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Abstract. 

The observed warming in the Arctic is more than double the global average and this enhanced Arctic warming is projected to 

continue throughout the 21st century. This rapid warming has a wide range of impacts on polar and sub-polar marine 

ecosystems. One of the examples of such an impact on ecosystems is that of coccolithophores, particularly E. huxleyi, which 10 

have expanded their range poleward during recent decades. The coccolithophore E. huxleyi plays an essential role in the global 

carbon cycle. Therefore, the assessment of future changes in coccolithophore blooms is very important.  

Currently, there are a large number of climate models that give projections for various oceanographic, meteorological, and 

biochemical variables in the Arctic. However, individual climate models can have large biases when compared to historical 

observations. The main goal of this research was to select an ensemble of climate models that most accurately reproduces the 15 

state of environmental variables that influence the coccolithophore E. huxleyi bloom over the historical period when compared 

to reanalysis data. We developed a novel approach for model selection to include a diverse set of measures of model skill 

including the spatial pattern of some variables, which had not previously included in a model selection procedure. We applied 

this method to each of the Arctic and sub-Arctic seas in which E. huxleyi blooms have been observed. Once we have selected 

an optimal combination of climate models that most skillfully reproduce the factors which affect E. huxleyi, the projections of 20 

the future conditions in the Arctic from these models can be used to predict how E. huxleyi blooms will change in the future.  

Here, we present the validation of 34 CMIP5 atmosphere-ocean General Circulation Models (GCMs) over the historical period 

1979-2005. Furthermore, we propose a procedure of ranking and selecting these models based on the model’s skill in 

reproducing 10 important oceanographic, meteorological, and biochemical variables in the Arctic and sub-Arctic seas. These 

factors include the concentration of nutrients (NO3, PO4, and SI), dissolved CO2 partial pressure, pH, sea surface temperature, 25 

salinity averaged over the top 30m, 10m wind and surface current speed, and downwelling shortwave radiation at sea surface. 

The validation of the GCMs’ outputs against reanalysis data includes analysis of the interannual variability, seasonal cycle, 

spatial biases and temporal trends of the simulated variables. In total, 60 combinations of models were selected for 10 variables 

over 6 study regions using the selection procedure we present here. The results show that there is no combination of models, 

nor is there one model, that has high skill in reproducing the regional climatic-relevant features of all combinations of the 30 

considered variables in target seas. Thereby, an individual subset of models was selected according to our model selection 
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procedure for each combination of variable and Arctic/sub-Arctic sea. Following our selection procedure, the number of 

selected models in the individual subsets varied from 3 to 11.   

The paper presents a comparison of the selected model subsets and the full-model ensemble of all available CMIP5 models to 

reanalysis data. The selected subsets of models generally show a better performance than the full-model ensemble. Therefore 

we conclude that within the task addressed in this study it is preferable to employ the model subsets determined through 5 

application of our procedure than the full-model ensemble.  

1 Introduction 

In the last three decades, the Arctic has been warming at more than twice the rate of the global average (Davy et al., 2018; 

Overland and Wang, 2010). This rapid warming has led to large changes in the physical environment, for example with the 

loss of sea ice extent and volume (Dai et al., 2019; Kwok, 2018), but it has also had a large impact on the Arctic ecosystem 10 

(Hoegh-Guldberg and Bruno, 2010; Johannessen and Miles, 2011). One group of species that have been affected by Arctic 

warming are coccolithophores such as Emiliania huxleyi (hereafter E. huxleyi). Reportedly, coccolithophores can affect the 

carbon and sulphur cycles in the surface ocean, at least within their bloom areas(Balch et al., 2016; Kondrik et al., 2018; Malin 

et al., 1993; Rivero-Calle et al., 2015; Winter et al., 2013). The effect of these algae on aquatic carbon chemistry results in 

changes to the carbon fluxes between the atmosphere and ocean (Balch et al., 2016; Morozov et al., 2019; Pozdnyakov et al., 15 

2019; Shutler et al., 2013). Additionally, they contribute to the generation of sulfate aerosols, which scatter solar radiation in 

the atmosphere and act as cloud condensation nuclei, enabling cloud formation (Malin and Steinke, 2004). Therefore, the 

coccolithophores are responsible for both warming and cooling effects on the global climate (Charlson et al., 1987; Wang et 

al., 2018a, 2018b).  

Of all the coccolithophores, E. huxleyi is the most abundant and productive calcifying organism in the world ocean (McIntyre 20 

and Bé, 1967). It is a planktonic species growing at practically all latitudes (Brown and Yoder, 1994; Iglesias-Rodríguez et al., 

2002; Moore et al., 2012) and in the eutrophic to oligotrophic marine waters (Paasche, 2001). The property of this 

photosynthesizing aquatic organism to produce not only organic carbon, but also calcite, i.e. particulate inorganic carbon (PIC), 

imparts to E. huxleyi a special importance for the global ocean carbon cycle, and, through intricate interactions, for CO2 

exchange fluxes between the ocean and atmosphere (Kondrik et al., 2019; Morozov et al., 2019; Shutler et al., 2013). Moreover, 25 

E. huxleyi blooms are known to i) affect not only the carbon but also sulphur cycles in the surface ocean, at least within bloom 

zones, and arguably ii) contribute to the generation of sulfate aerosols, which eventually enable cloud formation (Malin and 

Steinke, 2004). This gives E. huxleyi blooms a definite climatic dimension in the overall environmental impact of this 

phenomenon. The scale of the impact should indeed be very significant: such blooms not only release into the water huge 

amounts of PIC, in some cases reaching nearly one million tons (Balch et al., 2016; Kondrik et al., 2018; Rivero-Calle et al., 30 

2015), but they are very extensive typically covering marine areas in excess of many hundred thousand, sometimes up to one 
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million, square kilometres. Besides they occur annually across the world ocean (Brown and Yoder, 1994; Iglesias-Rodríguez 

et al., 2002; Moore et al., 2012). Since changes of the regional climate have influenced the ecosystems of the Arctic seas, 

coccolithophores, particularly E.huxleyi, have increasingly expanded their range into Polar waters (Henson et al., 2018; Rivero-

Calle et al., 2015; Winter et al., 2013), which is thought to be due to climate warming (Fernandes, 2012; Flores et al., 2010; 

Kondrik et al., 2017; Okada and McIntyre, 1979; Winter, 1994). 5 

Although E. huxleyi cells can adapt to diverse environmental conditions, the blooms of this alga exhibit remarkable inter-

annual variations in extent, intensity and localization (Balch et al., 2012; Iida et al., 2002; Kondrik et al., 2017; Morozov et 

al., 2013; Smyth et al., 2004). Importantly, the aforementioned spatio-temporal variations inherent in E. huxleyi blooms prove 

to be specific to individual marine environments, which indicates that E. huxleyi growth is generally conditioned by multiple 

forcing factors (FFs) acting through feedback mechanisms. Reportedly, the observed spatio-temporal variations are primarily 10 

driven by changes in water surface temperature (SST), salinity, levels of photosynthetically active radiation (PAR) and 

nutrients/micronutrients availability, such as nitrate (NO3), silicate (SI), ammonium (NH4), phosphate (PO4) and iron (Fe) 

(Iglesias-Rodríguez et al., 2002; Krumhardt et al., 2017; Lavender et al., 2008; Zondervan, 2007). However, it has been found 

that, in addition to the above FFs, the water column stratification and wind speed at 10m above the surface (WS) also condition 

the growth of E. huxleyi: a decrease in wind stress leads to formation of a shallow mixed layer and retaining of algal cells 15 

within the zone of high levels of PAR (Raitsos et al., 2006). The intensity of water movements in general, and specifically 

water advection driven by ocean surface currents (OCS), was also highly consequential in this regard (Balch et al., 2016; 

Pozdnyakov et al., 2019). Among the other factors affecting E. huxleyi blooms are carbonate chemistry variables such as CO2 

partial pressure in the water, pCO2, and pH, which are considered to be very important (Tyrrell and Merico, 2004). There has 

been speculation that the ongoing increase in atmospheric CO2 should damp/inhibit the growth of coccolithophores (Rivero-20 

Calle et al., 2015), however, this is not supported by multiple observations (Kondrik et al., 2017; Morozov et al., 2013).  

As the above FFs are susceptible to climate change, these factors are expected to exert their combined influence on the 

intensity, spatial extent, and possibly the seasonal duration of E. huxleyi blooms in the future. Given that the environmental 

influence of this phenomenon has both climatological and biogeochemical dimensions at least on a synoptic scale, it appears 

important to envisage how it will evolve in the mid-term future. This can be done using either biological, e.g., (Gregg et al., 25 

2005) or statistical, e.g., (Pozdnyakov et al., 2019) E. huxleyi bloom models, for which the prospective tendencies in FFs are 

employed. In turn, the tendencies in the FFs can be obtained from climate model output.  

Today atmosphere-ocean coupled climate models are state-of-the-art tools for the projection of the future climate on decadal 

and centennial time scales (Otero et al., 2018; Taylor et al., 2012). In particular, the modern coupled atmosphere-ocean General 

Circulation Models (GCMs) include processes that govern the interactions between the ocean, atmosphere, land, sea ice, and 30 

the carbon cycle. The fifth phase of the Coupled Model Intercomparison Project (CMIP5) gives the opportunity to use the 

model output from more than 30 GCMs (Taylor et al., 2012). The GCMs provide a large number of meteorological, 

oceanographic and biochemical variables and so facilitate the comprehensive assessment of possible climate change impacts 
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on marine ecosystems in the future. However, the studies which have evaluated the CMIP model's historical simulations have 

shown that the model outputs have a large spread compared to natural variability (Almazroui et al., 2017; Fu et al., 2013; 

Gleckler et al., 2008). The full CMIP5 model ensemble has been found to be skillful at simulating continent-wide surface air 

temperature, and therefore useful for making robust assessments at these scales (IPCC, 2013). However, model skill at smaller 

spatial scales, such as for the Arctic, or even for specific Arctic seas, varies considerably from region to region and for different 5 

model variables (Overland et al., 2011). Therefore, it is important to find an approach for both model evaluation (comparison 

with historical climate) and selection of optimal models for each specific scientific task and region that gives a skill score to 

each model which encompasses all the relevant model variables and properties that are important for the scientific question to 

be addressed. 

 10 

The main goal of the paper is to quantify how well CMIP5 models reproduce the main forcing factors (FFs) that influence 

coccolithophore blooms in the Arctic and sub-Arctic seas. We propose a new approach for ranking and selecting CMIP5 

models for their skill in capturing the historical environmental conditions in the Arctic and sub-Arctic seas (viz. the Barents, 

Bering, Greenland, Labrador, North and Norwegian seas). We have chosen such a specific task as a case study in order to 

select model output to drive a model of coccolithophore blooms to predict how these will change in the future. We assume that 15 

a climate model that successfully represents the present-day conditions will also be skillful in future projections. Therefore, 

we select models based upon the validation of the models within the historical period.  

2 Materials and method 

2.1 Data 

34 CMIP5 GCMs’ outputs for the historical period 1979-2005 were used in this study. The data are freely available on the 20 

ESGF portal (https://esgf-node.llnl.gov). The list of climate models used is presented in Table 1. We analyzed five 

oceanographic and meteorological variables, namely the sea surface temperature (SST), salinity averaged over 0-30 m (SS30m), 

surface wind speed at a height of 10 m (WS), ocean surface current speed (OCS), and shortwave downwelling solar radiation 

(SDSR); and 5 biochemical variables, namely concentration of nutrients (NO3, PO4, and SI), dissolved CO2 partial pressure 

(pCO2), and pH. These forcing factors (FFs) are known to affect the phytoplankton life cycle in sub-polar and polar latitudes 25 

(Iglesias-Rodríguez et al., 2002; Raitsos et al., 2006; Winter et al., 2013). The analyzed CMIP5 GCMs are listed in Table1: in 

total, we used outputs of 25 models for OCS, 28 for SS30m, SST, and RDSR, 30 for WS; 11 for PO4, 13 for SI and pH, 15 for 

pCO2, and 16 for NO3. The number of models employed is different and was dictated by their availability on the ESGS portal. 

For validation of the climate models outputs, we used atmospheric and oceanic reanalyses: (i) Era-Interim from the European 

Centre for Medium-Range Weather Forecasts (https://apps.ecmwf.int) (Dee et al., 2011) for SST, WS, and RSDS for the period 30 

from 1979 to 2005; and (ii) GLORYS2V4 from the European Copernicus Marine Environment Monitoring Service 

https://apps.ecmwf.int/


5 

 

 

(http://marine.copernicus.eu) for the SS30m, OCS, and FREEBIORYS2V4 reanalyses for biochemical variables (Perruche, 

2018) for the period 1993-2005. The period for verification of the employed climate models was chosen based on the length 

of the reanalysis data and the limitations inherent in the “historical” runs of the GCMs, which usually terminate in 2005. The 

selected reanalyses are widely used in the literature and have been shown to be consistent with independent observational data 

(Agosta et al., 2015; Dee et al., 2011; Garric et al., 2017; Geil et al., 2013). 5 

 

2.2 Methods for model selection 

It is well established that the method of ensemble averaging can be used to reduce systematic model biases in the individual 

climate models (Flato et al., 2013; Gleckler et al., 2008; Knutti et al., 2010; Pierce et al., 2009; Reichler and Kim, 2008). There 

are two main approaches to employing climate model ensembles: (i) use of the full-ensemble average data for future trends 10 

analysis (Flato et al., 2013; Gleckler et al., 2008; Knutti et al., 2010; Reichler and Kim, 2008); and (ii) selection of an ensemble 

of the models from the entire set of available climate models yielding the best fit to the observational data for a historical 

period (Herger et al., 2018; Knutti et al., 2010; Taylor et al., 2012). We chose the second approach for analysing the ability of 

GCMs to reproduce main forcing factors (FFs) that influence E. huxleyi bloom: nutrient concentrations (nitrates, phosphates, 

silicates), salinity averaged over the top 30 m (SS30m), sea surface temperature (SST), wind speed (WS), downwelling 15 

shortwave radiation at the surface (RSDS), pH, pCO2, and ocean current speed (OCS).  

There are many different approaches to ranking and selection climate models following validation with historical observations. 

For example, Agosta et al. (2015) ranked the CMIP5 models using only one statistical metric, viz, a climate prediction index 

(CPI), “which is widely used in climatology studies for model evaluation and weighted projections” (Connolley and 

Bracegirdle, 2007; Franco et al., 2011; Murphy et al., 2004). Gleckler et al. (2008) evaluated the CMIP5 models and ranked 20 

them by analyzing the climatology of the annual cycle, inter-annual variability, and relative errors. They found that the 

performance of the analyzed models varied for different variables. Das et al. (2018) assessed 34 CMIP5 models using the 

following three criteria: the mean seasonal cycle, temporal trends, and spatial correlation. On this basis, the models were 

selected using a cumulative ranking approach. Fu et al. (2013) and Ruan et al. (2019) applied a score-based method using 

multiple criteria for the assessment of CMIP5 model performance: mean value, standard deviation, normalized root mean 25 

square error, linear correlation coefficient, Mann-Kendall test statistic Z, Sen’s slope, and significance score. Further, Ruan et 

al. (2019) selected the top 25% ranked CMIP5 models by applying a weight criterion from 0.5 to 1.0 to the different measures. 

Ruan et al. (2019) reported that the introduction of multiple criteria results in fewer uncertainties in the models’ performance 

in comparison with the respective observation data. 

Having tested the approaches cited above, we developed our own methodology which combines elements from some of these.  30 

We employ the multiple criteria ranking method following Fu et al. (2013) and Ruan et al. (2019) studies but with the following 

modifications: (i) we took into consideration the Agosta et al. (2015) climate prediction index, (ii) analyzed the features of 

spatial distribution of target variables (spatial biases and trends), (iii) ranked the models with the percentile method (25th,50th, 

http://marine.copernicus.eu/
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75th) that is widely used in statistical analysis, and, finally, (iv) we selected the top 25% ranked CMIP5 models following Ruan 

et al. (2019). 

2.2.1 Study regions 

The target regions are six Arctic and sub-Arctic seas: the Barents, Bering, Greenland, Labrador, North and Norwegian seas, 

where E. huxleyi blooms regularly occur (Kondrik et al., 2017). As mentioned above, the reason we chose the listed seas was 5 

that, in the context of global climate change, the Arctic and sub-Arctic seas have experienced the most pronounced changes in 

environmental variables due to the Arctic amplification. In addition, the target seas differ in physical and geographical 

conditions, which strongly affect their climate. While they are linked by common circulation patterns, e.g., with the warm air 

advection coming into the Arctic from the Atlantic Ocean, how this circulation affects the climate in a given sea is strongly 

affected by the local conditions. Therefore, we performed the validation and selection model procedure for each sea 10 

individually. Only specific areas within which intense growth/blooms of E. huxleyi frequently occur were selected in each sea 

according to the results obtained by Kazakov et al. (2018) based on the Ocean Colour Climate Change Initiative dataset version 

3.0 (https://esa-oceancolour-cci.org/) for the period from 1998 to 2016. A comparison of the area-averaged values for the entire 

sea and only for the region of the regular occurrence of E. huxleyi blooms showed a significant difference. For example, it is 

about 2oC degrees among all models for SST in the Barents Sea where the E. huxleyi blooms cover the largest area of the sea 15 

compared to other seas. To identify the relevant study areas from a raster image that contained all blooming events over the 

period 1998-2016, we selected those polygons where blooms occurred for more than one 8-day period (Fig. 1). For model 

validation we focused on sea-specific blooming periods: June-September for the Barents and Labrador seas, June-August for 

the Greenland Sea, May-July for the North Sea, May-August for the Norwegian Sea, and January-December for the Bering 

Sea (Kazakov et al., 2018). Thus, the results of the model validation can be used not only in terms of marine ecology-related 20 

issues (i.e. carbon cycle chemistry, water acidity, nutrients availability, etc.) but also for the purposes of forecasting region-

specific climate-driven feedbacks between the environmental factors governing E. huxleyi growth. 

 

2.2.2. Model evaluation measures 

The CMIP5 climate models were validated against reanalysis data in order to assess how well they reproduce the regional 25 

features of the selected variables. The validation methodology for the GCMs’ outputs included the analysis of the 

climatological-mean seasonal cycle, interannual variability and trends, and analysis of the spatial distribution of climatological-

mean biases and trends for selected variables averaged over the blooming period in each sea. 

a) The seasonal cycle was analyzed using the multi-year averaged monthly variables for all months of the year (i.e., a sample 

size of 12). Basic statistical measures were calculated, such as the root-mean-square deviation (RMSD), the correlation 30 

coefficient (r), and the standard deviation (SD) (Fu et al., 2013; Gleckler et al., 2008; Kumar et al., 2015; Ruan et al., 2019). 

In addition, following Agosta et al. (2015) we calculated the climate prediction index (CPI) for the seasonal cycle, which is a 

https://esa-oceancolour-cci.org/
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ratio of the model root mean square error to the standard deviation of observation data. This model evaluation statistic weighs 

the simulated data against the observations and is often used to validate model output (Agosta et al., 2015; Golmohammadi et 

al., 2014; Moriasi et al., 2007; Murphy et al., 2004; Stocker, 2004). 

b) The interannual variability of the variables was analyzed based on monthly variables solely for blooming periods (the 

sample size varied according to sub-region and variables combination, e.g., a sample size for SST in the Barents Sea was 108 5 

monthly variables from June to September during 1979-2005). The same statistical measures for analysis of the seasonal cycle 

were used, viz. RMSD, r, SD, and CPI. 

c) The spatial distribution of biases and trends between the model outputs and the reanalysis data were calculated for 

temporal-averaged data in each grid point of the marine zone considered in this study. 

 10 

2.2.3 Percentile ranking approach 

For ranking models and selection of the model sub-set, we employed the percentile ranking approach, which is a compilation 

of the previously applied model ranking and the selection approaches with some modifications (see also 2.2 Methods for model 

selection). Following Fu et al. (2013) and Ruan et al. (2019), we used multiple criteria for model selection (RMSD, r, SD). 

Following Agosta et al. (2015) we analyzed the climate prediction index (CPI) and considered the differences in spatial 15 

distributions of biases and trends between the model outputs and the respective reanalysis data. Further, we ranked the models 

based on the percentile method (25th, 50th, 75th) for each statistical measure based on the amplitude of its values. Finally, we 

selected the top 25% ranked CMIP5 models following Ruan et al. (2019) for each considered oceanographic and 

meteorological variables, and the target region. Thus, for example, for a sample of 28 models, the top 25% is a sub-set of 7 

models that showed the best total score (the sum of every score of statistical measures, see Tab. 2). However, if two or more 20 

models show the same score, they are all included in the selected model sub-set. Thus, the number of selected models varies 

from 3 to 11. 

Figure 2 illustrates an example of the percentile ranking approach applied to the RMSD of SST in the Barents Sea. We divided 

the statistical measures into 4 groups based on the amplitude of the values and assigned a score to each model according to its 

group: (i) very good models (top 25th percentile of the distribution of the statistical measures) were given a score of 3; (ii) good 25 

models (between 50th and 25th percentile) were given a score of 2; (iii) satisfactory models (between 75th and 50th percentile) 

were given a score of 1; and (iv) unsatisfactory models (more than 75th percentile) were given a score of 0. In the case of the 

correlation coefficient, it is vice versa, very good models with correlations scores above 0.75 were ranked with a score of 3, 

and so forth. 

For ranking models based on the differences in the spatial distribution of biases and trends between model outputs and 30 

reanalysis, we used the absolute values of the mean and the spread of the spatial variation in model biases. For example, Figure 

3 displays the box plots of spatial variability in SST biases relevant to the studied area in the Barents Sea for the blooming 

season (June-September) and the study period 1979-2005. The mean bias varies from -6.6 (model #20) to 1.5 oC (model #24) 



8 

 

 

among the models, whereas the spread yielded by the model and that from observations has a wide spread of values from 7.3 

(model #21) to 16.5 oC (model #3). Thus it can be concluded from Fig. 3 that the analysis of spatial distribution of biases is 

very important, e.g., if we compare model #2 (ACCESS1-3) with model #3 (CanESM2), we can see that the means of these 

two models have a small difference (0.28 oC), while, the spread of spatial values for model #3 is much higher (by ~6 oC) than 

that for model #2. Application of the percentile ranking approach to model #2 (ACCESS1-3) and #3 (CanESM2) resulted in 5 

inclusion of only the former in the model sub-set (Fig. 4). 

Table 2 presents all calculated statistics that were used to rank GCMs for SST in the Barents Sea as well as the final total score 

for each model. The spread of the total assigned scores is from 9 to 35. Based on this range we selected the top 25% of GCMs. 

Thus, the best model ensemble for SST for the Barents Sea is the 8-model set: ACCESS1-0; ACCESS1-3; GFDL-CM3; 

HadGEM2-ES; MIROC-ESM; MIROC-ESM-CHEM; MPI-ESM-LR; MPI-ESM-MR. The same procedure was performed for 10 

other target seas and variables. 

3 Results and discussion 

The results of model validation and ranking, as well as the selected CMIP5 model subsets in the Barents, Bering, Greenland, 

Labrador, North and Norwegian seas are presented in Fig. 4 (for 5 oceanographic, and meteorological variables), and Fig. 5 

(for 5 biochemical variables). Each number in the heat maps shows the final skill score for each combination of model, variable, 15 

and sea. For each individual column, a colour gradation was applied based on our percentile ranking approach: therefore, the 

same numbers can have different colours on the heat maps. For example, for OCS in the Barents Sea, the spread of the final 

model scores is from 7 to 26, whereas for SS30m it is from 8 to 34. Therefore, even model #3 CanESM2 has the total score 26 

for SS30m (which is higher than that (25) for OCS), this model was not included in the SS30m selected model sub-set and is 

coloured red, whereas for OSC it is included in the selected model sub-set and highlighted in green colour. The final skill 20 

scores of those models, which were included in the model sub-sets are marked in bold blue, and their total number is indicated 

at the bottom of each column. 

Analysing the heat maps, one can conclude that there is no model ensemble, or single model, which could equally well simulate 

all variables over the different target seas. However, some climate models show good results for many cases, e.g., ACCESS1-

3; ACCESS1-0; GFDL-CM3; GISS-E2-R; GISS-E2-R-CC; HadGEM2-AO; HadGEM2-CC; HadGEM2-ES; INMCM4; MPI-25 

ESM-LR; MPI-ESM-MR. The models that have the lowest total scores across the majority of the target regions are CMCC-

CM; FGOALS-g2; IPSL-CM5A-LR; IPSL-CM5A-MR; IPSL-CM5B-LR; MIROC5; MRI-ESM1.  

Such heterogeneity in the ability of climate models to reproduce the climate features in different seas can be partly explained. 

Climate models are often tuned to adequately reproduce global processes and globally averaged values (Mauritsen et al., 2012; 

Schmidt et al., 2017). An insufficient number of long-time series of observations is available for model calibration, especially 30 
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for marine waters. There are also very limited observations of climate processes in the Arctic which limit model development 

for the Arctic environment (Vihma et al., 2014).  

In order to verify our methodology, we compared selected ensemble with the full model ensemble for the time-averaged spatial 

distribution of biases, relative to reanalyses data for the historical period (1979/1993-2005), for each study variable in 6 target 

seas (Fig. 6). The box plots (Fig. 6) show that the selected model ensemble mainly performs better than the full-model 5 

ensemble, i.e. mean value (red dot) located closer to the zero line (dashed). The biggest difference between these two 

approaches obtained for the concentration of Silicium (SI) in favor of the ranking model approach.  

Analysing the box plots of the selected model ensemble (Fig. 6), the lower spread of biases is obtained for ocean current speed 

(OCS), salinity averaged over 30 m (SS30m), and concentration of Silicium (SI). CMIP5 GCMs generally underestimate RSDS, 

especially over the Labrador Sea. Likewise, GCMs mainly underestimate WS except for the Labrador and Barents seas. For 10 

OCS all ensembles have a low spread of biases and its mean value located very close to zero but they have many outliers 

(black dots). CMIP5 GCMs in different seas show heterogeneous results – they underestimate or overestimate SST, SS30m, and 

all biochemical variables. Also, Séférian et al. (2013) reported that CMIP5 GCMs differ enormously in biochemical variables 

but they show fewer biases comparing to the previous model versions (CMIP3) for wind speed. Flato et al. (2013) found that 

CMIP5 models have higher biases (both positive and negative) for SST in polar regions, and quite large negative biases relative 15 

to other latitudes for salinity in the Arctic. Rickard et al. (2016) summarised that oceanographic variables in CMIP5 models 

reveal better agreement across all models compared to biochemical ones. Lavoie et al. (2013) detected that GFDL and MPI 

models better represent nitrate concentrations, and GFDL model best represents salinity among other considered models in the 

Labrador Sea. In our study, these models also selected as best for the Labrador Sea. It is quite difficult to compare obtained 

results with other already published researches because of using different models or a various number of models in full-20 

ensemble and study regions. Some mentioned authors apply full-model ensemble other select models with better performance, 

but they didn’t compare these two approaches as we have done. 

4 Conclusions 

In the paper, we presented results of validation of 34 CMIP5 models compared to ERA-Interim, GLORYS2V4 and 

FREEBIORYS2V4 reanalyses for the historical period (1979/1993-2005). Besides we proposed the percentile ranking 25 

approach for selection climate model sub-sets that most accurately reproduces the state of 10 forcing factors affecting E.huxleyi 

blooms over the historical period in six Arctic and sub-Arctic seas, viz. the Barents, Bering, Labrador, Greenland, North, and 

Norwegian seas. In total 60 combinations of the most-skillful models were selected (10 variables and 6 target seas) based on 

different statistical measures: the root mean square error, correlation coefficient, standard deviation, climate prediction index 

(CPI), spatial biases and trends. Our results show that there is no model ensemble or individual model, which could best 30 

simulate all variables across all target seas. Despite the fact that the Arctic is often considered as one single region in many 
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studies, our results show that CMIP5 climate models do not have consistent performance across such a large area. However, 

the selected model ensembles show results with smaller biases than the full-model ensemble. 

The results of the percentile ranking approach proposed in this paper show better performance (mean is closer to zero) of the 

selected model ensemble vs. the full-model ensemble for different variables and target seas. We can conclude that it is 

important to include a number of different evaluation criteria when selecting the best models from an ensemble, including the 5 

spatial pattern of model biases, and that the proposed methodology is a way of improving the model selection procedure that 

promises a better chance to identify more skillful models for the features we are interested in.  

Given that the environmental impacts of E. huxleyi communities are diverse and encompass both climatological and marine 

ecology dimensions, the established sets of CMIP5 climatological models most closely simulating the environmental 

conditions under which this taxon grow, open the way for envisaging how this phenomenon will further evolve in light of 10 

ongoing climate change. This can be done using E. huxleyi bloom model, for which the changes in the forcing factors for 

E. huxylei blooms will be employed. Finally, although the present study has been performed for the coccolithophore E. huxleyi 

which vegetates at Arctic and sub-Arctic latitudes, the reported methodological approach is not algal-specific and can be 

applied to studies of other algal species composing the phytoplankton communities in the world ocean. 

 15 
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Table 1. CMIP5 models used for simulation of selected variables: SST – sea surface temperature in oC, WS – 10 m wind speed in m s-

1, SDSR – surface downwelling shortwave solar radiation in W m-2, SS30m – sea salinity (averaged over top 30 m) in PSU, OCS – surface 

ocean current speed in m s-1, concentration of nutrients (NO3, PO4, and SI) in mol m-3, dissolved CO2 partial pressure (pCO2) in Pa, and pH  

(models available for respective variable are marked as “+”) 

Model ID 
Modelling Center 

(acronym, full name, and country) 

Resolution 

(ºlon x ºlat) 

S

S

T 

W

S 

S

D

S

R 

S 

S 

30m 

O

C

S 

N

O

3 

P

O

4 

S 

I 

p

C

O

2 

p

H 

ACCESS1.0 1 CSIRO-BOM, Commonwealth Scientific and 

Industrial Research Organisation, Australia and 

Bureau of Meteorology, Australia 

1.25 х 1.875 

+ + + + +      

ACCESS1.3 2 + + + + +      

CanESM2 3 
CCCma, Canadian Centre for Climate Modelling 

and Analysis, Canada 

2.7906 х 

2.8125 
+ +  + + +   + + 

CMCC-CM 4 

CMCC, Centro euro-Mediterraneo sui Cambiamenti 

Climatici, Italy 

0.7484 х 

0.75 
+ + + + +      

CMCC-CMS 5 
3.7111 х 

3.75 
+ + + + + + +  + + 

CNRM-CM5 6 

CNRM-CERFACS, Centre National de Recherches 

Meteorologiques, France and Centre Europeen de 

Recherche et Formation Avancees en Calcul 

Scientifique, France 

1.4008 х 

1.40625 
+ + + + + + + +   

CSIRO-Mk3.6.0 7 

CSIRO-QCCCE, Commonwealth Scientific and 

Industrial Research Organization, Australia and 

Queensland Climate Change Centre of Excellence, 

Australia 

1.8653 х 

1.875 
 + + + +      

EC-EARTH 8 EC-EARTH, EC-EARTH consortium, Europe 
1.1215 х 

1.125 
+          

GFDL-CM3 9 

NOAA GFDL, National Oceanic and Atmospheric 

Administration, Geophysical Fluid Dynamics 

Laboratory, USA 

2 х 2.5 

+ + + + +      

GFDL-ESM2G 10 + + + + + + + + + + 

GFDL-ESM2M 11 + + + + + + + + + + 

GISS-E2-H 12 

NASA GISS, National Aeronautics and Space 

Administration, Goddard Institute for Space Studies, 

USA 

2 х 2.5 

+ + + + +      

GISS-E2-H-CC 13 + + + + + +  + +  

GISS-E2-R 14 + + + + +      

GISS-E2-R-CC 15 + + + + + +  + +  

HadCM3 16 2.5 x 3.75  +         



17 

 

 

HadGEM2-AO 17 

MOHC INPE, Met Office Hadley Centre, UK and 

Instituto Nacional de Pesquisas Espaciais, Brasil 
1.25 х 1.875 

+ + + + +      

HadGEM2-CC 18 + + + + + +  + + + 

HadGEM2-ES 19 + + + + + +  + + + 

IPSL-CM5A-LR 20 

IPSL, Institut Pierre-Simon Laplace, France 
1.8947 х 

3.75 

+ + + + + + + +  + 

IPSL-CM5A-MR 21 + + + + + + + +  + 

IPSL-CM5B-LR 22 + + + + + + + +  + 

MIROC5 23 MIROC, Atmosphere and Ocean Research Institute, 

the University of Tokyo, National Institute for 

Environmental Studies, and Japan Agency for 

Marine-Earth Science and Technology, Japan 

1.4008 х 

1.40625 
+ + + +       

MIROC4h 24 
0.5616 x 

0.5625 
 +         

MIROC-ESM 25 MIROC, Japan Agency for Marine-Earth Science 

and Technology, Atmosphere and Ocean Research 

Institute, the University of Tokyo, and National 

Institute for Environmental Studies, Japan 

2.7906 х 

2.8125 

+ + + +      + 

MIROC-ESM-CHEM 26 + + + +      + 

MPI-ESM-LR 27 
MPI-M, Max Planck Institute for Meteorology, 

Germany 

1.8653 х 

1.875 

+ + + + + + + + + + 

MPI-ESM-MR 28 + + + + + + + + + + 

MRI-CGCM3 29 
MRI, Meteorological Research Institute, Japan 

1.12148 х 

1.125 

+ + + + +      

MRI-ESM1 30  +    + +  + + 

NorESM1-M 31 
NCC, Norwegian Climate Centre, Norway 1.8947 х 2.5 

+  + +       

NorESM1-ME 32 +  + + + + + + + + 

INM-CM4 33 
INM, Russian Academy of Sciences Marchuk 

Institute of Numerical Mathematics, Russia 
1.5 х 2  + +       + 

FGOALS-g2 34 
LASG-CESS, Institute of Atmospheric Physics, 

Chinese Academy of Sciences; and Tsinghua 

University, China 

2.7906 x 

2.8125 
    +      

Total number of available CMIP5 models 
2

8 

3

0 

2

8 

2

8 

2

5 

1

6 

1

1 

1

3 

1

5 

1

3 
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Table 2. Results of the CMIP5 model performance for SST in the Barents Sea. Numbers in brackets indicate the models' scores. 

(RMSD is the root-mean-square deviation, oC; r is the correlation coefficient between models and reanalysis; CPI is climate prediction index; 

|SDdif| is the modulus of the standard deviation difference (model minus reanalysis), oC; |Trm| is the modulus of spatial trend mean difference 

(the model minus reanalysis), oC yr-1; |Tra| is the modulus of spread of spatial trends difference (the model minus reanalysis), oC yr-1; |Brm| 

is the modulus of spatial bias mean difference (the model minus reanalysis), oC; |Bra| is the modulus of spread of spatial biases difference 5 
(the model minus reanalysis), oC). 

Model acronym ID 

Seasonal cycle 

(averaged over the territory) 

Interannual variability 

(averaged over the territory) 
Spatial trends (Tr) and biases (Br) 

Total 

score 
RMSD r CPI |SDdif| RMSD r CPI |SDdif| |Trm| ||Tra| |Brm| |Bra| 

ACCESS1-0 1 0,26(3) 0,99(2) 0,13(3) 0,08(3) 1,17(3) 0,68(3) 0,81(3) 0,02(3) 0,06(2) 0,01(3) 0,07(3) 14,7(2) 33 

ACCESS1-3 2 0,37(3) 0,99(3) 0,19(3) 0,03(3) 1,02(3) 0,75(3) 0,71(3) 0,19(3) 0,01(3) 0,01(3) 0,57(3) 16,1(1) 34 

CanESM2 3 1,76(2) 0,98(2) 0,88(2) 0,28(0) 2,21(2) 0,64(3) 1,54(2) 1,12(3) 0,10(1) 0,04(3) 0,85(3) 17,2(1) 24 

CMCC-CM 4 5,15(0) 0,96(1) 2,58(0) 1,73(1) 7,06(0) 0,28(3) 4,90(0) 0,63(0) 0,06(2) 0,18(0) 6,64(0) 13,1(2) 9 

CMCC-CMS 5 4,40(0) 0,97(2) 2,20(0) 1,34(1) 5,94(0) 0,56(3) 4,12(0) 0,59(0) 0,01(3) 0,02(3) 5,58(0) 14,1(2) 14 

CNRM-CM5 6 0,64(3) 0,99(2) 0,32(3) 0,55(1) 1,59(3) 0,73(3) 1,10(3) 0,81(2) 0,08(2) 0,00(3) 0,49(3) 16,4(1) 29 

EC-EARTH 7 0,41(3) 0,99(2) 0,21(3) 0,13(2) 1,43(3) 0,64(3) 0,99(3) 0,38(3) 0,13(1) 0,12(1) 0,14(3) 18,1(0) 27 

GFDL-CM3 8 1,34(3) 0,99(3) 0,67(3) 0,20(3) 1,71(3) 0,80(3) 1,19(3) 0,22(3) 0,00(3) 0,09(1) 1,39(3) 11,1(3) 34 

GFDL-ESM2G 9 3,23(1) 0,98(2) 1,62(1) 0,27(2) 3,72(1) 0,69(3) 2,58(1) 0,29(3) 0,04(3) 0,04(3) 3,46(1) 13,9(2) 23 

GFDL-ESM2M 10 2,60(2) 0,99(2) 1,30(2) 0,61(3) 3,42(2) 0,68(3) 2,37(2) 0,25(2) 0,01(3) 0,08(2) 3,10(2) 15,7(1) 26 

GISS-E2-H 11 3,39(1) 0,97(3) 1,70(1) 0,41(3) 4,09(1) 0,83(3) 2,84(1) 0,18(3) 0,05(2) 0,04(3) 3,86(1) 11,4(3) 25 

GISS-E2-H-CC 12 3,68(1) 0,96(2) 1,84(1) 0,56(3) 4,62(1) 0,72(3) 3,20(1) 0,12(2) 0,03(3) 0,02(3) 4,36(1) 10,8(3) 24 

GISS-E2-R 13 3,34(1) 0,96(2) 1,67(1) 0,04(1) 3,83(1) 0,72(3) 2,66(1) 0,84(3) 0,05(2) 0,07(2) 3,34(1) 15,1(2) 20 

GISS-E2-R-CC 14 3,38(1) 0,96(2) 1,69(1) 0,07(1) 3,78(1) 0,75(3) 2,62(1) 0,83(3) 0,03(3) 0,05(2) 3,29(2) 13,6(2) 22 

HadGEM2-AO 15 1,28(3) 0,99(2) 0,64(3) 0,01(3) 1,51(3) 0,73(3) 1,05(3) 0,13(3) 0,02(3) 0,05(2) 1,33(3) 19,8(0) 31 

HadGEM2-CC 16 1,70(2) 0,99(2) 0,85(2) 0,16(2) 2,34(2) 0,62(3) 1,62(2) 0,35(3) 0,05(2) 0,05(2) 1,66(3) 19,1(0) 25 

HadGEM2-ES 17 0,30(3) 0,99(3) 0,15(3) 0,08(3) 0,98(3) 0,77(3) 0,68(3) 0,00(3) 0,05(2) 0,04(3) 0,09(3) 17,5(1) 33 

IPSL-CM5A-LR 18 3,66(1) 0,98(2) 1,83(1) 0,31(3) 4,59(1) 0,70(3) 3,19(1) 0,18(3) 0,01(3) 0,03(3) 4,32(1) 18,4(0) 22 

IPSL-CM5A-MR 19 2,22(2) 0,99(2) 1,11(2) 0,67(1) 2,57(2) 0,73(3) 1,78(2) 0,80(2) 0,06(2) 0,05(2) 1,91(2) 16,0(1) 23 

IPSL-CM5B-LR 20 5,03(0) 0,96(1) 2,52(0) 1,71(1) 6,90(0) 0,36(3) 4,79(0) 0,69(0) 0,00(3) 0,03(3) 6,51(0) 17,6(0) 11 

MIROC-ESM 21 1,40(3) 0,99(3) 0,70(3) 0,04(3) 1,63(3) 0,82(3) 1,13(3) 0,06(3) 0,01(3) 0,08(2) 1,51(3) 11,8(3) 35 

MIROC-ESM-

CHEM 
22 0,97(3) 0,99(3) 0,49(3) 0,05(3) 1,34(3) 0,82(3) 0,93(3) 0,13(3) 0,07(2) 0,05(3) 1,08(3) 15,1(2) 34 

MIROC5 23 2,42(0) 0,98(2) 1,21(0) 0,51(1) 5,69(2) 0,51(3) 3,95(2) 0,64(2) 0,18(0) 0,08(2) 5,14(0) 19,8(0) 14 

MPI-ESM-LR 24 1,27(3) 0,99(3) 0,63(3) 0,04(3) 1,54(3) 0,81(3) 1,07(3) 0,21(3) 0,02(3) 0,04(3) 1,33(3) 16,3(1) 34 

MPI-ESM-MR 25 0,91(3) 0,99(2) 0,45(3) 0,05(3) 1,47(3) 0,71(3) 1,02(3) 0,11(3) 0,05(2) 0,04(3) 0,96(3) 17,2(1) 32 

MRI-CGCM3 26 2,88(2) 0,99(3) 1,44(2) 0,08(2) 2,54(1) 0,82(3) 1,77(1) 0,34(3) 0,00(3) 0,07(2) 2,30(2) 11,9(3) 27 

NorESM1-M 27 1,53(2) 0,99(2) 0,77(2) 0,76(2) 2,56(2) 0,64(3) 1,78(2) 0,31(2) 0,05(2) 0,07(2) 2,33(2) 13,7(2) 25 

NorESM1-ME 28 1,72(2) 0,99(2) 0,86(2) 0,78(2) 2,79(2) 0,57(3) 1,94(2) 0,39(2) 0,02(3) 0,02(3) 2,58(2) 15,0(2) 27 
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Figure 1. Spatial distribution of  E. huxleyi blooms occurrence based on the Ocean Colour Climate Change Initiative dataset version 

3.0  (Kazakov et al., 2018) for the Barents, Bering, Labrador, Greenland, North, and Norwegian seas. Black lines confine the 

territories where blooms occurred more than one 8-day period and show target sea areas.   
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Figure 2. A schematic representation of the percentile ranking approach: division of RMSD values distribution of 28 models into 

four groups that are limited by 25th, 50th, and 75th percentiles and the relative assignment of scores from 3 to 0 to each group 

accordingly - very good, good, satisfactory and unsatisfactory. 
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Figure 3. Box plots of the spatial variability of SST biases (oC), which are calculated as the difference between the model and 

reanalysis data in the Barents Sea for  E. huxleyi bloom season over the period from 1979 to 2005. Each box spreads from the lower 5 

quartile Q1 to the upper quartile Q3 of biases, the gray lines represent the medians. The dots show mean values. The lower 

“whiskers” are represented as Q1-1.5 standard deviation and the upper “whiskers” are represented as Q3+1.5 standard deviation. 
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Figure 4. Heat map with the final model scores obtained using the percentile ranking approach for the 5 oceanographic and 

meteorological variables (sea surface temperature (SST), salinity averaged over 0-30 m (SS30m), surface wind speed at 10 m (WS), 

ocean surface current speed (OCS), and surface shortwave downwelling solar radiation (SDSR) for the Barents, Bering, Greenland, 

Labrador, North, and Norwegian seas based on different statistical measures (Fig. 2, Tab. 2). The white areas indicate a lack of 5 

model output for historical and RCP projections (RCP4.5, RCP8.5) in open data sources. 
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1 ACCESS1-3 23 34 33 28 27 30 23 17 27 24 22 31 26 29 31 27 29 18 30 13 29 30 32 23 27 23 32 36 24 25

2 ACCESS1-0 26 33 34 28 27 27 24 26 26 29 18 31 27 27 33 27 26 22 26 20 31 30 30 23 25 28 31 35 25 24

3 CanESM2 25 26 24 29 27 24 26 14 19 15 30 19 16 29 33 9 26 22 34 18 29 22 35 21

4 CMCC-CM 7 26 9 23 21 29 22 25 27 14 21 28 16 27 21 23 30 18 20 14 27 23 25 24 8 13 33 22 30 8

5 CMCC-CMS 16 22 14 24 23 29 23 25 28 15 25 33 32 22 16 25 35 15 21 15 24 19 30 25 13 24 31 36 28 14

6 CNRM-CM5 18 31 29 28 13 31 25 26 30 26 21 32 23 26 19 29 30 30 26 29 23 31 30 28 29 25 34 31 27 25

7 CSIRO-Mk3-6-0 20 23 19 21 21 26 31 14 20 35 26 10 21 27 30 17 23 25 24 16 19 33 15 13

8 EC-EARTH 27 27 35 28 30 36

9 FGOALS-g2 17 4 8 24 11 12

10 GFDL-CM3 20 32 34 27 23 32 20 32 32 26 19 30 32 21 28 27 25 25 28 28 23 19 31 29 22 26 33 36 27 24

11 GFDL-ESM2G 21 30 23 26 26 29 25 20 30 14 24 27 22 30 24 20 27 29 27 21 22 27 32 27 26 26 33 30 26 25

12 GFDL-ESM2M 15 33 26 27 25 32 20 24 29 20 23 33 23 23 18 27 32 24 27 27 24 18 29 28 28 25 33 33 23 27

13 GISS-E2-H 10 29 25 29 12 26 19 29 30 28 16 32 28 28 25 15 15 14 19 28 20 30 32 28 31 17 33 36 19 34

14 GISS-E2-H-CC 14 24 24 30 12 25 21 32 32 26 13 24 25 28 17 18 23 23 18 19 19 31 32 26 29 20 27 35 26 32

15 GISS-E2-R 19 8 20 26 12 28 25 25 32 29 25 29 28 30 22 22 26 27 26 29 23 28 31 29 30 23 32 33 27 34

16 GISS-E2-R-CC 20 9 22 27 11 29 27 28 32 30 24 28 26 30 25 22 22 30 28 28 22 25 30 30 29 24 35 29 27 29

17 HadCM3 16 28 25 27 27 19

18 HadGEM2-AO 26 32 31 30 29 30 28 29 32 30 17 23 27 31 33 19 11 30 28 13 28 30 35 20 28 26 31 34 21 31

19 HadGEM2-CC 22 32 25 30 25 29 26 32 30 29 20 19 31 29 33 22 20 30 30 16 29 31 33 28 31 27 32 35 25 32

20 HadGEM2-ES 21 33 33 27 30 25 24 28 30 27 17 25 28 28 33 25 17 26 29 13 28 26 32 29 30 28 30 33 23 32

21 INMCM4 30 32 26 32 16 33 18 30 23 31 24 28

22 IPSL-CM5A-LR 18 12 22 23 29 30 25 34 27 26 18 29 25 19 25 19 31 23 24 26 22 12 21 13 20 17 29 28 17 25

23 IPSL-CM5A-MR 20 18 23 24 29 33 22 32 31 24 17 28 32 27 27 21 27 25 24 23 25 7 26 23 28 25 31 31 18 27

24 IPSL-CM5B-LR 11 9 11 15 27 33 27 22 31 26 15 11 12 18 13 14 21 31 23 19 21 13 18 14 16 12 13 25 14 22

25 MIROC4h 32 18 28 21 27 28

26 MIROC5 31 14 28 22 14 16 24 31 32 33 28 32 31 19 21 27 25 20 28 25 24 17 25 32

27 MIROC-ESM 31 35 15 26 13 31 33 20 29 22 26 20 30 29 26 9 26 34 16 13 30 34 16 25

28 MIROC-ESM-CHEM 30 34 19 23 15 31 31 21 29 20 25 18 34 28 21 10 28 34 15 18 28 33 16 25

29 MPI-ESM-LR 21 31 34 25 21 32 29 24 31 11 12 33 29 21 19 16 22 21 21 10 26 31 33 27 19 13 31 34 28 23

30 MPI-ESM-MR 17 33 32 24 19 31 28 21 29 15 17 31 31 25 18 12 24 28 20 15 23 31 35 25 18 13 25 35 27 23

31 MRI-CGCM3 26 20 27 13 25 28 28 30 10 26 26 13 25 16 19 21 16 26 14 18 20 29 32 12 28 28 20 33 15 33

32 MRI-ESM1 12 9 11 14 8 16

33 NorESM1-M 33 25 20 17 24 13 30 26 10 23 23 14 30 34 25 31 33 25

34 NorESM1-ME 23 33 27 23 28 23 23 15 23 31 20 14 27 21 28 10 25 30 31 28 24 35 32 23

total selected models 7 7 8 7 8 7 8 8 11 8 7 11 8 10 9 7 8 8 10 8 8 11 8 9 8 8 9 10 9 8

30   -  selected optimal model ensemble 23 - score < 25% - 25% < score < 75% 7 - score > 75%

"very good"  "good" & "satisfactory" "unsatisfactory"

North Sea Norwegian Sea

ID CMIP5 models

Barents Sea Bering Sea Greenland Sea Labrador Sea
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Figure 5. Heat map with the final model scores obtained using the percentile ranking approach for the 5 biochemical variables 

(concentration of nutrients (NO3, PO4, and SI), dissolved CO2 partial pressure (pCO2), and pH) for the Barents, Bering, Greenland, 

Labrador, North, and Norwegian seas based on different statistical measures (Fig. 2, Tab. 2). The white areas indicate a lack of 5 

model output for historical and RCP projections (RCP4.5, RCP8.5) in open data sources. 
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Figure 6. Box plots of the spatial distribution of biases (model ensemble minus reanalyses) of 5 oceanographic and meteorological 

(left), and 5 biochemical variables (right): sea surface temperature (SST), salinity averaged over 0-30 m (SS30m), surface wind speed 

at 10 m (WS), ocean surface current speed (OCS), surface shortwave downwelling solar radiation (SDSR), concentration of nutrients 
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(NO3, PO4, and SI), dissolved CO2 partial pressure (pCO2), and pH for the Barents, Bering, Greenland, Labrador, North, and 

Norwegian seas averaged over the study period for comparison of full and selected model ensembles. 


