
 
 
Dear Prof. Heinze,  
 
Thank you very much for your assistance with our manuscript: “Simulation of factors affecting E.huxleyi 5 
blooms in arctic and subarctic seas by CMIP5 climate models: model validation and selection” by N. 
Gnatiuk, I. Radchenko, R. Davy, E. Morozov, and L. Bobylev.  
 
We are very thankful to the reviewers’ comments and suggestions that considerably improve our manuscript.  
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Please kindly find attached the responses to the reviewer and effected revisions, as well as a detailed 
specification of the changes we introduced.  
 
We are looking forward to hearing from you considering these changes and await further instructions.  
On behalf of the paper’s co-authors  15 
 
Best regards,   
Natalia Gnatiuk  
(and co-authors)  
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General comments (lines 8-34 in the reviewer’s report) 

 

Summary 25 

The principal concerns of the third reviewer predominately reside in justification of both the major incentive of 

our study and the selection of factors controlling phytoplankton blooms. Also, we explain the reasons for 

confining our consideration solely to some specific sea areas within the seas addressed. 

We fully acknowledge the righteousness of these objections. The matter is that after the first round of reviewing 

we acquiesced to the recommendation of one of the reviewers to shift the focus of the paper from E.huxleyi to the 30 

phytoplankton in general and for model selection methodology. Having done this, we actually weakened the 

major incentive of the study and justification of locations of the specific marine areas that were addressed. 

Therefore, we decided to return to the initial version of the paper. However, we further substantiated the study 

incentive, our reasoning of confining to selected parts of the seas, and the expediency of employment of the 

concrete set of forcing factors (FFs) that condition/govern the growth of E.huxleyi. We extended the number of 35 
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FFs up to 10 and included nutrients and some parameters related to the carbon chemistry system in the surface 

ocean. 

Accordingly, we renewed our selection of models from the CMIP5 archive. The respective results are presented 

and discussed. 

Along with the above changes, in the revised paper we also made multiple corrections to the text following the 5 

detailed comments of the third reviewer. Below, the respective answers/explications are given point by point. 

 

Line 

number 
Comment Reply 

                                                      Abstract 

10 I suggest to rephrase “sea areas” and say “differ from” 

instead of “differ in comparison with”. 

This sentence has been rephrased. 

11 You don’t actually test different methodologies in your 

manuscript, so to say that you want to find the 

“methodology of selection” in the abstract is misleading 

in my opinion 

We agree. This sentence has been 

rephrased. 

17 Please be more precise and state i) sea surface 
temperature and ii) salinity averaged over the top 30m – 
right now it is not clear from the abstract whether you use 
sea surface salinity or top 30 m averaged salinity. 
 

This requirement is fulfilled.  

20 What is “high-skillful”? This is rather subjective, isn’t it? 
 

We mean skillful according to our 

selection procedure. We have 

corrected the text to reflect this. 

21 I don’t understand “mutually optimal combinations» - can 
you rephrase? 
 

We mean that there is no one 

combination of models which is 

selected as being the most skillful 

for different variables. We have 

corrected the text to clarify this. 

23 “a unique best model subset” – best in terms of what? 
 

Best in terms of fit to the 

reanalysis according to our model 
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selection procedure. We have 

corrected the text accordingly. 

24 It has to become clear from the abstract whether this “7-
11 models” is a subjective choice of yours or whether it is 
based on some objective criteria. It currently reads like 
the former. 

It is an objective result of the 

thresholds set in the model 

selection procedure. We have 

clarified this in the text. 

27 I am not convinced that the fact that the model subsets 

outperform the full-model average proves that your 

selection method should be used in the future. The logic 

in this sentence doesn’t hold for me as you have not 

shown in your manuscript how a different selection 

method would not achieve the same thing. 

We are not comparing model 

selection procedures here so we do 

not say that our procedure should 

necessarily be favoured over other 

methods, but rather that model 

selection using this method is 

preferable to using the full model 

ensemble. We have corrected the 

text to clarify this. 

  
I miss a statement in the abstract regarding why you focus 
on the Arctic/subarctic. The climate models give global 
projections and differ not only in this region. In my 
opinion, you should better motivate the focus area by e.g. 
stating that this region is projected to be affected 
especially severely by climate change. Do the models 
differ most in that area? 

Justification of selection of Arctic 

and sub-Arctic seas is presently 

given in Abstract and Introduction. 

Introduction 

Page 2 

2 I suggest to avoid saying “prediction of the future status” 
and instead use “projections” here. Additionally, please 
state here already what the components of the climate 
system are. 

Agreed. This has been changed. 

5 “more realistically” than what? Deleted. 

6 Please say “model output” here instead of “model data” The recommended change is done 

throughout the entire text. 

9 “usually”? I don’t understand the use here. Are you Agreed, the sentence is rephrased. 
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referring to the historical period here or the projections? 
This needs to be made clearer here. 

10-11 Same as above: historical period? Additionally, it did not 

become clear from the first paragraph that the models’ 

performance varies across regions and target variables. 

Therefore, that a different set of models should be used 

for “each specific task and region” does not logically 

follow from above. What does “reliable” mean in this 

context? 

Now we mention “historical 

period” and the explanation why 

the models should be sea area-

specific is presently given above 

these lines, the word “reliable “is 

removed. 

 Furthermore, after making the distinction between 
“historical period” and “future projections” clearer in this 
paragraph, it is important to point out here that you 
assume that the models that perform “best” (whatever 
that means) over the historical period also produce the 
“best” projections. I have seen the sentence along these 
lines in L. 29-30, but I think it is more appropriate here 
already. 

The remark is accepted and the 

sentence from Lines 29-30 is 

presently placed earlier in the text. 

12-13 What is a “reliable approach”? How does a model “most 

efficiently” simulate the state of a variable? I suggest to 

rephrase. 

Done: the sentence is rephrased.  

13-14 What are the “abiotic parameters” you’re referring to 
here? They are not introduced. Furthermore, why do we 
want to understand how phytoplankton dynamics might 
be affected by future climate change? Why subpolar and 
polar latitudes? 

Yes, this was unclear. We have 

rewritten this section to clarify 

what parameters we chose and 

why, and to clarify the purpose of 

these choices. 

15-16 This sentence does not make sense to me. As Introduction has been 

essentially changed (the major 

incentive of study is distinctly 

described), this part hopefully 

became comprehensible. 

19 What do you mean by “in case it is not possible to 
calibrate a model for a selected region”? Additionally, 
why “furthermore”? Don’t you have this exact 
information in the sentence before? I don’t understand. 

Agreed. This sentence was 

superfluous and was removed. 
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23 “best” regarding what? Please be more precise here. 
Additionally, I think “Taylor et al.,2001” is not a suitable 
reference here as this paper does not discuss the choice of 
a model subset. 

"Best" is taken to mean most 

skillful in simulating historical 

climate with respect to 

observations. We have added this 

comment. 

Agreed. Here we make a mistake, 

it should be cited article of Taylor 

et al., 2012 

25-26 Please add references to i) and ii). The references are provided in the 

previous sentence, and the two 

successive sentences are united. 

28 Please add a reference to this statement. What is a “poor 
reproduction of the interannual variability”? The sentence 
starting with “so that…” is not a sentence, please check 
the grammar. 

Agreed. This sentence was 

superfluous and was removed. 

30 The “therefore” does not make sense here. Please double-

check the logical flow between these sentences. 

Done: the sentence is rephrased. 

31 What does “properly” mean here? Be precise. This sentence has been rephrased. 

32 The choice of the parameters is still not clear. If these are 
still motivated by the fact that you ultimately want to 
assess the impact of climate change on phytoplankton 
dynamics, choosing salinity & wind speed rather than 
nutrients does not make sense to me. Irrespectively, these 
variables are not properly introduced or motivated here. 

The number of parameters and 

their choice was reconsidered, 

respective changes were entered. 

Page 3 

3-6 What is the disadvantage of using this approach? Or 
differently asked: Why did you not choose to do it that 
way? 

These sentences are removed as 

they refer to studies that address 

solely atmospheric variables. 

7 Why would one select “a unique combination of models 

for each study variable”? For what? I have trouble 

following the logic here. 

This part has been rephrased. 

The selection of unique 

combinations was motivated by the 

necessity to reveal how well each 

of the models simulates each 

5 
 
 



factor. 

10 What are “appropriate models”? The sentence is reworded and in 

the following part of the text we 

avoid using such adjectives. 

3-24 It is not clear to me at all what the advantages and 
disadvantages of each of these approaches are. Instead of 
simply stating what author X did, rather state why they 
chose that approach and what they could not assess with it 
or what the limitation of the respective approach was. 
Thereby, you can better motivate why you chose not to 
follow any of the listed approaches – which is currently 
not clear from what you write. 

We moved this part to Methods 

section and rephrased. 

25 After what you have written in the previous paragraph, 

this sounds too much like an arbitrary decision to me. 

Why did you choose to do what you did? In what way 

does that improve previously applied methodology? 

The entire paragraph is revised 

explaining the incentive of our 

decision. This part moved to 

Methods section. 

30 Until here, I have assumed that you focus on the global 

scale – mentioning the subareas in L. 14 of p.2 came out 

of nowhere at that location (see comment above) and is 

not linked to the rest of the introduction until here. Please 

rewrite the introduction, so that your focus area naturally 

results from the introduction. Why do we care especially 

about the performance of climate models in polar 

regions? 

Introduction is essentially 

rewritten, and necessary 

explications of the study focus on 

subpolar and polar regions is 

justified. 

30 In what way do the subareas “differ in physical and 

geographical conditions”? This statement is too vague. Is 

it any problem that the subareas you choose are linked 

through circulation? You don’t discuss anywhere in the 

manuscript how e.g. biases in circulation in the North 

Atlantic could simultaneously affect the North Sea, the 

area north of Iceland (“Greenland”), the Norwegian Sea, 

and the Barents Sea. As an example, if a model does not 

It is true that biases in circulation 

patterns likely affect more than one 

sea but how these biases affect the 

climate in a given sea is strongly 

controlled by the local conditions 

e.g. by the amount of sea ice cover, 

the presence of mountains etc.  

We have added comments 
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reproduce the observed circulation in the Norwegian Sea, 

causing biases in e.g. temperature and salinity there, 

these biases will also impact the Arctic (e.g. the Barents 

Sea), don’t they? Do you really think that it is appropriate 

to treat these areas as independent when they are clearly 

linked to each other? 

addressing this.  

 

  

31 What are “stable localizations”? How is “intense growth” 

defined? It is still not clear to me why you do that. 

We mean the regions in which 

blooms of plankton regularly 

occur. We have corrected the text 

accordingly.  
Page 4 

2 No. Until here, it is not at all clear that the variables you 

chose are the variables controlling phytoplankton 

blooms, as you still don’t mention important variables in 

the introduction (e.g. nutrients). Referring to one of your 

answers in the first round of reviews, namely that the 

temporal resolution of some of the drivers of 

phytoplankton dynamics not considered here is not high 

enough in the model output for the analysis you perform, 

I was going to recommend to add a statement along these 

lines somewhere in the text (probably in the method 

section). However, then I realized you claim to only use 

monthly data in the method section, so I don’t understand 

why you cannot assess the nutrient fields. 

Every reader familiar with phytoplankton dynamics will 

wonder why you did not consider obvious variables like 

nutrients, if your goal is to assess the possible 

implications of climate change on phytoplankton blooms. 

We agree. Introduction has been 

essentially changed. Also, we 

explained the number of variables 

and included nutrients. 

2-4 This statement does currently not make sense to me. 

Please clarify how exactly your results can improve 

Explication is provided. 
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ecological models as I don’t see how that could be. 

Methods 

Page 4 

7 Be consistent: “34” or “thirty-four” – compare to 

introduction. Additionally, check grammar throughout the 

text regarding “GCMs outputs”. 

This is done throughout the text. 

10 I suggest to not use “SSS” when not referring to sea 

surface salinity. Check throughout the text that you’re 

consistently stating “salinity averaged over top 30m” and 

not “sea surface salinity” (e.g. in Figure captions). 

This is done throughout the text. 

11 “known to affect the phytoplankton life cycle” is too 

vague. E.g., how do wind speed and ocean current speed 

affect the phytoplankton life cycle? Additionally, the 

references you cite are all coccolithophore papers, so if 

you want to make a general statement about 

phytoplankton here, I suggest to add references of other 

phytoplankton types. 

Again, the respective explanation 

is now provided in Introduction 

12 What do you mean by “availability” here? Please be more 

precise. This statement is repetitive with the statement in 

L. 8 – please revise. 

We mean availability of model 

output: not all models have 

scenario data available or have 

output of all the variables we 

assess here. This has been clarified 

in the text. 

24 You state in your answer to the first round of reviews that 

you wanted to move from only focusing on 

coccolithophores to phytoplankton as a whole – then why 

do you still choose your subareas based on E. huxleyi 

blooms? You could easily detect total phytoplankton 

blooms based on satellite imagery. 

As the initial focus on E. huxleyi is 

returned, this comment is no more 

relevant 

27 This information needs to come much earlier, namely in Presently this information is 
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the introduction. actually given in Introduction.  

29 Please rephrase “target water areas”. Rephrased. 

29 What is a “steady localization”? This has been rephrased: it is the 

regions where phytoplankton 

blooms have often occurred in the 

historical record. 

Page 5 

2-5 It is still unclear to me why you do that rather than 

assessing a larger subarea. Furthermore, you still don’t 

define what a bloom is for you here. 

We added motivation to the text 

about why we chose specific areas 

in which blooms of E. huxleyi 

regularly occur.  

We clarify through the text that we 

consider blooms of E. huxleyi. 

5-9 This statement does not make sense to me. Please 

rephrase to make clearer how the comparison of models 

you do here can e.g. be used in “marine ecology related 

issues” and in “forecasting of the region-specific climate 

interactions during the vegetation season”. What do you 

mean exactly? 

The sentence is rephrased and any 

ambiguity is avoided. 

10 What are the “regional features of distributions”? Done: the sentence is rephrased. 

17 What does the CPI tell you? Why did you compute it? 

Additionally, please introduce the short form “CPI” when 

first discussing the index (introduction). Same applies to 

other variables throughout the manuscript, such as “sea 

surface temperature”, where you jump back and forth 

between the long name and the short form. Please be 

consistent. 

This index widely used in 

climatology studies for model 

evaluation and weighted 

projections. We rephrased this part 

and mentioned more publications 

in the text. 

Done with regard to both CPI and 

other short form throughout the 

paper. 

14-26 Contrary to what you state in your answer to the reviews In the revised paper we 
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(see also my comment to L. 2 of p. 4), here you state that 
you mostly use monthly averaged model output. Based on 
this information, I understand less and less why you 
disregard e.g. nutrients in your analysis. 

significantly extended the number 

of forcing factors: presently they 

encompass nutrients as well. 

28 Please delete “proposed and”, simply state “we 

employed”. 

“proposed” is deleted 

28-29 Coming back to an earlier comment of mine: the 

percentile score-based model ranking method still seems 

like a random approach to me – be explicit in your 

manuscript regarding what the individual pieces of this 

approach (each of which had been applied before in other 

studies) could not assess (or where their limitations were) 

and how combining the individual pieces solved these 

limitations. 

The required justification is 

presently given in Introduction 

Page 6 

1 amplitude or magnitude (throughout the text)? To avoid misunderstanding, we 

used “spread”  throughout the 

entire text 

3 What is the “total score”? You currently don’t define this. The missing definition is presently 

provided 

6 Please use “SST”. done 

8 Replace “less than“ by “top”. And please avoid subjective 

language here (“models considered very good”). Strictly 

speaking, just because a model ranks amongst the top 

25% does not mean the respective model does a 

particularly good job at reproducing the observations – 

the respective model is only the “best” relative to the 

other models relative to the other models you assessed. 

done 

14 Please replace “analyzed”, as this description is too 

vague. 

The word “analysed” is changed 

17 What is the “amplitude bias”? I don’t understand. The sentence is rephrased 
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20 What is “much higher”? Please be precise. The respective number is given 

21 Models changed 

22 What does “placed beyond it” mean? Please rephrase. The sentence is changed 

13-27 Shouldn’t all of this be part of the results section? It was suggested by previous 

reviewer – to place this part in 

Methods section. This is an 

example of applying our approach, 

and we do not show such results 

for all variable. That is why we 

decided to leave it here. 

Results & Discussion 

Page 6 

30 “SST” etc. have been introduced before. Please avoid 

redundancies. 

Done throughout the text 

Page 7 

8 not an optimal We rephrased it. 

9 What does “properly simulating” mean? The sentence is reworded to avoid 

the word “properly” 

11 What bias do you mean here? Median? Spatial 

variability? 

The word “bias” is replaced and 

the sentence reads differently now. 

29(p.6) 

- 

12(p.7) 

Can you make more general statements that make it easier 

for the reader to extract the most important information? 

Or is the main information really only “different models 

are best for different parameters in different subareas”? I 

suggest to reverse the order then and start the section with 

the main information to be taken away (L. 8-12) and then 

explain in more detail how this can be seen. 

This part of the text is rephrased. 

13 what does “equally reproduce” mean here? Changed: reproduced equally well 

14-16 Please add references here. References are provided 
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16 please rephrase “marine tracts”. “marine tracts” is removed 

16 I don’t understand the logic why the error should increase 

towards the poles because of the convergence of 

meridians. 

It was deleted. 

16-18 This logic also doesn’t hold. Why do you think that? I 

don’t see why you would expect a different set of models 

to perform “best” in one area and then others in a different 

area, simply because the two areas differ in their physical 

environment. Please explain. Referring to an earlier 

comment, you nowhere in the manuscript explain how the 

subareas are different in e.g. their physical circulation. 

We explained it in 2.2.1. Study 

regions. 

19 represent the five The description of Figure 5 (maps) 

was removed because we decided 

to replace it with boxplots. Thus, 

we replaced Figure 5 and the 

Supplements with one figure with 

boxplots. 

21 Do you mean a “lower” bias? 

23 What exactly do you mean by “insufficiently accurate 

parametrization of river runoff”? Don’t the models 

account for river runoff? You need to elaborate to make 

your argument clearer. Consider adding references here. 

25 But can’t you assess this in more detail? I mean, you have 

analyzed the current speeds, have you also assessed the 

circulation as a whole? You can figure out what the cause 

is with the available model output. 

29 “[…] and the biases are much higher” 

25-29 I currently miss a discussion on the causes of the biases in 

SDSR. 

30 Avoid subjective language, such as “simulate well”. 

Furthermore, the description and discussion of the biases 

in WS is rather short compared to that of the other 

variables. Try to make it more balanced across the 

variables. 
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32 Avoid statements like “quite good results”. Simply state 

the result and let the reader decide whether that is good or 

bad. 

32 observed or obtained? 

19(p.7) 

- 

13(p.8) 

The order of variables here is not intuitive as you jump 

between oceanographic and meteorological ones. I 

suggest to reorganize. 

Page 8 

4-5 Again, did you look into that? The description of Figure 5 (maps) 

was removed because we decided 

to replace it with boxplots. Thus, 

we replaced Figure 5 and the 

Supplements with one figure with 

boxplots. 

10 Use your short forms. Furthermore, “rather large biases” 

is subjective, please avoid statements like this. 

14 What do you mean by “to examine our percentile score-

based”? Be more precise what you examine. 

We deleted Figure 6 because this 

comparison can be seen in Figure 6 

– new version (boxplots). 17-24 I am not sure I get what to take away from this. 

19 Do you mean Fig. 6? 

25 what does “somewhat better” mean? What bias (i.e. 

median, variability…)? 

Conclusions 

7 Check grammar “no any optimal”. word “any” is removed 

10 What are “quite good results”? This is subjective. Changed 

11 The start of the sentence does not make sense to me. 

What do you mean? 

The sentence is deleted. 

13 Delete “well” deleted 

16-18 Please avoid 1-sentence paragraphs. done 

19 What “range of different factors” are you referring to 

here? 

Changed the entire paragraph 
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20 I don’t see how the proposed method is “enhancing the 

model selection procedure”. 

It was changed. 

 Why is there no discussion on the phytoplankton 
application in the conclusion section? I think this 
should re-appear here if this motivated the study. 

A respective paragraph is presently 

added. 

Figures/Tables 

Fig. 3 marine vegetation season; Add unit to SST bias in the 
caption. I suggest to increase the line thickness of the 
median bias. Don’t capitalize “standard deviation”. 

It was changed to “E. huxleyi 

bloom season”. The second 

suggestion is accepted. 

Fig. 

5a-5e 

I find it very confusing that you use “Fig. 5a”, “Fig. 5b” 

etc. to refer to different figures rather than panels within 

the figures. I suggest to number the figures and then use 

the letters to refer to panels within each figure. As you 

nowhere show the pattern of the respective variable that 

we would expect from the reanalysis, I suggest to at least 

add the average of the reanalysis under each panel (as you 

have done for the model ensemble). Additionally, I 

suggest to refer back to the method section for the exact 

periods considered or to restate them in the caption. 

Figures 5,6 and Supplements  are 

replaced by a single figure with a 

box-plot, which more informative 

and more laconic. 

Fig. 5a 

 

You don’t show sea surface salinity, do you? Define the 

bias (model-reanalysis or the reverse?) in the caption of 

each figure. 

 

Fig. 5e 

 

Isn’t it also the current direction that matters (see 

comments above). Have you assessed the circulation 

patterns as a whole? 

 

Fig. 6b 

 

What are the “errors” 
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Simulation of oceanographicfactors affecting E. huxleyi blooms in 
Arctic and meteorological parameters in arctic and subarcticsub-
Arctic seas by CMIP5 climate models: model validation and selection 
Natalia Gnatiuk1, Iuliia Radchenko1, Richard Davy2, Evgeny Morozov1, Leonid Bobylev1 5 
1Nansen International Environmental and Remote Sensing Centre, St. Petersburg, 199034, Russia 
2Nansen Environmental and Remote Sensing Center, Bergen, N-5006, Norway 

Correspondence to: Natalia Gnatiuk (natalia.gnatiuk@niersc.spb.ru) 

Abstract. 

The observed warming in the Arctic is more than double the global average and this enhanced Arctic warming is projected to 10 

continue throughout the 21st century. This rapid warming has a wide range of impacts on polar and sub-polar marine 

ecosystems. One of the examples of such an impact on ecosystems is that of coccolithophores, particularly E. huxleyi, which 

have expanded their range poleward during recent decades. The coccolithophore E. huxleyi plays an essential role in the 

global carbon cycle. Therefore, the assessment of future changes in coccolithophore blooms is very important.  

Currently, there are a large number of climate models that give projections for various oceanic and oceanographic, 15 

meteorological parameters, and biochemical variables in the Arctic. However, their estimates often differ in absolute values 

in specific sea areas in comparison with the individual climate models can have large biases when compared to historical 

reanalysis dataobservations. The main goal of this research was to find out the methodology of selection of the optimal 

model select an ensemble of climate models that most accurately reproduces the state of abiotic parameters inherent 

environmental variables that influence the coccolithophore E. huxleyi bloom over the historical period when compared to 20 

reanalysis data. We developed a novel approach for model selection to include a diverse set of measures of model skill 

including the spatial pattern of some variables, which had not previously included in six target arctic and sub-arctica model 

selection procedure. We applied this method to each of the Arctic and sub-Arctic seas, viz. the Barents, Bering, Greenland, 

Labrador, North and Norwegian seas. in which E. huxleyi blooms have been observed. Once we have selected an optimal 

combination of climate models that most skillfully reproduce the factors which affect E. huxleyi, the projections of the future 25 

conditions in the Arctic from these models can be used to predict how E. huxleyi blooms will change in the future.  

Here, we present the validation of 34 CMIP5 atmosphere-ocean General Circulation Models (GCMGCMs) over the 

historical period 1979-2005. Furthermore, we propose a procedure of model ranking and selection, which is selecting these 

models based on the model’s skill to represent severalin reproducing 10 important oceanographic and, meteorological 

parameters in the arctic and subarctic seas: the , and biochemical variables in the Arctic and sub-Arctic seas. These factors 30 

include the concentration of nutrients (NO3, PO4, and SI), dissolved CO2 partial pressure, pH, sea surface (i) water 
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temperature and (ii), salinity (averaged over the top 30 m); (iii)30m, 10m wind speed at a height of 10 m above the surface; 

(iv) ocean and surface current speed;, and (v) surface downwelling shortwave radiation. at sea surface. The validation of the 

GCMsGCMs’ outputs against reanalysis data includes analysis of the interannual variability, seasonal cycle, spatial biases 

and temporal trends of the simulated parametersvariables. In total, 3060 combinations of high-skilful models were selected 

for 510 variables over 6 study regions. using the selection procedure we present here. The results show that there is no 5 

mutually optimal combination of models, nor is there a one top-model, that has ahigh skill in reproducing either the regional 

climatic-relevant features of the whole Arctic region or all combinations of the considered parametersvariables in target seas. 

Thereby, an individual subset of models was selected according to our methodologymodel selection procedure for each 

‘combination of variable – target sea’ combination, a unique best model subset was selected withand Arctic/sub-Arctic sea. 

Following our selection procedure, the number of includedselected models varyingin the individual subsets varied from 73 to 10 

11.   

The paper presents a comparison of the selected best-model sub-setssubsets and the full-model ensemble of all available 

CMIP5 models with the respectiveto reanalysis data. The selected best-model sub-setssubsets of models generally show a 

better performance vs.than the full-model ensemble in more than 70% cases. Therefore we conclude that confirms the 

advisability of usingwithin the proposedtask addressed in this study it is preferable to employ the model ranking 15 

method.subsets determined through application of our procedure than the full-model ensemble.  

1 Introduction 

In the last three decades, the Arctic has been warming at more than twice the rate of the global average (Davy et al., 2018; 

Overland and Wang, 2010). This rapid warming has led to large changes in the physical environment, for example with the 

loss of sea ice extent and volume (Dai et al., 2019; Kwok, 2018), but it has also had a large impact on the Arctic ecosystem 20 

(Hoegh-Guldberg and Bruno, 2010; Johannessen and Miles, 2011). One group of species that have been affected by Arctic 

warming are coccolithophores such as Emiliania huxleyi (hereafter E. huxleyi). Reportedly, coccolithophores can affect the 

carbon and sulphur cycles in the surface ocean, at least within their bloom areas(Balch et al., 2016; Kondrik et al., 2018; 

Malin et al., 1993; Rivero-Calle et al., 2015; Winter et al., 2013). The effect of these algae on aquatic carbon chemistry 

results in changes to the carbon fluxes between the atmosphere and ocean (Balch et al., 2016; Morozov et al., 2019; 25 

Pozdnyakov et al., 2019; Shutler et al., 2013). Additionally, they contribute to the generation of sulfate aerosols, which 

scatter solar radiation in the atmosphere and act as cloud condensation nuclei, enabling cloud formation (Malin and Steinke, 

2004). Therefore, the coccolithophores are responsible for both warming and cooling effects on the global climate (Charlson 

et al., 1987; Wang et al., 2018a, 2018b).  

Of all the coccolithophores, E. huxleyi is the most abundant and productive calcifying organism in the world ocean 30 

(McIntyre and Bé, 1967). It is a planktonic species growing at practically all latitudes (Brown and Yoder, 1994; Iglesias-
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Rodríguez et al., 2002; Moore et al., 2012) and in the eutrophic to oligotrophic marine waters (Paasche, 2001). The property 

of this photosynthesizing aquatic organism to produce not only organic carbon, but also calcite, i.e. particulate inorganic 

carbon (PIC), imparts to E. huxleyi a special importance for the global ocean carbon cycle, and, through intricate 

interactions, for CO2 exchange fluxes between the ocean and atmosphere (Kondrik et al., 2019; Morozov et al., 2019; Shutler 

et al., 2013). Moreover, E. huxleyi blooms are known to i) affect not only the carbon but also sulphur cycles in the surface 5 

ocean, at least within bloom zones, and arguably ii) contribute to the generation of sulfate aerosols, which eventually enable 

cloud formation (Malin and Steinke, 2004). This gives E. huxleyi blooms a definite climatic dimension in the overall 

environmental impact of this phenomenon. The scale of the impact should indeed be very significant: such blooms not only 

release into the water huge amounts of PIC, in some cases reaching nearly one million tons (Balch et al., 2016; Kondrik et 

al., 2018; Rivero-Calle et al., 2015), but they are very extensive typically covering marine areas in excess of many hundred 10 

thousand, sometimes up to one million, square kilometres. Besides they occur annually across the world ocean (Brown and 

Yoder, 1994; Iglesias-Rodríguez et al., 2002; Moore et al., 2012). Since changes of the regional climate have influenced the 

ecosystems of the Arctic seas, coccolithophores, particularly E.huxleyi, have increasingly expanded their range into Polar 

waters (Henson et al., 2018; Rivero-Calle et al., 2015; Winter et al., 2013), which is thought to be due to climate warming 

(Fernandes, 2012; Flores et al., 2010; Kondrik et al., 2017; Okada and McIntyre, 1979; Winter, 1994). 15 

Although E. huxleyi cells can adapt to diverse environmental conditions, the blooms of this alga exhibit remarkable inter-

annual variations in extent, intensity and localization (Balch et al., 2012; Iida et al., 2002; Kondrik et al., 2017; Morozov et 

al., 2013; Smyth et al., 2004). Importantly, the aforementioned spatio-temporal variations inherent in E. huxleyi blooms 

prove to be specific to individual marine environments, which indicates that E. huxleyi growth is generally conditioned by 

multiple forcing factors (FFs) acting through feedback mechanisms. Reportedly, the observed spatio-temporal variations are 20 

primarily driven by changes in water surface temperature (SST), salinity, levels of photosynthetically active radiation (PAR) 

and nutrients/micronutrients availability, such as nitrate (NO3), silicate (SI), ammonium (NH4), phosphate (PO4) and iron 

(Fe) (Iglesias-Rodríguez et al., 2002; Krumhardt et al., 2017; Lavender et al., 2008; Zondervan, 2007). However, it has been 

found that, in addition to the above FFs, the water column stratification and wind speed at 10m above the surface (WS) also 

condition the growth of E. huxleyi: a decrease in wind stress leads to formation of a shallow mixed layer and retaining of 25 

algal cells within the zone of high levels of PAR (Raitsos et al., 2006). The intensity of water movements in general, and 

specifically water advection driven by ocean surface currents (OCS), was also highly consequential in this regard (Balch et 

al., 2016; Pozdnyakov et al., 2019). Among the other factors affecting E. huxleyi blooms are carbonate chemistry variables 

such as CO2 partial pressure in the water, pCO2, and pH, which are considered to be very important (Tyrrell and Merico, 

2004). There has been speculation that the ongoing increase in atmospheric CO2 should damp/inhibit the growth of 30 

coccolithophores (Rivero-Calle et al., 2015), however, this is not supported by multiple observations (Kondrik et al., 2017; 

Morozov et al., 2013).  
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As the above FFs are susceptible to climate change, these factors are expected to exert their combined influence on the 

intensity, spatial extent, and possibly the seasonal duration of E. huxleyi blooms in the future. Given that the environmental 

influence of this phenomenon has both climatological and biogeochemical dimensions at least on a synoptic scale, it appears 

important to envisage how it will evolve in the mid-term future. This can be done using either biological, e.g., (Gregg et al., 

2005) or statistical, e.g., (Pozdnyakov et al., 2019) E. huxleyi bloom models, for which the prospective tendencies in FFs are 5 

employed. In turn, the tendencies in the FFs can be obtained from climate model output.  

Today atmosphere-ocean coupled climate models are state-of-the-art tools for the predictionprojection of the future status of 

the climate system components on decadal and centennial time scales (Otero et al., 2018; Taylor et al., 2012).(Otero et al., 

2018; Taylor et al., 2012). In particular, the modern coupled atmosphere-ocean General Circulation Models (GCMs) include 

processes that govern the main climate system components such asinteractions between the ocean, atmosphere, ocean, land 10 

and, sea- ice, and therefore, represent more realistically the processes of their interactions. Thus, thecarbon cycle. The fifth 

phase of the Coupled Model Intercomparison Project (CMIP5) gives the opportunity to use data ofthe model output from 

more than 30 GCMs (Taylor et al., 2012).(Taylor et al., 2012). The GCMs provide a large number of the meteorological and, 

oceanographic parameters allowing to perform aand biochemical variables and so facilitate the comprehensive assessment of 

possible climate change impacts on marine ecosystems in the future. However, most of the studies addressingwhich have 15 

evaluated the CMIP models intercomparison showmodel's historical simulations have shown that the GCMsmodel outputs 

usually vary significantlyhave a large spread compared to natural variability (Almazroui et al., 2017; Fu et al., 2013; 

Gleckler et al., 2008). Therefore, it is important to find a reliable approach for both model quality intercomparison and 

selection of optimal models for each specific scientific task and regionThe full CMIP5 model ensemble has been found to be 

skillful at simulating continent-wide surface air temperature, and therefore useful for making robust assessments at these 20 

scales (IPCC, 2013). However, model skill at smaller spatial scales, such as for the Arctic, or even for specific Arctic seas, 

varies considerably from region to region and for different model variables (Overland et al., 2011). Therefore, it is important 

to find an approach for both model evaluation (comparison with historical climate) and selection of optimal models for each 

specific scientific task and region that gives a skill score to each model which encompasses all the relevant model variables 

and properties that are important for the scientific question to be addressed. 25 

 

The main goal of the paper is to findquantify how well CMIP5 models reproduce the main forcing factors (FFs) that 

influence coccolithophore blooms in the Arctic and sub-Arctic seas. We propose a reliablenew approach for CMIP5 model 

selection, in particular, those climate models that simulate most efficiently the state of abiotic parameters relevant to living 

ranking and selecting CMIP5 models for their skill in capturing the historical environmental conditions of phytoplankton 30 

communities inherent in a number of seas at subpolar and polar latitudesin the Arctic and sub-Arctic seas (viz. the Barents, 

Bering, Greenland, Labrador, North and Norwegian seas). SuchWe have chosen such a specific task is selected as a case 
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study in order to select model output to have the results that would be applied for projections of abiotic factors affecting the 

dynamics of phytoplankton communities. 

It is well established that the method of ensemble averaging can be useddrive a model of coccolithophore blooms to reduce 

systematic model biasespredict how these will change in the individual climate models (Flato et al., 2013; Gleckler et al., 

2008; Knutti et al., 2010a, 2010b; Pierce et al., 2009; Reichler and Kim, 2008). Furthermore, in case it is not possible to 5 

calibrate a model for a selected region, one of the main recommendation from climate model developers is to take into 

consideration more than one climate model (Flato et al., 2013; Gleckler et al., 2008; Knutti et al., 2010b; Pierce et al., 2009). 

There are two main approaches to employing climate model ensembles: (i) use of the full-ensemble average data (Flato et 

al., 2013; Gleckler et al., 2008; Knutti et al., 2010b; Reichler and Kim, 2008); and (ii) selection of an ensemble of the best 

models from the entire set of available climate models based on a comparison with observational data for a historical period 10 

(Herger et al., 2018; Knutti et al., 2010b; Taylor, 2001). These two approaches are equally used depending on a specific 

scientific task: (i) full-ensemble averaging for future trends analysis, and (ii) selection of the best models ensembles for 

regional climate features analysis. However, when there are many climate models available (e.g., in our study the number of 

models available varied from 25 to 30 depending on the climate variable), then the averaging method will result in very 

strong smoothing of data, and poor reproduction of the interannual variability. So that only the long-term trend of a given 15 

variable will be well captured.future. We assume that a climate model that successfully represents the present-day conditions 

will also succeed in the future projections. Therefore, we chose the second approach, e.g., a selection of climate models that 

properly simulate the current regional features, including the spatial distribution, of the meteorological and oceanographic 

parameters under study (sea surface temperature and salinity, surface wind speed at 10 m, ocean surface current speed, and 

surface downwelling shortwave radiation). At that, it was important to define the appropriate methodology for selection of 20 

the best model ensembles.be skillful in future projections. Therefore, we select models based upon the validation of the 

models within the historical period.  

There are many approaches for the selection of an optimal set of climate models. One approach suggests choosing the 

models with focus only on some key climatological parameters, such as air temperature, precipitation and sea level pressure 

(Almazroui et al., 2017; Duan and Phillips, 2010; Pierce et al., 2009; Sarr and Sarr, 2017). This approach assumes that if the 25 

models skillfully reproduce these key parameters, they also must be good at reproducing the regional climate in general. 

Another approach, which is used in this study, is to select a unique combination of models for each study variable (Agosta et 

al., 2015; Anav et al., 2013; Fu et al., 2013; Gleckler et al., 2008). In order to select such a unique combination of models, it 

is necessary, firstly, to perform a validation of climate models through comparing GCMs outputs with the respective 

observations over a historical period, and then to identify the appropriate climate models based on statistical measures, i.e. to 30 

sort or rank the tested models. However, there are no generally accepted solutions for this task. For example, Agosta et al. 

(2015) ranked the CMIP5 models using only one statistical metric, viz, a climate prediction index, which is the ratio of the 

root mean square error to the standard deviation of observation data. Gleckler et al. (2008) evaluated the CMIP5 models and 
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ranked them through analyzing the climatology of the annual cycle, inter-annual variability, and relative errors. They found 

that the performance of the analysed models varies for different parameters. Das et al. (2018) assessed 34 CMIP5 models 

using the following three criteria: the mean seasonal cycle, temporal trends, and spatial correlation. On this basis the models 

were selected using a cumulative ranking approach. Fu et al. (2013) and Ruan et al. (2019) applied a score-based method 

using multiple criteria for the assessment of CMIP5 model performance: mean value, standard deviation, normalized root 5 

mean square error, linear correlation coefficient, Mann-Kendall test statistic Z, Sen’s slope, and significance score. Further, 

Ruan et al. (2019) selected the top 25% ranked CMIP5 models for composing a multi-model ensemble for air temperature 

projections over the Lower Mekong Basin. Fu et al. (2013) and Ruan et al. (2019) ranked the employed models using a 

weight criterion from 0.5 to 1.0. Ruan et al. (2019) reported that the introduction of multiple criteria results in less 

uncertainties in the models’ performance in comparison with the respective observation data. However, Fu et al. (2013) and 10 

Ruan et al. (2019) did not consider the feature of spatial distribution of variables. 

We decided to compile and improve the previously applied approaches that is to employ the multiple criteria ranking method 

following Fu et al. (2013) and Ruan et al. (2019) studies but (i) taking into consideration the Agosta et al. (2015) climate 

prediction index, (ii) analysing the features of spatial distribution of target variables (spatial biases and trends), (iii) ranking 

the models with the percentile method (25th,50th, 75th) that is widely used in statistical analysis, and, finally, (iv) selecting the 15 

top 25% ranked CMIP5 models following Ruan et al. (2019). 

As the target arctic and subarctic seas differ in physical and geographical conditions, we performed the validation and 

selection model procedure for each sea individually. Moreover, we analyzed the specific marine areas with the stable 

localizations of intense growth of phytoplankton species both in spring (e.g. diatoms) and in summer-autumn (e.g. 

coccolithophores Kondrik et al., 2017; Smyth et al., 2004). Thus, the target regions permitted to identify the CMIP5 models 20 

that represented most closely the cumulative state of the physical environmental factors (abiotic parameters) characterizing 

the conditions, under which the aforementioned blooms occurred. Such a specific task eventuated in the results that can be 

useful for further improvements of marine ecological models encompassing the phytoplankton community as well as for 

modelling the dynamics of physical parameters relevant to surface water environment at high-latitude seas under conditions 

of changing climate. 25 

2 Materials and method 

2.1 Data 

Thirty-four34 CMIP5 GCMsGCMs’ outputs for the historical period 1979-2005 were used in this study. The data are freely 

available on the ESGF portal (https://esgf-node.llnl.gov). The list of climate models used is presented in Table 1. We 

analyzed five oceanographic and meteorological variables, namely the sea surface temperature (SST) and), salinity averaged 30 

over 0-30 m (SSSSS30m), surface wind speed at a height of 10 m (WS), ocean surface current speed (OCS), and shortwave 
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downwelling solar radiation (SDSR).); and 5 biochemical variables, namely concentration of nutrients (NO3, PO4, and SI), 

dissolved CO2 partial pressure (pCO2), and pH. These abiotic parametersforcing factors (FFs) are known to affect the 

phytoplankton life cycle in sub-polar and polar latitudes (Iglesias-Rodríguez et al., 2002; Raitsos et al., 2006; Winter et al., 

2013). The availability of the CMIP5 GCMs analysed in this study are listed in Table1: in total, we used 25 models for OCS, 

28 for SSS, SST, SDSR, and 30 for WS. For validation of the climate models outputs(Iglesias-Rodríguez et al., 2002; 5 

Raitsos et al., 2006; Winter et al., 2013). The analyzed CMIP5 GCMs are listed in Table1: in total, we used outputs of 25 

models for OCS, 28 for SS30m, SST, and RDSR, 30 for WS; 11 for PO4, 13 for SI and pH, 15 for pCO2, and 16 for NO3. The 

number of models employed is different and was dictated by their availability on the ESGS portal. For validation of the 

climate models outputs, we used atmospheric and oceanic reanalyses: (i) Era-Interim from the European Centre for Medium-

Range Weather Forecasts (https://apps.ecmwf.int) (Dee et al., 2011) for the surface wind speed at 10 m, sea surface 10 

temperature, and shortwave downwelling solar radiationSST, WS, and RSDS for the period from 1979 to 2005; and (ii) 

GLORYS2V4 from the European Copernicus Marine Environment Monitoring Service (http://marine.copernicus.eu) for the 

sea surface salinity and ocean surface current speed for the period 1993-2005.SS30m, OCS, and FREEBIORYS2V4 

reanalyses for biochemical variables (Perruche, 2018) for the period 1993-2005. The period for verification of the employed 

climate models was chosen based on the length of the reanalysis data and the limitations inherent in the “historical” runs of 15 

the GCMs, which usually terminate in 2005. The selected reanalyses are widely used in the literature and have been shown 

to be consistent with independent observational data (Agosta et al., 2015; Dee et al., 2011; Garric et al., 2017; Geil et al., 

2013). 

 

2.2 Methods for model selection 20 

It is well established that the method of ensemble averaging can be used to reduce systematic model biases in the individual 

climate models (Flato et al., 2013; Gleckler et al., 2008; Knutti et al., 2010; Pierce et al., 2009; Reichler and Kim, 2008). 

There are two main approaches to employing climate model ensembles: (i) use of the full-ensemble average data for future 

trends analysis (Flato et al., 2013; Gleckler et al., 2008; Knutti et al., 2010; Reichler and Kim, 2008); and (ii) selection of an 

ensemble of the models from the entire set of available climate models yielding the best fit to the observational data for a 25 

historical period (Herger et al., 2018; Knutti et al., 2010; Taylor et al., 2012). We chose the second approach for analysing 

the ability of GCMs to reproduce main forcing factors (FFs) that influence E. huxleyi bloom: nutrient concentrations 

(nitrates, phosphates, silicates), salinity averaged over the top 30 m (SS30m), sea surface temperature (SST), wind speed 

(WS), downwelling shortwave radiation at the surface (RSDS), pH, pCO2, and ocean current speed (OCS).  

There are many different approaches to ranking and selection climate models following validation with historical 30 

observations. For example, Agosta et al. (2015) ranked the CMIP5 models using only one statistical metric, viz, a climate 

prediction index (CPI), “which is widely used in climatology studies for model evaluation and weighted projections” 

(Connolley and Bracegirdle, 2007; Franco et al., 2011; Murphy et al., 2004). Gleckler et al. (2008) evaluated the CMIP5 
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models and ranked them by analyzing the climatology of the annual cycle, inter-annual variability, and relative errors. They 

found that the performance of the analyzed models varied for different variables. Das et al. (2018) assessed 34 CMIP5 

models using the following three criteria: the mean seasonal cycle, temporal trends, and spatial correlation. On this basis, the 

models were selected using a cumulative ranking approach. Fu et al. (2013) and Ruan et al. (2019) applied a score-based 

method using multiple criteria for the assessment of CMIP5 model performance: mean value, standard deviation, normalized 5 

root mean square error, linear correlation coefficient, Mann-Kendall test statistic Z, Sen’s slope, and significance score. 

Further, Ruan et al. (2019) selected the top 25% ranked CMIP5 models by applying a weight criterion from 0.5 to 1.0 to the 

different measures. Ruan et al. (2019) reported that the introduction of multiple criteria results in fewer uncertainties in the 

models’ performance in comparison with the respective observation data. 

Having tested the approaches cited above, we developed our own methodology which combines elements from some of 10 

these.  We employ the multiple criteria ranking method following Fu et al. (2013) and Ruan et al. (2019) studies but with the 

following modifications: (i) we took into consideration the Agosta et al. (2015) climate prediction index, (ii) analyzed the 

features of spatial distribution of target variables (spatial biases and trends), (iii) ranked the models with the percentile 

method (25th,50th, 75th) that is widely used in statistical analysis, and, finally, (iv) we selected the top 25% ranked CMIP5 

models following Ruan et al. (2019). 15 

2.2.1 Study regions 

The target regions are six arctic and subarctic seas: the Barents, Bering, Greenland, Labrador, North and Norwegian seas. 

Only specific areas were selected in each target sea relying onThe target regions are six Arctic and sub-Arctic seas: the 

Barents, Bering, Greenland, Labrador, North and Norwegian seas, where E. huxleyi blooms regularly occur (Kondrik et al., 

2017). As mentioned above, the reason we chose the listed seas was that, in the context of global climate change, the Arctic 20 

and sub-Arctic seas have experienced the most pronounced changes in environmental variables due to the Arctic 

amplification. In addition, the target seas differ in physical and geographical conditions, which strongly affect their climate. 

While they are linked by common circulation patterns, e.g., with the warm air advection coming into the Arctic from the 

Atlantic Ocean, how this circulation affects the climate in a given sea is strongly affected by the local conditions. Therefore, 

we performed the validation and selection model procedure for each sea individually. Only specific areas within which 25 

intense growth/blooms of E. huxleyi frequently occur were selected in each sea according to the results obtained by Kazakov 

et al. (2018) for the coccolithophore E. huxleyi blooms based on the Ocean Colour Climate Change Initiative dataset version 

3.0 (https://esa-oceancolour-cci.org/) for the period from 1998 to 2016. The selectionA comparison of the listed seasarea-

averaged values for the entire sea and the specific areas within them was prompted by several reasons: firstly, in the 

contextonly for the region of global climate change, the subarctic and arctic seas are characterized by oneregular occurrence 30 

of the most pronounced changes in environmental parameters due to the so called Arctic amplification, and, secondly, in the 

target water areas, summer-autumn phytoplankton blooms (e.g. E.  huxleyi) have blooms showed a steady localization, while 
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in other parts of the investigated seas the localization of phytoplankton blooms is variable from year to year.significant 

difference. For identifying the specificexample, it is about 2oC degrees among all models for SST in the Barents Sea where 

the E. huxleyi blooms cover the largest area of the sea compared to other seas. To identify the relevant study areas, on the 

from a raster image withthat contained all blooming events during over the period 1998-2016, we maskedselected those 

polygons that confine the territories seas where blooms occurred for more than one 8-day period (Fig. 1). Besides, the 5 

periods for For model validation were selected basedwe focused on a sea-specific blooming periods, which include all 

summer months and, in some cases, beyond them: June-September for the Barents and Labrador seas, June-August for the 

Greenland Sea, May-July for the North Sea, May-August for the Norwegian Sea, and January-December for the Bering Sea 

(Kazakov et al., 2018). Thus, it is noteworthy that the results of the performed comparison of modelsmodel validation can be 

used not only in terms of marine ecology-related issues (i.e. carbon cycle chemistry, water acidity, nutrients availability, etc.) 10 

but also for the purposes of forecasting of the region-specific climate interactions during the vegetation season, taking into 

account that the selection of the climate models was carried out individually for each sea/sea zone-driven feedbacks between 

the environmental factors governing E. huxleyi growth. 

 

2.32.2. Model evaluation metricsmeasures 15 

The CMIP5 climate models were validated against the reanalysis data in order to assess how well they reproduce the 

regional features of distribution the selected parameters/variables. The validation methodology for the GCMsGCMs’ outputs 

included the analysis of the climatological-mean seasonal cycle, interannual variability and trends, and analysis of the spatial 

distributionsdistribution of climatological-mean biases and trends for selected parametersvariables averaged over the 

blooming period in each sea. 20 

a) The seasonal cycle was analyzed using the multi-year averaged monthly variables for all months of the year (i.e., a 

sample size of 12). Basic statistical measures were calculated, such as the root-mean-square deviation (RMSD), the 

correlation coefficient (r), and the standard deviation (SD) (Fu et al., 2013; Gleckler et al., 2008; Kumar et al., 2015; Ruan et 

al., 2019). In addition, following Agosta et al. (2015) we calculated the climate prediction index (CPI) for the seasonal cycle, 

which is a ratio of the model root mean square error to the standard deviation of observation data. This model evaluation 25 

statisticsstatistic weighs the simulated data against the observations and is often used to validate model dataoutput (Agosta et 

al., 2015; Golmohammadi et al., 2014; Moriasi et al., 2007; Murphy et al., 2004; Stocker, 2004). 

b) The interannual variability of the parametersvariables was analyzed based on monthly variables solely for blooming 

periods (the sample size varied according to sub-region and parametervariables combination, e.g., a sample size for SST in 

the Barents Sea was 108 – monthly variables from June to September during 1979-2005). The same statistical measures for 30 

analysis of the seasonal cycle were used, viz. RMSD, r, SD, and CPI. 

c) The spatial distribution of biases and trends between the model outputs and the reanalysis data were calculated for 

temporal-averaged data in each grid point of the target marine zone considered in this study. 
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2.4.2.3 Percentile score-based model ranking methodapproach 

For ranking models and selection of the best model sub-set, we proposed and employed the percentile score-based model 

ranking methodapproach, which is a compilation of the previously applied model ranking and the selection approaches with 

some modifications (see also Introduction).2.2 Methods for model selection). Following Fu et al. (2013) and Ruan et al. 5 

(2019), we used the multiple criteria for model selection (RMSD, r, SD). Following Agosta et al. (2015) we analysedanalyzed 

the climate prediction index (CPI),) and considered the differences in spatial distributions of biases and trends between the 

model outputs and the respective reanalysis data. Further, we ranked the models based on the percentile method (25th, 50th, 

75th) for each obtained statistical metricsmeasure based on the amplitude of its values. Finally, we selected the top 25% 

ranked CMIP5 models following Ruan et al. (2019) for each considered oceanographic and meteorological 10 

parametervariables, and the target region. Thus, for example, for a sample of 28 models, the top 25% is a sub-set of 7 models 

that showed the best total- score. (the sum of every score of statistical measures, see Tab. 2). However, if two or more 

models show the same score, they are all are included in the selected best model sub-set. Thus, the number of included 

models in selected best model subsets varyingmodels varies from 73 to 11. 

Figure 2 illustrates an example of the percentile score-based ranking approach applied to the RMSD of the sea surface 15 

temperatureSST in the Barents Sea. We divided the obtained statistical measures into 4 groups based on the amplitude of the 

values and assigned a score to each model according to its group: (i) models considered as very good (less thanmodels (top 

25th percentile of the distribution of the statistical metrics distributionmeasures) were given a score of 3; (ii) good models 

(between 50th and 25th percentile) were given a score of 2; (iii) satisfactory models (between 75th and 50th percentile) were 

given a score of 1; and (iv) unsatisfactory models (more than 75th percentile) were given a score of 0. In the case of the 20 

correlation coefficient, it is vice versa, very good models with correlations scores above 0.75 were ranked with a score of 3, 

and so forth. 

For ranking models based on the obtained differences in the spatial distributionsdistribution of biases and trends between 

model outputs and reanalysis, we analysedused the absolute values of the medianmean and the amplitudespread of the spatial 

variation in model biases. For example, Figure 3 displays the box plots of spatial variability in SST biases relevant to the 25 

targetstudied area in the Barents Sea for the vegetationblooming season (June-September) and the study period 1979-2005. 

The medianmean bias varies from -6.6 (model #20) to 1.5 KoC (model #24) among the models, whereas the amplitude 

biasspread yielded by the model and that from observations has a wide spread of values from 7.3 (model #21) to 16.5 KoC 

(model #3). Thus it can be concluded from Fig. 3 that the analysis of spatial distribution of biases is very important, e.g., if 

we compare model #2 (ACCESS1-3) with model #3 (CanESM2), we can see that the mediansmeans of these two models 30 

have a small difference (0.28 KoC), while, the amplitudespread of spatial values for model #3 is much higher (by ~6 oC) than 

that for model #2. Application of the percentile score-based methodranking approach to modesmodel #2 (ACCESS1-3) and 
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#3 (CanESM2) resulted in inclusion of only the former in the best-model sub-set, whereas the latter was placed beyond it 

(Fig. 4). 

Table 2 presents all calculated statistics that were used to rank GCMs for SST in the Barents Sea as well as the final total 

score for each model. The spread of the total assigned scores is from 9 to 35. Based on this range we selected the top 25% of 

GCMs. Thus, the best model ensemble for SST for the Barents Sea is the 8-model set: ACCESS1-0; ACCESS1-3; GFDL-5 

CM3; HadGEM2-ES; MIROC-ESM; MIROC-ESM-CHEM; MPI-ESM-LR; MPI-ESM-MR. Additionally, we identified the 

top-model for SST in this region – MIROC-ESM. The same procedure was performed for other target seas/zones and 

variables. 

3 Results and discussion 

The results of model validation and ranking, as well as the selected best CMIP5 model sub-sets for five oceanographic and 10 

meteorological variables, viz. the sea surface temperature (SST) and salinity averaged over 0-30 m (SSS), surface wind 

speed at a height of 10 m (WS), ocean surface current speed (OCS), and shortwave downwelling solar radiation 

(SDSR)subsets in the Barents, Bering, Greenland, Labrador, North and Norwegian seas are presented in Fig. 4.4 (for 5 

oceanographic, and meteorological variables), and Fig. 5 (for 5 biochemical variables). Each number ofin the heat mapmaps 

shows the final skill score for oneeach combination of model-, variable intersection., and sea. For each individual column, its 15 

owna colour gradation was applied based on our percentile ranking approach;: therefore, the same numbers can have 

different colours on the heat mapmaps. For example, for OCS in the Barents Sea, the spread of the final model scores is from 

7 to 26, whereas for SSSSS30m it is from 8 to 34. Therefore, even model #3 CanESM2 has the total score 26 for SSSSS30m 

(which is higher than that (25) for OCS), this model was not included in the SSS best SS30m selected model sub-set and hasis 

coloured red color, whereas for OSC it is included in the bestselected model sub-set and hashighlighted in green colorcolour. 20 

The final skill scores of thethose models, which were selected asincluded in the best model sub-sets are highlightedmarked 

in bold blue, and their total number is indicated at the bottom of each column. 

Analysing the heat mapmaps, one can conclude, that there is no an optimal model ensemble, or a one top-single model, 

which could properlyequally well simulate all parametersvariables over the different target seas/regions. However, some 

climate models show good results for many cases, e.g., ACCESS1-3; ACCESS1-0; GFDL-CM3; GISS-E2-R; GISS-E2-R-25 

CC; HadGEM2-AO; HadGEM2-CC; HadGEM2-ES; INMCM4.; MPI-ESM-LR; MPI-ESM-MR. The models that have 

higher biasesthe lowest total scores across the majority of the target regions are CMCC-CM; FGOALS-g2; IPSL-CM5A-LR; 

IPSL-CM5A-MR; IPSL-CM5B-LR; MIROC5; MRI-ESM1.  

Such heterogeneity of climate models ability to equally reproduce the regional climate features residing in different seas can 

be explained by various reasons. Climate models are often tuned to adequately reproduce global processes and globally 30 

averaged values. An insufficient number of long time series of observations is available for model calibration, especially for 
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marine tracts. GCMs errors increase to the poles because of the convergence of meridians at the poles. In addition, the target 

arctic and sub-arctic seas are essentially different in terms of their physical and geographical conditions, which could also 

cause the ability of the GCMs to reproduce well the conditions in some seas and fail in others. 

In order to analyse how well the selected best-model sub-sets represent five studied parameters, we analysed the spatial 

distribution of biases between the selected model ensemble and the respective reanalysis data in six target seas, viz, the 5 

Barents, Bering, Labrador, Greenland, Norwegian and North seas (Figure 5a-e). Thus, fewer biases in SSS are determined in 

the case of the Labrador, Greenland and Norwegian seas (±0.5 psu); high positive biases observed in the Bering Sea next to 

the coastline: up to 1.5-4 psu, this overestimation is possibly due to insufficiently accurate parameterization of the river 

runoff in the sub-arctic region (Figure 5a). SSS is underestimated in waters next to the coastline in the Barents and North 

seas (1.5-2.5 psu), which is probably due to some overestimation of river runoff or underestimation of salty atlantic water. 10 

The selected CMIP5 models simulate SDSR (Figure 5b) well almost in all target seas: the biases in SDSR in the Barents Sea 

vary from 5 to 14 W m-2 (≈4-10 %), in the Bering Sea – from 2 to10 W m-2 (≈2-9 %), in the Greenland Sea – from 0 to 12 W 

m-2 (≈0-7 %), in the North Sea – from 1 to17 W m-2 (≈0-7 %), in the Norwegian Sea – from 4 to 9 W m-2 (≈2-5 %), only in 

the Labrador Sea the CMIP5 models overestimate SDSR and the biases much higher – from 20 to 29 W m-2 (≈11-15 %). The 

selected GCMs simulate WS well in all studied seas: the biases in WS are not more than 1 m s-1, only in some places of the 15 

Bering and North Seas’ coastal regions, the biases in WS simulations are up to about 1.5 m s-1 (Figure 5c). Concerning SST, 

we also obtained quite good results for the selected models. Low biases were observed mainly over the entire territory of the 

North and Norwegian seas constituting ±0.5° C (Figure 5d). Near the English Channel models overestimate the temperature 

by ≈2° C in the North Sea probably due to the influence of warm water from the English Channel, and models slightly 

underestimate the temperature by ≈1° C near the coastline in the Norwegian Sea. In the Labrador Sea, the CMIP5 models 20 

simulate SST with lower biases in the northern and north-western parts of the sea – ±0.5° C (Figure 5d). However, in the 

southern and south-western parts of the sea, the models underestimate SST by ≈1-2° C, which is possibly due to the 

influence of the cold Labrador Current. In the Greenland Sea, the models underestimate SST by ≈1-1.5° C in the west 

probably also due to the influence of the cold Greenland Current and overestimate SST by ≈2° C in the south apparently due 

to overestimation of contribution of the warm Atlantic water (the North-Atlantic Current). In the Barents Sea, the models 25 

overestimate north-western part of the sea probably due to the influence of the warm atlantic water, and in the southern part 

of the study area, the models underestimate SST by ≈1-2° C probably due to some underestimation of the influence of 

coming warm atlantic waters. Finally, the CMIP5 models simulate the surface ocean current speed with rather large biases, 

especially in the Bering Sea and closer to the Bering Strait (-0.19…0.14 m s-1), where the models mainly overestimate OCS 

(Figure 5e). Smaller biases in the modeling of the OCS by CMIP5 models found for the Barents and Greenland seas – from -30 

0.06 to 0.03 m s-1. The biases in the other studied seas vary from -0.17 to 0.06 m s-1. 

To examine our percentile score-based model ranking method we analysed the spatial distribution of biases and trends for 

the full-model ensemble, selected best-model sub-set and top-model vs. reanalysis data for each target sea and parameter 
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combination. Figure 6 illustrates the case for SST in the Barents Sea, and in the Supplements we present maps for all 

variables and target regions. As seen in Fig. 6a, the full 28-model ensemble underestimates the SST in the target region 

while the top-model, MIROC-ESM, overestimates it. The selected 8-model ensemble shows smaller biases (± 1 K) in SST 

for the most part of the sea. Illustrated in Fig. 5b, the spatial distribution of SST trends (the difference between model data 

and reanalysis data) indicates that the full 28-model ensemble overestimates the trends for the whole sea (model-reanalysis 5 

errors are 0.03-0.07 K yr-1), the top-model MIROC-ESM partly underestimates the SST trend, but for the larger area it 

reveals reanalysis small trends (± 0.01 K yr-1) that are similar to Era-Interim. As for the selected 8-model ensemble, the 

spatial variability of errors in trends in SST varies from -0.01 to 0.06 K yr-1
, although for the major part of the study region 

the errors are in the range -0.01 to 0.02 K yr-1
. Analysis of comparison of all selected model sub-sets (see Supplements) 

shows that, in general, the selected best-model ensemble assures somewhat better performance (with regard to the biases 10 

between model and reanalysis data) than either the full-model ensemble or the single top-model do. Comparing the full-

model ensemble, selected sub-set models or/and top-model performance in terms of biases and trends, the selected best-

model ensembles are more skilful in parameter simulations, respectively in 74% (biases) and 83% (trends) cases. The 

performance of the selected models proved to be equal to the full-model ensemble and top-model efficiency, respectively in 

13% (biases) and 10% (trends) cases, and they are less skilful in the simulations in 13% (biases) and 7% (trends) cases. 15 

Such heterogeneity in the ability of climate models to reproduce the climate features in different seas can be partly 

explained. Climate models are often tuned to adequately reproduce global processes and globally averaged values (Mauritsen 

et al., 2012; Schmidt et al., 2017). An insufficient number of long-time series of observations is available for model 

calibration, especially for marine waters. There are also very limited observations of climate processes in the Arctic which 

limit model development for the Arctic environment (Vihma et al., 2014).  20 

In order to verify our methodology, we compared selected ensemble with the full model ensemble for the time-averaged 

spatial distribution of biases, relative to reanalyses data for the historical period (1979/1993-2005), for each study variable in 

6 target seas (Fig. 6). The box plots (Fig. 6) show that the selected model ensemble mainly performs better than the full-

model ensemble, i.e. mean value (red dot) located closer to the zero line (dashed). The biggest difference between these two 

approaches obtained for the concentration of Silicium (SI) in favor of the ranking model approach.  25 

Analysing the box plots of the selected model ensemble (Fig. 6), the lower spread of biases is obtained for ocean current 

speed (OCS), salinity averaged over 30 m (SS30m), and concentration of Silicium (SI). CMIP5 GCMs generally 

underestimate RSDS, especially over the Labrador Sea. Likewise, GCMs mainly underestimate WS except for the Labrador 

and Barents seas. For OCS all ensembles have a low spread of biases and its mean value located very close to zero but they 

have many outliers (black dots). CMIP5 GCMs in different seas show heterogeneous results – they underestimate or 30 

overestimate SST, SS30m, and all biochemical variables. Also, Séférian et al. (2013) reported that CMIP5 GCMs differ 

enormously in biochemical variables but they show fewer biases comparing to the previous model versions (CMIP3) for 

wind speed. Flato et al. (2013) found that CMIP5 models have higher biases (both positive and negative) for SST in polar 
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regions, and quite large negative biases relative to other latitudes for salinity in the Arctic. Rickard et al. (2016) summarised 

that oceanographic variables in CMIP5 models reveal better agreement across all models compared to biochemical ones. 

Lavoie et al. (2013) detected that GFDL and MPI models better represent nitrate concentrations, and GFDL model best 

represents salinity among other considered models in the Labrador Sea. In our study, these models also selected as best for 

the Labrador Sea. It is quite difficult to compare obtained results with other already published researches because of using 5 

different models or a various number of models in full-ensemble and study regions. Some mentioned authors apply full-

model ensemble other select models with better performance, but they didn’t compare these two approaches as we have 

done. 

4 Conclusions 

A In the paper, we presented results of validation of 34 CMIP5 models compared to ERA-Interim, GLORYS2V4 and 10 

FREEBIORYS2V4 reanalyses for the historical period (1979/1993-2005). Besides we proposed the percentile score-based 

model ranking method has been presented approach for selection of  optimal model ensembles from a total of 34 CMIP5 

models, for five different climate-relevant variables (SST, WS, SSS, OCS, SDSR) model sub-sets that most accurately 

reproduces the state of 10 forcing factors affecting E.huxleyi blooms over the historical period in six arcticArctic and 

subarcticsub-Arctic seas, viz. the Barents, Bering, Labrador, Greenland, North, and Norwegian seas. The best model 15 

ensembles for each parameter and each target sea were selected (in total 30In total 60 combinations of the most-

skilfulskillful models were selected (10 variables and 6 target seas) based on different statistical measures: the root mean 

square error, correlation coefficient, standard deviation, RMSD-observations standard deviation ratio,climate prediction 

index (CPI), spatial biases and trends. Our results show that there is no any optimal model ensemble or a one top-individual 

model, which could best simulate all parametersvariables across all target seas. Despite the fact that the Arctic is often 20 

considered as one single region in many studies, our results show that CMIP5 climate models do not have consistent 

performance across such a large area. However, the selected best model ensembles show quite good results with lesser biases 

in smaller study regions, i.e., some specific arctic seasbiases than the full-model ensemble. 

To assure best implementation of the model selection results, it is essential to select climate models that properly simulate 

the spatial distribution of the chosen variables. Therefore, we suppose that the spatial distribution of biases and trends in the 25 

considered parameters are as well important as other statistical metrics within the framework of the model selection 

procedure performed. Based on our The results, we can also conclude that it is essential not only to analyse spatially 

averaged values, but also the spatial distribution of their amplitudes. 

The results of examination of the percentile score-based model ranking methodapproach proposed in this paper generally 

reveal ashow better performance (mean is closer to zero) of the selected best model ensemble vs. the full-model ensemble or 30 

a single best model for different variables and target regions. 
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seas. We can conclude that the range of different factors is important for model selectionit is important to include a number 

of different evaluation criteria when selecting the best models from an ensemble, including the spatial pattern of model 

biases, and that the proposed methodology is a way of enhancingimproving the model selection procedures 

sophisticationprocedure that promises a better chance to identify more skillful models for the features we are interested in. 

Thus, the proposed method can be used for analyses to be done for other seas/regions with the purpose to evaluate the 5 

performance climate models in terms of various atmospheric and oceanic parameters at different scales. 

Given that the environmental impacts of E. huxleyi communities are diverse and encompass both climatological and marine 

ecology dimensions, the established sets of CMIP5 climatological models most closely simulating the environmental 

conditions under which this taxon grow, open the way for envisaging how this phenomenon will further evolve in light of 

ongoing climate change. This can be done using E. huxleyi bloom model, for which the changes in the forcing factors for 10 

E. huxylei blooms will be employed. Finally, although the present study has been performed for the coccolithophore 

E. huxleyi which vegetates at Arctic and sub-Arctic latitudes, the reported methodological approach is not algal-specific and 

can be applied to studies of other algal species composing the phytoplankton communities in the world ocean. 
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Table 1. CMIP5 models used for simulation of selected parametersvariables: SST – sea surface temperature in KoC, WS – near-

surface10 m wind speed in m s-1, SDSR – surface downwelling shortwave solar radiation in W m-2, SSSSS30m – sea surface salinity 

(averaged over top 30 m) in psuPSU, OCS – surface ocean current speed in m s-1, concentration of nutrients (NO3, PO4, and SI) in mol m-3, 

dissolved CO2 partial pressure (pCO2) in Pa, and pH  (models available for respective variable are marked as “+”) 

Model ID Modelling Center 
(acronym, full name, and country) 

Resolution 
(ºlon x ºlat) 

S
S
T 

W
S 

S
D
S
R 

S 
S 
S30

m 

O
C
S 

N
O
3 

P
O
4 

S 
I 

p
C
O
2 

p
H 

ACCESS1.0 1 CSIRO-BOM, Commonwealth Scientific and 
Industrial Research Organisation, Australia and 
Bureau of Meteorology, Australia 

1.25 х 1.875 
+ + + + +      

ACCESS1.3 2 + + + + +      

CanESM2 3 CCCma, Canadian Centre for Climate Modelling 
and Analysis, Canada 

2.7906 х 
2.8125 + +  + + +   + + 

CMCC-CM 4 
CMCC, Centro euro-Mediterraneo sui Cambiamenti 
Climatici, Italy 

0.7484 х 
0.75 + + + + +      

CMCC-CMS 5 3.7111 х 
3.75 + + + + + + +  + + 

CNRM-CM5 6 

CNRM-CERFACS, Centre National de Recherches 
Meteorologiques, France and Centre Europeen de 
Recherche et Formation Avancees en Calcul 
Scientifique, France 

1.4008 х 
1.40625 + + + + + + + +   

CSIRO-Mk3.6.0 7 

CSIRO-QCCCE, Commonwealth Scientific and 
Industrial Research Organization, Australia and 
Queensland Climate Change Centre of Excellence, 
Australia 

1.8653 х 
1.875  + + + +      

EC-EARTH 8 EC-EARTH, EC-EARTH consortium, Europe 1.1215 х 
1.125 +          

GFDL-CM3 9 
NOAA GFDL, National Oceanic and Atmospheric 
Administration, Geophysical Fluid Dynamics 
Laboratory, USA 

2 х 2.5 

+ + + + +      

GFDL-ESM2G 10 + + + + + + + + + + 

GFDL-ESM2M 11 + + + + + + + + + + 

GISS-E2-H 12 

NASA GISS, National Aeronautics and Space 
Administration, Goddard Institute for Space Studies, 
USA 

2 х 2.5 

+ + + + +      

GISS-E2-H-CC 13 + + + + + +  + +  

GISS-E2-R 14 + + + + +      

GISS-E2-R-CC 15 + + + + + +  + +  

HadCM3 16 MOHC INPE, Met Office Hadley Centre, UK and 2.5 x 3.75  +         

Добавленные ячейки

Добавленные ячейки

Добавленные ячейки

Добавленные ячейки

Добавленные ячейки
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HadGEM2-AO 17 Instituto Nacional de Pesquisas Espaciais, Brasil 

1.25 х 1.875 

+ + + + +      

HadGEM2-CC 18 + + + + + +  + + + 

HadGEM2-ES 19 + + + + + +  + + + 

IPSL-CM5A-LR 20 

IPSL, Institut Pierre-Simon Laplace, France 1.8947 х 
3.75 

+ + + + + + + +  + 

IPSL-CM5A-MR 21 + + + + + + + +  + 

IPSL-CM5B-LR 22 + + + + + + + +  + 

MIROC5 23 MIROC, Atmosphere and Ocean Research Institute, 
the University of Tokyo, National Institute for 
Environmental Studies, and Japan Agency for 
Marine-Earth Science and Technology, Japan 

1.4008 х 
1.40625 + + + +       

MIROC4h 24 0.5616 x 
0.5625  +         

MIROC-ESM 25 MIROC, Japan Agency for Marine-Earth Science 
and Technology, Atmosphere and Ocean Research 
Institute, the University of Tokyo, and National 
Institute for Environmental Studies, Japan 

2.7906 х 
2.8125 

+ + + +      + 

MIROC-ESM-CHEM 26 + + + +      + 

MPI-ESM-LR 27 MPI-M, Max Planck Institute for Meteorology, 
Germany 

1.8653 х 
1.875 

+ + + + + + + + + + 

MPI-ESM-MR 28 + + + + + + + + + + 

MRI-CGCM3 29 
MRI, Meteorological Research Institute, Japan 1.12148 х 

1.125 

+ + + + +      

MRI-ESM1 30  +    + +  + + 

NorESM1-M 31 
NCC, Norwegian Climate Centre, Norway 1.8947 х 2.5 

+  + +       

NorESM1-ME 32 +  + + + + + + + + 

INM-CM4 33 INM, Russian Academy of Sciences Marchuk 
Institute of Numerical Mathematics, Russia 1.5 х 2  + +       + 

FGOALS-g2 34 
LASG-CESS, Institute of Atmospheric Physics, 
Chinese Academy of Sciences; and Tsinghua 
University, China 

2.7906 x 
2.8125     +      

Total number of available CMIP5 models 2
8 

3
0 

2
8 

2
8 

2
5 

1
6 

1
1 

1
3 

1
5 

1
3 
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Table 2. Results of the CMIP5 model performance for SST in the Barents Sea. 

( Numbers in brackets indicate the models' scores.  

(RMSD is the root-mean-square deviation, KoC; r is the correlation coefficient between models and reanalysis; RSRCPI is the RMSD-
observations standard deviation ratioclimate prediction index; |SDdif| is the modulus of the standard deviation difference (model minus 
reanalysis), KoC; |Trm| is the modulus of spatial trend medianmean difference (the model minus reanalysis), KoC yr-1; |Tra| is the modulus 5 
of spread of spatial trend amplitudetrends difference (the model minus reanalysis), KoC yr-1; |Brm| is the modulus of spatial bias 
medianmean difference (the model minus reanalysis), KoC; |Bra| is the modulus of spread of spatial biases amplitude difference (the model 
minus reanalysis), KoC). 

Model acronym ID 

Seasonal cycle 
(averaged over the territory) 

Interannual variability 
(averaged over the territory) Spatial trends (Tr) and biases (Br) Total 

score RMSD r RSRC
PI |SDdif| RMSD r RSRC

PI |SDdif| |Trm| |Tra| |Brm| |Bra| 

ACCESS1-0 1 0,26(3) 0,99(2) 0,13(3) 0,08(3) 1,17(3) 0,68(3) 0,81(3) 0,02(3) 0,06(2) 0,01(3) 0,07(3) 14,7(2) 33 
ACCESS1-3 2 0,37(3) 0,99(3) 0,19(3) 0,03(3) 1,02(3) 0,75(3) 0,71(3) 0,19(3) 0,01(3) 0,01(3) 0,57(3) 16,1(1) 34 
CanESM2 3 1,76(2) 0,98(2) 0,88(2) 0,28(0) 2,21(2) 0,64(3) 1,54(2) 1,12(3) 0,10(1) 0,04(3) 0,85(3) 17,2(1) 24 

CMCC-CM 4 5,15(0) 0,96(1) 2,58(0) 1,73(1) 7,06(0) 0,28(3) 4,90(0) 0,63(0) 0,06(2) 0,18(0) 6,64(0) 13,1(2) 9 

CMCC-CMS 5 4,40(0) 0,97(2) 2,20(0) 1,34(1) 5,94(0) 0,56(3) 4,12(0) 0,59(0) 0,01(3) 0,02(3) 5,58(0) 14,1(2) 14 

CNRM-CM5 6 0,64(3) 0,99(2) 0,32(3) 0,55(1) 1,59(3) 0,73(3) 1,10(3) 0,81(2) 0,08(2) 0,00(3) 0,49(3) 16,4(1) 29 

EC-EARTH 7 0,41(3) 0,99(2) 0,21(3) 0,13(2) 1,43(3) 0,64(3) 0,99(3) 0,38(3) 0,13(1) 0,12(1) 0,14(3) 18,1(0) 27 

GFDL-CM3 8 1,34(3) 0,99(3) 0,67(3) 0,20(3) 1,71(3) 0,80(3) 1,19(3) 0,22(3) 0,00(3) 0,09(1) 1,39(3) 11,1(3) 34 
GFDL-ESM2G 9 3,23(1) 0,98(2) 1,62(1) 0,27(2) 3,72(1) 0,69(3) 2,58(1) 0,29(3) 0,04(3) 0,04(3) 3,46(1) 13,9(2) 23 

GFDL-ESM2M 10 2,60(2) 0,99(2) 1,30(2) 0,61(3) 3,42(2) 0,68(3) 2,37(2) 0,25(2) 0,01(3) 0,08(2) 3,10(2) 15,7(1) 26 

GISS-E2-H 11 3,39(1) 0,97(3) 1,70(1) 0,41(3) 4,09(1) 0,83(3) 2,84(1) 0,18(3) 0,05(2) 0,04(3) 3,86(1) 11,4(3) 25 

GISS-E2-H-CC 12 3,68(1) 0,96(2) 1,84(1) 0,56(3) 4,62(1) 0,72(3) 3,20(1) 0,12(2) 0,03(3) 0,02(3) 4,36(1) 10,8(3) 24 

GISS-E2-R 13 3,34(1) 0,96(2) 1,67(1) 0,04(1) 3,83(1) 0,72(3) 2,66(1) 0,84(3) 0,05(2) 0,07(2) 3,34(1) 15,1(2) 20 

GISS-E2-R-CC 14 3,38(1) 0,96(2) 1,69(1) 0,07(1) 3,78(1) 0,75(3) 2,62(1) 0,83(3) 0,03(3) 0,05(2) 3,29(2) 13,6(2) 22 

HadGEM2-AO 15 1,28(3) 0,99(2) 0,64(3) 0,01(3) 1,51(3) 0,73(3) 1,05(3) 0,13(3) 0,02(3) 0,05(2) 1,33(3) 19,8(0) 31 

HadGEM2-CC 16 1,70(2) 0,99(2) 0,85(2) 0,16(2) 2,34(2) 0,62(3) 1,62(2) 0,35(3) 0,05(2) 0,05(2) 1,66(3) 19,1(0) 25 

HadGEM2-ES 17 0,30(3) 0,99(3) 0,15(3) 0,08(3) 0,98(3) 0,77(3) 0,68(3) 0,00(3) 0,05(2) 0,04(3) 0,09(3) 17,5(1) 33 
IPSL-CM5A-LR 18 3,66(1) 0,98(2) 1,83(1) 0,31(3) 4,59(1) 0,70(3) 3,19(1) 0,18(3) 0,01(3) 0,03(3) 4,32(1) 18,4(0) 22 

IPSL-CM5A-MR 19 2,22(2) 0,99(2) 1,11(2) 0,67(1) 2,57(2) 0,73(3) 1,78(2) 0,80(2) 0,06(2) 0,05(2) 1,91(2) 16,0(1) 23 

IPSL-CM5B-LR 20 5,03(0) 0,96(1) 2,52(0) 1,71(1) 6,90(0) 0,36(3) 4,79(0) 0,69(0) 0,00(3) 0,03(3) 6,51(0) 17,6(0) 11 

MIROC-ESM 21 1,40(3) 0,99(3) 0,70(3) 0,04(3) 1,63(3) 0,82(3) 1,13(3) 0,06(3) 0,01(3) 0,08(2) 1,51(3) 11,8(3) 35 
MIROC-ESM-
CHEM 22 0,97(3) 0,99(3) 0,49(3) 0,05(3) 1,34(3) 0,82(3) 0,93(3) 0,13(3) 0,07(2) 0,05(3) 1,08(3) 15,1(2) 34 

MIROC5 23 2,42(0) 0,98(2) 1,21(0) 0,51(1) 5,69(2) 0,51(3) 3,95(2) 0,64(2) 0,18(0) 0,08(2) 5,14(0) 19,8(0) 14 

MPI-ESM-LR 24 1,27(3) 0,99(3) 0,63(3) 0,04(3) 1,54(3) 0,81(3) 1,07(3) 0,21(3) 0,02(3) 0,04(3) 1,33(3) 16,3(1) 34 
MPI-ESM-MR 25 0,91(3) 0,99(2) 0,45(3) 0,05(3) 1,47(3) 0,71(3) 1,02(3) 0,11(3) 0,05(2) 0,04(3) 0,96(3) 17,2(1) 32 
MRI-CGCM3 26 2,88(2) 0,99(3) 1,44(2) 0,08(2) 2,54(1) 0,82(3) 1,77(1) 0,34(3) 0,00(3) 0,07(2) 2,30(2) 11,9(3) 27 

NorESM1-M 27 1,53(2) 0,99(2) 0,77(2) 0,76(2) 2,56(2) 0,64(3) 1,78(2) 0,31(2) 0,05(2) 0,07(2) 2,33(2) 13,7(2) 25 

NorESM1-ME 28 1,72(2) 0,99(2) 0,86(2) 0,78(2) 2,79(2) 0,57(3) 1,94(2) 0,39(2) 0,02(3) 0,02(3) 2,58(2) 15,0(2) 27 
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Figure 1:1. Spatial distribution of  E. huxleyi blooms occurrence based on the Ocean Colour Climate Change Initiative dataset 

version 3.0  (Kazakov et al., 2018) for the Barents, Bering, Labrador, Greenland, North, and Norwegian seas. Black lines confine 

the territories where blooms occurred more than one 8-day period and show target sea areas.   
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Figure 2:. A schematic representation of the percentile score-based model ranking method (Divisionapproach: division of RMSD 

values distribution of 28 models into four groups that are limited by 25th, 50th , and 75th percentiles and the relative assignment of 

scores from 3 to 0 to each group accordingly -  very good, good, satisfactory and unsatisfactory).. 
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Figure 3:. Box plots of the spatial variability of SST biases, (oC), which are calculated as the difference between the model and 5 
reanalysis data in the Barents Sea for  E. huxleyi bloom season over the vegetation season and the time period from 1979- to 2005. 

Each box spreads from the lower quartile Q1 to the upper quartile Q3 of biases, the orangegray lines represent the medians. The 
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dots show mean values. The lower “whiskers” are represented as Q1-1.5 Standardstandard deviation and the upper “whiskers” 

are represented as Q3+1.5 Standardstandard deviation. 
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1 ACCESS1-3 23 34 33 28 27 30 23 17 27 24 22 31 26 29 31 27 29 18 30 13 29 30 32 23 27 23 32 36 24 25
2 ACCESS1-0 26 33 34 28 27 27 24 26 26 29 18 31 27 27 33 27 26 22 26 20 31 30 30 23 25 28 31 35 25 24
3 CanESM2 25 26 24 29 27 24 26 14 19 15 30 19 16 29 33 9 26 22 34 18 29 22 35 21
4 CMCC-CM 7 26 9 23 21 29 22 25 27 14 21 28 16 27 21 23 30 18 20 14 27 23 25 24 8 13 33 22 30 8
5 CMCC-CMS 16 22 14 24 23 29 23 25 28 15 25 33 32 22 16 25 35 15 21 15 24 19 30 25 13 24 31 36 28 14
6 CNRM-CM5 18 31 29 28 13 31 25 26 30 26 21 32 23 26 19 29 30 30 26 29 23 31 30 28 29 25 34 31 27 25
7 CSIRO-Mk3-6-0 20 23 19 21 21 26 31 14 20 35 26 10 21 27 30 17 23 25 24 16 19 33 15 13
8 EC-EARTH 27 27 35 28 30 36

9 FGOALS-g2 17 4 8 24 11 12
10 GFDL-CM3 20 32 34 27 23 32 20 32 32 26 19 30 32 21 28 27 25 25 28 28 23 19 31 29 22 26 33 36 27 24
11 GFDL-ESM2G 21 30 23 26 26 29 25 20 30 14 24 27 22 30 24 20 27 29 27 21 22 27 32 27 26 26 33 30 26 25
12 GFDL-ESM2M 15 33 26 27 25 32 20 24 29 20 23 33 23 23 18 27 32 24 27 27 24 18 29 28 28 25 33 33 23 27
13 GISS-E2-H 10 29 25 29 12 26 19 29 30 28 16 32 28 28 25 15 15 14 19 28 20 30 32 28 31 17 33 36 19 34

14 GISS-E2-H-CC 14 24 24 30 12 25 21 32 32 26 13 24 25 28 17 18 23 23 18 19 19 31 32 26 29 20 27 35 26 32

15 GISS-E2-R 19 8 20 26 12 28 25 25 32 29 25 29 28 30 22 22 26 27 26 29 23 28 31 29 30 23 32 33 27 34

16 GISS-E2-R-CC 20 9 22 27 11 29 27 28 32 30 24 28 26 30 25 22 22 30 28 28 22 25 30 30 29 24 35 29 27 29
17 HadCM3 16 28 25 27 27 19
18 HadGEM2-AO 26 32 31 30 29 30 28 29 32 30 17 23 27 31 33 19 11 30 28 13 28 30 35 20 28 26 31 34 21 31

19 HadGEM2-CC 22 32 25 30 25 29 26 32 30 29 20 19 31 29 33 22 20 30 30 16 29 31 33 28 31 27 32 35 25 32

20 HadGEM2-ES 21 33 33 27 30 25 24 28 30 27 17 25 28 28 33 25 17 26 29 13 28 26 32 29 30 28 30 33 23 32

21 INMCM4 30 32 26 32 16 33 18 30 23 31 24 28
22 IPSL-CM5A-LR 18 12 22 23 29 30 25 34 27 26 18 29 25 19 25 19 31 23 24 26 22 12 21 13 20 17 29 28 17 25
23 IPSL-CM5A-MR 20 18 23 24 29 33 22 32 31 24 17 28 32 27 27 21 27 25 24 23 25 7 26 23 28 25 31 31 18 27
24 IPSL-CM5B-LR 11 9 11 15 27 33 27 22 31 26 15 11 12 18 13 14 21 31 23 19 21 13 18 14 16 12 13 25 14 22
25 MIROC4h 32 18 28 21 27 28

26 MIROC5 31 14 28 22 14 16 24 31 32 33 28 32 31 19 21 27 25 20 28 25 24 17 25 32

27 MIROC-ESM 31 35 15 26 13 31 33 20 29 22 26 20 30 29 26 9 26 34 16 13 30 34 16 25
28 MIROC-ESM-CHEM 30 34 19 23 15 31 31 21 29 20 25 18 34 28 21 10 28 34 15 18 28 33 16 25
29 MPI-ESM-LR 21 31 34 25 21 32 29 24 31 11 12 33 29 21 19 16 22 21 21 10 26 31 33 27 19 13 31 34 28 23
30 MPI-ESM-MR 17 33 32 24 19 31 28 21 29 15 17 31 31 25 18 12 24 28 20 15 23 31 35 25 18 13 25 35 27 23
31 MRI-CGCM3 26 20 27 13 25 28 28 30 10 26 26 13 25 16 19 21 16 26 14 18 20 29 32 12 28 28 20 33 15 33

32 MRI-ESM1 12 9 11 14 8 16
33 NorESM1-M 33 25 20 17 24 13 30 26 10 23 23 14 30 34 25 31 33 25
34 NorESM1-ME 23 33 27 23 28 23 23 15 23 31 20 14 27 21 28 10 25 30 31 28 24 35 32 23
total selected models 7 7 8 7 8 7 8 8 11 8 7 11 8 11 8 8 8 8 10 8 8 11 8 9 8 8 9 10 9 8

30   -  selected optimal model ensemble 23 - score < 25% - 25% < score < 75% 7 - score > 75%
"very good"  "good" & "satisfactory" "unsatisfactory"

North Sea Norwegian Sea
ID CMIP5 models

Barents Sea Bering Sea Greenland Sea Labrador Sea
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Figure 4:. Heat map with the final model scores obtained using the percentile score-based model ranking methodapproach for the 

five5 oceanographic and meteorological variables (sea surface temperature (SST, K) and), salinity averaged over 0-30 m (SSS, 

psuSS30m), surface wind speed at 10 m (WS, m s-1), ocean surface current speed (OCS, m s-1), and surface shortwave downwelling 5 

solar radiation (SDSR, W m-2) for the Barents, Bering, Greenland, Labrador, North, and Norwegian seas based on different 

O
CS

SS
30

m

SS
T

W
S

SD
SR

O
CS

SS
30

m

SS
T

W
S

SD
SR

O
CS

SS
30

m

SS
T

W
S

SD
SR

O
CS

SS
30

m

SS
T

W
S

SD
SR

O
CS

SS
30

m

SS
T

W
S

SD
SR

O
CS

SS
30

m

SS
T

W
S

SD
SR

1 ACCESS1-3 23 34 33 28 27 30 23 17 27 24 22 31 26 29 31 27 29 18 30 13 29 30 32 23 27 23 32 36 24 25
2 ACCESS1-0 26 33 34 28 27 27 24 26 26 29 18 31 27 27 33 27 26 22 26 20 31 30 30 23 25 28 31 35 25 24
3 CanESM2 25 26 24 29 27 24 26 14 19 15 30 19 16 29 33 9 26 22 34 18 29 22 35 21
4 CMCC-CM 7 26 9 23 21 29 22 25 27 14 21 28 16 27 21 23 30 18 20 14 27 23 25 24 8 13 33 22 30 8
5 CMCC-CMS 16 22 14 24 23 29 23 25 28 15 25 33 32 22 16 25 35 15 21 15 24 19 30 25 13 24 31 36 28 14
6 CNRM-CM5 18 31 29 28 13 31 25 26 30 26 21 32 23 26 19 29 30 30 26 29 23 31 30 28 29 25 34 31 27 25
7 CSIRO-Mk3-6-0 20 23 19 21 21 26 31 14 20 35 26 10 21 27 30 17 23 25 24 16 19 33 15 13
8 EC-EARTH 27 27 35 28 30 36
9 FGOALS-g2 17 4 8 24 11 12

10 GFDL-CM3 20 32 34 27 23 32 20 32 32 26 19 30 32 21 28 27 25 25 28 28 23 19 31 29 22 26 33 36 27 24
11 GFDL-ESM2G 21 30 23 26 26 29 25 20 30 14 24 27 22 30 24 20 27 29 27 21 22 27 32 27 26 26 33 30 26 25
12 GFDL-ESM2M 15 33 26 27 25 32 20 24 29 20 23 33 23 23 18 27 32 24 27 27 24 18 29 28 28 25 33 33 23 27
13 GISS-E2-H 10 29 25 29 12 26 19 29 30 28 16 32 28 28 25 15 15 14 19 28 20 30 32 28 31 17 33 36 19 34
14 GISS-E2-H-CC 14 24 24 30 12 25 21 32 32 26 13 24 25 28 17 18 23 23 18 19 19 31 32 26 29 20 27 35 26 32
15 GISS-E2-R 19 8 20 26 12 28 25 25 32 29 25 29 28 30 22 22 26 27 26 29 23 28 31 29 30 23 32 33 27 34
16 GISS-E2-R-CC 20 9 22 27 11 29 27 28 32 30 24 28 26 30 25 22 22 30 28 28 22 25 30 30 29 24 35 29 27 29
17 HadCM3 16 28 25 27 27 19
18 HadGEM2-AO 26 32 31 30 29 30 28 29 32 30 17 23 27 31 33 19 11 30 28 13 28 30 35 20 28 26 31 34 21 31
19 HadGEM2-CC 22 32 25 30 25 29 26 32 30 29 20 19 31 29 33 22 20 30 30 16 29 31 33 28 31 27 32 35 25 32
20 HadGEM2-ES 21 33 33 27 30 25 24 28 30 27 17 25 28 28 33 25 17 26 29 13 28 26 32 29 30 28 30 33 23 32
21 INMCM4 30 32 26 32 16 33 18 30 23 31 24 28
22 IPSL-CM5A-LR 18 12 22 23 29 30 25 34 27 26 18 29 25 19 25 19 31 23 24 26 22 12 21 13 20 17 29 28 17 25
23 IPSL-CM5A-MR 20 18 23 24 29 33 22 32 31 24 17 28 32 27 27 21 27 25 24 23 25 7 26 23 28 25 31 31 18 27
24 IPSL-CM5B-LR 11 9 11 15 27 33 27 22 31 26 15 11 12 18 13 14 21 31 23 19 21 13 18 14 16 12 13 25 14 22
25 MIROC4h 32 18 28 21 27 28
26 MIROC5 31 14 28 22 14 16 24 31 32 33 28 32 31 19 21 27 25 20 28 25 24 17 25 32
27 MIROC-ESM 31 35 15 26 13 31 33 20 29 22 26 20 30 29 26 9 26 34 16 13 30 34 16 25
28 MIROC-ESM-CHEM 30 34 19 23 15 31 31 21 29 20 25 18 34 28 21 10 28 34 15 18 28 33 16 25
29 MPI-ESM-LR 21 31 34 25 21 32 29 24 31 11 12 33 29 21 19 16 22 21 21 10 26 31 33 27 19 13 31 34 28 23
30 MPI-ESM-MR 17 33 32 24 19 31 28 21 29 15 17 31 31 25 18 12 24 28 20 15 23 31 35 25 18 13 25 35 27 23
31 MRI-CGCM3 26 20 27 13 25 28 28 30 10 26 26 13 25 16 19 21 16 26 14 18 20 29 32 12 28 28 20 33 15 33
32 MRI-ESM1 12 9 11 14 8 16
33 NorESM1-M 33 25 20 17 24 13 30 26 10 23 23 14 30 34 25 31 33 25
34 NorESM1-ME 23 33 27 23 28 23 23 15 23 31 20 14 27 21 28 10 25 30 31 28 24 35 32 23

total selected models 7 7 8 7 8 7 8 8 11 8 7 11 8 10 9 7 8 8 10 8 8 11 8 9 8 8 9 10 9 8

30   -  selected optimal model ensemble 23 - score < 25% - 25% < score < 75% 7 - score > 75%
"very good"  "good" & "satisfactory" "unsatisfactory"

North Sea Norwegian Sea
ID CMIP5 models

Barents Sea Bering Sea Greenland Sea Labrador Sea
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statistical metrics (Figuremeasures (Fig. 2, TableTab. 2). The white areas indicate that thea lack of model was not considered due 

to partial or complete unavailability of hindcasts,output for historical and futureRCP projections (RCP4.5, RCP8.5) in open data.  

sources. 

 

Barents Bering Greenland 

   
 Min=-1.3 psu, Max=0.9 psu 

Average model ensemble SSS=34.74 psu 
 Min=-1.4 psu, Max=4.2 psu 

Average model ensemble SSS=31.45 psu 
 Min=-0.5 psu, Max=0.6 psu 

Average model ensemble SSS=34.40 psu 
 

Labrador 
 

North 
 

Norwegian 

   
 Min=-0.6 psu, Max=0.3 psu 

Average model ensemble SSS=34.45 psu 
 Min=-2.5 psu, Max=0.9 psu 

Average model ensemble SSS=34.12 psu 
 Min=-0.6 psu, Max=0.8 psu 

Average model ensemble SSS=34.81 psu 

 
 5 
Figure 5a. Spatial distribution of biases in sea surface salinity models and reanalysis in six target seas averaged over the vegetation 

season and the time period 1993-2005. 
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Barents Bering Greenland 

   
Min=-14 W m-2, Max=5 W m-2 

Average model ensemble SDSR=135.1 W m-2 
Min=2 W m-2, Max=10 W m-2 

Average model ensemble SDSR=110.0 W m-2 
Min=-12 W m-2, Max=-0.2 W m-2 

Average model ensemble SDSR=177.7 W m-2 
 

Labrador 
 

North 
 

Norwegian 

   
Min=-29 W m-2, Max=-20 W m-2 

Average model ensemble SDSR=189.2  W m-2 
Min=-0.6 W m-2, Max=17 W m-2 

Average model ensemble SDSR=246.3  W m-2 
Min=-4 W m-2, Max=9 W m-2 

Average model ensemble SDSR=194.4  W m-2 

 
 
Figure 5b. Spatial distribution of biases in surface downwelling solar radiation between models and reanalysis in six target seas averaged 
over the vegetation season and the time period 1979-2005. 
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Barents Bering Greenland 

   
 Min=-0.71 m s-1, Max=0.36 m s-1 

Average model ensemble WS=5.9  m s-1 
 Min=-1.53 m s-1, Max=0.43 m s-1 

Average model ensemble WS=7.1  m s-1 
Min=-0.64 m s-1, Max=0.27 m s-1 

Average model ensemble WS=5.6  m s-1 
 

Labrador 
 

North 
 

Norwegian 

   
 Min=-0.85 m s-1, Max=0.47 m s-1 

Average model ensemble WS=6.5 m s-1 

 
Min=-1.34 m s-1, Max=0.21 m s-1 

Average model ensemble WS=5.3  m s-1 
Min=-0.96 m s-1, Max=0.33 m s-1 

Average model ensemble WS=5.6  m s-1 
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Figure 5c. Spatial distribution of biases in near-surface wind speed between selected model ensemble and reanalysis in six target 

seas averaged over the vegetation season and the time period 1979-2005. 

 

Barents Bering Greenland 

   
 Min=-2.2° C, Max=2.4° C 

Average model ensemble SST=6.1° C 
 Min=-1.9° C, Max=-0.1° C 

Average model ensemble SST=3.4° C 
 Min -1.5° C, Max=2.1° C 

Average model ensemble SST=5.7° 
C 

Labrador North Norwegian 

   
 Min=-2.2° C, Max=0.6° C 

Average model ensemble SST=10.2° C 
 Min=-1.1° C, Max=2.0° C 

Average model ensemble SST=10.2° C 
 Min=-1.1° C, Max=0.3° C 

Average model ensemble SST=9.5° 
C 

 
 

Figure 5d. Spatial distribution of biases in sea surface temperature models and reanalysis in six target seas averaged over the 5 
vegetation season and the time period 1979-2005. 
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Barents Bering Greenland 

   
 Min=-0.06 m s-1, Max=0.03 m s-1 

Average model ensemble OCS=0.03 m s-1 
 Min=-0.19 m s-1, Max=0.14 m s-1 

Average model ensemble OCS=0.05 m s-1 
Min=-0.06 m s-1, Max=0.03 m s-1 

Average model ensemble OCS=0.03 m s-1 
 

Labrador 
 

North 
 

Norwegian 

   
 Min=-0.17 m s-1, Max=0.03 m s-1 

Average model ensemble OCS=0.07 m s-1 
Min=-0.09 m s-1, Max=0.05 m s-1 

Average model ensemble OCS=0.05 m s-1 
Min=-0.10 m s-1, Max=0.06 m s-1 

Average model ensemble OCS=0.06 m s-1 

 
 5 

Figure 5e. Spatial distribution of biases in surface ocean current speed models and reanalysis in six target seas averaged over the 
vegetation season and the time period 1993-2005. 
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Figure 6a: Spatial distribution of biases in SST (K) between models and reanalysis data in the Barents Sea; the biases are 5 
averaged over June-September. 
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Figure 6b: Spatial distribution of errors, which are calculated as the difference between model and reanalysis values of annual 

SST trends (K yr-1) in the Barents Sea (June-September)

 

 

Figure 5. Heat map with the final model scores obtained using the percentile ranking approach for the 5 biochemical variables 5 
(concentration of nutrients (NO3, PO4, and SI), dissolved CO2 partial pressure (pCO2), and pH) for the Barents, Bering, 

Greenland, Labrador, North, and Norwegian seas based on different statistical measures (Fig. 2, Tab. 2). The white areas indicate 

a lack of model output for historical and RCP projections (RCP4.5, RCP8.5) in open data sources. 
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Figure 6. Box plots of the spatial distribution of biases (model ensemble minus reanalyses) of 5 oceanographic and meteorological 

(left), and 5 biochemical variables (right): sea surface temperature (SST), salinity averaged over 0-30 m (SS30m), surface wind 

speed at 10 m (WS), ocean surface current speed (OCS), surface shortwave downwelling solar radiation (SDSR), concentration of 
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nutrients (NO3, PO4, and SI), dissolved CO2 partial pressure (pCO2), and pH for the Barents, Bering, Greenland, Labrador, 

North, and Norwegian seas averaged over the study period for comparison of full and selected model ensembles. 
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