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Abstract. 

Currently, there are a large number of climate models that give projections for various oceanic and meteorological parameters 

in the Arctic. However, their estimates often differ in absolute values in specific sea areas in comparison with the historical 10 

reanalysis data. The main goal of this research was to find out the methodology of selection of the optimal model ensemble 

that most accurately reproduces the state of abiotic parameters inherent in six target arctic and sub-arctic seas, viz. the Barents, 

Bering, Greenland, Labrador, North and Norwegian seas. 

Here, we present the validation of 34 CMIP5 atmosphere-ocean General Circulation Models (GCM) over the historical period 

1979-2005. Furthermore, we propose a procedure of model ranking and selection, which is based on the model’s skill to 15 

represent several important oceanographic and meteorological parameters in the arctic and subarctic seas: the sea surface (i) 

water temperature and (ii) salinity (averaged over the top 30 m); (iii) wind speed at a height of 10 m above the surface; (iv) 

ocean surface current speed; and (v) surface downwelling shortwave radiation. The validation of the GCMs against reanalysis 

data includes analysis of the interannual variability, seasonal cycle, spatial biases and temporal trends of the simulated 

parameters. In total, 30 combinations of high-skilful models were selected for 5 variables over 6 study regions. The results 20 

show that there is no mutually optimal combination of models, nor is there a one top-model, that has a skill in reproducing 

either the regional climatic-relevant features of the whole Arctic region or all combinations of the considered parameters in 

target seas. Thereby, according to our methodology for each ‘variable – target sea’ combination, a unique best model subset 

was selected with the number of included models varying from 7 to 11. 

The paper presents a comparison of the selected best-model sub-sets and the ensemble of all available models with the 25 

respective reanalysis data. The selected best-model sub-sets show a better performance vs. full-model ensemble in more than 

70% cases that confirms the advisability of using the proposed model ranking method. 
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1 Introduction 

Today climate models are state-of-the-art tools for the prediction of the future status of the climate system components on 

decadal and centennial time scales (Otero et al., 2018; Taylor et al., 2012). In particular, the modern coupled atmosphere-ocean 

General Circulation Models (GCMs) include the main climate system components such as the atmosphere, ocean, land and 

sea-ice, and therefore, represent more realistically the processes of their interactions. Thus, the fifth phase of the Coupled 5 

Model Intercomparison Project (CMIP5) gives the opportunity to use data of more than 30 GCMs (Taylor et al., 2012). The 

GCMs provide a large number of the meteorological and oceanographic parameters allowing to perform a comprehensive 

assessment of possible climate change impacts on marine ecosystems in the future. However, most of the studies addressing 

the CMIP models intercomparison show that the GCMs outputs usually vary significantly (Almazroui et al., 2017; Fu et al., 

2013; Gleckler et al., 2008). Therefore, it is important to find a reliable approach for both model quality intercomparison and 10 

selection of optimal models for each specific scientific task and region. 

The main goal of the paper is to find a reliable approach for CMIP5 model selection, in particular, those climate models that 

simulate most efficiently the state of abiotic parameters relevant to living conditions of phytoplankton communities inherent 

in a number of seas at subpolar and polar latitudes (viz. the Barents, Bering, Greenland, Labrador, North and Norwegian seas). 

Such a specific task is selected as a case study to have the results that would be applied for projections of abiotic factors 15 

affecting the dynamics of phytoplankton communities. 

It is well established that the method of ensemble averaging can be used to reduce systematic model biases in the individual 

climate models (Flato et al., 2013; Gleckler et al., 2008; Knutti et al., 2010; Pierce et al., 2009; Reichler and Kim, 2008; Stocker 

et al., 2010). Furthermore, in case it is not possible to calibrate a model for a selected region, one of the main recommendation 

from climate model developers is to take into consideration more than one climate model (Flato et al., 2013; Gleckler et al., 20 

2008; Pierce et al., 2009; Stocker et al., 2010). There are two main approaches to employing climate model ensembles: (i) use 

of the full-ensemble average data (Flato et al., 2013; Gleckler et al., 2008; Reichler and Kim, 2008; Stocker et al., 2010); and 

(ii) selection of an ensemble of the best models from the entire set of available climate models based on a comparison with 

observational data for a historical period (Herger et al., 2018; Stocker et al., 2010; Taylor, 2001). These two approaches are 

equally used depending on a specific scientific task: (i) full-ensemble averaging for future trends analysis, and (ii) selection of 25 

the best models ensembles for regional climate features analysis. However, when there are many climate models available 

(e.g., in our study the number of models available varied from 25 to 30 depending on the climate variable), then the averaging 

method will result in very strong smoothing of data, and poor reproduction of the interannual variability. So that only the long-

term trend of a given variable will be well captured. We assume that a climate model that successfully represents the present-

day conditions will also succeed in the future projections. Therefore, we chose the second approach, e.g., a selection of climate 30 

models that properly simulate the current regional features, including the spatial distribution, of the meteorological and 

oceanographic parameters under study (sea surface temperature and salinity, surface wind speed at 10 m, ocean surface current 
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speed, and surface downwelling shortwave radiation). At that, it was important to define the appropriate methodology for 

selection of the best model ensembles. 

There are many approaches for the selection of an optimal set of climate models. One approach suggests choosing the models 

with focus only on some key climatological parameters, such as air temperature, precipitation and sea level pressure 

(Almazroui et al., 2017; Duan and Phillips, 2010; Pierce et al., 2009; Sarr and Sarr, 2017). This approach assumes that if the 5 

models skillfully reproduce these key parameters, they also must be good at reproducing the regional climate in general. 

Another approach, which is used in this study, is to select a unique combination of models for each study variable (Agosta et 

al., 2015; Anav et al., 2013; Fu et al., 2013; Gleckler et al., 2008). In order to select such a unique combination of models, it 

is necessary, firstly, to perform a validation of climate models through comparing GCMs outputs with the respective 

observations over a historical period, and then to identify the appropriate climate models based on statistical measures, i.e. to 10 

sort or rank the tested models. However, there are no generally accepted solutions for this task. For example, Agosta et al. 

(2015) ranked the CMIP5 models using only one statistical metric, viz, a climate prediction index, which is the ratio of the 

root mean square error to the standard deviation of observation data. Gleckler et al. (2008) evaluated the CMIP5 models and 

ranked them through analyzing the climatology of the annual cycle, inter-annual variability, and relative errors. They found 

that the performance of the analysed models varies for different parameters. Das et al. (2018) assessed 34 CMIP5 models using 15 

the following three criteria: the mean seasonal cycle, temporal trends, and spatial correlation. On this basis the models were 

selected using a cumulative ranking approach. Fu et al. (2013) and Ruan et al. (2019) applied a score-based method using 

multiple criteria for the assessment of CMIP5 model performance: mean value, standard deviation, normalized root mean 

square error, linear correlation coefficient, Mann-Kendall test statistic Z, Sen’s slope, and significance score. Further, Ruan et 

al. (2019) selected the top 25% ranked CMIP5 models for composing a multi-model ensemble for air temperature projections 20 

over the Lower Mekong Basin. Fu et al. (2013) and Ruan et al. (2019) ranked the employed models using a weight criterion 

from 0.5 to 1.0. Ruan et al. (2019) reported that the introduction of multiple criteria results in less uncertainties in the models’ 

performance in comparison with the respective observation data. However, Fu et al. (2013) and Ruan et al. (2019) did not 

consider the feature of spatial distribution of variables. 

We decided to compile and improve the previously applied approaches that is to employ the multiple criteria ranking method 25 

following Fu et al. (2013) and Ruan et al. (2019) studies but (i) taking into consideration the Agosta et al. (2015) climate 

prediction index, (ii) analysing the features of spatial distribution of target variables (spatial biases and trends), (iii) ranking 

the models with the percentile method (25th,50th, 75th) that is widely used in statistical analysis, and, finally, (iv) selecting the 

top 25% ranked CMIP5 models following Ruan et al. (2019). 

As the target arctic and subarctic seas differ in physical and geographical conditions, we performed the validation and selection 30 

model procedure for each sea individually. Moreover, we analyzed the specific marine areas with the stable localizations of 

intense growth of phytoplankton species both in spring (e.g. diatoms) and in summer-autumn (e.g. coccolithophores Kondrik 

et al., 2017; Smyth et al., 2004). Thus, the target regions permitted to identify the CMIP5 models that represented most closely 
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the cumulative state of the physical environmental factors (abiotic parameters) characterizing the conditions, under which the 

aforementioned blooms occurred. Such a specific task eventuated in the results that can be useful for further improvements of 

marine ecological models encompassing the phytoplankton community as well as for modelling the dynamics of physical 

parameters relevant to surface water environment at high-latitude seas under conditions of changing climate. 

2 Materials and method 5 

2.1 Data 

Thirty-four CMIP5 GCMs outputs for the historical period 1979-2005 were used in this study. The data are freely available on 

the ESGF portal (https://esgf-node.llnl.gov). The list of climate models used is presented in Table 1. We analyzed five 

oceanographic and meteorological variables, namely the sea surface temperature (SST) and salinity averaged over 0-30 m 

(SSS), surface wind speed at a height of 10 m (WS), ocean surface current speed (OCS), and shortwave downwelling solar 10 

radiation (SDSR). These abiotic parameters are known to affect the phytoplankton life cycle in sub-polar and polar latitudes 

(Iglesias-Rodríguez et al., 2002; Raitsos et al., 2006; Winter et al., 2013). The availability of the CMIP5 GCMs analysed in 

this study are listed in Table1: in total, we used 25 models for OCS, 28 for SSS, SST, SDSR, and 30 for WS. For validation of 

the climate models outputs we used atmospheric and oceanic reanalyses: (i) Era-Interim from the European Centre for Medium-

Range Weather Forecasts (https://apps.ecmwf.int) (Dee et al., 2011) for the surface wind speed at 10 m, sea surface 15 

temperature, and shortwave downwelling solar radiation for the period from 1979 to 2005; and (ii) GLORYS2V4 from the 

European Copernicus Marine Environment Monitoring Service (http://marine.copernicus.eu) for the sea surface salinity and 

ocean surface current speed for the period 1993-2005. The period for verification of the employed climate models was chosen 

based on the length of the reanalysis data and the limitations inherent in the “historical” runs of the GCMs, which usually 

terminate in 2005. The selected reanalyses are widely used in the literature and have been shown to be consistent with 20 

independent observational data (Agosta et al., 2015; Dee et al., 2011; Garric et al., 2017; Geil et al., 2013). 

2.2 Study regions 

The target regions are six arctic and subarctic seas: the Barents, Bering, Greenland, Labrador, North and Norwegian seas. Only 

specific areas were selected in each target sea relying on the results obtained by Kazakov et al. (2018) for the coccolithophore 

Emiliania huxleyi blooms based on the Ocean Colour Climate Change Initiative dataset version 3.0 (https://esa-oceancolour-25 

cci.org/) for the period from 1998 to 2016. The selection of the listed seas and the specific areas within them was prompted by 

several reasons: firstly, in the context of global climate change, the subarctic and arctic seas are characterized by one of the 

most pronounced changes in environmental parameters due to the so called Arctic amplification, and, secondly, in the target 

water areas, summer-autumn phytoplankton blooms (e.g. Emiliania huxleyi) have a steady localization, while in other parts of 

the investigated seas the localization of phytoplankton blooms is variable from year to year. For identifying the specific study 30 

https://apps.ecmwf.int/
http://marine.copernicus.eu/
https://esa-oceancolour-cci.org/
https://esa-oceancolour-cci.org/
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areas, on the raster image with all blooming events during 1998-2016 we masked polygons that confine the territories seas 

where blooms occurred more than one 8-day period (Fig. 1). Besides, the periods for model validation were selected based on 

a sea-specific blooming periods, which include all summer months and, in some cases, beyond them: June-September for the 

Barents and Labrador seas, June-August for the Greenland Sea, May-July for the North Sea, May-August for the Norwegian 

Sea, and January-December for the Bering Sea (Kazakov et al., 2018). Thus, it is noteworthy that the results of the performed 5 

comparison of models can be used not only in terms of marine ecology-related issues but also for the purposes of forecasting 

of the region-specific climate interactions during the vegetation season, taking into account that the selection of the climate 

models was carried out individually for each sea/sea zone. 

2.3. Model evaluation metrics 

The CMIP5 climate models were validated against the reanalysis data in order to assess how well they reproduce the regional 10 

features of distribution the selected parameters/variables. The validation methodology for the GCMs outputs included the 

analysis of the climatological-mean seasonal cycle, interannual variability and trends, and analysis of spatial distributions of 

climatological-mean biases and trends for selected parameters averaged over the blooming period in each sea. 

a) The seasonal cycle was analyzed using the multi-year averaged monthly variables for all months of year (i.e., a sample size 

of 12). Basic statistical measures were calculated, such as the root-mean-square deviation (RMSD), the correlation coefficient 15 

(r), and the standard deviation (SD) (Fu et al., 2013; Gleckler et al., 2008; Kumar et al., 2015; Ruan et al., 2019). In addition, 

following Agosta et al. (2015) we calculated the climate prediction index (CPI) for the seasonal cycle, which is a ratio of the 

model root mean square error to the standard deviation of observation data. This model evaluation statistics weighs the 

simulated data against the observations and often used to validate model data (Agosta et al., 2015; Golmohammadi et al., 2014; 

Moriasi et al., 2007; Murphy et al., 2004; Stocker, 2004). 20 

b) The interannual variability of the parameters was analyzed based on monthly variables solely for blooming periods (the 

sample size varied according to sub-region and parameter combination, e.g., a sample size for SST in the Barents Sea was 108 

– monthly variables from June to September during 1979-2005). The same statistical measures for analysis of the seasonal 

cycle were used, viz. RMSD, r, SD, and CPI. 

c) The spatial distribution of biases and trends between the model outputs and the reanalysis data were calculated for 25 

temporal-averaged data in each grid point of the target marine zone. 

2.4. Percentile score-based model ranking method 

For ranking models and selection of the best model sub-set, we proposed and employed the percentile score-based model 

ranking method, which is a compilation of the previously applied model ranking and the selection approaches with some 

modifications (see also Introduction). Following Fu et al. (2013) and Ruan et al. (2019), we used the multiple criteria for model 30 

selection (RMSD, r, SD). Following Agosta et al. (2015) we analysed the climate prediction index (CPI), and considered the 

differences in spatial distributions of biases and trends between the model outputs and the respective reanalysis data. Further, 

we ranked the models based on the percentile method (25th, 50th, 75th) for each obtained statistical metrics based on the 
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amplitude of its values. Finally, we selected the top 25% ranked CMIP5 models following Ruan et al. (2019) for each 

considered oceanographic and meteorological parameter, and target region. Thus, for example, for a sample of 28 models, the 

top 25% is a sub-set of 7 models that showed the best total-score. However, if two or more models show the same score they 

all are included in the selected best model sub-set. Thus, the number of included models in selected best model subsets varying 

from 7 to 11. 5 

Figure 2 illustrates an example of the percentile score-based ranking approach applied to RMSD of the sea surface temperature 

in the Barents Sea. We divided the obtained statistical measures into 4 groups based on the amplitude of the values and assigned 

a score to each model according to its group: (i) models considered as very good (less than 25th percentile of the statistical 

metrics distribution) were given a score of 3; (ii) good models (between 50th and 25th percentile) were given a score of 2; (iii) 

satisfactory models (between 75th and 50th percentile) were given a score of 1; and (iv) unsatisfactory models (more than 75th 10 

percentile) were given a score of 0. In the case of the correlation coefficient, it is vice versa, very good models with correlations 

scores above 0.75 were ranked with a score of 3, and so forth. 

For ranking models based on the obtained differences in the spatial distributions of biases and trends between model outputs 

and reanalysis, we analysed the absolute values of the median and the amplitude of the spatial variation in model biases. For 

example, Figure 3 displays the box plots of spatial variability in SST biases relevant to the target area in the Barents Sea for 15 

the vegetation season (June-September) and the study period 1979-2005. The median bias varies from -6.6 (model #20) to 1.5 

K (model #24) among the models, whereas the amplitude bias has a wide spread of values from 7.3 (model #21) to 16.5 K 

(model #3). Thus it can be concluded from Fig. 3 that the analysis of spatial distribution of biases is very important, e.g., if we 

compare model #2 (ACCESS1-3) with model #3 (CanESM2), we can see that the medians of these two models have a small 

difference (0.28 K), while, the amplitude of spatial values for model #3 is much higher than that for model #2. Application of 20 

the percentile score-based method to modes #2 (ACCESS1-3) and #3 (CanESM2) resulted in inclusion of the former in the 

best-model sub-set, whereas the latter was placed beyond it (Fig. 4). 

Table 2 presents all calculated statistics that were used to rank GCMs for SST in the Barents Sea as well as the final total score 

for each model. The spread of the total assigned scores is from 9 to 35. Based on this range we selected the top 25% of GCMs. 

Thus, the best model ensemble for SST for the Barents Sea is the 8-model set: ACCESS1-0; ACCESS1-3; GFDL-CM3; 25 

HadGEM2-ES; MIROC-ESM; MIROC-ESM-CHEM; MPI-ESM-LR; MPI-ESM-MR. Additionally, we identified the top-

model for SST in this region – MIROC-ESM. The same procedure was performed for other target seas/zones and variables. 

3 Results and discussion 

The selected best CMIP5 model sub-sets for five oceanographic and meteorological variables, viz. the sea surface temperature 

(SST) and salinity averaged over 0-30 m (SSS), surface wind speed at a height of 10 m (WS), ocean surface current speed 30 

(OCS), and shortwave downwelling solar radiation (SDSR) in the Barents, Bering, Greenland, Labrador, North and Norwegian 
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seas are presented in Fig. 4. Each number of the heat map shows the final skill score for one model-variable intersection. For 

each individual column, its own colour gradation was applied based on percentile ranking approach; therefore, the same 

numbers can have different colours on the heat map. For example, for OCS in the Barents Sea, the spread of the final model 

scores is from 7 to 26, whereas for SSS it is from 8 to 34. Therefore, even model #3 CanESM2 has the total score 26 for SSS 

(which is higher than that (25) for OCS), this model was not included in the SSS best model sub-set and has red color, whereas 5 

for OSC it is included in the best model sub-set and has green color. The final skill scores of the models, which were selected 

as the best model sub-sets are highlighted in bold blue, and their total number is indicated at the bottom of each column. 

Analysing the heat map, one can conclude, that there is no an optimal model ensemble, or a one top-model, which could 

properly simulate all parameters over target seas/regions. However, some climate models show good results for many cases, 

e.g., ACCESS1-3; ACCESS1-0; GFDL-CM3; GISS-E2-R; GISS-E2-R-CC; HadGEM2-AO; HadGEM2-CC; HadGEM2-ES; 10 

INMCM4. The models that have higher biases across the majority of the target regions are CMCC-CM; FGOALS-g2; IPSL-

CM5A-LR; IPSL-CM5A-MR; IPSL-CM5B-LR; MIROC5; MRI-ESM1. 

Such heterogeneity of climate models ability to equally reproduce the regional climate features residing in different seas can 

be explained by various reasons. Climate models are often tuned to adequately reproduce global processes and globally 

averaged values. An insufficient number of long time series of observations is available for model calibration, especially for 15 

marine tracts. GCMs errors increase to the poles because of the convergence of meridians at the poles. In addition, the target 

arctic and sub-arctic seas are essentially different in terms of their physical and geographical conditions, which could also 

cause the ability of the GCMs to reproduce well the conditions in some seas and fail in others. 

In order to analyse how well the selected best-model sub-sets represent five studied parameters, we analysed the spatial 

distribution of biases between the selected model ensemble and the respective reanalysis data in six target seas, viz, the Barents, 20 

Bering, Labrador, Greenland, Norwegian and North seas (Figure 5a-e). Thus, fewer biases in SSS are determined in the case 

of the Labrador, Greenland and Norwegian seas (±0.5 psu); high positive biases observed in the Bering Sea next to the 

coastline: up to 1.5-4 psu, this overestimation is possibly due to insufficiently accurate parameterization of the river runoff in 

the sub-arctic region (Figure 5a). SSS is underestimated in waters next to the coastline in the Barents and North seas (1.5-2.5 

psu), which is probably due to some overestimation of river runoff or underestimation of salty atlantic water. The selected 25 

CMIP5 models simulate SDSR (Figure 5b) well almost in all target seas: the biases in SDSR in the Barents Sea vary from 5 

to 14 W m-2 (≈4-10 %), in the Bering Sea – from 2 to10 W m-2 (≈2-9 %), in the Greenland Sea – from 0 to 12 W m-2 (≈0-7 %), 

in the North Sea – from 1 to17 W m-2 (≈0-7 %), in the Norwegian Sea – from 4 to 9 W m-2 (≈2-5 %), only in the Labrador Sea 

the CMIP5 models overestimate SDSR and the biases much higher – from 20 to 29 W m-2 (≈11-15 %). The selected GCMs 

simulate WS well in all studied seas: the biases in WS are not more than 1 m s-1, only in some places of the Bering and North 30 

Seas’ coastal regions, the biases in WS simulations are up to about 1.5 m s-1 (Figure 5c). Concerning SST, we also obtained 

quite good results for the selected models. Low biases were observed mainly over the entire territory of the North and 

Norwegian seas constituting ±0.5° C (Figure 5d). Near the English Channel models overestimate the temperature by ≈2° C in 
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the North Sea probably due to the influence of warm water from the English Channel, and models slightly underestimate the 

temperature by ≈1° C near the coastline in the Norwegian Sea. In the Labrador Sea, the CMIP5 models simulate SST with 

lower biases in the northern and north-western parts of the sea – ±0.5° C (Figure 5d). However, in the southern and south-

western parts of the sea, the models underestimate SST by ≈1-2° C, which is possibly due to the influence of the cold Labrador 

Current. In the Greenland Sea, the models underestimate SST by ≈1-1.5° C in the west probably also due to the influence of 5 

the cold Greenland Current and overestimate SST by ≈2° C in the south apparently due to overestimation of contribution of 

the warm Atlantic water (the North-Atlantic Current). In the Barents Sea, the models overestimate north-western part of the 

sea probably due to the influence of the warm atlantic water, and in the southern part of the study area, the models underestimate 

SST by ≈1-2° C probably due to some underestimation of the influence of coming warm atlantic waters. Finally, the CMIP5 

models simulate the surface ocean current speed with rather large biases, especially in the Bering Sea and closer to the Bering 10 

Strait (-0.19…0.14 m s-1), where the models mainly overestimate OCS (Figure 5e). Smaller biases in the modeling of the OCS 

by CMIP5 models found for the Barents and Greenland seas – from -0.06 to 0.03 m s-1. The biases in the other studied seas 

vary from -0.17 to 0.06 m s-1. 

To examine our percentile score-based model ranking method we analysed the spatial distribution of biases and trends for the 

full-model ensemble, selected best-model sub-set and top-model vs. reanalysis data for each target sea and parameter 15 

combination. Figure 6 illustrates the case for SST in the Barents Sea, and in the Supplements we present maps for all variables 

and target regions. As seen in Fig. 6a, the full 28-model ensemble underestimates the SST in the target region while the top-

model, MIROC-ESM, overestimates it. The selected 8-model ensemble shows smaller biases (± 1 K) in SST for the most part 

of the sea. Illustrated in Fig. 5b, the spatial distribution of SST trends (the difference between model data and reanalysis data) 

indicates that the full 28-model ensemble overestimates the trends for the whole sea (model-reanalysis errors are 0.03-0.07 K 20 

yr-1), the top-model MIROC-ESM partly underestimates the SST trend, but for the larger area it reveals reanalysis small trends 

(± 0.01 K yr-1) that are similar to Era-Interim. As for the selected 8-model ensemble, the spatial variability of errors in trends 

in SST varies from -0.01 to 0.06 K yr-1
, although for the major part of the study region the errors are in the range -0.01 to 0.02 

K yr-1
. Analysis of comparison of all selected model sub-sets (see Supplements) shows that, in general, the selected best-model 

ensemble assures somewhat better performance (with regard to the biases between model and reanalysis data) than either the 25 

full-model ensemble or the single top-model do. Comparing the full-model ensemble, selected sub-set models or/and top-

model performance in terms of biases and trends, the selected best-model ensembles are more skilful in parameter simulations, 

respectively in 74% (biases) and 83% (trends) cases. The performance of the selected models proved to be equal to the full-

model ensemble and top-model efficiency, respectively in 13% (biases) and 10% (trends) cases, and they are less skilful in the 

simulations in 13% (biases) and 7% (trends) cases. 30 



9 

 

 

4 Conclusions 

A percentile score-based model ranking method has been presented for selection of  optimal model ensembles from a total of 

34 CMIP5 models, for five different climate-relevant variables (SST, WS, SSS, OCS, SDSR) in six arctic and subarctic seas, 

viz. the Barents, Bering, Labrador, Greenland, North, and Norwegian seas. The best model ensembles for each parameter and 

each target sea were selected (in total 30 combinations of most-skilful models) based on different statistical measures: the root 5 

mean square error, correlation coefficient, standard deviation, RMSD-observations standard deviation ratio, spatial biases and 

trends. Our results show that there is no any optimal model ensemble or a one top-model, which could best simulate all 

parameters across all target seas. Despite the fact that the Arctic is often considered as one single region in many studies, our 

results show that CMIP5 climate models do not have consistent performance across such a large area. However, the selected 

best model ensembles show quite good results with lesser biases in smaller study regions, i.e., some specific arctic seas. 10 

To assure best implementation of the model selection results, it is essential to select climate models that properly simulate the 

spatial distribution of the chosen variables. Therefore, we suppose that the spatial distribution of biases and trends in the 

considered parameters are as well important as other statistical metrics within the framework of the model selection procedure 

performed. Based on our results, we can also conclude that it is essential not only to analyse spatially averaged values, but also 

the spatial distribution of their amplitudes. 15 

The results of examination of the percentile score-based model ranking method proposed in this paper generally reveal a better 

performance of the selected best model ensemble vs. the full-model ensemble or a single best model for different variables and 

target regions. 

We can conclude that the range of different factors is important for model selection, including the spatial pattern of model 

biases, and that the proposed methodology is a way of enhancing the model selection procedures sophistication that promises 20 

a better chance to identify more skillful models for the features we are interested in. Thus, the proposed method can be used 

for analyses to be done for other seas/regions with the purpose to evaluate the performance climate models in terms of various 

atmospheric and oceanic parameters at different scales. 
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Table 1. CMIP5 models used for simulation of selected parameters: SST – sea surface temperature in K, WS – near-surface wind speed 

in m s-1, SDSR – surface downwelling shortwave solar radiation in W m-2, SSS – sea surface salinity (averaged over 30 m) in psu, OCS – 

surface ocean current speed in m s-1 (models available for respective variable are marked as “+”) 

Model ID 
Modelling Center 

(acronym, full name, and country) 
Resolution 

(ºlon x ºlat) 

S

S

T 

W

S 

S

D

S

R 

S 

S 

S 

O

C

S 

ACCESS1.0 1 CSIRO-BOM, Commonwealth Scientific and Industrial 

Research Organisation, Australia and Bureau of 

Meteorology, Australia 

1.25 х 1.875 

+ + + + + 

ACCESS1.3 2 + + + + + 

CanESM2 3 
CCCma, Canadian Centre for Climate Modelling and 

Analysis, Canada 

2.7906 х 

2.8125 
+ +  + + 

CMCC-CM 4 
CMCC, Centro euro-Mediterraneo sui Cambiamenti 

Climatici, Italy 

0.7484 х 0.75 + + + + + 

CMCC-CMS 5 3.7111 х 3.75 + + + + + 

CNRM-CM5 6 

CNRM-CERFACS, Centre National de Recherches 

Meteorologiques, France and Centre Europeen de Recherche 

et Formation Avancees en Calcul Scientifique, France 

1.4008 х 

1.40625 
+ + + + + 

CSIRO-Mk3.6.0 7 

CSIRO-QCCCE, Commonwealth Scientific and Industrial 

Research Organization, Australia and Queensland Climate 

Change Centre of Excellence, Australia 

1.8653 х 1.875  + + + + 

EC-EARTH 8 EC-EARTH, EC-EARTH consortium, Europe 1.1215 х 1.125 +     

GFDL-CM3 9 

NOAA GFDL, National Oceanic and Atmospheric 

Administration, Geophysical Fluid Dynamics Laboratory, 

USA 

2 х 2.5 

+ + + + + 

GFDL-ESM2G 10 + + + + + 

GFDL-ESM2M 11 + + + + + 

GISS-E2-H 12 

NASA GISS, National Aeronautics and Space 

Administration, Goddard Institute for Space Studies, USA 
2 х 2.5 

+ + + + + 

GISS-E2-H-CC 13 + + + + + 

GISS-E2-R 14 + + + + + 

GISS-E2-R-CC 15 + + + + + 

HadCM3 16 

MOHC INPE, Met Office Hadley Centre, UK and Instituto 

Nacional de Pesquisas Espaciais, Brasil 

2.5 x 3.75  +    

HadGEM2-AO 17 

1.25 х 1.875 

+ + + + + 

HadGEM2-CC 18 + + + + + 

HadGEM2-ES 19 + + + + + 

IPSL-CM5A-LR 20 IPSL, Institut Pierre-Simon Laplace, France 1.8947 х 3.75 + + + + + 
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IPSL-CM5A-MR 21 + + + + + 

IPSL-CM5B-LR 22 + + + + + 

MIROC5 23 MIROC, Atmosphere and Ocean Research Institute, the 

University of Tokyo, National Institute for Environmental 

Studies, and Japan Agency for Marine-Earth Science and 

Technology, Japan 

1.4008 х 

1.40625 
+ + + +  

MIROC4h 24 
0.5616 x 

0.5625 
 +    

MIROC-ESM 25 MIROC, Japan Agency for Marine-Earth Science and 

Technology, Atmosphere and Ocean Research Institute, the 

University of Tokyo, and National Institute for 

Environmental Studies, Japan 

2.7906 х 

2.8125 

+ + + +  

MIROC-ESM-CHEM 26 + + + +  

MPI-ESM-LR 27 
MPI-M, Max Planck Institute for Meteorology, Germany 1.8653 х 1.875 

+ + + + + 

MPI-ESM-MR 28 + + + + + 

MRI-CGCM3 29 
MRI, Meteorological Research Institute, Japan 

1.12148 х 

1.125 

+ + + + + 

MRI-ESM1 30  +    

NorESM1-M 31 
NCC, Norwegian Climate Centre, Norway 1.8947 х 2.5 

+  + +  

NorESM1-ME 32 +  + + + 

INM-CM4 33 
INM, Russian Academy of Sciences Marchuk Institute of 

Numerical Mathematics, Russia 
1.5 х 2  + +   

FGOALS-g2 34 
LASG-CESS, Institute of Atmospheric Physics, Chinese 

Academy of Sciences; and Tsinghua University, China 

2.7906 x 

2.8125 
    + 

Total number of available CMIP5 models 28 30 28 28 25 
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Table 2. Results of the CMIP5 model performance for SST in the Barents Sea. 

(Numbers in brackets indicate the models' scores. RMSD is the root-mean-square deviation, K; r is the correlation coefficient between 

models and reanalysis; RSR is the RMSD-observations standard deviation ratio; |SDdif| is the modulus of the standard deviation difference 

(model minus reanalysis), K; |Trm| is the modulus of spatial trend median difference (the model minus reanalysis), K yr-1; |Tra| is the modulus 

of spatial trend amplitude difference (the model minus reanalysis), K yr-1; |Brm| is the modulus of spatial bias median difference (the model 5 
minus reanalysis), K; |Bra| is the modulus of spatial biases amplitude difference (the model minus reanalysis), K). 

Model acronym ID 

Seasonal cycle 

(averaged over the territory) 
Interannual variability 

(averaged over the territory) 
Spatial trends (Tr) and biases (Br) 

Total 

score 
RMSD r RSR |SDdif| RMSD r RSR |SDdif| |Trm| ||Tra| |Brm| |Bra| 

ACCESS1-0 1 0,26(3) 0,99(2) 0,13(3) 0,08(3) 1,17(3) 0,68(3) 0,81(3) 0,02(3) 0,06(2) 0,01(3) 0,07(3) 14,7(2) 33 

ACCESS1-3 2 0,37(3) 0,99(3) 0,19(3) 0,03(3) 1,02(3) 0,75(3) 0,71(3) 0,19(3) 0,01(3) 0,01(3) 0,57(3) 16,1(1) 34 

CanESM2 3 1,76(2) 0,98(2) 0,88(2) 0,28(0) 2,21(2) 0,64(3) 1,54(2) 1,12(3) 0,10(1) 0,04(3) 0,85(3) 17,2(1) 24 

CMCC-CM 4 5,15(0) 0,96(1) 2,58(0) 1,73(1) 7,06(0) 0,28(3) 4,90(0) 0,63(0) 0,06(2) 0,18(0) 6,64(0) 13,1(2) 9 

CMCC-CMS 5 4,40(0) 0,97(2) 2,20(0) 1,34(1) 5,94(0) 0,56(3) 4,12(0) 0,59(0) 0,01(3) 0,02(3) 5,58(0) 14,1(2) 14 

CNRM-CM5 6 0,64(3) 0,99(2) 0,32(3) 0,55(1) 1,59(3) 0,73(3) 1,10(3) 0,81(2) 0,08(2) 0,00(3) 0,49(3) 16,4(1) 29 

EC-EARTH 7 0,41(3) 0,99(2) 0,21(3) 0,13(2) 1,43(3) 0,64(3) 0,99(3) 0,38(3) 0,13(1) 0,12(1) 0,14(3) 18,1(0) 27 

GFDL-CM3 8 1,34(3) 0,99(3) 0,67(3) 0,20(3) 1,71(3) 0,80(3) 1,19(3) 0,22(3) 0,00(3) 0,09(1) 1,39(3) 11,1(3) 34 

GFDL-ESM2G 9 3,23(1) 0,98(2) 1,62(1) 0,27(2) 3,72(1) 0,69(3) 2,58(1) 0,29(3) 0,04(3) 0,04(3) 3,46(1) 13,9(2) 23 

GFDL-ESM2M 10 2,60(2) 0,99(2) 1,30(2) 0,61(3) 3,42(2) 0,68(3) 2,37(2) 0,25(2) 0,01(3) 0,08(2) 3,10(2) 15,7(1) 26 

GISS-E2-H 11 3,39(1) 0,97(3) 1,70(1) 0,41(3) 4,09(1) 0,83(3) 2,84(1) 0,18(3) 0,05(2) 0,04(3) 3,86(1) 11,4(3) 25 

GISS-E2-H-CC 12 3,68(1) 0,96(2) 1,84(1) 0,56(3) 4,62(1) 0,72(3) 3,20(1) 0,12(2) 0,03(3) 0,02(3) 4,36(1) 10,8(3) 24 

GISS-E2-R 13 3,34(1) 0,96(2) 1,67(1) 0,04(1) 3,83(1) 0,72(3) 2,66(1) 0,84(3) 0,05(2) 0,07(2) 3,34(1) 15,1(2) 20 

GISS-E2-R-CC 14 3,38(1) 0,96(2) 1,69(1) 0,07(1) 3,78(1) 0,75(3) 2,62(1) 0,83(3) 0,03(3) 0,05(2) 3,29(2) 13,6(2) 22 

HadGEM2-AO 15 1,28(3) 0,99(2) 0,64(3) 0,01(3) 1,51(3) 0,73(3) 1,05(3) 0,13(3) 0,02(3) 0,05(2) 1,33(3) 19,8(0) 31 

HadGEM2-CC 16 1,70(2) 0,99(2) 0,85(2) 0,16(2) 2,34(2) 0,62(3) 1,62(2) 0,35(3) 0,05(2) 0,05(2) 1,66(3) 19,1(0) 25 

HadGEM2-ES 17 0,30(3) 0,99(3) 0,15(3) 0,08(3) 0,98(3) 0,77(3) 0,68(3) 0,00(3) 0,05(2) 0,04(3) 0,09(3) 17,5(1) 33 

IPSL-CM5A-LR 18 3,66(1) 0,98(2) 1,83(1) 0,31(3) 4,59(1) 0,70(3) 3,19(1) 0,18(3) 0,01(3) 0,03(3) 4,32(1) 18,4(0) 22 

IPSL-CM5A-MR 19 2,22(2) 0,99(2) 1,11(2) 0,67(1) 2,57(2) 0,73(3) 1,78(2) 0,80(2) 0,06(2) 0,05(2) 1,91(2) 16,0(1) 23 

IPSL-CM5B-LR 20 5,03(0) 0,96(1) 2,52(0) 1,71(1) 6,90(0) 0,36(3) 4,79(0) 0,69(0) 0,00(3) 0,03(3) 6,51(0) 17,6(0) 11 

MIROC-ESM 21 1,40(3) 0,99(3) 0,70(3) 0,04(3) 1,63(3) 0,82(3) 1,13(3) 0,06(3) 0,01(3) 0,08(2) 1,51(3) 11,8(3) 35 

MIROC-ESM-

CHEM 
22 0,97(3) 0,99(3) 0,49(3) 0,05(3) 1,34(3) 0,82(3) 0,93(3) 0,13(3) 0,07(2) 0,05(3) 1,08(3) 15,1(2) 34 

MIROC5 23 2,42(0) 0,98(2) 1,21(0) 0,51(1) 5,69(2) 0,51(3) 3,95(2) 0,64(2) 0,18(0) 0,08(2) 5,14(0) 19,8(0) 14 

MPI-ESM-LR 24 1,27(3) 0,99(3) 0,63(3) 0,04(3) 1,54(3) 0,81(3) 1,07(3) 0,21(3) 0,02(3) 0,04(3) 1,33(3) 16,3(1) 34 

MPI-ESM-MR 25 0,91(3) 0,99(2) 0,45(3) 0,05(3) 1,47(3) 0,71(3) 1,02(3) 0,11(3) 0,05(2) 0,04(3) 0,96(3) 17,2(1) 32 

MRI-CGCM3 26 2,88(2) 0,99(3) 1,44(2) 0,08(2) 2,54(1) 0,82(3) 1,77(1) 0,34(3) 0,00(3) 0,07(2) 2,30(2) 11,9(3) 27 

NorESM1-M 27 1,53(2) 0,99(2) 0,77(2) 0,76(2) 2,56(2) 0,64(3) 1,78(2) 0,31(2) 0,05(2) 0,07(2) 2,33(2) 13,7(2) 25 

NorESM1-ME 28 1,72(2) 0,99(2) 0,86(2) 0,78(2) 2,79(2) 0,57(3) 1,94(2) 0,39(2) 0,02(3) 0,02(3) 2,58(2) 15,0(2) 27 
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Figure 1: Spatial distribution of Emiliania huxleyi blooms occurrence based on the Ocean Colour Climate Change Initiative dataset 

version 3.0  (Kazakov et al., 2018) for the Barents, Bering, Labrador, Greenland, North, and Norwegian seas. Black lines confine the 

territories where blooms occurred more than one 8-day period and show target sea areas.   
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Figure 2: A schematic representation of the percentile score-based model ranking method (Division of RMSD values 

distribution of 28 models into four groups that are limited by 25th, 50th  and 75th percentiles and the relative assignment of scores 

from 3 to 0 to each group accordingly -  very good, good, satisfactory and unsatisfactory). 
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Figure 3: Box plots of the spatial variability of SST biases, which are calculated as the difference between the model and reanalysis 

data in the Barents Sea over the vegetation season and the time period 1979-2005. Each box spreads from the lower quartile Q1 to 5 

the upper quartile Q3 of biases, the orange lines represent the medians. The lower “whiskers” are represented as Q1-1.5 Standard 

deviation and the upper “whiskers” are represented as Q3+1.5 Standard deviation. 
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Figure 4: Heat map with the final model scores obtained using the percentile score-based model ranking method for the five variables 

(sea surface temperature (SST, K) and salinity averaged over 0-30 m (SSS, psu), surface wind speed at 10 m (WS, m s-1), ocean 

surface current speed (OCS, m s-1), and shortwave downwelling solar radiation (SDSR, W m-2) for the Barents, Bering, Greenland, 

Labrador, North, and Norwegian seas based on different statistical metrics (Figure 2, Table 2). The white areas indicate that the 5 

model was not considered due to partial or complete unavailability of hindcasts, and future projections (RCP4.5, RCP8.5) data.  
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1 ACCESS1-3 23 34 33 28 27 30 23 17 27 24 22 31 26 29 31 27 29 18 30 13 29 30 32 23 27 23 32 36 24 25

2 ACCESS1-0 26 33 34 28 27 27 24 26 26 29 18 31 27 27 33 27 26 22 26 20 31 30 30 23 25 28 31 35 25 24

3 CanESM2 25 26 24 29 27 24 26 14 19 15 30 19 16 29 33 9 26 22 34 18 29 22 35 21

4 CMCC-CM 7 26 9 23 21 29 22 25 27 14 21 28 16 27 21 23 30 18 20 14 27 23 25 24 8 13 33 22 30 8

5 CMCC-CMS 16 22 14 24 23 29 23 25 28 15 25 33 32 22 16 25 35 15 21 15 24 19 30 25 13 24 31 36 28 14

6 CNRM-CM5 18 31 29 28 13 31 25 26 30 26 21 32 23 26 19 29 30 30 26 29 23 31 30 28 29 25 34 31 27 25

7 CSIRO-Mk3-6-0 20 23 19 21 21 26 31 14 20 35 26 10 21 27 30 17 23 25 24 16 19 33 15 13

8 EC-EARTH 27 27 35 28 30 36

9 FGOALS-g2 17 4 8 24 11 12

10 GFDL-CM3 20 32 34 27 23 32 20 32 32 26 19 30 32 21 28 27 25 25 28 28 23 19 31 29 22 26 33 36 27 24

11 GFDL-ESM2G 21 30 23 26 26 29 25 20 30 14 24 27 22 30 24 20 27 29 27 21 22 27 32 27 26 26 33 30 26 25

12 GFDL-ESM2M 15 33 26 27 25 32 20 24 29 20 23 33 23 23 18 27 32 24 27 27 24 18 29 28 28 25 33 33 23 27

13 GISS-E2-H 10 29 25 29 12 26 19 29 30 28 16 32 28 28 25 15 15 14 19 28 20 30 32 28 31 17 33 36 19 34

14 GISS-E2-H-CC 14 24 24 30 12 25 21 32 32 26 13 24 25 28 17 18 23 23 18 19 19 31 32 26 29 20 27 35 26 32

15 GISS-E2-R 19 8 20 26 12 28 25 25 32 29 25 29 28 30 22 22 26 27 26 29 23 28 31 29 30 23 32 33 27 34

16 GISS-E2-R-CC 20 9 22 27 11 29 27 28 32 30 24 28 26 30 25 22 22 30 28 28 22 25 30 30 29 24 35 29 27 29

17 HadCM3 16 28 25 27 27 19

18 HadGEM2-AO 26 32 31 30 29 30 28 29 32 30 17 23 27 31 33 19 11 30 28 13 28 30 35 20 28 26 31 34 21 31

19 HadGEM2-CC 22 32 25 30 25 29 26 32 30 29 20 19 31 29 33 22 20 30 30 16 29 31 33 28 31 27 32 35 25 32

20 HadGEM2-ES 21 33 33 27 30 25 24 28 30 27 17 25 28 28 33 25 17 26 29 13 28 26 32 29 30 28 30 33 23 32

21 INMCM4 30 32 26 32 16 33 18 30 23 31 24 28

22 IPSL-CM5A-LR 18 12 22 23 29 30 25 34 27 26 18 29 25 19 25 19 31 23 24 26 22 12 21 13 20 17 29 28 17 25

23 IPSL-CM5A-MR 20 18 23 24 29 33 22 32 31 24 17 28 32 27 27 21 27 25 24 23 25 7 26 23 28 25 31 31 18 27

24 IPSL-CM5B-LR 11 9 11 15 27 33 27 22 31 26 15 11 12 18 13 14 21 31 23 19 21 13 18 14 16 12 13 25 14 22

25 MIROC4h 32 18 28 21 27 28

26 MIROC5 31 14 28 22 14 16 24 31 32 33 28 32 31 19 21 27 25 20 28 25 24 17 25 32

27 MIROC-ESM 31 35 15 26 13 31 33 20 29 22 26 20 30 29 26 9 26 34 16 13 30 34 16 25

28 MIROC-ESM-CHEM 30 34 19 23 15 31 31 21 29 20 25 18 34 28 21 10 28 34 15 18 28 33 16 25

29 MPI-ESM-LR 21 31 34 25 21 32 29 24 31 11 12 33 29 21 19 16 22 21 21 10 26 31 33 27 19 13 31 34 28 23

30 MPI-ESM-MR 17 33 32 24 19 31 28 21 29 15 17 31 31 25 18 12 24 28 20 15 23 31 35 25 18 13 25 35 27 23

31 MRI-CGCM3 26 20 27 13 25 28 28 30 10 26 26 13 25 16 19 21 16 26 14 18 20 29 32 12 28 28 20 33 15 33

32 MRI-ESM1 12 9 11 14 8 16

33 NorESM1-M 33 25 20 17 24 13 30 26 10 23 23 14 30 34 25 31 33 25

34 NorESM1-ME 23 33 27 23 28 23 23 15 23 31 20 14 27 21 28 10 25 30 31 28 24 35 32 23

total selected models 7 7 8 7 8 7 8 8 11 8 7 11 8 11 8 8 8 8 10 8 8 11 8 9 8 8 9 10 9 8

30   -  selected optimal model ensemble 23 - score < 25% - 25% < score < 75% 7 - score > 75%

"very good"  "good" & "satisfactory" "unsatisfactory"

North Sea Norwegian Sea

ID CMIP5 models

Barents Sea Bering Sea Greenland Sea Labrador Sea
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Barents Bering Greenland 

   
 Min=-1.3 psu, Max=0.9 psu 

Average model ensemble SSS=34.74 psu 

 Min=-1.4 psu, Max=4.2 psu 
Average model ensemble SSS=31.45 psu 

 Min=-0.5 psu, Max=0.6 psu 
Average model ensemble SSS=34.40 psu 

 

Labrador 
 

North 
 

Norwegian 

   
 Min=-0.6 psu, Max=0.3 psu 

Average model ensemble SSS=34.45 psu 

 Min=-2.5 psu, Max=0.9 psu 
Average model ensemble SSS=34.12 psu 

 Min=-0.6 psu, Max=0.8 psu 
Average model ensemble SSS=34.81 psu 

 
 

Figure 5a. Spatial distribution of biases in sea surface salinity models and reanalysis in six target seas averaged over the vegetation 

season and the time period 1993-2005. 
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Barents Bering Greenland 

   
Min=-14 W m-2, Max=5 W m-2 

Average model ensemble SDSR=135.1 W m-2 

Min=2 W m-2, Max=10 W m-2 

Average model ensemble SDSR=110.0 W m-2 
Min=-12 W m-2, Max=-0.2 W m-2 

Average model ensemble SDSR=177.7 W m-2 
 

Labrador 
 

North 
 

Norwegian 

   
Min=-29 W m-2, Max=-20 W m-2 

Average model ensemble SDSR=189.2  W m-2 
Min=-0.6 W m-2, Max=17 W m-2 

Average model ensemble SDSR=246.3  W m-2 
Min=-4 W m-2, Max=9 W m-2 

Average model ensemble SDSR=194.4  W m-2 

 
 

Figure 5b. Spatial distribution of biases in surface downwelling solar radiation between models and reanalysis in six target seas averaged over 

the vegetation season and the time period 1979-2005. 
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Barents Bering Greenland 

   
 Min=-0.71 m s-1, Max=0.36 m s-1 

Average model ensemble WS=5.9  m s-1 
 Min=-1.53 m s-1, Max=0.43 m s-1 

Average model ensemble WS=7.1  m s-1 
Min=-0.64 m s-1, Max=0.27 m s-1 

Average model ensemble WS=5.6  m s-1 
 

Labrador 
 

North 
 

Norwegian 

   
 Min=-0.85 m s-1, Max=0.47 m s-1 

Average model ensemble WS=6.5 m s-1 

 

Min=-1.34 m s-1, Max=0.21 m s-1 

Average model ensemble WS=5.3  m s-1 

Min=-0.96 m s-1, Max=0.33 m s-1 

Average model ensemble WS=5.6  m s-1 

 

 
 

Figure 5c. Spatial distribution of biases in near-surface wind speed between selected model ensemble and reanalysis in six target 

seas averaged over the vegetation season and the time period 1979-2005. 
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Barents Bering Greenland 

   
 Min=-2.2° C, Max=2.4° C 

Average model ensemble SST=6.1° C 

 Min=-1.9° C, Max=-0.1° C 
Average model ensemble SST=3.4° C 

 Min -1.5° C, Max=2.1° C 
Average model ensemble SST=5.7° C 

Labrador North Norwegian 

   
 Min=-2.2° C, Max=0.6° C 

Average model ensemble SST=10.2° C 
 Min=-1.1° C, Max=2.0° C 

Average model ensemble SST=10.2° C 
 Min=-1.1° C, Max=0.3° C 

Average model ensemble SST=9.5° C 

 
 

Figure 5d. Spatial distribution of biases in sea surface temperature models and reanalysis in six target seas averaged over the 

vegetation season and the time period 1979-2005. 
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Barents Bering Greenland 

   
 Min=-0.06 m s-1, Max=0.03 m s-1 

Average model ensemble OCS=0.03 m s-1 
 Min=-0.19 m s-1, Max=0.14 m s-1 

Average model ensemble OCS=0.05 m s-1 
Min=-0.06 m s-1, Max=0.03 m s-1 

Average model ensemble OCS=0.03 m s-1 
 

Labrador 
 

North 
 

Norwegian 

   
 Min=-0.17 m s-1, Max=0.03 m s-1 

Average model ensemble OCS=0.07 m s-1 
Min=-0.09 m s-1, Max=0.05 m s-1 

Average model ensemble OCS=0.05 m s-1 
Min=-0.10 m s-1, Max=0.06 m s-1 

Average model ensemble OCS=0.06 m s-1 

 
 

Figure 5e. Spatial distribution of biases in surface ocean current speed models and reanalysis in six target seas averaged over the 

vegetation season and the time period 1993-2005. 
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Figure 6a: Spatial distribution of biases in SST (K) between models and reanalysis data in the Barents Sea; the biases are averaged 

over June-September. 

 

 5 

Figure 6b: Spatial distribution of errors, which are calculated as the difference between model and reanalysis values of annual SST 

trends (K yr-1) in the Barents Sea (June-September) 


