western part of the 

sea probably due to the influence of the warm atlantic water, and in the southern part of the study area, the models underestimate 

SST by ≈1-2° C probably due to some underestimation of the influence of coming warm atlantic waters. Finally, the CMIP5 

models simulate the surface ocean current speed with rather large biases, especially in the Bering Sea and closer to the Bering 25 

Strait (-0.19…0.14 m s-1), where the models mainly overestimate OCS (Figure 5e). Smaller biases in the modeling of the OCS 

by CMIP5 models found for the Barents and Greenland seas – from -0.06 to 0.03 m s-1. The biases in the other studied seas 

vary from -0.17 to 0.06 m s-1.” 

Below we present Figure 5 (a-e): 
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Figure 5a. Spatial distribution of biases in sea surface salinity models and reanalysis in six target seas averaged over the 

vegetation season and the time period 1993-2005. 
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Figure 5b. Spatial distribution of biases in surface downwelling solar radiation between models and reanalysis in six target 

seas averaged over the vegetation season and the time period 1979-2005. 
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Figure 5c. Spatial distribution of biases in near-surface wind speed between selected model ensemble and reanalysis in six 

target seas averaged over the vegetation season and the time period 1979-2005. 
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Figure 5d. Spatial distribution of biases in sea surface temperature models and reanalysis in six target seas averaged over the 

vegetation season and the time period 1979-2005. 
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Figure 5e. Spatial distribution of biases in surface ocean current speed models and reanalysis in six target seas averaged over 

the vegetation season and the time period 1993-2005. 

 

 5 

 

Abstract: first sentence, shortly name the reasons; why only carbon cycle mentioned here, as opposed to 

carbon and sulphur cycles in first sentence of Intro? 

Answer: We removed the first paragraph of Abstract in order to concentrate on the main goal of our 

manuscript. We changed the first paragraph as follows: 10 

“Currently, there are a large number of climate models that give projections for various oceanic and meteorological 

parameters in the Arctic. However, their estimates often differ in absolute values in specific sea areas in comparison 

with the historical reanalysis data. The main goal of this research was to find out the methodology of selection of 

the optimal model ensemble that most accurately reproduces the state of abiotic parameters inherent in six target 

arctic and sub-arctic seas, viz. the Barents, Bering, Greenland, Labrador, North and Norwegian seas.” 15 
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Line 25 (last paragraph): too much information (and acronyms) for abstract. Remove. 

Answer: We removed the last paragraph. 

 

Intro, p. 4. Lines 8 -14 - this paragraph "goes without saying"; what follows is generic order of methods, 

results, discussion. 5 

Answer: We agree with the Reviewer and we deleted this paragraph. 

 

Intro/Methods: What is a CMIP5 climate model / the CMIP5 project? Define and describe – currently not 

done anywhere. 

Answer: We introduced “CMIP5” in the first paragraph of the Introduction as follows: 10 

“Thus, the fifth phase of the Coupled Model Intercomparison Project (CMIP5) gives the opportunity to use data of more than 

30 GCMs (Taylor et al., 2012).” 

 

Figure 1 (if kept as motivation for selected regions), please state what type of data are shown and cite 

data sources in caption. 15 

Answer: We corrected it as follows: 

“Figure 1: Spatial distribution of E. huxleyi blooms occurrence based on the Ocean Colour Climate Change 

Initiative dataset version 3.0  (Kazakov et al., 2018) for the Barents, Bering, Labrador, Greenland, North, and 

Norwegian seas. Black lines confine the territories where blooms occurred more than one 8-day period and show 

target sea areas.” 20 

 

General: Many figure captions need more details for reader to follow or identify data Sources. 

Answer: We improved the figures captions as follows: 

“Figure 2: A schematic representation of the percentile score-based model ranking method (Division of RMSD 

values distribution of 28 models into four groups that are limited by 25th, 50th  and 75th percentiles and the relative 25 

assignment of scores from 3 to 0 to each group accordingly -  very good, good, satisfactory and unsatisfactory). 

Figure 3: Box plots of the spatial variability of SST biases, which are calculated as the difference between the 

model and reanalysis data in the Barents Sea over the vegetation season and the time period 1979-2005. Each box 

spreads from the lower quartile Q1 to the upper quartile Q3 of biases, the orange lines represent the medians. The 

lower “whiskers” are represented as Q1-1.5 Standard deviation and the upper “whiskers” are represented as Q3+1.5 30 

Standard deviation. 

Figure 4: Heat map with the final model scores obtained using the percentile score-based model ranking method 

for the five variables (sea surface temperature (SST, K) and salinity averaged over 0-30 m (SSS, psu), surface wind 

speed at 10 m (WS, m s-1), ocean surface current speed (OCS, m s-1), and shortwave downwelling solar radiation 

(SDSR, W m-2) for the Barents, Bering, Greenland, Labrador, North, and Norwegian seas based on different 35 

statistical metrics (Figure 2, Table 2). The white areas indicate that the model was not considered due to partial or 

complete unavailability of hindcasts, and future projections (RCP4.5, RCP8.5) data. 
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Figure 6a: Spatial distribution of biases in SST (K) between models and reanalysis data in the Barents Sea; the 

biases are averaged over June-September. 

Figure 6b: Spatial distribution of errors, which are calculated as the difference between model and reanalysis values 

of annual SST trends (K yr-1) in the Barents Sea (June-September)” 

 5 

Technical corrections 

If you decide to keep Emiliania huxleyi in, know to write the full species name the first time the species 

is introduced in the text, as well as any time you start a sentence with “E. huxleyi” (change to “Emiliania 

huxleyi”). Also put space between E. and huxleyi. Alternatively, as motivation you could mention 

“coccolithophore blooms” as a more generic way – and comment that many of the blooms in the Arctic 10 

and Subarctic are indeed formed by one species. 

Check: Winter et al., publication year is 2014? 

Answer: We thank the Reviewer; we have corrected ‘Emiliania’ word writing in the text; the correct form 

is Winter et. al (2013) 

 15 

p. 5, Line 7: delete “the” between “under” and “study” / and consider replacing as “under investigation”. 

Add “seas” after list of sea names. 

Answer: We corrected the sentence as follows: 

“The target regions are six arctic and subarctic seas: the Barents, Bering, Greenland, Labrador, North and 

Norwegian seas. Only specific areas were selected in each target sea relying on the results obtained by Kazakov et 20 

al. (2018) for the coccolithophore Emiliania huxleyi blooms based on the Ocean Colour Climate Change Initiative 

dataset version 3.0 (https://esa-oceancolour-cci.org/) for the period from 1998 to 2016.” 

 

 

Line 18: add: “The” seasonal cycle 25 

p. 7, Line 32: models (plural) 

p. 8, Line 28: add “the” before proposed methodology 

Answer: We corrected it. 

 

 30 

Below we present the proposed changes and modifications in the manuscript, and we will improve it 

further. 
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Simulation of factors affecting E.huxleyi bloomsoceanographic and 

meteorological parameters in arctic and subarctic seas by CMIP5 

climate models: model validation and selection 

Natalia Gnatiuk1, Iuliia Radchenko1, Richard Davy2, Evgeny Morozov1, Leonid Bobylev1 

1Nansen International Environmental and Remote Sensing Centre, St. Petersburg, 199034, Russia 5 
2Nansen Environmental and Remote Sensing Center, Bergen, N-5006, Norway 

Correspondence to: Natalia Gnatiuk (natalia.gnatiuk@niersc.spb.ru) 

Abstract. The coccolithophore E.huxleyi plays an essential role in the global carbon cycle. Therefore, considering the ongoing 

global warming, the assessment of future changes in coccolithophore blooms is very important. Our paper aims to provide a 

framework for selecting the optimum combination of global climate models to conduct such an assessment. To do this we 10 

analyse the forcing factors influencing present and future blooms using climate model projections. Then, based on the projected 

changes in the forcing factors, future changes in the dynamics of coccolithophore E.huxleyi blooms can be determined. 

Here we describe Currently, there are a large number of climate models that give projections for various oceanic and 

meteorological parameters in the complex Arctic. However, their estimates often differ in absolute values in specific sea areas 

in comparison with the historical reanalysis data. The main goal of this research was to find out the methodology used for of 15 

selection of the optimal model ensemble that most accurately reproduces the state of abiotic parameters inherent in six target 

arctic and sub-arctic seas, viz. the Barents, Bering, Greenland, Labrador, North and Norwegian seas. 

Here, we present the validation of 34 CMIP5 climate models, and the selection of models that bestatmosphere-ocean General 

Circulation Models (GCM) over the historical period 1979-2005. Furthermore, we propose a procedure of model ranking and 

selection, which is based on the model’s skill to represent the regional features of the several important oceanographic and 20 

meteorological factors affecting E.huxleyi blooms in parameters in the arctic and subarctic seas: the sea surface (i) water 

temperature and (ii) salinity; (averaged over the top 30 m); (iii) wind speed at a height of 10 m above the surface; (iv) ocean 

surface current speed; and (v) surface downwelling shortwave radiation. The validation of the CMIP5 Atmosphere-Ocean 

General Circulation ModelsGCMs against reanalysis data includes analysis of the interannual variability, seasonal cycle, 

spatial biases and temporal trends of the simulated forcing factors. Here we propose a percentile score-based model ranking 25 

method for the selection of the best models from the CMIP5 ensemble. The selection of the best models was performed 

separately for each study area in the Barents, Bering, Greenland, Labrador, North and Norwegian Seas and for each of the five 

forcing factors affecting the coccolithophore blooms.parameters. In total, 30 combinations of mosthigh-skilful models were 

selected. for 5 variables over 6 study regions. The results show that there is no commonmutually optimal combination of 

models, nor is there a one top-model, that has higha skill in reproducing either the regional climatic-relevant features across 30 

the combinationof the whole Arctic region or all combinations of the five considered forcing factors and all arctic and 
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subarcticparameters in target seas. However, some climate models consistently show good skill for many of these combinations 

e.g. ACCESS1-3; ACCESS1-0; HadGEM2-AO; HadGEM2-CC; HadGEM2-ES; GFDL-CM3; INMCM4; GISS-E2-R; GISS-

E2-R-CC. The models that have the smallest skill for the majority of the study regions are CMCC-CM; FGOALS-g2; IPSL-

CM5A-LR; IPSL-CM5A-MR; IPSL-CM5B-LR; MIROC5; MRI-ESM1. Thereby, according to our methodology for each 

‘variable – target sea’ combination, a unique best model subset was selected with the number of included models varying from 5 

7 to 11. 

The paper presents a comparison of the selected best-model sub-sets and the ensemble of all available models with the 

respective reanalysis data. The selected best-model sub-sets show a better performance vs. full-model ensemble in more than 

70% cases that confirms the advisability of using the proposed model ranking method. 

1 Introduction 10 

The coccolithophores contribute significantly to the global carbon and sulphur cycles (Malin et al., 1993; Matrai et al., 1993; 

Rivero-Calle et al., 2015; Winter et al., 2013). Additionally, they contribute to the generation of sulfate aerosols which scatter 

solar radiation in the atmosphere and act as cloud condensation nuclei, enabling cloud formation; therefore, coccolithophores 

are responsible for both warming and cooling effects on the global climate (Charlson et al., 1987; Wang et al., 2018a, 2018b). 

Consequently, it is essential to study the dynamics of E.huxleyi blooms. 15 

E.huxleyi belongs to the group of small phytoplankton with a size of a few µm, and can form extensive blooms covering more 

than 100,000 km2 (Brown and Yoder, 1994; Kondrik et al., 2017; Raitsos et al., 2006). E.huxleyi is a temperature and salinity 

tolerant alga; therefore, it is distributed in the waters of the arctic and subarctic, as well as in equatorial and subtropical waters 

(Fernandes, 2012; Flores et al., 2010; Kondrik et al., 2017; Okada and McIntyre, 1979; Winter, 1994). 

Since changes to the regional climate have influenced the ecosystems of the Arctic seas, coccolithophores, particularly 20 

E.huxleyi, have increasingly expanded their range into polar waters (Henson et al., 2018; Winter et al., 2013). Winter et al. 

(2013) suggest that this poleward expansion of E.huxleyi is driven by changes in water temperature, salinity, or nutrients. 

E.huxleyi blooms have high positive correlation with the following set of parameters: temperature (3-15 ̊ C), high light intensity 

(25-150 µmol quanta m2 s-1 or 5-33 W m-2) (Iglesias-Rodríguez et al., 2002) and higher N:P ratio (Lavender et al., 2008). 

Raitsos et al. (2006) noted that the combination of high solar radiation, increased sea surface temperature, and shallow mixed 25 

layer depth contributed to the increase in coccolithophores in the North Atlantic region. In addition, wind is one of the 

environmental factors that influences a bloom of coccolithophores by controlling the amount of vertical mixing in the 

subsurface layer; therefore, the decrease in wind stress during summer months results in a decrease in the mixed layer depth, 

and consequently it has a positive effect on E.huxleyi growth (Raitsos et al., 2006). 

A detailed analysis of a wide range of forcing factors (FFs) controlling E.huxleyi blooms in arctic and subarctic seas was 30 

performed using a machine learning method (Kondrik et al., 2019). Kondrik et al. (2019) identified that sea surface temperature 
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and salinity, near-surface wind speed at a height of 10 m, shortwave downwelling solar radiation, and ocean surface current 

speed are the most important oceanographic and meteorological factors for the blooming of coccolithophores and ranked the 

degree of their influence for each of the Barents, Bering, Greenland, Labrador, North and Norwegian Seas. Further, Kondrik 

et al plan to model the future dynamics of E.huxleyi blooms using the statistical models developed in the course of 

implementing a multifactorial statistical algorithm based on machine learning techniques, described in detail in Kondrik et al. 5 

(2019). The model-selection procedure and the resultant optimum combinations of CMIP5 models presented in this paper will 

be used as input data for Kondrik et al to model the dynamics of blooms in future scenarios. Therefore, the main goal of our 

study is to validate the ability of CMIP5 climate models to reproduce regional features of the FFs and then to select the best 

combination of CMIP5 model ensembles to be used in the modelling of the future dynamics of E.huxleyi blooms in six arctic 

and subarctic seas. 10 

It is well established that the ensemble averaging method can be used to reduce the errors, biases and uncertainties in the 

individual climate models (Flato et al., 2013; Gleckler et al., 2008; Knutti et al., 2010a, 2010b; Pierce et al., 2009; Reichler 

and Kim, 2008). The main recommendation from climate model developers, in case it is not possible to calibrate a model for 

a selected region, is to take into consideration more than one climate model (Flato et al., 2013; Gleckler et al., 2008; Knutti et 

al., 2010b; Pierce et al., 2009). There are two main approaches for the use of climate model ensembles: (i) use of the full-15 

ensemble average data (Flato et al., 2013; Gleckler et al., 2008; Knutti et al., 2010b; Reichler and Kim, 2008); and (ii) selection 

of an ensemble of the best models from the full set of available climate models (Herger et al., 2018; Knutti et al., 2010b; 

Taylor, 2001). These two approaches usually give a good result. However, when there are many climate models available (e.g., 

in our study the number of models available varied from 25 to 30 depending on the climate variable), then the averaging 

method will result in a very strong smoothing of the data, the interannual variability will be poorly reproduced, and only the 20 

long-term trend of a given variable will be well captured. Therefore, we chose the second approach – selection of climate 

models that properly simulate the regional features (spatial distribution) of the influencing factors under study (sea surface 

temperature and salinity, surface wind speed at 10 m, ocean surface current speed, and surface downwelling shortwave 

radiation). At that, it was important to define an appropriate methodology for the selection of the best model ensembles. 

Today climate models are state-of-the-art tools for the prediction of the future status of the climate system components on 25 

decadal and centennial time scales (Otero et al., 2018; Taylor et al., 2012). In particular, the modern coupled atmosphere-ocean 

General Circulation Models (GCMs) include the main climate system components such as the atmosphere, ocean, land and 

sea-ice, and therefore, represent more realistically the processes of their interactions. Thus, the fifth phase of the Coupled 

Model Intercomparison Project (CMIP5) gives the opportunity to use data of more than 30 GCMs (Taylor et al., 2012). The 

GCMs provide a large number of the meteorological and oceanographic parameters allowing to perform a comprehensive 30 

assessment of possible climate change impacts on marine ecosystems in the future. However, most of the studies addressing 

the CMIP models intercomparison show that the GCMs outputs usually vary significantly (Almazroui et al., 2017; Fu et al., 
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2013; Gleckler et al., 2008). Therefore, it is important to find a reliable approach for both model quality intercomparison and 

selection of optimal models for each specific scientific task and region. 

The main goal of the paper is to find a reliable approach for CMIP5 model selection, in particular, those climate models that 

simulate most efficiently the state of abiotic parameters relevant to living conditions of phytoplankton communities inherent 

in a number of seas at subpolar and polar latitudes (viz. the Barents, Bering, Greenland, Labrador, North and Norwegian seas). 5 

Such a specific task is selected as a case study to have the results that would be applied for projections of abiotic factors 

affecting the dynamics of phytoplankton communities. 

It is well established that the method of ensemble averaging can be used to reduce systematic model biases in the individual 

climate models (Flato et al., 2013; Gleckler et al., 2008; Knutti et al., 2010; Pierce et al., 2009; Reichler and Kim, 2008; Stocker 

et al., 2010). Furthermore, in case it is not possible to calibrate a model for a selected region, one of the main recommendation 10 

from climate model developers is to take into consideration more than one climate model (Flato et al., 2013; Gleckler et al., 

2008; Pierce et al., 2009; Stocker et al., 2010). There are two main approaches to employing climate model ensembles: (i) use 

of the full-ensemble average data (Flato et al., 2013; Gleckler et al., 2008; Reichler and Kim, 2008; Stocker et al., 2010); and 

(ii) selection of an ensemble of the best models from the entire set of available climate models based on a comparison with 

observational data for a historical period (Herger et al., 2018; Stocker et al., 2010; Taylor, 2001). These two approaches are 15 

equally used depending on a specific scientific task: (i) full-ensemble averaging for future trends analysis, and (ii) selection of 

the best models ensembles for regional climate features analysis. However, when there are many climate models available 

(e.g., in our study the number of models available varied from 25 to 30 depending on the climate variable), then the averaging 

method will result in very strong smoothing of data, and poor reproduction of the interannual variability. So that only the long-

term trend of a given variable will be well captured. We assume that a climate model that successfully represents the present-20 

day conditions will also succeed in the future projections. Therefore, we chose the second approach, e.g., a selection of climate 

models that properly simulate the current regional features, including the spatial distribution, of the meteorological and 

oceanographic parameters under study (sea surface temperature and salinity, surface wind speed at 10 m, ocean surface current 

speed, and surface downwelling shortwave radiation). At that, it was important to define the appropriate methodology for 

selection of the best model ensembles. 25 

There are many approaches for the selection of an optimal set of climate models. One approach suggests choosing the models 

basedwith focus only on thesome key climatological parameters, e.g.,such as air temperature, precipitation and sea level 

pressure (Almazroui et al., 2017; Duan and Phillips, 2010; Pierce et al., 2009; Sarr and Sarr, 2017), believing. This approach 

assumes that if the models skillfully reproduce these key parameters, then they also have skill inmust be good at reproducing 

the regional climate in general. Another approach, which is often used in this study, is to select a unique combination of models 30 

for each parameterstudy variable (Agosta et al., 2015; Anav et al., 2013; Fu et al., 2013; Gleckler et al., 2008). 

There are many publications which address the selection of climate models, including the application of a ranking method. For 

example, Agosta et al. (2015) ranked the CMIP5 models using only one statistical metric – a climate prediction index (ratio of 
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root mean square error to standard deviation of observations). Gleckler et al. (2008) evaluated climate models and ranked them 

analyzing the climatology  of the annual cycle, inter-annual variability, and relative errors. They noted that the performance 

of the climate models varies for different parameters. Das et al. (2018) assessed 34 CMIP5 models using three criteria: mean 

seasonal cycle, temporal trends, and spatial correlation, and selected the models using a cumulative ranking approach. Fu et 

al. (2013) and Ruan et al. (2019) In order to select such a unique combination of models, it is necessary, firstly, to perform a 5 

validation of climate models through comparing GCMs outputs with the respective observations over a historical period, and 

then to identify the appropriate climate models based on statistical measures, i.e. to sort or rank the tested models. However, 

there are no generally accepted solutions for this task. For example, Agosta et al. (2015) ranked the CMIP5 models using only 

one statistical metric, viz, a climate prediction index, which is the ratio of the root mean square error to the standard deviation 

of observation data. Gleckler et al. (2008) evaluated the CMIP5 models and ranked them through analyzing the climatology 10 

of the annual cycle, inter-annual variability, and relative errors. They found that the performance of the analysed models varies 

for different parameters. Das et al. (2018) assessed 34 CMIP5 models using the following three criteria: the mean seasonal 

cycle, temporal trends, and spatial correlation. On this basis the models were selected using a cumulative ranking approach. 

Fu et al. (2013) and Ruan et al. (2019) applied a score-based method using multiple criteria for the assessment of CMIP5 

model performance: mean value, standard deviation, normalized root mean square error, linear correlation coefficient, Mann-15 

Kendall test statistic Z, Sen’s slope, and significance score. Further, Ruan et al. (2019) selected the top 25% ranked CMIP5 

models for the creation ofFurther, Ruan et al. (2019) selected the top 25% ranked CMIP5 models for composing a multi-model 

ensemble for air temperature projections over the Lower Mekong Basin. Fu et al. (2013) and Ruan et al. (2019) ranked models 

using a weight criterion from 0.5 to 1.0. Ruan et al. (2019) reported that introducing multiple criteria gives less uncertainties 

in the models’ performance in comparison with observation data(2019) ranked the employed models using a weight criterion 20 

from 0.5 to 1.0. Ruan et al. (2019) reported that the introduction of multiple criteria results in less uncertainties in the models’ 

performance in comparison with the respective observation data. However, Fu et al. (2013) and Ruan et al. (2019) did not 

consider the feature of spatial distribution of variables. 

We consider that applying a score-based method using multiple criteria is most appropriate for our study. Since we deal with 

six arctic and subarctic seas with rather different environmental conditions and a wide range of parameters, it was decided to 25 

individually analyze each sea. Moreover, we analyzed the model data only for the areas where E.huxleyi blooms were observed 

to occur, because we highly prioritized the capability of the models to properly capture the local features in the areas of the 

blooms. 

In the following section, we give a description of the data used and methodology applied for the validation analysis and 

selection of the climate models based on a percentile score-based model ranking for each sea and factor. Section 3 gives a 30 

detailed example of the applied methodology and contains results and discussions of the selection of the best climate model 

ensemble for sea surface temperature in the Barents Sea, along with the overall ranking of models for each considered sea and 

factor. Analysis of the results from our percentile score-based model ranking method are given in the Supplementary material 
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(spatial distribution of biases and errors in trends for each sea & FF combination). And finally, Section 4 presents the 

conclusions. 

We decided to compile and improve the previously applied approaches that is to employ the multiple criteria ranking method 

following Fu et al. (2013) and Ruan et al. (2019) studies but (i) taking into consideration the Agosta et al. (2015) climate 

prediction index, (ii) analysing the features of spatial distribution of target variables (spatial biases and trends), (iii) ranking 5 

the models with the percentile method (25th,50th, 75th) that is widely used in statistical analysis, and, finally, (iv) selecting the 

top 25% ranked CMIP5 models following Ruan et al. (2019). 

As the target arctic and subarctic seas differ in physical and geographical conditions, we performed the validation and selection 

model procedure for each sea individually. Moreover, we analyzed the specific marine areas with the stable localizations of 

intense growth of phytoplankton species both in spring (e.g. diatoms) and in summer-autumn (e.g. coccolithophores Kondrik 10 

et al., 2017; Smyth et al., 2004). Thus, the target regions permitted to identify the CMIP5 models that represented most closely 

the cumulative state of the physical environmental factors (abiotic parameters) characterizing the conditions, under which the 

aforementioned blooms occurred. Such a specific task eventuated in the results that can be useful for further improvements of 

marine ecological models encompassing the phytoplankton community as well as for modelling the dynamics of physical 

parameters relevant to surface water environment at high-latitude seas under conditions of changing climate. 15 

2 Materials and method 

2.1 Data 

As mentioned above, the FFs influencing the blooms of E.huxleyi in arctic and subarctic seas are:Thirty-four CMIP5 GCMs 

outputs for the historical period 1979-2005 were used in this study. The data are freely available on the ESGF portal 

(https://esgf-node.llnl.gov). The list of climate models used is presented in Table 1. We analyzed five oceanographic and 20 

meteorological variables, namely the sea surface temperature (SST) and salinity averaged over 0-30 m (SSS), surface wind 

speed at a height of 10 m (WS), ocean surface current speed (OCS), and shortwave downwelling solar radiation (SDSR). For 

the selection of the best climate models for reproducing the regional features of the distribution of these factors, we used 

historical projections from Atmosphere-Ocean General Circulation Models (GCMs) that were carried out in the framework of 

the CMIP5 project, available from the ESGF portal (https://esgf-node.llnl.gov). On the one hand, these models have low 25 

resolution (on average it is 150 km), but on the other hand, they include both the atmospheric and oceanic components, and 

cover all studied regions. Whereas the regional models have high resolution of 11-25 km (e.g., CORDEX) but simulate only 

atmosphere or ocean separately, and do not cover all six seas within the same model run. In total, we considered 34 GCMs for 

the historical experiment, but the number of models available for concrete forcing factors varies. The list of climate models 

used and their main characteristics are presented in Table 1. The atmospheric and oceanic reanalyses data were used for the 30 

evaluation and verification of the climate model performance: (i) Era-Interim - for surface wind speed at 10 m, sea surface 
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temperature and shortwave downwelling solar radiation for the period from 1979 to 2005; (ii) GLORYS2V4 - for sea surface 

salinity and ocean surface current speed for the period from 1993 to 2005. The period for verification of the climate models 

was chosen based on the length of the reanalysis data and the limitations from the “historical” runs of the climate models, 

which usually end in 2005. We used the Era-Interim Reanalysis with the resolution 0.75˚ x 0.75˚ from the European Centre 

for Medium-Range Weather Forecasts (https://apps.ecmwf.int)These abiotic parameters are known to affect the phytoplankton 5 

life cycle in sub-polar and polar latitudes (Iglesias-Rodríguez et al., 2002; Raitsos et al., 2006; Winter et al., 2013). The 

availability of the CMIP5 GCMs analysed in this study are listed in Table1: in total, we used 25 models for OCS, 28 for SSS, 

SST, SDSR, and 30 for WS. For validation of the climate models outputs we used atmospheric and oceanic reanalyses: (i) Era-

Interim from the European Centre for Medium-Range Weather Forecasts (https://apps.ecmwf.int) (Dee et al., 2011). The  for 

the surface wind speed at 10 m, sea surface temperature, and shortwave downwelling solar radiation for the period from 1979 10 

to 2005; and (ii) GLORYS2V4 (Global Ocean Reanalysis and Simulation version 4) Reanalysis is available at a global scale 

(with resolution 1˚ x 1˚) from the European Copernicus Marine Environment Monitoring Service (http://marine.copernicus.eu). 

Selected(http://marine.copernicus.eu) for the sea surface salinity and ocean surface current speed for the period 1993-2005. 

The period for verification of the employed climate models was chosen based on the length of the reanalysis data and the 

limitations inherent in the “historical” runs of the GCMs, which usually terminate in 2005. The selected reanalyses are widely 15 

used in the literature and hashave been shown to be consistent with independent observational data (Agosta et al., 2015; Dee 

et al., 2011; Garric et al., 2017; Geil et al., 2013). 

2.2 Study regions and Methods 

Regions under the study are six arctic and subarctic seas: Barents, Bering, Greenland, Labrador, North and Norwegian. The 

areas where E.huxleyi blooms occurred in these regions presented in Fig. 1, showing the number of 8-day periods when blooms 20 

were observed. Before conducting a selection of climate models, we applied a spatial-coverage mask to confine the territories 

of the study seas where blooms occurred more than one 8-day period during 1998-2016. We focused only on the periods of 

E.huxleyi blooms and analysed data for a specific blooming period for each sea with respect to the seasonal distribution of the 

coccolithophore blooms: June-September for the Barents and Labrador seas, January-December for the Bering Sea, June-

August for the Greenland Sea, May-July for the North Sea, and May-August for the Norwegian Sea (Kazakov et al., 2018). 25 

Therefore, the selection of the climate models was carried out individually for each sea. 

InThe target regions are six arctic and subarctic seas: the Barents, Bering, Greenland, Labrador, North and Norwegian seas. 

Only specific areas were selected in each target sea relying on the results obtained by Kazakov et al. (2018) for the 

coccolithophore Emiliania huxleyi blooms based on the Ocean Colour Climate Change Initiative dataset version 3.0 

(https://esa-oceancolour-cci.org/) for the period from 1998 to 2016. The selection of the listed seas and the specific areas within 30 

them was prompted by several reasons: firstly, in the context of global climate change, the subarctic and arctic seas are 

characterized by one of the most pronounced changes in environmental parameters due to the so called Arctic amplification, 

https://apps.ecmwf.int/
http://marine.copernicus.eu/
https://esa-oceancolour-cci.org/
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and, secondly, in the target water areas, summer-autumn phytoplankton blooms (e.g. Emiliania huxleyi) have a steady 

localization, while in other parts of the investigated seas the localization of phytoplankton blooms is variable from year to 

year. For identifying the specific study areas, on the raster image with all blooming events during 1998-2016 we masked 

polygons that confine the territories seas where blooms occurred more than one 8-day period (Fig. 1). Besides, the periods for 

model validation were selected based on a sea-specific blooming periods, which include all summer months and, in some 5 

cases, beyond them: June-September for the Barents and Labrador seas, June-August for the Greenland Sea, May-July for the 

North Sea, May-August for the Norwegian Sea, and January-December for the Bering Sea (Kazakov et al., 2018). Thus, it is 

noteworthy that the results of the performed comparison of models can be used not only in terms of marine ecology-related 

issues but also for the purposes of forecasting of the region-specific climate interactions during the vegetation season, taking 

into account that the selection of the climate models was carried out individually for each sea/sea zone. 10 

2.3. Model evaluation metrics 

The CMIP5 climate models were validated against the reanalysis data in order to assess how well CMIP5 climate models they 

reproduce the regional features of the FFs distribution they were validated by means of comparison of model simulations with 

the reanalysis data.the selected parameters/variables. The validation methodology offor the validation of GCMs outputs 

included the analysis of the climatological-mean seasonal cycle and, interannual variability of FFs forand trends, and analysis 15 

of spatial distributions of climatological-mean biases and trends for selected parameters averaged over the blooming period in 

each sea. Seasonal 

a) The seasonal cycle was analysedanalyzed using the multi-year averaged monthly variables for all months of the year (i.e., 

a sample size of 12), but interannual variability was analysed based on monthly variables for the blooming periods only (sample 

size varied according to sea and FF combination, e.g., a sample size for SST in the Barents Sea was 108 – monthly variables 20 

from June to September during 1979-2005).). Basic statistical measures were used for both analyses:calculated, such as the 

root-mean-square deviation (RMSD), the correlation coefficient between GCMs and reanalysis (r), root mean square deviation 

(RMSD), andand the standard deviation (SD) (Fu et al., 2013; Gleckler et al., 2008; Kumar et al., 2015; Ruan et al., 2019). 

Additionally, we calculated RMSD-observations standard deviation ratio (RSR) – one of the model evaluation statistics that 

weighs the simulated data against the observationsIn addition, following Agosta et al. (2015) we calculated the climate 25 

prediction index (CPI) for the seasonal cycle, which is a ratio of the model root mean square error to the standard deviation of 

observation data. This model evaluation statistics weighs the simulated data against the observations and often used to validate 

model data (Agosta et al., 2015; Golmohammadi et al., 2014; Moriasi et al., 2007; Murphy et al., 2004; Stocker, 2004). For 

the interannual variability analysis we also calculated the spatial distribution of temporal trends and spatial bias between the 

model data and reanalysis (Anav et al., 2013; Das et al., 2018; Fu et al., 2013; Gleckler et al., 2008; Kumar et al., 2015; Ruan 30 

et al., 2019). Further, we applied our percentile score-based model ranking method of giving a score to each statistical measure 

for each model. Figure 2 shows an example of this approach applied to RMSD of sea surface temperature in the Barents Sea. 

We divided the statistical measures into 4 groups based on the amplitude of the calculated metrics 
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b) The interannual variability of the parameters was analyzed based on monthly variables solely for blooming periods (the 

sample size varied according to sub-region and parameter combination, e.g., a sample size for SST in the Barents Sea was 108 

– monthly variables from June to September during 1979-2005). The same statistical measures for analysis of the seasonal 

cycle were used, viz. RMSD, r, SD, and CPI. 

c) The spatial distribution of biases and trends between the model outputs and the reanalysis data were calculated for 5 

temporal-averaged data in each grid point of the target marine zone. 

2.4. Percentile score-based model ranking method 

For ranking models and selection of the best model sub-set, we proposed and employed the percentile score-based model 

ranking method, which is a compilation of the previously applied model ranking and the selection approaches with some 

modifications (see also Introduction). Following Fu et al. (2013) and Ruan et al. (2019), we used the multiple criteria for model 10 

selection (RMSD, r, SD). Following Agosta et al. (2015) we analysed the climate prediction index (CPI), and considered the 

differences in spatial distributions of biases and trends between the model outputs and the respective reanalysis data. Further, 

we ranked the models based on the percentile method (25th, 50th, 75th) for each obtained statistical metrics based on the 

amplitude of its values. Finally, we selected the top 25% ranked CMIP5 models following Ruan et al. (2019) for each 

considered oceanographic and meteorological parameter, and target region. Thus, for example, for a sample of 28 models, the 15 

top 25% is a sub-set of 7 models that showed the best total-score. However, if two or more models show the same score they 

all are included in the selected best model sub-set. Thus, the number of included models in selected best model subsets varying 

from 7 to 11. 

Figure 2 illustrates an example of the percentile score-based ranking approach applied to RMSD of the sea surface temperature 

in the Barents Sea. We divided the obtained statistical measures into 4 groups based on the amplitude of the values and assigned 20 

a score to each model according to its group: (i) models considered as very good (less than 25%)25th percentile of the statistical 

metrics distribution) were assignedgiven a score of 3; (ii) good models (between 50%50th and 25%)25th percentile) were 

assignedgiven a score of 2; (iii) satisfactory models (between 75%75th and 50%)50th percentile) were assignedgiven a score 

of 1; and (iv) unsatisfactory models (more than 75%)75th percentile) were assignedgiven a score of 0. In the case of the 

correlation coefficient, it is vice versa, very good models with correlations scores above 0.75 ranked with a score of 3, and so 25 

forth. Finally, we summed up the total score for each GCM and selected the optimal ensemble of climate models which we 

take to be the top 25% of GCMs ranked according to their total score. This procedure was applied to each factor and study 

regionwere ranked with a score of 3, and so forth. 
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3 Results and discussion 

In this section, we describe the selection of the best GCM ensemble for SST in the Barents Sea as an example of our 

methodology. In addition, we provide final results of the model For ranking – the best model ensembles for each considered 

factor and sea. The rest of models based on the obtained results are summariseddifferences in the supplementary material. 

Figure 3 shows two Taylor diagrams, which combine the following statistical measures: correlation coefficient (r), standard 5 

deviation (SD) spatial distributions of biases and root-mean-square deviation (RMSD) on one graphtrends between model 

outputs and show how well the simulated data fit the observed patterns (Taylor, 2001). Figure 3 illustrates that all GCMs 

capture the seasonal cycle (left) much better than the interannual variability (right). The obtained correlation coefficient for all 

models is more than 0.95 for the seasonal cycle, whereas, for the interannual variability it varies from 0.28 to 0.83. 

Simultaneously, the SD and RMSD have a wide spread of values in both cases – SD for the seasonal cycle varies from 0.27 to 10 

2.67 and for the interannual variability – from 0.75 to 2.55, RMSD ranges from 0.26 to 5.15 for the seasonal cycle and from 

0.98 to 7.06 for the interannual variability. The closer the model data to the x-axis, the better the correlation coefficient, and 

the closer the model data to the dotted line (that represents SD of the reanalysis), the better the model reproduces the variability 

of the climate parameter. The closer the model data to the reanalysis point, the smaller RMSD that is represented by semicircle 

lines in Fig. 3. The ranking method was carried out for the correlation coefficient in the range from 0 to 1, where the group 15 

with the maximum values in the range 0.75-1 was assigned the score of 3. 

Figure 4 presents the box plots of spatial distribution of SST biases in the bloom area of the Barents Sea for the blooming 

period (June-September) during 1979-2005. For the model ranking, we analysed the absolute values of boththe median bias 

and the amplitude of the spatial variation in model biases. For example, Figure 3 displays the box plots of spatial variability in 

SST biases relevant to the target area in the Barents Sea for the vegetation season (June-September) and the study period 1979-20 

2005. The median bias varies from 0 to -6.6 K(model #20) to 1.5 K (model #24) among the models, whereas the amplitude 

bias has a wide spread of values from 10.87.3 (model #21) to 19.816.5 K. We  (model #3). Thus it can concludebe concluded 

from Fig. 43 that the analysis of spatial distribution of biases is very important, e.g., if we compare the model #2 (ACCESS1-

3) with the model #3 (CanESM2), we can see that the medians of these two models have a small difference (0.28 K), while, 

the amplitude of spatial values for the model #3 is much higher than that for model #2. After the applicationApplication of the 25 

percentile score-based method, the model to modes #2 (ACCESS1-3) was included into the optimal ensemble, whereas and 

the model and #3 (CanESM2) was not included. 

Box plots of the spatial distribution of annual trends of SST in the Barents Sea are shown in Fig. 5. The median for SST does 

not reveal any trend in the Era-Interim reanalysis, while for the modelsresulted in inclusion of the former in the best-model 

sub-set, whereas the latter was placed beyond it varies from -0.02 K yr-1 to 0.18 K yr-1. From Fig. 5 we can conclude that some 30 

models show significant trends. Therefore, if these models show an unrealistic trend during the historical period, then they 

could give higher errors in the projections for the future period. For the ranking of models, we analysed the absolute values of 
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differences between model and reanalysis trends, specifically median of the trends and the amplitude of the spatial variation 

in the trends.(Fig. 4). 

Table 2 presents all calculated statistics that were used to rank GCMs for SST in the Barents Sea as well as the final total score 

for each model. The spread of the total assigned scores is from 9 to 35. Based on this range we selected the top 25% of GCMs. 

Thus, the best model ensemble for SST for the Barents Sea is the 8-model set: ACCESS1-0; ACCESS1-3; GFDL-CM3; 5 

HadGEM2-AO; HadGEM2-ES; MIROC-ESM; MIROC-ESM-CHEM; MPI-ESM-LR; MPI-ESM-MR. Additionally, we 

identified the top-model for SST in this region – MIROC-ESM. The same procedure was performed for other target seas/zones 

and variables. 

3 Results and discussion 

Figure 6 showsThe selected best CMIP5 model sub-sets for five oceanographic and meteorological variables, viz. the spatial 10 

distributionsea surface temperature (SST) and salinity averaged over 0-30 m (SSS), surface wind speed at a height of 10 m 

(WS), ocean surface current speed (OCS), and shortwave downwelling solar radiation (SDSR) in the Barents, Bering, 

Greenland, Labrador, North and Norwegian seas are presented in Fig. 4. Each number of the heat map shows the final skill 

score for one model-variable intersection. For each individual column, its own colour gradation was applied based on percentile 

ranking approach; therefore, the same numbers can have different colours on the heat map. For example, for OCS in the Barents 15 

Sea, the spread of the final model scores is from 7 to 26, whereas for SSS it is from 8 to 34. Therefore, even model #3 CanESM2 

has the total score 26 for SSS (which is higher than that (25) for OCS), this model was not included in the SSS best model sub-

set and has red color, whereas for OSC it is included in the best model sub-set and has green color. The final skill scores of 

the models, which were selected as the best model sub-sets are highlighted in bold blue, and their total number is indicated at 

the bottom of each column. 20 

Analysing the heat map, one can conclude, that there is no an optimal model ensemble, or a one top-model, which could 

properly simulate all parameters over target seas/regions. However, some climate models show good results for many cases, 

e.g., biases for SST ACCESS1-3; ACCESS1-0; GFDL-CM3; GISS-E2-R; GISS-E2-R-CC; HadGEM2-AO; HadGEM2-CC; 

HadGEM2-ES; INMCM4. The models that have higher biases across the majority of the target regions are CMCC-CM; 

FGOALS-g2; IPSL-CM5A-LR; IPSL-CM5A-MR; IPSL-CM5B-LR; MIROC5; MRI-ESM1. 25 

Such heterogeneity of climate models ability to equally reproduce the regional climate features residing in different seas can 

be explained by various reasons. Climate models are often tuned to adequately reproduce global processes and globally 

averaged values. An insufficient number of long time series of observations is available for model calibration, especially for 

marine tracts. GCMs errors increase to the poles because of the convergence of meridians at the poles. In addition, the target 

arctic and sub-arctic seas are essentially different in terms of their physical and geographical conditions, which could also 30 

cause the ability of the GCMs to reproduce well the conditions in some seas and fail in others. 
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In order to analyse how well the selected best-model sub-sets represent five studied parameters, we analysed the spatial 

distribution of biases between models and reanalysis in the bloom the selected model ensemble and the respective reanalysis 

data in six target seas, viz, the Barents, Bering, Labrador, Greenland, Norwegian and North seas (Figure 5a-e). Thus, fewer 

biases in SSS are determined in the case of the Labrador, Greenland and Norwegian seas (±0.5 psu); high positive biases 

observed in the Bering Sea next to the coastline: up to 1.5-4 psu, this overestimation is possibly due to insufficiently accurate 5 

parameterization of the river runoff in the sub-arctic region (Figure 5a). SSS is underestimated in waters next to the coastline 

in the Barents and North seas (1.5-2.5 psu), which is probably due to some overestimation of river runoff or underestimation 

of salty atlantic water. The selected CMIP5 models simulate SDSR (Figure 5b) well almost in all target seas: the biases in 

SDSR in the Barents Sea vary from 5 to 14 W m-2 (≈4-10 %), in the Bering Sea – from 2 to10 W m-2 (≈2-9 %), in the Greenland 

Sea – from 0 to 12 W m-2 (≈0-7 %), in the North Sea – from 1 to17 W m-2 (≈0-7 %), in the Norwegian Sea – from 4 to 9 W m-10 

2 (≈2-5 %), only in the Labrador Sea the CMIP5 models overestimate SDSR and the biases much higher – from 20 to 29 W m-

2 (≈11-15 %). The selected GCMs simulate WS well in all studied seas: the biases in WS are not more than 1 m s-1, only in 

some places of the Bering and North Seas’ coastal regions, the biases in WS simulations are up to about 1.5 m s-1 (Figure 5c). 

Concerning SST, we also obtained quite good results for the selected models. Low biases were observed mainly over the entire 

territory of the North and Norwegian seas constituting ±0.5° C (Figure 5d). Near the English Channel models overestimate the 15 

temperature by ≈2° C in the North Sea probably due to the influence of warm water from the English Channel, and models 

slightly underestimate the temperature by ≈1° C near the coastline in the Norwegian Sea. In the Labrador Sea, the CMIP5 

models simulate SST with lower biases in the northern and north-western parts of the sea – ±0.5° C (Figure 5d). However, in 

the southern and south-western parts of the sea, the models underestimate SST by ≈1-2° C, which is possibly due to the 

influence of the cold Labrador Current. In the Greenland Sea, the models underestimate SST by ≈1-1.5° C in the west probably 20 

also due to the influence of the cold Greenland Current and overestimate SST by ≈2° C in the south apparently due to 

overestimation of contribution of the warm Atlantic water (the North-Atlantic Current). In the Barents Sea, the models 

overestimate north-western part of the sea probably due to the influence of the warm atlantic water, and in the southern part of 

the study area in the Barents Sea, the models underestimate SST by ≈1-2° C probably due to some underestimation of the 

influence of coming warm atlantic waters. Finally, the CMIP5 models simulate the surface ocean current speed with rather 25 

large biases, especially in the Bering Sea and closer to the Bering Strait (-0.19…0.14 m s-1), where the models mainly 

overestimate OCS (Figure 5e). Smaller biases in the modeling of the OCS by CMIP5 models found for the Barents and 

Greenland seas – from -0.06 to 0.03 m s-1. The biases in the other studied seas vary from -0.17 to 0.06 m s-1. 

To examine our percentile score-based model ranking method we analysed the spatial distribution of biases and trends for the 

full 28-model ensemble, selected 8best-model ensemble,sub-set and top-model vs. reanalysis data for each target sea and 30 

parameter combination. Figure 6 illustrates the case for SST in the Barents Sea, and in the Supplements we present maps for 

all variables and target regions. As we can seeseen in Fig. 6a, the full 28-model setensemble underestimates the SST in the 
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studytarget region while the top-model, MIROC-ESM, overestimates it. The selected 8-model ensemble shows smaller biases 

(± 1 K) in SST for the majoritymost part of the bloom areasea. Illustrated in Fig. 5b, the Barents Sea. 

The spatial distribution of errors in SST trends (the difference between modelsmodel data and reanalysis indata) indicates that 

the study region is presented in Fig. 7. The full 28-model ensemble overestimates the trends for the whole study regionsea 

(model-reanalysis errors are 0.03-0.07 K yr-1), the top-model MIROC-ESM partly underestimates the SST trend, but mainlyfor 5 

the larger area it reveals similar to Era-Interim reanalysis insignificantsmall trends (± 0.01 K yr-1).) that are similar to Era-

Interim. As for the selected 8-model ensemble, the spatial variability of errors in trends forin SST varies from -0.01 to 0.06 K 

yr-1
, although for the major part of the study region the errors are in the range -0.01 to 0.02 K yr-1

.  

SST variability and spatially-averaged annual trends are presented in Fig. 8. As we can see, the full 28-model ensemble notably 

underestimates the interannual variability of SST andAnalysis of comparison of all selected model sub-sets (see Supplements) 10 

shows a significant positive trend (0.04 K yr-1 – statistically significant at the level of p < 0.05), while the top-model MIROC-

ESM overestimates SST and shows a non-significant negative trend (-0.005 K yr-1). The optimal 8-model ensemble has better 

performance in the SST, even though it shows a slight positive trend (0.02 K yr-1 – statistically significant at the level of p < 

0.05) compared with a non-significant trend in the Era-Interim reanalysis– (0.002 K yr-1). 

The selected optimal CMIP5 model ensembles for the other seas and FFs are presented in Fig. 9. The heat map shows the final 15 

model scores, which represent the results of our percentile score-based model ranking approach. The map summarises scores 

for five FFs that influence blooms of E.huxleyi (OCS, SSS, SST, WS, and SDSR) in six arctic and subarctic seas (Barents, 

Bering, Greenland, Labrador, North, and Norwegian). The top 25% of GCMs were selected as the optimal model ensemble 

for each sea and forcing factor combination (total 30 model ensembles: six seas multiplied by five factors).  From the heat map 

we can conclude, that there is no optimal model ensemble, or one top-model, which could properly simulate all factors over 20 

all study regions. that, inHowever, some climate models show good results for many cases, e.g., ACCESS1-3; ACCESS1-0; 

HadGEM2-AO; HadGEM2-CC; HadGEM2-ES; GFDL-CM3; INMCM4; GISS-E2-R; GISS-E2-R-CC. The model that have 

higher biases across the majority of the study regions are CMCC-CM; FGOALS-g2; IPSL-CM5A-LR; IPSL-CM5A-MR; 

IPSL-CM5B-LR; MIROC5; MRI-ESM1. 

To examine our percentile score-based model ranking method we analysed the spatial distribution of biases and errors in trends 25 

for the full-model ensemble, selected best-model ensemble, and top-model vs. reanalysis data for each sea & FF combination 

(see Supplements). In general, the selected best-model ensemble showsassures somewhat better performance (with regard to 

the biases between model and reanalysis data) than either the full-model ensemble or the single top-model. The do. Comparing 

the full-model ensemble, selected sub-set models or/and top-model performance in terms of biases and trends, the selected 

best-model ensembles are bettermore skilful in parameter simulations, respectively in 74% (biases) and 83%,% (trends) cases. 30 

The performance of the selected models proved to be equal to the full-model ensemble and top-model efficiency, respectively 

in 13% (biases) and 10% (trends) cases, and worsethey are less skilful in the simulations in 13% and 7% of cases than the full-

model ensemble or/and top-model for biases and trends respectively(biases) and 7% (trends) cases. 
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4 Conclusions 

A percentile score-based model ranking method has been presented for the selection of the optimal model ensembles, from a 

total of 34 CMIP5 models, for five different climate-relevant variables that have previously been identified as influencing 

E.huxleyi blooms (SST, WS, SSS, OCS, SDSR) in six arctic and subarctic seas (, viz. the Barents, Bering, Labrador, Greenland, 

North, and Norwegian). seas. The optimalbest model ensembles for each factorparameter and each target sea were selected (in 5 

total 30 combinations of most-skilful models) based on different statistical measures: the root mean square error, correlation 

coefficient, standard deviation, RMSD-observations standard deviation ratio, spatial biases and trends. Our results show that 

there is no any optimal model ensemble or a one top-model, which could best simulate all factorsparameters across all of the 

study regionstarget seas. Despite the fact that the Arctic is often considered as one single region in many studies, our results 

show that CMIP5 climate models do not have consistent performance across such a large area. However, the selected 10 

optimalbest model ensembles show quite good results with lesser biases in smaller study regions, i.e., individual Arcticsome 

specific arctic seas. 

Since we plan to apply CMIP5 model projections for the modellingTo assure best implementation of the dynamics of E.huxleyi 

blooms in the futuremodel selection results, it is essential to select climate models that properly simulate the spatial distribution 

of the FFs.chosen variables. Therefore, we suppose that the spatial distribution of biases and trends in FFs the considered 15 

parameters are moreas well important in as other statistical metrics within the framework of the model selection procedure. 

From  performed. Based on our results, we can also conclude that it is essential to not only to analyse spatially averaged values, 

but also the amplitude of the spatial distribution of their amplitudes. 

The results of examiningexamination of ourthe percentile score-based model ranking method proposed in thethis paper 

generally showreveal a better performance of the selected best model ensemble vs. the full-model ensemble or a single best- 20 

model for different variables and target regions. Due to the short sample period of reanalysis data (1979-2005), we did this 

evaluation without out-of-sample testing. Definitely, it is better to test any model ranking method on another historical period. 

It will be possible to consider the period 1950-2014 with the release of new data, e.g., CMIP6, ERA5.      

We can conclude that athe range of different factors areis important for model selection, including the spatial pattern of model 

biases, and that the proposed methodology is onea way we could increaseof enhancing the sophistication of model selection 25 

procedures to give ussophistication that promises a better chance at selectingto identify more skillful models for thosethe 

features in which we are interested in. Thus, the proposed method can be appliedused for the analysis inanalyses to be done 

for other seas/regions with the purpose to evaluate climate modelthe performance forclimate models in terms of various 

atmospheric and oceanic parameters at regionaldifferent scales. 



53 

 

 

Author contribution 

NG, RD, LB: methodology development. NG, IR: development of the paper concept. IR, NG, EM: data processing and figures 

producing. All authors contributed to the writing and discussion of the manuscript. 

Competing interests 

The authors declare that they have no conflict of interest. 5 

 

Acknowledgements 

We express our gratitude for the financial support of this study provided by the Russian Science Foundation (RSF) under the 

project 17-17-01117.  

N. Gnatiuk and I. Radchenko gratitudethank Dmitry Pozdnyakov and Dmitry Kondrik for the invitation to participate in the 10 

project and thank him and Dmitry Kondrik for discussionas well as for very useful discussions of the manuscriptresults 

obtained. 

We acknowledge the members of the Coupled Model Intercomparison Project phase 5, the European Centre for Medium-

Range Weather Forecasts, the European Copernicus Marine Environment Monitoring Service, and we extend our gratitude to 

the modelling groups (mentionedspecified in Table 1). 15 

  



54 

 

 

References 

Agosta, C., Fettweis, X. and Datta, R.: Evaluation of the CMIP5 models in the aim of regional modelling of the Antarctic 

surface mass balance, Cryosph., 9, 2311–2321, 2015. 

Almazroui, M., Nazrul Islam, M., Saeed, S., Alkhalaf, A. K. and Dambul, R.: Assessment of Uncertainties in Projected 

Temperature and Precipitation over the Arabian Peninsula Using Three Categories of Cmip5 Multimodel Ensembles, Earth 5 

Syst. Environ., 1(2), 23, doi:10.1007/s41748-017-0027-5, 2017. 

Anav, A., Friedlingstein, P., Kidston, M., Bopp, L., Ciais, P., Cox, P., Jones, C., Jung, M., Myneni, R. and Zhu, Z.: Evaluating 

the Land and Ocean Components of the Global Carbon Cycle in the CMIP5 Earth System Models, J. Clim., 26(18), 6801–

6843, doi:10.1175/JCLI-D-12-00417.1, 2013. 

Brown, C. W. and Yoder, J. A.: Coccolithophorid blooms in the global ocean, J. Geophys. Res., 99(C4), 7467, 10 

doi:10.1029/93JC02156, 1994. 

Charlson, R. J., Lovelock, J. E., Andreae, M. O. and Warren, S. G.: Oceanic phytoplankton, atmospheric sulphur, cloud albedo 

and climate, Nature, 326, 655–661, 1987. 

Das, L., Dutta, M., Mezghani, A. and Benestad, R. E.: Use of observed temperature statistics in ranking CMIP5 model 

performance over the Western Himalayan Region of India, Int. J. Climatol., 38(2), 554–570, doi:10.1002/joc.5193, 2018. 15 

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., 

Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., 

Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., 

McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N. and 

Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. R. Meteorol. Soc., 20 

137(656), 553–597, doi:10.1002/qj.828, 2011. 

Duan, Q. and Phillips, T. J.: Bayesian estimation of local signal and noise in multimodel simulations of climate change, J. 

Geophys. Res., 115(D18), D18123, doi:10.1029/2009JD013654, 2010. 

Fernandes, M.: The Influence of Stress Conditions on Intracellular Dimethylsulphoniopropionate (DMSP) and 

Dimethylsulphide (DMS) Release in Emiliania huxleyi., 2012. 25 

Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S. C., Collins, W., Cox, P., Driouech, F., Emori, S., Eyring, V., 

Forest, C., Gleckler, P., Guilyardi, E., Jakob, C., Kattsov, V., Reason, C. and Rummukainen, M.: Evaluation of Climate 

Models, in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assess- ment 

Report of the Intergovernmental Panel on Climate Change, pp. 741–866, NY., 2013. 

Flores, J. A., Colmenero-Hidalgo, E., Mejía-Molina, A. E., Baumann, K. H., H., J., L. and Rodrigues, T.: Distribution of large 30 

Emiliania huxleyi in the Central and Northeast Atlantic as a tracer of surface ocean dynamics during the last 25,000 years, 

Mar. Micropaleontol., 76, 53–66, 2010. 

Fu, G., Liu, Z., Charles, S. P., Xu, Z. and Yao, Z.: A score-based method for assessing the performance of GCMs: A case 

study of southeastern Australia, J. Geophys. Res. Atmos., 118(10), 4154–4167, doi:10.1002/jgrd.50269, 2013. 

Garric, G., Parent, L., Greiner, E., Drévillon, M., Hamon, M., Lellouche, J.-M., Régnier, C., Desportes, C., Le Galloudec, O., 35 

Bricaud, C., Drillet, Y., Hernandez, F. and Le Traon, P.-Y.: Performance and quality assessment of the global ocean eddy-

permitting physical reanalysis GLORYS2V4., 19th EGU Gen. Assem. EGU2017, Proc. from Conf. held 23-28 April. 2017 

Vienna, Austria., p.18776, 19, 18776, 2017. 

Geil, K. L., Serra, Y. L., Zeng, X., Geil, K. L., Serra, Y. L. and Zeng, X.: Assessment of CMIP5 Model Simulations of the 

North American Monsoon System, J. Clim., 26(22), 8787–8801, doi:10.1175/JCLI-D-13-00044.1, 2013. 40 

Gleckler, P. J., Taylor, K. E. and Doutriaux, C.: Performance metrics for climate models, J. Geophys. Res.  Atmos., 113(D6), 



55 

 

 

D06104, doi:10.1029/2007JD008972, 2008. 

Golmohammadi, G., Prasher, S., Madani, A. and Rudra, R.: Evaluating Three Hydrological Distributed Watershed Models: 

MIKE-SHE, APEX, SWAT, Hydrology, 1(1), 20–39, doi:10.3390/hydrology1010020, 2014. 

Henson, S. A., Cole, H. S., Hopkins, J., Martin, A. P. and Yool, A.: Detection of climate change-driven trends in phytoplankton 

phenology, Glob. Chang. Biol., 24(1), e101–e111, doi:10.1111/gcb.13886, 2018. 5 

Herger, N., Abramowitz, G., Knutti, R., Angélil, O., Lehmann, K. and Sanderson, B. M.: Selecting a climate model subset to 

optimise key ensemble properties, Earth Syst. Dyn., 9(1), 135–151, doi:10.3929/ETHZ-B-000246202, 2018. 

Iglesias-Rodríguez, M. D., Brown, C. W., Doney, S. C., Kleypas, J., Kolber, D., Kolber, Z., Hayes, P. K. and Falkowski, P. 

G.: Representing key phytoplankton functional groups in ocean carbon cycle models: Coccolithophorids, Global Biogeochem. 

Cycles, 16(4), 47-1-47–20, doi:10.1029/2001GB001454, 2002. 10 

Kazakov, E., Kondrik, D. and Pozdnyakov, D.: Spatial data assimilation with a service-based GIS infrastructure for mapping 

and analysis of E. Huxleyi blooms in arctic seas, in Sixth International Conference on Remote Sensing and Geoinformation of 

the Environment., 2018. 

Knutti, R., Furrer, R., Tebaldi, C., Cermak, J., Meehl, G. A., Knutti, R., Furrer, R., Tebaldi, C., Cermak, J. and Meehl, G. A.: 

Challenges in Combining Projections from Multiple Climate Models, J. Clim., 23(10), 2739–2758, 15 

doi:10.1175/2009JCLI3361.1, 2010a2010. 

Knutti, R., Abramowitz, G., Collins, M., Eyring, V., Gleckler, P. J., Hewitson, B. and Mearns, L.: Good practice guidance 

paper on assessing and combining multi model climate projections., 2010b. 

Kondrik, D., Pozdnyakov, D. and Pettersson, L.: Particulate inorganic carbon production within E. huxleyi blooms in subpolar 

and polar seas: a satellite time series study (1998–2013), Int. J. Remote Sens., 38(22), 6179–6205, 20 

doi:10.1080/01431161.2017.1350304, 2017. 

Kondrik, D., Kazakov, E., Chepikova, S. and Pozdnyakov, D.: Prioritization of the vector factors controlling Emiliania huxleyi 

blooms in subarctic and arctic seas: A multidimensional statistical approach, Biogeosciences Discuss., 1–24, doi:10.5194/bg-

2019-104, 2019. 

Kumar, D., Mishra, V. and Ganguly, A. R.: Evaluating wind extremes in CMIP5 climate models, Clim. Dyn., 45(1–2), 441–25 

453, doi:10.1007/s00382-014-2306-2, 2015. 

Lavender, S. J., Raitsos, D. E. and Pradhan, Y.: Variations in the Phytoplankton of the North-Eastern Atlantic Ocean: From 

the Irish Sea to the Bay of Biscay, in Remote Sensing of the European Seas, pp. 67–78, Springer Netherlands, Dordrecht., 

2008. 

Malin, G., Turner, S., Liss, P., Holligan, P. and Harbour, D.: Dimethylsulphide and dimethylsulphoniopropionate in the 30 

Northeast atlantic during the summer coccolithophore bloom, Deep Sea Res. Part I Oceanogr. Res. Pap., 40(7), 1487–1508, 

doi:10.1016/0967-0637(93)90125-M, 1993. 

Matrai, P. A. and Keller, M. D.: Dimethylsulfide in a large-scale coccolithophore bloom in the Gulf of Maine, Cont. Shelf 

Res., 13(8–9), 831–843, 1993. 

Moriasi, D. N., Arnold, J. G., Liew, M. W. Van, Bingner, R. L., Harmel, R. D. and Veith, T. L.: Model evaluation guidelines 35 

for systematic quantification of accuracy in watershed simulations, Am. Soc. Agric. Biol. Eng., 50(3), 885–900, 2007. 

Murphy, J. M., Sexton, D. M. H., Barnett, D. N., Jones, G. S., Webb, M. J., Collins, M. and Stainforth, D. A.: Quantification 

of modelling uncertainties in a large ensemble of climate change simulations, Nature, 430(7001), 768–772, 

doi:10.1038/nature02771, 2004. 

Okada, H. and McIntyre, A.: Seasonal distribution of modern coccolithophores in the western North Atlantic Ocean, Mar. 40 

Biol., 54(4), 319–328, doi:10.1007/BF00395438, 1979. 



56 

 

 

Otero, N., Sillmann, J. and Butler, T.: Assessment of an extended version of the Jenkinson–Collison classification on CMIP5 

models over Europe, Clim. Dyn., 50(5–6), 1559–1579, doi:10.1007/s00382-017-3705-y, 2018. 

Pierce, D. W., Barnett, T. P., Santer, B. D. and Gleckler, P. J.: Selecting global climate models for regional climate change 

studies, Proc. Natl. Acad. Sci., 106(21), 8441–8446, 2009. 

Raitsos, D. E., Lavender, S. J., Pradhan, Y., Tyrrell, T., Reid, P. C. and Edwards, M.: Coccolithophore bloom size variation in 5 

response to the regional environment of the subarctic North Atlantic, Limnol. Oceanogr., 51(5), 2122–2130, 

doi:10.4319/lo.2006.51.5.2122, 2006. 

Reichler, T. and Kim, J.: How Well Do Coupled Models Simulate Today’s Climate?, Bull. Am. Meteorol. Soc., 89(3), 303–

312, doi:10.1175/BAMS-89-3-303, 2008. 

Rivero-Calle, S., Gnanadesikan, A., Castillo, C. E. Del, Balch, W. M. and Guikema, S. D.: Multidecadal increase in North 10 

Atlantic coccolithophores and the potential role of rising CO2, Science (80-. )., 350(6267), 2015. 

Ruan, Y., Liu, Z., Wang, R. and Yao, Z.: Assessing the Performance of CMIP5 GCMs for Projection of Future Temperature 

Change over the Lower Mekong Basin, Atmosphere (Basel)., 10(2), 93, doi:10.3390/atmos10020093, 2019. 

Sarr, A. and Sarr, A.: Multi-Scale Characteristics of Precipitation and Temperature over West Africa Using SMHI-RCA Driven 

by GCMs under RCP8.5, Am. J. Clim. Chang., 06(03), 455–486, doi:10.4236/ajcc.2017.63024, 2017. 15 

Smyth, T. J., Tyrrell, T. and Tarrant, B.: Time series of coccolithophore activity in the Barents Sea, from twenty years of 

satellite imagery, Geophys. Res. Lett., 31(11), n/a-n/a, doi:10.1029/2004GL019735, 2004. 

Stocker, T. F.: Models change their tune, Nature, 430(7001), 737–738, doi:10.1038/430737a, 2004. 

Stocker, T. F., Qin, D., Plattner, G., Tignor, M. and Midgley, P., Eds.: Meeting Report of the Intergovernmental Panel on 

Climate Change Expert Meeting on Assessing and Combining Multi Model Climate Projections, IPCC Working Group I 20 

Technical Support Unit, University of Bern, Bern, Switzerland., 2010. 

Taylor, K. E.: Summarizing multiple aspects of model performance in a single diagram, J. Geophys. Res. Atmos., 106(D7), 

7183–7192, doi:10.1029/2000JD900719, 2001. 

Wang, S., Maltrud, M. E., Burrows, S. M., Elliott, S. M. and Cameron-Smith, P.: Impacts of Shifts in Phytoplankton 

Community on Clouds and Climate via the Sulfur Cycle, Global Biogeochem. Cycles, 32(6), 1005–1026, 25 

doi:10.1029/2017GB005862, 2018a. 

Wang, S., Maltrud, M., Elliott, S., Cameron-Smith, P. and Jonko, A.: Influence of dimethyl sulfide on the carbon cycle and 

biological production, Biogeochemistry, 138(1), 49–68, doi:10.1007/s10533-018-0430-5, 2018b. 

Winter, A.: Biogeography of living coccolithophores in ocean waters, Coccolithophores, 1994. 

Taylor, K. E., Stouffer, R. J., Meehl, G. A., Taylor, K. E., Stouffer, R. J. and Meehl, G. A.: An Overview of CMIP5 and the 30 

Experiment Design, Bull. Am. Meteorol. Soc., 93(4), 485–498, doi:10.1175/BAMS-D-11-00094.1, 2012. 

Winter, A., Henderiks, J., Beaufort, L., Rickaby, R. E. M. and Brown, C. W. and -, B.: Poleward expansion of the 

coccolithophore Emiliania huxleyi, J. Plankton ResPlankt., 36(2), 316–325, doi:10.1093/plankt/fbt110, 2013. 

 

  35 



57 

 

 

Table 1. CMIP5 models used for simulation of forcing factors influencing E.huxleyi bloomsselected parameters: SST – sea surface 

temperature in K, WS – near-surface wind speed in m s-1, SDSR – surface downwelling shortwave solar radiation in W m-2, SSS – sea 

surface salinity (averaged over 30 m) in psu, OCS – surface ocean current speed in m s-1 (models available for concrete factorrespective 

variable are marked as “+”) 

Model ID 
Modelling Center 

(acronym, full name, and country) 
Resolution 

(ºlon x ºlat) 

S

S

T 

W

S 

S

D

S

R 

S 

S 

S 

O

C

S 

ACCESS1.0 1 CSIRO-BOM, Commonwealth Scientific and Industrial 

Research Organisation, Australia and Bureau of 

Meteorology, Australia 

1.25 х 1.875 

+ + + + + 

ACCESS1.3 2 + + + + + 

CanESM2 3 
CCCma, Canadian Centre for Climate Modelling and 

Analysis, Canada 

2.7906 х 

2.8125 
+ +  + + 

CMCC-CM 4 
CMCC, Centro euro-Mediterraneo sui Cambiamenti 

Climatici, Italy 

0.7484 х 0.75 + + + + + 

CMCC-CMS 5 3.7111 х 3.75 + + + + + 

CNRM-CM5 6 

CNRM-CERFACS, Centre National de Recherches 

Meteorologiques, France and Centre Europeen de Recherche 

et Formation Avancees en Calcul Scientifique, France 

1.4008 х 

1.40625 
+ + + + + 

CSIRO-Mk3.6.0 7 

CSIRO-QCCCE, Commonwealth Scientific and Industrial 

Research Organization, Australia and Queensland Climate 

Change Centre of Excellence, Australia 

1.8653 х 1.875  + + + + 

EC-EARTH 8 EC-EARTH, EC-EARTH consortium, Europe 1.1215 х 1.125 +     

GFDL-CM3 9 

NOAA GFDL, National Oceanic and Atmospheric 

Administration, Geophysical Fluid Dynamics Laboratory, 

USA 

2 х 2.5 

+ + + + + 

GFDL-ESM2G 10 + + + + + 

GFDL-ESM2M 11 + + + + + 

GISS-E2-H 12 

NASA GISS, National Aeronautics and Space 

Administration, Goddard Institute for Space Studies, USA 
2 х 2.5 

+ + + + + 

GISS-E2-H-CC 13 + + + + + 

GISS-E2-R 14 + + + + + 

GISS-E2-R-CC 15 + + + + + 

HadCM3 16 

MOHC INPE, Met Office Hadley Centre, UK and Instituto 

Nacional de Pesquisas Espaciais, Brasil 

2.5 x 3.75  +    

HadGEM2-AO 17 

1.25 х 1.875 

+ + + + + 

HadGEM2-CC 18 + + + + + 

HadGEM2-ES 19 + + + + + 
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IPSL-CM5A-LR 20 

IPSL, Institut Pierre-Simon Laplace, France 1.8947 х 3.75 

+ + + + + 

IPSL-CM5A-MR 21 + + + + + 

IPSL-CM5B-LR 22 + + + + + 

MIROC5 23 MIROC, Atmosphere and Ocean Research Institute, the 

University of Tokyo, National Institute for Environmental 

Studies, and Japan Agency for Marine-Earth Science and 

Technology, Japan 

1.4008 х 

1.40625 
+ + + +  

MIROC4h 24 
0.5616 x 

0.5625 
 +    

MIROC-ESM 25 MIROC, Japan Agency for Marine-Earth Science and 

Technology, Atmosphere and Ocean Research Institute, the 

University of Tokyo, and National Institute for 

Environmental Studies, Japan 

2.7906 х 

2.8125 

+ + + +  

MIROC-ESM-CHEM 26 + + + +  

MPI-ESM-LR 27 
MPI-M, Max Planck Institute for Meteorology, Germany 1.8653 х 1.875 

+ + + + + 

MPI-ESM-MR 28 + + + + + 

MRI-CGCM3 29 
MRI, Meteorological Research Institute, Japan 

1.12148 х 

1.125 

+ + + + + 

MRI-ESM1 30  +    

NorESM1-M 31 
NCC, Norwegian Climate Centre, Norway 1.8947 х 2.5 

+  + +  

NorESM1-ME 32 +  + + + 

INM-CM4 33 
INM, Russian Academy of Sciences Marchuk Institute of 

Numerical Mathematics, Russia 
1.5 х 2  + +   

FGOALS-g2 34 
LASG-CESS, Institute of Atmospheric Physics, Chinese 

Academy of Sciences; and Tsinghua University, China 

2.7906 x 

2.8125 
    + 

Total number of available CMIP5 models 28 30 28 28 25 
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Table 2. Results of the CMIP5 model performance for SST in the Barents Sea. 

(Numbers in brackets indicate the modelsmodels' scores. RMSD -is the root-mean-square deviation, K; r –is the correlation coefficient 

between models and reanalysis; RSR –is the RMSD-observations standard deviation ratio; |SDdif| –is the modulus of the standard deviation 

difference (model minus reanalysis);), K; |Trm| -is the modulus of spatial trend median difference (the model minus reanalysis);), K yr-1; |Tra| 

-is the modulus of spatial trend amplitude difference (the model minus reanalysis);), K yr-1; |Brm| -is the modulus of spatial trendbias median 5 
difference (the model minus reanalysis);), K; |Bra| –is the modulus of spatial biases amplitude difference (the model minus reanalysis)).), K). 

Model acronym ID 

Seasonal cycle 

Interannual variability 

(averaged over the territory) 

Interannual variability 

Seasonal cycle 

(averaged over the territory) 
Spatial trends (Tr) and biases (Br) 

Total 

score 

RMSD r RSR |SDdif| RMSD r RSR |SDdif| |Trm| ||Tra| |Brm| |Bra| 

ACCESS1-0 1 0,26(3) 0,99(2) 0,13(3) 0,08(3) 1,17(3) 0,68(3) 0,81(3) 0,02(3) 0,06(2) 0,01(3) 0,07(3) 14,7(2) 33 

ACCESS1-3 2 0,37(3) 0,99(3) 0,19(3) 0,03(3) 1,02(3) 0,75(3) 0,71(3) 0,19(3) 0,01(3) 0,01(3) 0,57(3) 16,1(1) 34 

CanESM2 3 1,76(2) 0,98(2) 0,88(2) 0,28(0) 2,21(2) 0,64(3) 1,54(2) 1,12(3) 0,10(1) 0,04(3) 0,85(3) 17,2(1) 24 

CMCC-CM 4 5,15(0) 0,96(1) 2,58(0) 1,73(1) 7,06(0) 0,28(3) 4,90(0) 0,63(0) 0,06(2) 0,18(0) 6,64(0) 13,1(2) 9 

CMCC-CMS 5 4,40(0) 0,97(2) 2,20(0) 1,34(1) 5,94(0) 0,56(3) 4,12(0) 0,59(0) 0,01(3) 0,02(3) 5,58(0) 14,1(2) 14 

CNRM-CM5 6 0,64(3) 0,99(2) 0,32(3) 0,55(1) 1,59(3) 0,73(3) 1,10(3) 0,81(2) 0,08(2) 0,00(3) 0,49(3) 16,4(1) 29 

EC-EARTH 7 0,41(3) 0,99(2) 0,21(3) 0,13(2) 1,43(3) 0,64(3) 0,99(3) 0,38(3) 0,13(1) 0,12(1) 0,14(3) 18,1(0) 27 

GFDL-CM3 8 1,34(3) 0,99(3) 0,67(3) 0,20(3) 1,71(3) 0,80(3) 1,19(3) 0,22(3) 0,00(3) 0,09(1) 1,39(3) 11,1(3) 34 

GFDL-ESM2G 9 3,23(1) 0,98(2) 1,62(1) 0,27(2) 3,72(1) 0,69(3) 2,58(1) 0,29(3) 0,04(3) 0,04(3) 3,46(1) 13,9(2) 23 

GFDL-ESM2M 10 2,60(2) 0,99(2) 1,30(2) 0,61(3) 3,42(2) 0,68(3) 2,37(2) 0,25(2) 0,01(3) 0,08(2) 3,10(2) 15,7(1) 26 

GISS-E2-H 11 3,39(1) 0,97(3) 1,70(1) 0,41(3) 4,09(1) 0,83(3) 2,84(1) 0,18(3) 0,05(2) 0,04(3) 3,86(1) 11,4(3) 25 

GISS-E2-H-CC 12 3,68(1) 0,96(2) 1,84(1) 0,56(3) 4,62(1) 0,72(3) 3,20(1) 0,12(2) 0,03(3) 0,02(3) 4,36(1) 10,8(3) 24 

GISS-E2-R 13 3,34(1) 0,96(2) 1,67(1) 0,04(1) 3,83(1) 0,72(3) 2,66(1) 0,84(3) 0,05(2) 0,07(2) 3,34(1) 15,1(2) 20 

GISS-E2-R-CC 14 3,38(1) 0,96(2) 1,69(1) 0,07(1) 3,78(1) 0,75(3) 2,62(1) 0,83(3) 0,03(3) 0,05(2) 3,29(2) 13,6(2) 22 

HadGEM2-AO 15 1,28(3) 0,99(2) 0,64(3) 0,01(3) 1,51(3) 0,73(3) 1,05(3) 0,13(3) 0,02(3) 0,05(2) 1,33(3) 19,8(0) 31 

HadGEM2-CC 16 1,70(2) 0,99(2) 0,85(2) 0,16(2) 2,34(2) 0,62(3) 1,62(2) 0,35(3) 0,05(2) 0,05(2) 1,66(3) 19,1(0) 25 

HadGEM2-ES 17 0,30(3) 0,99(3) 0,15(3) 0,08(3) 0,98(3) 0,77(3) 0,68(3) 0,00(3) 0,05(2) 0,04(3) 0,09(3) 17,5(1) 33 

IPSL-CM5A-LR 18 3,66(1) 0,98(2) 1,83(1) 0,31(3) 4,59(1) 0,70(3) 3,19(1) 0,18(3) 0,01(3) 0,03(3) 4,32(1) 18,4(0) 22 

IPSL-CM5A-MR 19 2,22(2) 0,99(2) 1,11(2) 0,67(1) 2,57(2) 0,73(3) 1,78(2) 0,80(2) 0,06(2) 0,05(2) 1,91(2) 16,0(1) 23 

IPSL-CM5B-LR 20 5,03(0) 0,96(1) 2,52(0) 1,71(1) 6,90(0) 0,36(3) 4,79(0) 0,69(0) 0,00(3) 0,03(3) 6,51(0) 17,6(0) 11 

MIROC-ESM 21 1,40(3) 0,99(3) 0,70(3) 0,04(3) 1,63(3) 0,82(3) 1,13(3) 0,06(3) 0,01(3) 0,08(2) 1,51(3) 11,8(3) 35 

MIROC-ESM-

CHEM 
22 0,97(3) 0,99(3) 0,49(3) 0,05(3) 1,34(3) 0,82(3) 0,93(3) 0,13(3) 0,07(2) 0,05(3) 1,08(3) 15,1(2) 34 

MIROC5 23 2,42(0) 0,98(2) 1,21(0) 0,51(1) 5,69(2) 0,51(3) 3,95(2) 0,64(2) 0,18(0) 0,08(2) 5,14(0) 19,8(0) 14 

MPI-ESM-LR 24 1,27(3) 0,99(3) 0,63(3) 0,04(3) 1,54(3) 0,81(3) 1,07(3) 0,21(3) 0,02(3) 0,04(3) 1,33(3) 16,3(1) 34 

MPI-ESM-MR 25 0,91(3) 0,99(2) 0,45(3) 0,05(3) 1,47(3) 0,71(3) 1,02(3) 0,11(3) 0,05(2) 0,04(3) 0,96(3) 17,2(1) 32 

MRI-CGCM3 26 2,88(2) 0,99(3) 1,44(2) 0,08(2) 2,54(1) 0,82(3) 1,77(1) 0,34(3) 0,00(3) 0,07(2) 2,30(2) 11,9(3) 27 

NorESM1-M 27 1,53(2) 0,99(2) 0,77(2) 0,76(2) 2,56(2) 0,64(3) 1,78(2) 0,31(2) 0,05(2) 0,07(2) 2,33(2) 13,7(2) 25 

NorESM1-ME 28 1,72(2) 0,99(2) 0,86(2) 0,78(2) 2,79(2) 0,57(3) 1,94(2) 0,39(2) 0,02(3) 0,02(3) 2,58(2) 15,0(2) 27 
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Figure 1: Location of the E.huxleyi blooming areas in the study regions. 
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: Spatial distribution of Emiliania huxleyi blooms occurrence based on the Ocean Colour Climate Change Initiative dataset version 

3.0  (Kazakov et al., 2018) for the Barents, Bering, Labrador, Greenland, North, and Norwegian seas. Black lines confine the 

territories where blooms occurred more than one 8-day period and show target sea areas.   
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Figure 2: A schematic representation of the percentile score-based model ranking method. (Division of RMSD values 

distribution of 28 models into four groups that are limited by 25th, 50th  and 75th percentiles and the relative assignment of scores 

from 3 to 0 to each group accordingly -  very good, good, satisfactory and unsatisfactory). 

 5 

  

RMSD, K 
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Figure 3: Taylor diagrams for Box plots of the seasonal cycle (left) and interannual spatial variability (right) of SST in the Barents 5 

Sea. 
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Figure 4: Box plots of spatial distribution of SST biases in , which are calculated as the difference between the Barents Sea. 
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Figure 5: Box plots of spatial distribution of SST trendsmodel and reanalysis data in the Barents Sea. 

 

 

Figure 6: Spatial distribution of biases in SST between models over the vegetation season and reanalysis in the bloom area of the 

Barents Sea for the bloomingtime period. 5 
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Figure 7: Spatial distribution of errors in annual SST trends (model minus reanalysis) in the bloom area of the Barents Sea for the 

blooming period 

 

 

Figure 8: SST variability and trends in the Barents Sea for the blooming period over  1979-2005. Each box spreads from the lower 5 

quartile Q1 to the upper quartile Q3 of biases, the orange lines represent the medians. The lower “whiskers” are represented as Q1-

1.5 Standard deviation and the upper “whiskers” are represented as Q3+1.5 Standard deviation. 
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1 ACCESS1-3 23 34 33 28 27 30 23 17 27 24 22 31 26 29 31 27 29 18 30 13 29 30 32 23 27 23 32 36 24 25

2 ACCESS1-0 26 33 34 28 27 27 24 26 26 29 18 31 27 27 33 27 26 22 26 20 31 30 30 23 25 28 31 35 25 24

3 CanESM2 25 26 24 29 27 24 26 14 19 15 30 19 16 29 33 9 26 22 34 18 29 22 35 21

4 CMCC-CM 7 26 9 23 21 29 22 25 27 14 21 28 16 27 21 23 30 18 20 14 27 23 25 24 8 13 33 22 30 8

5 CMCC-CMS 16 22 14 24 23 29 23 25 28 15 25 33 32 22 16 25 35 15 21 15 24 19 30 25 13 24 31 36 28 14

6 CNRM-CM5 18 31 29 28 13 31 25 26 30 26 21 32 23 26 19 29 30 30 26 29 23 31 30 28 29 25 34 31 27 25

7 CSIRO-Mk3-6-0 20 23 19 21 21 26 31 14 20 35 26 10 21 27 30 17 23 25 24 16 19 33 15 13

8 EC-EARTH 27 27 35 28 30 36

9 FGOALS-g2 17 4 8 24 11 12

10 GFDL-CM3 20 32 34 27 23 32 20 32 32 26 19 30 32 21 28 27 25 25 28 28 23 19 31 29 22 26 33 36 27 24

11 GFDL-ESM2G 21 30 23 26 26 29 25 20 30 14 24 27 22 30 24 20 27 29 27 21 22 27 32 27 26 26 33 30 26 25

12 GFDL-ESM2M 15 33 26 27 25 32 20 24 29 20 23 33 23 23 18 27 32 24 27 27 24 18 29 28 28 25 33 33 23 27

13 GISS-E2-H 10 29 25 29 12 26 19 29 30 28 16 32 28 28 25 15 15 14 19 28 20 30 32 28 31 17 33 36 19 34

14 GISS-E2-H-CC 14 24 24 30 12 25 21 32 32 26 13 24 25 28 17 18 23 23 18 19 19 31 32 26 29 20 27 35 26 32

15 GISS-E2-R 19 8 20 26 12 28 25 25 32 29 25 29 28 30 22 22 26 27 26 29 23 28 31 29 30 23 32 33 27 34

16 GISS-E2-R-CC 20 9 22 27 11 29 27 28 32 30 24 28 26 30 25 22 22 30 28 28 22 25 30 30 29 24 35 29 27 29

17 HadCM3 16 28 25 27 27 19

18 HadGEM2-AO 26 32 31 30 29 30 28 29 32 30 17 23 27 31 33 19 11 30 28 13 28 30 35 20 28 26 31 34 21 31

19 HadGEM2-CC 22 32 25 30 25 29 26 32 30 29 20 19 31 29 33 22 20 30 30 16 29 31 33 28 31 27 32 35 25 32

20 HadGEM2-ES 21 33 33 27 30 25 24 28 30 27 17 25 28 28 33 25 17 26 29 13 28 26 32 29 30 28 30 33 23 32

21 INMCM4 30 32 26 32 16 33 18 30 23 31 24 28

22 IPSL-CM5A-LR 18 12 22 23 29 30 25 34 27 26 18 29 25 19 25 19 31 23 24 26 22 12 21 13 20 17 29 28 17 25

23 IPSL-CM5A-MR 20 18 23 24 29 33 22 32 31 24 17 28 32 27 27 21 27 25 24 23 25 7 26 23 28 25 31 31 18 27

24 IPSL-CM5B-LR 11 9 11 15 27 33 27 22 31 26 15 11 12 18 13 14 21 31 23 19 21 13 18 14 16 12 13 25 14 22

25 MIROC4h 32 18 28 21 27 28

26 MIROC5 31 14 28 22 14 16 24 31 32 33 28 32 31 19 21 27 25 20 28 25 24 17 25 32

27 MIROC-ESM 31 35 15 26 13 31 33 20 29 22 26 20 30 29 26 9 26 34 16 13 30 34 16 25

28 MIROC-ESM-CHEM 30 34 19 23 15 31 31 21 29 20 25 18 34 28 21 10 28 34 15 18 28 33 16 25

29 MPI-ESM-LR 21 31 34 25 21 32 29 24 31 11 12 33 29 21 19 16 22 21 21 10 26 31 33 27 19 13 31 34 28 23

30 MPI-ESM-MR 17 33 32 24 19 31 28 21 29 15 17 31 31 25 18 12 24 28 20 15 23 31 35 25 18 13 25 35 27 23

31 MRI-CGCM3 26 20 27 13 25 28 28 30 10 26 26 13 25 16 19 21 16 26 14 18 20 29 32 12 28 28 20 33 15 33

32 MRI-ESM1 12 9 11 14 8 16

33 NorESM1-M 33 25 20 17 24 13 30 26 10 23 23 14 30 34 25 31 33 25

34 NorESM1-ME 23 33 27 23 28 23 23 15 23 31 20 14 27 21 28 10 25 30 31 28 24 35 32 23

total selected models 7 7 8 7 8 7 8 8 11 8 7 11 8 10 9 7 8 8 10 8 8 11 8 9 8 8 9 10 9 8

30   -  selected optimal model ensemble 23 - score < 25% - 25% < score < 75% 7 - score > 75%

"very good"  "good" & "satisfactory" "unsatisfactory"

North Sea Norwegian Sea

ID CMIP5 models

Barents Sea Bering Sea Greenland Sea Labrador Sea
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Figure 94: Heat map with the final model scores obtained using the percentile score-based model ranking method for the five forcing 

factorsvariables (sea surface temperature (SST, K) and salinity averaged over 0-30 m (SSS, psu), surface wind speed at 10 m (WS, 

m s-1), ocean surface current speed (OCS, m s-1), and shortwave downwelling solar radiation (SDSR, W m-2) for the Barents, Bering, 

Greenland, Labrador, North, and Norwegian seas. based on different statistical metrics (Figure 2, Table 2). The white areas indicate 5 
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1 ACCESS1-3 23 34 33 28 27 30 23 17 27 24 22 31 26 29 31 27 29 18 30 13 29 30 32 23 27 23 32 36 24 25

2 ACCESS1-0 26 33 34 28 27 27 24 26 26 29 18 31 27 27 33 27 26 22 26 20 31 30 30 23 25 28 31 35 25 24

3 CanESM2 25 26 24 29 27 24 26 14 19 15 30 19 16 29 33 9 26 22 34 18 29 22 35 21

4 CMCC-CM 7 26 9 23 21 29 22 25 27 14 21 28 16 27 21 23 30 18 20 14 27 23 25 24 8 13 33 22 30 8

5 CMCC-CMS 16 22 14 24 23 29 23 25 28 15 25 33 32 22 16 25 35 15 21 15 24 19 30 25 13 24 31 36 28 14

6 CNRM-CM5 18 31 29 28 13 31 25 26 30 26 21 32 23 26 19 29 30 30 26 29 23 31 30 28 29 25 34 31 27 25

7 CSIRO-Mk3-6-0 20 23 19 21 21 26 31 14 20 35 26 10 21 27 30 17 23 25 24 16 19 33 15 13

8 EC-EARTH 27 27 35 28 30 36

9 FGOALS-g2 17 4 8 24 11 12

10 GFDL-CM3 20 32 34 27 23 32 20 32 32 26 19 30 32 21 28 27 25 25 28 28 23 19 31 29 22 26 33 36 27 24

11 GFDL-ESM2G 21 30 23 26 26 29 25 20 30 14 24 27 22 30 24 20 27 29 27 21 22 27 32 27 26 26 33 30 26 25

12 GFDL-ESM2M 15 33 26 27 25 32 20 24 29 20 23 33 23 23 18 27 32 24 27 27 24 18 29 28 28 25 33 33 23 27

13 GISS-E2-H 10 29 25 29 12 26 19 29 30 28 16 32 28 28 25 15 15 14 19 28 20 30 32 28 31 17 33 36 19 34

14 GISS-E2-H-CC 14 24 24 30 12 25 21 32 32 26 13 24 25 28 17 18 23 23 18 19 19 31 32 26 29 20 27 35 26 32

15 GISS-E2-R 19 8 20 26 12 28 25 25 32 29 25 29 28 30 22 22 26 27 26 29 23 28 31 29 30 23 32 33 27 34

16 GISS-E2-R-CC 20 9 22 27 11 29 27 28 32 30 24 28 26 30 25 22 22 30 28 28 22 25 30 30 29 24 35 29 27 29

17 HadCM3 16 28 25 27 27 19

18 HadGEM2-AO 26 32 31 30 29 30 28 29 32 30 17 23 27 31 33 19 11 30 28 13 28 30 35 20 28 26 31 34 21 31

19 HadGEM2-CC 22 32 25 30 25 29 26 32 30 29 20 19 31 29 33 22 20 30 30 16 29 31 33 28 31 27 32 35 25 32

20 HadGEM2-ES 21 33 33 27 30 25 24 28 30 27 17 25 28 28 33 25 17 26 29 13 28 26 32 29 30 28 30 33 23 32

21 INMCM4 30 32 26 32 16 33 18 30 23 31 24 28

22 IPSL-CM5A-LR 18 12 22 23 29 30 25 34 27 26 18 29 25 19 25 19 31 23 24 26 22 12 21 13 20 17 29 28 17 25

23 IPSL-CM5A-MR 20 18 23 24 29 33 22 32 31 24 17 28 32 27 27 21 27 25 24 23 25 7 26 23 28 25 31 31 18 27

24 IPSL-CM5B-LR 11 9 11 15 27 33 27 22 31 26 15 11 12 18 13 14 21 31 23 19 21 13 18 14 16 12 13 25 14 22

25 MIROC4h 32 18 28 21 27 28

26 MIROC5 31 14 28 22 14 16 24 31 32 33 28 32 31 19 21 27 25 20 28 25 24 17 25 32

27 MIROC-ESM 31 35 15 26 13 31 33 20 29 22 26 20 30 29 26 9 26 34 16 13 30 34 16 25

28 MIROC-ESM-CHEM 30 34 19 23 15 31 31 21 29 20 25 18 34 28 21 10 28 34 15 18 28 33 16 25

29 MPI-ESM-LR 21 31 34 25 21 32 29 24 31 11 12 33 29 21 19 16 22 21 21 10 26 31 33 27 19 13 31 34 28 23

30 MPI-ESM-MR 17 33 32 24 19 31 28 21 29 15 17 31 31 25 18 12 24 28 20 15 23 31 35 25 18 13 25 35 27 23

31 MRI-CGCM3 26 20 27 13 25 28 28 30 10 26 26 13 25 16 19 21 16 26 14 18 20 29 32 12 28 28 20 33 15 33

32 MRI-ESM1 12 9 11 14 8 16

33 NorESM1-M 33 25 20 17 24 13 30 26 10 23 23 14 30 34 25 31 33 25

34 NorESM1-ME 23 33 27 23 28 23 23 15 23 31 20 14 27 21 28 10 25 30 31 28 24 35 32 23

total selected models 7 7 8 7 8 7 8 8 11 8 7 11 8 11 8 8 8 8 10 8 8 11 8 9 8 8 9 10 9 8

30   -  selected optimal model ensemble 23 - score < 25% - 25% < score < 75% 7 - score > 75%

"very good"  "good" & "satisfactory" "unsatisfactory"

North Sea Norwegian Sea

ID CMIP5 models

Barents Sea Bering Sea Greenland Sea Labrador Sea
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that the model was not considered due to partial or complete unavailability of hindcasts, and future projections (RCP4.5, RCP8.5) 

data.  

 

Barents Bering Greenland 

   
 Min=-1.3 psu, Max=0.9 psu 

Average model ensemble SSS=34.74 psu 

 Min=-1.4 psu, Max=4.2 psu 
Average model ensemble SSS=31.45 psu 

 Min=-0.5 psu, Max=0.6 psu 
Average model ensemble SSS=34.40 psu 

 

Labrador 
 

North 
 

Norwegian 

   
 Min=-0.6 psu, Max=0.3 psu 

Average model ensemble SSS=34.45 psu 

 Min=-2.5 psu, Max=0.9 psu 
Average model ensemble SSS=34.12 psu 

 Min=-0.6 psu, Max=0.8 psu 
Average model ensemble SSS=34.81 psu 

 
 

Figure 5a. Spatial distribution of biases in sea surface salinity models and reanalysis in six target seas averaged over the vegetation 5 

season and the time period 1993-2005. 
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Barents Bering Greenland 

   
Min=-14 W m-2, Max=5 W m-2 

Average model ensemble SDSR=135.1 W m-2 

Min=2 W m-2, Max=10 W m-2 

Average model ensemble SDSR=110.0 W m-2 
Min=-12 W m-2, Max=-0.2 W m-2 

Average model ensemble SDSR=177.7 W m-2 
 

Labrador 
 

North 
 

Norwegian 

   
Min=-29 W m-2, Max=-20 W m-2 

Average model ensemble SDSR=189.2  W m-2 
Min=-0.6 W m-2, Max=17 W m-2 

Average model ensemble SDSR=246.3  W m-2 
Min=-4 W m-2, Max=9 W m-2 

Average model ensemble SDSR=194.4  W m-2 

 
 

Figure 5b. Spatial distribution of biases in surface downwelling solar radiation between models and reanalysis in six target seas averaged over 

the vegetation season and the time period 1979-2005. 
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Barents Bering Greenland 

   
 Min=-0.71 m s-1, Max=0.36 m s-1 

Average model ensemble WS=5.9  m s-1 
 Min=-1.53 m s-1, Max=0.43 m s-1 

Average model ensemble WS=7.1  m s-1 
Min=-0.64 m s-1, Max=0.27 m s-1 

Average model ensemble WS=5.6  m s-1 
 

Labrador 
 

North 
 

Norwegian 

   
 Min=-0.85 m s-1, Max=0.47 m s-1 

Average model ensemble WS=6.5 m s-1 

 

Min=-1.34 m s-1, Max=0.21 m s-1 

Average model ensemble WS=5.3  m s-1 

Min=-0.96 m s-1, Max=0.33 m s-1 

Average model ensemble WS=5.6  m s-1 
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Figure 5c. Spatial distribution of biases in near-surface wind speed between selected model ensemble and reanalysis in six target 

seas averaged over the vegetation season and the time period 1979-2005. 

 

Barents Bering Greenland 

   
 Min=-2.2° C, Max=2.4° C 

Average model ensemble SST=6.1° C 

 Min=-1.9° C, Max=-0.1° C 
Average model ensemble SST=3.4° C 

 Min -1.5° C, Max=2.1° C 
Average model ensemble SST=5.7° C 

Labrador North Norwegian 

   
 Min=-2.2° C, Max=0.6° C 

Average model ensemble SST=10.2° C 
 Min=-1.1° C, Max=2.0° C 

Average model ensemble SST=10.2° C 
 Min=-1.1° C, Max=0.3° C 

Average model ensemble SST=9.5° C 

 
 

Figure 5d. Spatial distribution of biases in sea surface temperature models and reanalysis in six target seas averaged over the 5 

vegetation season and the time period 1979-2005. 
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Barents Bering Greenland 

   
 Min=-0.06 m s-1, Max=0.03 m s-1 

Average model ensemble OCS=0.03 m s-1 
 Min=-0.19 m s-1, Max=0.14 m s-1 

Average model ensemble OCS=0.05 m s-1 
Min=-0.06 m s-1, Max=0.03 m s-1 

Average model ensemble OCS=0.03 m s-1 
 

Labrador 
 

North 
 

Norwegian 

   
 Min=-0.17 m s-1, Max=0.03 m s-1 

Average model ensemble OCS=0.07 m s-1 
Min=-0.09 m s-1, Max=0.05 m s-1 

Average model ensemble OCS=0.05 m s-1 
Min=-0.10 m s-1, Max=0.06 m s-1 

Average model ensemble OCS=0.06 m s-1 

 
 

Figure 5e. Spatial distribution of biases in surface ocean current speed models and reanalysis in six target seas averaged over the 

vegetation season and the time period 1993-2005. 

 

 5 
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Figure 6a: Spatial distribution of biases in SST (K) between models and reanalysis data in the Barents Sea; the biases are averaged 

over June-September. 

 

 5 

Figure 6b: Spatial distribution of errors, which are calculated as the difference between model and reanalysis values of annual SST 

trends (K yr-1) in the Barents Sea (June-September) 


