
Response to Reviewer 1 

Revision Review for bg-2019-194:  

Comparing Stability in Random Forest Models to Map Northern Great Plains Plant Communities in 

Pastures Occupied by Prairie Dogs Using Pleiades Imagery  

Overview  

Thanks for the revised manuscript and for your care and consideration of peer review comments. I find 

this revised manuscript to be much clearer and that the analyses now support the objectives and 

purpose laid out in the introduction. These changes have notably improved the manuscript and have 

removed confusion in the interpretation of findings. I have mostly clarification and technical comments 

that I feel will aid readers in understanding this work.  

Specific Comments  

Line 101 – If I understand the conclusions from Juel et al. 2015, then one logical extension would be that 

we also need to consider having spatially relevant training data (i.e. to address your issue that models 

may not transfer in space and time). Consider adding some additional possible solutions and 

implications of classification schemes (e.g. cover amounts of functional groups vs. community type)  

Some additional text has been included on Line 95 to discuss this. 

Line 133 – I find the connection between “signatures on imagery” and plant community response to the 

timing and progression factors underdeveloped. Add a sentence or two expanding what specifically will 

change within your communities (with relatively uniform composition) within and between years. 

Maybe a specific example would help here too.  

This sentence has been removed.  The connection between signatures on the imagery and plant 

community response is discussed in greater detail in the results and discussion section.  See paragraph 

beginning on page 304. 

Line 288 – Any spatial consistency on where these are? I.e. do they represent edges of the community 

where precip changes may lead to this finding? Would support next few sentences.  

See additional text: 

These are likely occurring along transition zones between prairie dog colony edge. 

Line 317 – Talk about what this this means in terms of changes in or between your community types  

See additional text: 

Increased cumulative biomass in 2016 may cause higher NDVI values for example in On-PDG plant 

communities resulting in classification shifts to Off-Cool; similarly, greater NDVI values in Off-cool in 

2016 may result in some of those pixels being classified as Off-Snow.   

Line 329 – Need some discussion about how the selection of your community types leads to some 

heterogeneity within types, but this is a needed tradeoff (to lead into next paragraph)  



Paragraph has been re-structured, and selection of plant communities and changes within types brought 

back to prairie dog influence of vegetation. 

Line 393 – You have assessed the accuracy based on your 2016 data. So additional years helped you 

accurately predict your training sites from 2016 (relatively homogeneous areas). Be specific about what 

accuracy you have measured, which really is model performance here.  

Point noted, this has been changed to model performance. 

Line 398 – Do you also mean here that the selection of community types to map is an important 

consideration. I know you did not explore this specifically but seems to be an important theme in your 

discussion and results. Add some discussion and concluding statements about this aspect.  

Additional text added: 

…recognizing that plant communities rarely exist in discrete communities is important when selecting 

community types to map.  Combining plant community ordination results with remote sensing results 

can aid in understanding sources of model error and limitations of classification algorithms. 

Line 610 – Here and throughout the Tables and Figures please check and revise for acronym consistency. 

You switch between On-PDG and On-Grass, and On-PDF and On-Forb, within and between figures and 

tables  

Corrected 

Technical Comments  

Line 93 – Need parentheses around 2015  

Corrected 

Line 99 – Parentheses around 2018(check rest of document for formatting of refs too) 

Corrected 

Line 111 – Do you mean prairie systems worldwide or specifically mixed grass prairies of the U.S. 

Northern Great Plains? I think you need to be specific here of the geographic region this paragraph 

addresses.  

Changed to norther great plains mixed grass prairie 

Line 125 – If you have a ref to send readers to about the larger study, please add.  

added 

Line 171 – Add the specific station used and check citation info (I found/used ref below). South Dakota 

Mesonet, South Dakota State University. (2019). South Dakota Mesonet Database [database].  

added 

Line 179 – Last sentence probably not needed. Also consider moving sentences (lines 225-227) about 

removing these areas and mapping prairie dog colonies up to this spot for reader clarity.  



Sentence removed and additional sentence moved up in text. 

Line 270 – For consideration, is “error” the best term here? For the message in your manuscript maybe 

use “instability?” You have the common problem of heterogeneity in your pixels/plots which makes it 

hard to classify to a specific type and your analysis shows that the year used can switch these mixed 

pixels between classes (the stability issue you are covering).  

Point noted, changed to instability 

Line 298 – Nice discussion in this paragraph  

Line 301 – Need reference  

added 

Line 400 – Clarify that this is transition “zones” between communities (and not through time) 

added 

 Line 621 – The locations of the on plot labels were confusing to me at first. Consider making these the 

same color as the community points and in the figure legend discuss what the +’s in the plot represent 

(this may also help folks identify the labels go with these centers) 

Added in the legend is what +’s mean in the plot. 

 Line 667 – Check acronyms for consistency (see comment on 610)  

Corrected 

Line 683 – Check plot labels (see comment on 610) 

Corrected. 

Response to Reviewer 2 

A number of improvements were made but I still had a difficult time reading the manuscript. The 

response 'Listing an author at the beginning of a sentence is a common convention in ecological 

literature' assumes that the ecological literature is written well. It largely is not. For this and other 

reasons the paragraph beginning on line 64 should be cut in its entirety and I revert to Josh Schimel's 

recommendation that every sentence that begins with an author needs to be rewritten if the authors 

are not the subject of the sentence. Doing so will make the authors realize that the structure of the text 

needs to change to have a simpler logical flow that makes it more apparent why prairie dog colonies 

make for interesting remote sensing challenges. Much of the introduction reads like a grab-bag of 

random papers and I don't feel that my suggestion to improve it was taken seriously. The Results and 

Discussion are better but could use further improvement. These are important points because it would 

be nice if this interesting study was more readable. 

The introduction has been restructured per recommendations, this includes bringing the significance on 

why mapping prairie dog plant communities are an important task ecologically to the forefront of the 

article.  Additionally text in the introduction has been added to highlight why vegetation changes 

associated with increased herbivory from prairie dogs might pose challenges to remote sensing.  In 



addition sentences in the introduction, results and discussion have been changed unless the author is 

the subject.  Significant portions of the results and discussion has been re-structured for clarity. 

Additional discussion has included impacts prairie dog herbivory have on plant communities and our 

ability to detect these with satellite imagery. 

 

The abstract would benefit from a brief discussion of why prairie dog colonies are important keeping in 

mind the international and/or non-ecological readership who would benefit from an explanation. In 

brief, the manuscript is technically sound but won't reach the intended audience unless the reader can 

see more clearly how interesting it is. 

Additional discussion has been included in the abstract as well as the introduction about why prairie 

dogs are important to reach a broader audience.   

 

Minor point? 

152: How did cattle impact vegetation? 

Cattle can impact vegetation, but this is dependent at the intensity of grazing.  At 50% utilization, 

livestock will have a minimal impact on plant communities.  Within the larger study no difference in 

plant communities were detected between off-town plots where cattle were excluded and off-town 

plots where cattle were allowed to graze.  Differences largely align along an on- town and off-town 

gradient. 
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ABSTRACT 55 

The use of high resolution imagery in remote sensing hasBlack tailed prairie dogs 56 

(Cynomys ludovicianus) have been described as a keystone species and important for grassland 57 

conservation, yet many concerns exist over the potential to improve understanding of patch level 58 

variability inimpact of prairie dogs on plant structure and community composition that may be 59 

lost at coarser scales. Random forest (RF) is a machine learning technique that has gained 60 

considerable traction in remote sensing applications due to its biomass production and 61 

consequently livestock production.  The ability to produce accurate classificationsmap plant 62 

communities in pastures colonized by prairie dogs can provide land managers with highly 63 

dimensional data and relatively efficient computing times.an opportunity to optimize rangeland 64 

production while balancing conservation goals.  The aim of this study was to test the ability of 65 

random forest (RF) to classify five plant communities located both on and off prairie dog towns 66 

in mixed grass prairie landscapes of north central South Dakota, assess the stability of RF models 67 

among different years, and determine the utility of utilizing remote sensing techniques to identity 68 

prairie dog colony extent.  During 2015 and 2016, Pleiades satellites were tasked to image the 69 

study site for a total of five monthly collections each summer (June-October).  Training polygons 70 

were mapped in 2016 for the five plant communities and used to train RF models.  Both the 2015 71 

and 2016 RF models had low (1%) out of bag error rates.  However, comparisons between the 72 

predicted plant community maps using the 2015 imagery and one created with the 2016 imagery 73 

indicate over 32.9% of pixels changed plant community class between 2015 and 2016.  The 74 

results show that while RF models may predict with a high degree of accuracy, overlap of plant 75 

communities and inter-annual differences in rainfall may cause instability in fitted models.  A 76 

final RF model combining both 2015 and 2016 data yielded the lowest error rates, and was also 77 

highly accurate in determining prairie dog colony boundaries.    78 
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 81 

INTRODUCTION 82 

Within the Northern Great Plains mixed grass prairie ecosystem, black tailed prairie dog 83 

colonization is an issue of concern for livestock producers (Miller et al. 2007).  Competition 84 

between prairie dogs and livestock is a major concern for land managers looking to optimize 85 

beef production while still conserving wildlife species (Augustine and Springer 2013).  Prairie 86 

dogs have been identified as a keystone species, and are often seen as ecosystem engineers 87 

providing habitat to a number of other plant and wildlife species (Davidson et al. 2010; Kotliar et 88 

al. 1999).  Prairie dogs can also reduce availability of forage for livestock by directly reducing 89 

the quantity of forage available (through direct consumption, clipping plants to increase predator 90 

detection, and building soil mounds), and by changing species composition (Derner et al. 2006).  91 

Within the mixed grass prairie, C3 mid-grasses tend to decrease and C4 short-grasses increase 92 

along an increasing gradient of grazing intensity (Irisarri et al. 2016).  Due to repeated 93 

defoliation, older core areas of prairie dog towns often become characterized by extensive areas 94 

of bare ground and low vegetation production, which is generally limited to annual forb and 95 

dwarf shrub species.  Pastures containing extensive areas of bare ground due to prairie dog 96 

colonization may potentially depress livestock forage intake rates and ultimately beef production.  97 

The ability to map the extent and monitor the impact of prairie dogs on the landscape can help 98 

land managers looking to optimize livestock production on prairie dog occupied rangelands.    99 
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Remote sensing of rangelands greatly improves our ability to study and understand 100 

complex ecological interactions across the landscape. As technology advances, monitoring of 101 

rangelands via remote sensing platforms will facilitate research products freely available to land 102 

managers (Browning et al. 2015).   One of the main advantages of remote sensing data is its 103 

capacity to cover wide areas, allowing assessment of plant communities at landscape level scales 104 

as compared to traditional point-based assessments (Ramoelo et al. 2015; Yu et al. 2018).  105 

Numerous studies have demonstrated the utility of remote sensing applications in monitoring 106 

rangeland condition, including mapping of vegetation communities, plant species composition, 107 

biomass estimation, and impact of grazing intensity on the landscape (Goodin and Henebry 108 

1997; Blanco et al. 2008; Franke et al. 2012).  Additionally, successive images throughout a 109 

growing season may potentially capture phenological changes associated with differences in C-3 110 

and C-4 plant species composition (Goodin and Henebry 1997).   111 

Advances in remote sensing technology have facilitated the mapping and assessment of a 112 

broad range of habitats at different scales (Corbane et al. 2015). For example, Schmidtlein et al. 113 

(2007) used hyperspectral imagery at 2m resolution in combination with ordination techniques to 114 

map functional plant group gradients in a Bavarian pasture.   Within the Delaware Gap National 115 

Recreation Area, multiple Landsat 7 scenes were used (30m resolution) with classification tree 116 

algorithms to map forest and plant communities for the National Park Service Vegetation 117 

Mapping Program (de Colstoun et al. 2003). In Majella National Park, Italy, 4m resolution 118 

imagery was used with normalized difference vegetation index (NDVI) to map and predict grass 119 

and herbaceous biomass variability over a 200 km2 area (Cho et al. 2007).  120 

Many methods for accurately classifying plant communities using remote sensing 121 

techniques have been used in numerous ecological and natural resource studies. One method, 122 
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random forest classification (RF), has gained considerable traction in the remote sensing 123 

community for its ability to produce accurate classifications, handle highly dimensional data, and 124 

provide efficient computing times (Belgiu and Drăguţ 2016).  RF is seen as an improvement over 125 

simple classification tree analysis by reducing noise and misclassification of outliers (Laliberte et 126 

al. 2007; Nitze et al. 2015).  RF is an ensemble decision tree classifier which combines bootstrap 127 

sampling to construct several individual decision trees from which a class probability is assigned 128 

(Mellor et al. 2013).  RF builds each tree using a deterministic algorithm selecting a random set 129 

of variables and a random sample from the calibration data set (Ramoelo et al. 2015).   130 

The utility of random forest algorithms has been demonstrated in remote sensing 131 

applications at multiple scales.   Lowe and Kulkarni (2015) showed that RF was effective at 132 

producing highly accurate classification maps using two Landsat scenes (30m resolution).  133 

Ramoelo et al. (2015) successfully used RF modeling to predict leaf nitrogen content using 134 

World-View 2 satellite images (2m resolution) in grassland and forest communities.  Similarly, 135 

Mutanga et al. (2012) concluded that RF regression modelling provided an effective 136 

methodology for variable selection and predicting biomass in wetland environments using high 137 

resolution satellite imagery (2m).  138 

Considerable research has focused on the application of RF classification across different 139 

plant communities at various scales, however, concerns existacross many plant communities at 140 

multiple scales (Mutanga et al. 2012; Lowe and Kulkarni 2015; Ramoelo et al. 2015).  Concerns 141 

exist, however, over the transferability of these models to different sites, across seasons, or years.  142 

For example, Juel et al. 2015 showed that RF models have shown to have a high degree of 143 

classification accuracy for classifyingmapping fine scale coastal vegetation using digital 144 

elevation maps and high resolution orthophoto imagery, but model accuracy decreased 145 
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significantly when applied to spatially separated sites, showing a lack of stability in the model.  146 

Corcoran et al. (2013) showed (Juel et al. 2015).  Selecting spatially releveant training data or 147 

including species level cover data may help improve or explain differences observed when 148 

transferring models between sites.  Incorporating additional seasons of data may also improve 149 

RF model accuracy; previous research has shown an improvement of RF model accuracy in 150 

classifying wetlands in northern Minnesota with the inclusion Landsat 5 images across two years 151 

using full season data versus summer only, and fall only models.  Jones (Corcoran et al. 152 

20182013).  Longer term studies have also demonstrated the utility of using RF modeling with 153 

30m Landsat data to monitor rangeland cover across the western United States over a 33 year 154 

period. (Jones et al. 2018).  Results of these studies suggest the scale and seasonality of the 155 

imagery may play an important role in the stability and accuracy of RF models.   156 

The stability in RF models to accurately map plant communities within prairie dog 157 

occupied pastures may be particularly important for managers looking to monitor prairie dog 158 

colony expansion or contraction over time.  While classification rates are often reported in 159 

studies, the potential overlap in plant community composition is rarely explored as a potential 160 

source of error within the models.  MostMany research studies focus solely on spectral 161 

differences in plant communities and fail to analyze community differences on the ground at the 162 

species level (de Colstoun et al. 2003; Geerken et al. 2005).  Lastly, while the focus of many of 163 

these remote sensing studies is on mapping plant communities at landscape scales to study land 164 

use changes and address conservation related issues, very little research has examined the 165 

impacts of animal species on plant community composition, and how this might affect 166 

classification accuracy.   This may be especially important within prairie dog occupied 167 

rangelands, where shifts in plant community composition may be driven more by the presence or 168 
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absence of an herbivore species versus elevation, soils, or other landscape features.  These 169 

herbivory induced changes in plant community may facilitate or hamper classification schemes.  170 

The ability to accurately map plant communities within prairie dog occupied pastures can help 171 

improve management of rangelands colonized by prairie dogs, yet little research has explored the 172 

possibility of utilizing remote sensing as a tool to do so. 173 

Within the mixed grass prairie ecosystem, black tailed prairie dog colonization is an issue 174 

of concern for livestock producers (Miller et al. 2007).  Competition between prairie dogs and 175 

livestock is a major concern for land managers looking to optimize beef production while still 176 

conserving wildlife species (Augustine and Springer 2013).  Prairie dogs can reduce availability 177 

of forage for livestock by directly reducing the quantity of forage available (through direct 178 

consumption, clipping plants to increase predator detection, and building soil mounds), and by 179 

changing species composition (Derner et al. 2006).  Older core areas of prairie dog towns often 180 

become characterized by extensive areas of bare ground and low vegetation production, which is 181 

generally limited to annual forb and dwarf shrub species.  Pastures containing extensive areas of 182 

bare ground due to prairie dog colonization may potentially depress livestock forage intake rates 183 

and ultimately beef production.  The ability to accurately map prairie dog colonies using remote 184 

sensing will help improve our understanding of the impact of prairie dogs on plant communities, 185 

and help inform land management decisions within rangelands occupied by prairie dogs.   186 

A large collaborative study from 2012-2016 was conducted to evaluate livestock 187 

production on mixed-grass prairie pastures with varying levels of prairie dog occupation.  A 188 

major goal of the larger study was to determine which plant communities on the pastures cattle 189 

preferred to graze, and how those preferences shifted within and between years. (Olson et al. 190 

2016). Plant communities on the site were categorized based on location (on- or off-town) and 191 
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visually apparent dominant plant functional groups.  Thus, plant community as defined for this 192 

study was a collection of species within an area of a relatively uniform composition different 193 

from neighboring patches.  Differences in neighboring patches were evident by differences in 194 

dominant functional group (forb vs grass) or differences in photosynthetic pathways (C3 vs C4 195 

grasses).  We expected the plant communities to remain relatively stable during the study, 196 

however their signatures on satellite imagery could change within and between years as a result 197 

of the timing and magnitude of rainfall, timing of green up, phenological progression, and other 198 

factors. The overall goal of this paper, then, was to develop maps that accurately classify plant 199 

communities based on satellite imagery collected between years. Specific objectives of this study 200 

were to 1) determine differences in the five identified plant communities based on species 201 

composition, 2) assess the utility of using a RF model with high resolution satellite imagery to 202 

classify plant communities of interest within a mixed grass prairie ecosystem containing prairie 203 

dogs, 3) determine the stability of the RF model when using subsequent years of satellite 204 

imagery with identical training data, and 4) determine the ability of high resolution satellite 205 

imagery to accurately classifymap prairie dog towns. Our ability to map and understand these 206 

plant communities’ at large scales will give researchers insight into applying RF models across 207 

years using high resolution imagery.  Research from this study will allow us to better assess how 208 

prairie dogs drive changes in plant communities, and provide a new tool to map the extent and 209 

impact of prairie dog colonization on the landscape to better inform land management decisions. 210 

METHODS 211 

Study site 212 

The study area (45.74N, 100.65W) was located near McLaughlin, South Dakota on a 213 

northern mixed-grass prairie ecosystem.  Native prairie pastures (810 ha total area) were leased 214 
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from 2012-2016; pastures were continuously stocked with yearling steers from June-October of 215 

each year to achieve 50% utilization.  Of the 810 ha, approximately 186 ha were occupied by 216 

black-tailed prairie dogs (Cynomys ludovicianus).  Predominant soils at the site were clays and 217 

loams. Ecological sites, and the plant communities they support vary widely; Loamy and Clayey 218 

were the predominant Ecological Sites at the site with inclusions of Dense Clay, Shallow Clay, 219 

and Thin Claypan (Barth et al. 2014).  Plant species dominating the site were largely native, 220 

including western wheatgrass (Pascopyrum smithii Rydb.), green needlegrass (Nassella viridula 221 

Trin.), and needle-and-thread (Hesperostipa comata Trin. & Rupr), intermixed with blue grama 222 

(Bouteloua gracilis Willd. Ex Kunth), buffalograss (Bouteloua dactyloides Nutt.), and sedges 223 

(Carex spp.). The most common non-native species on the site was Kentucky bluegrass (Poa 224 

pratensis Boivin & Love). Woody draws occupied moist drainage areas; vegetation consists 225 

primarily of bur oak (Quercus macrocarpa Nutt.), American plum (Prunus americana Marshall), 226 

and chokecherry (Prunus virginiana L.). These draws were frequently flanked by snowberry-227 

dominated patches (Symphoricarpos occidentalis Hook.).  Plant communities on areas occupied 228 

by prairie dog towns on the site were largely dominated by western wheatgrass and shortgrasses 229 

(buffalograss, blue grama, and sedges) intermixed with patches of bare ground and annual forb 230 

dominated areas.  Common annual forbs on prairie dog towns included prostrate knotweed 231 

(Polygonum aviculare L.), fetid marigold (Dyssodia papposa Vent.), dwarf horseweed (Conyza 232 

ramosissima Cronquist), and scarlet globemallow (Sphaeralcea coccinea Nutt.).  A weather 233 

station has been maintained on site from May 2013 operated by South Dakota Mesonet.  Mean 234 

annual rainfall at the site is 446 mm and average growing season (May through September) 235 

temperature is 15.3ºC (South Dakota Climate and Weather 2017). 236 
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 Five plant communities of interest for our study site were identified: 1) Forb-dominated 237 

sites on prairie dog towns (On-Forb), 2) Grass-dominated sites on prairie dog towns (On-Grass), 238 

3) Snowberry-dominated sites off-town (Off-Snow), 4) Cool season grass-dominated sites off-239 

town (Off-Cool), and 5) Warm season-dominated sites off-town (Off-Warm).  An additional 240 

plant community labeled ‘Draws’ was delineated visually within ArcGIS software due to 241 

difficulty in mapping these areas in the field.  Areas delineated as Draws were removed from the 242 

analysis area.  As mentioned prior, these areas are dominated by bur oak, chokecherry, and 243 

American plum, and occupied lower lying drainage areas on the site.   244 

Training sites 245 

To facilitate classification, training site polygons were mapped for On-Forb, On-Grass, 246 

Off-Cool, Off-Warm, and Off-Snow plant communities using ArcPad for Trimble GPS units in 247 

the summer of 2016.  Twenty training sites were mapped for each of the plant communities 248 

except Off-Warm, for which only 8 sites were mapped due to the difficulty of finding 249 

homogenous stands of warm season grasses. Plant species in the Northern Great Plains are 250 

dominated by cool season species; warm season species, where they occur, are typically 251 

intermixed into stands of cool season species. Training sites for each plant community were 252 

selected from across the entire study area to capture potential site differences across research 253 

pastures.  Sites were mapped in the field by walking the perimeter of the plant community patch 254 

with a Trimble GPS unit.  Training polygon perimeter boundaries were always at least 3 meters 255 

interior of patch edge to minimize error introduced to the training data as a result of GPS signal 256 

noise. Identified patches were then converted into a polygon shapefile within ArcGIS to be used 257 

as training polygons for the RF classification algorithm.  Within each training site polygon, three 258 

0.25 m2 plots were randomly located by tossing plot frames into the area of interest to determine 259 
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sampling area.  Within each plot, percent cover by species was recorded in the summer of 2016 260 

at the time of polygon mapping. 261 

Plant Community Analysis 262 

Plant community analysis was performed on vegetation data collected from the three 263 

0.25m2 plots measured in each training polygon. Differences between plant community 264 

compositions were determined using a Multi-Response Permutation Procedure (MRPP) with the 265 

Sorensen Bray-Curtis distance method.  MRPP is a nonparametric procedure used for testing 266 

hypotheses between two or more groups (Mitchell et al. 2015).  Differences in community 267 

compositions were analyzed for all plant communities, and pairwise comparisons generated.  To 268 

analyze trends in species composition between plant community plots, Non-metric 269 

Multidimensional Scaling (NMS) ordination was used (Kruskal 1964).  Only species that 270 

occurred in 3 or more plots were included in the ordination analysis.  NMS analysis was 271 

conducted using the Sorensen Bray-Curtis distance method with 250 iterations and a stability 272 

criterion of 0.00001.  Analysis was repeated five times to confirm ordination pattern in the data.  273 

Similarity index matrices were generated to compare plot differences between plant communities 274 

and averaged by plant community.  All ordination analyses (MRPP and NMS) were performed 275 

using PC-ORD 6 software (McCune and Mefford 2002). 276 

Imagery 277 

During the summers of 2015 and 2016, Pleiades satellites were tasked to image the study 278 

site.  Pleiades satellites, which are members of the SPOT family of satellites, are operated by 279 

AIRBUS Defense and Space.  This platform was chosen due to its high spatial resolution (0.5 m 280 

pan chromatic, 2 m multispectral) and four band spectral resolution: pan chromatic (480-830 281 

nm), red (600-720nm), green (490-610 nm), blue (430-550 nm), and near infrared (750-950 nm).  282 
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Pleiades satellites were designed for commercial tasking and monitoring, allowing multiple 283 

revisits to a project site.  A total of ten image collections were acquired in the summer of 2015 284 

and 2016 (five each year) from June through October during the 1st-15th of each month (Table 1). 285 

Image collection times were chosen to correspond to the time periods when cattle were actively 286 

grazing on the site.  Multispectral images were pan-sharpened and orthorectified by the image 287 

provider (Apollo Imaging Corp).  Each monthly image collection was converted into an NDVI 288 

image.  Areas delineated as Draws were removed from the analysis area.  In addition, boundaries 289 

of the prairie dog town were mapped using a handheld Trimble GPS unit to compare predicted 290 

colony location with ground truth location.  291 

Random Forest model 292 

For the RF model, the Random Forest package of the Comprehensive R Archive Network 293 

(CRAN) implemented by Liaw and Wiener (2002) was utilized.  Training data were constructed 294 

by stacking all satellite imagery spectral bands (Red, Blue, Green, and NIR) and NDVI bands for 295 

each month of each year (25 total dimensions per year) to create a raster stack for each year’s 296 

imagery (2015 and 2016).  To train the model, pixel values were extracted from the satellite 297 

imagery raster stack for each training polygon mapped in the field.  The random forest models 298 

were built using 200 decision trees and default number of nodes at each split (sqrt(n)), with plant 299 

community data as the response category (On-Grass, On-Forb, Off-Cool, Off-Warm, and Off-300 

Snow) and spectral band values as the predictor.  Models were checked for error stabilization, for 301 

all models error rates stabilized around 50 trees.  Yearly models (2015 and 2016) were built for 302 

output comparison.  A combined years model was also constructed using all available spectral 303 

data from 2015 and 2016 (50 dimensions).   304 
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Within the random forest package, Out of Bag (OOB) error rates were calculated by 305 

reserving one-third of the training data to test the accuracy of the predictions.  Models were then 306 

used to predict class belonging for 2015 and 2016 raster stacks and the combined 2015 and 2016 307 

stack using the ‘predict’ function within program R.  To assess the stability of the RF models 308 

from year to year, the “crosstab” function in the raster package in program R was used to 309 

calculate the number of pixels that changed class from 2015 to 2016.  The output was used to 310 

calculate percent of pixels that were unchanged from 2015 to 2016 model predictions and 311 

percent of pixel change that occurred between years for plant community predictions.   312 

Results and Discussion 313 

Plant Community 314 

MRPP pairwise comparisons results showed a significant difference between all plant 315 

communities (P < 0.001).  Differences are evident between plant communities in the 2-D plot of 316 

the NMS ordination (final stress = 20.01, instability < 0.00001 after 66 iterations), with some 317 

overlap occurring between communities (Figure 1).  Plant communities on-town and off-town 318 

are clustered at opposite ends of the ordination plot, with the greatest distance being between On-319 

Forb and Off-Snow.  Archer et al. (1987) showed in a detrendedDetrended correspondence 320 

analysis of plant communities ranging from uncolonized, 2 years post colonization, and 4-6 years 321 

post colonization, showed that uncolonized sites were clustered at one extreme and the 4-6 year 322 

sites at the other extreme. (Archer et al. 1987).  Interestingly, Off-Warm and On-Grass 323 

communities are clustered closer in ordination space.  Plant communities shifts on-town towards 324 

those dominated by shortgrass species have been documented (Agnew et al. 1986; Koford 1958), 325 

and is probably attributable to the high grazing resistance of the C4 species blue grama and 326 

buffalograss (Derner et al. 2006).   327 
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Similarity index differences between plant communities were generated from a Sorensen 328 

(Bray-Curtis) distance matrix, and can be seen in Table 2.  While there is some overlap between 329 

plant communities, in general similarities between plant communities are low (< 29%), with the 330 

greatest similarity index differences generated from a Sorensen (Bray-Curtis) distance 331 

matrixdistance occurring between the On-Forb communities and the off-town communities 332 

(Table 2).  Based on how plant communities were selected in this study, we expected plant 333 

community composition to be distinct between groups.  Though plant communities are defined 334 

by dominant functional group in this study, the amount of overlap occurring demonstrates that 335 

other functional groups and species exist within these distinct patches, which may be a potential 336 

source of errorinstability in classification models.  337 

Random Forest Model Results 338 

  Results from the RF modelmodels show low OOB misclassification error rates for each 339 

individual plant community (Table 3) indicating a high degree of accuracy in the model.  Overall 340 

the OOB model error rates were 0.9% and 1.12% for the 2015 and 2016 model respectively.  341 

OOB accuracy is an unbiased estimate of the overall classification accuracy eliminating the need 342 

for cross-validation (Breiman 2001).   Lawrence et al. (2006) showed OOB error rates have been 343 

shown to be reliable estimates of class accuracy for identifying invasive species.  Similarly, OOB 344 

error rates have been reported to be reliable in (Lawrence et al. 2006), and mapping corn and 345 

soybean fields across multiple years (Zhong et al. 2014).  Belgiu and Drăguţ (2016) in their 346 

review of RF applications in remote sensing acknowledge that the reliability of OOB error 347 

measurements needs to be further tested using a variety of datasets in different scenarios 348 

 Consistency in error rates for plant communities appears to indicate stability in the 2015 349 

and 2016 RF models which used identical training sites on consecutive yearly satellite imagery.  350 
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However, when comparing yearly predicted plant community maps, differences between 351 

community classifications are slightly more pronounced, indicating the models may not be as 352 

stable as predicted based solely on the OOB error rates.   353 

Overall a total of 67.04% pixels remained unchanged in their plant community 354 

classification from 2015 to 2016 (Table 4).  Of the pixels that changed classification between 355 

years, 15.13 were on-town to off-town transitions, 2.26 were on-town to on-town transitions, and 356 

15.57 were off-town to off-town plant community transitions.  It is unlikely in this northern 357 

mixed-grass prairie ecosystem that all the changes in plant communities indicated by 358 

classification of pixels were real changes from one plant community type to another over one 359 

year.  In the absence of a major disturbance event, such major shifts in species composition 360 

typically occur much more slowly (Vermeire et al. 2018). The results from the plant community 361 

analysis indicate training sites were chosen appropriately to account for differences in species 362 

composition on the ground, therefore apparent changes are much more likely due to factors that 363 

affect the spectral signature of the vegetation.  Factors that may potentially affect spectral 364 

signatures could include changes resulting from prairie dog herbivory, changes in precipitation 365 

regimes, or changes occurring along plant community transition zones. 366 

The pixels changing from On-Grass to Off-Cool represented the highest percentage of 367 

pixels that changed plant community classification at 7.28%.  Johnson-Nistler et al. (2004) 368 

observed up to 7 times more standing dead forage present%; these are likely occurring along 369 

transition zones at the prairie dog colony edge.  Both On-Grass and Off-Cool plant communities 370 

have western wheatgrass as a dominant species.  Similarity in species dominance may explain 371 

some of the challenges to distinguishing between some on and off colony plant communities.  372 

Difficulty in classifying Off-Cool and On-PDG may also be due to subtle vegetation changes 373 
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likely induced by the level of herbivory.  Research on a South Dakota mixed grass prairie 374 

showed that prairie dogs remove over four times more biomass than cattle grazing on-town 375 

(Gabrielson 2009).  Up to 7 times more standing dead forage and 60% less standing crop 376 

biomass has been reported on uncolonized sites compared to colonized areas, mainly attributed 377 

to prairie dogs clipping vegetation which greatly reduced the amount of grasses that reached 378 

maturity. (Johnson-Nistler et al. 2004).  Areas either less maintained on-town by prairie dogs or 379 

grazed by cattle repeatable off-town may show up similar spectral signatures.  Additionally, On-380 

Grass and Off-Cool plant communities have western wheatgrass as a dominant species, and 381 

similarity in species dominance between these communities may explain yearly shifts in 382 

predictions.  Of the pixels that changed classification between years, 15.13 were on-town to off-383 

town transitions, 2.26 were on-town to on-town transitions, and 15.57 were off-town to off-town 384 

plant community transitions.   385 

DifferencesIt is unlikely in this northern mixed-grass prairie ecosystem that all the 386 

changes in plant communities indicated by classification of pixels were real changes from one 387 

plant community type to another over one year.  In the absence of a major disturbance event, 388 

such major shifts in species composition typically occur much more slowly. The results from the 389 

plant community analysis indicate training sites were chosen appropriately to account for 390 

differences in species composition on the ground, therefore apparent changes are much more 391 

likely due to factors that affect the spectral signature of the vegetation. One explanation for the 392 

difference in year to year classification could also be attributed to the interannual variability of 393 

rainfall between 2015 and 2016 (Figure 2).  Yearly rainfall patterns can result in large 394 

differences in NDVI and biomass measurements across years (Wehlage et al. 2016).  While 395 

overall total rainfall between years was similar, differences in timing of precipitation that 396 
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occurred likely affected timing of green up and dormancy for many of the cool and warm season 397 

species on the site. This, then, would create different NDVI patterns between years (Figure 3). 398 

Wehlage et al. (2016) for example, found that yearly rainfall differences resulted in large 399 

differences in NDVI and biomass measurements across two years in a dry mixed-grass prairie. 400 

Goward and Prince (1995) suggested that the relationship between NDVI and annual rainfall in 401 

any given year also depends on the previous year history of rainfall at the site, and Oesterheld et 402 

al. (2001) showed.  Previous research has shown that annual above ground primary production of 403 

shortgrass communities is related to current as well as previous two years precipitation. 404 

(Oesterheld et al. 2001).  The above average rainfall at the study site in 2015 could have added to 405 

the increase in average NDVI in 2016 when compared to 2015 through an increase in cumulative 406 

biomass or production at the site.  Increased cumulative biomass in 2016 may cause higher 407 

NDVI values for example in On-PDG plant communities resulting in classification shifts to Off-408 

Cool; similarly, greater NDVI values in Off-cool in 2016 may result in some of those pixels 409 

being classified as Off-Snow.   410 

Another possible cause for changes in plant community classifications between years is 411 

overlap of plant community species where two plant communities share a boundary. The edges 412 

of plant One issue with using categorically classified vegetation maps is that plant communities 413 

in the NGPspace are seldom sharp; more often there is a transition zone, where species from 414 

each community intermingle. This,rarely mutually exclusive, and tend to change along with 415 

variability in phenological development of different plants (e.g. cool season vs. warm season) 416 

associateda continuum with precipitation, as mentioned above, could result in pixels appearing to 417 

be associated with one plant community in one year and its neighboring plant community the 418 

next. It should also be noted that plantenvironmental gradients (Equihua 1990).  Plant 419 
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communities in the region, which are predominantly comprised of cool season grasses, often 443 

include varying levels of warm season species; and snowberry thickets often have an understory 444 

of grasses, especially near the perimeter. Thus one should expect some level of spectral mixing 445 

within each community, and the possibility that climatic factors could result in changes in NDVI 446 

values that, at least initially, might suggest apparent changes between The challenge of 447 

accurately classifying plant communities.   448 

As noted above, one issue with using categorically classified vegetation maps is that plant 449 

communities in space are rarely mutually exclusive, and tend to change along aan ecological 450 

continuum withmay be further exacerbated by changes induced by prairie dogs, where transition 451 

zones are less defined by environmental gradients (Equihua 1990).and more defined by the level 452 

of herbivory.  Thus, within bothand between on-town and off-town plant communities, transition 453 

zones are likely to account for a portion of the classification change between plant communities 454 

between years (Figure 4).   Alternative approaches to mapping plant communities can be the 455 

recognition of fuzzy properties enabling a single point in space to exhibit characteristics of a 456 

number of plant communities (Duff et al. 2014; Fisher 2010).  For example, Schmidtlein et al. 457 

(2007) used NMS of species data in combination with imaging spectroscopy to produce 458 

ordination maps of community structure.  While fuzzy classification maps are more likely to give 459 

a better picture of plant community composition on a per pixel basis, they are also more difficult 460 

to use to draw inferences of species dominance and, livestock use across landscapespatterns, and 461 

extent of prairie dog colonization.   462 

A final RF model combining all available bands and NDVI values for 2015 and 2016 463 

reduced error rates for all plant communities below 1% (Table 3).  While we have shown that 464 

lower error rates may not result in more stable predictions, using all available data for a model 465 
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will likely improve accuracy and result in a more accurate thematic map.  Other studies have 466 

reported increases in classification accuracy in RF models with the addition of combined 467 

seasonal images, hyperspectral data, LiDAR images, radar (SAR) images, and ancillary 468 

geographical data such as elevation and soil types (Corcoran et al. 2013; Pu et al. 2018; Shi et al. 469 

2018; Xia et al. 2018; Yu et al. 2018; Zhou et al. 2018).  RF models have the ability to handle 470 

highly dimensional correlated data, and data combined from multiple different data sources 471 

across different temporal scales; however, one disadvantage to using non-parametric classifiers 472 

such as RF and decision trees is that they require a large number of observations to accurately 473 

estimate the mapping function (James et al. 2014).  Thus the incorporation of additional predictor 474 

variables as well as additional training data will likely result in higher accuracy rates.   475 

The variable importance graph of the combined model indicates that NDVI variables 476 

contribute the most to the model over individual bands (Figure 5).  Similar results were observed 477 

byIn classifying vegetation morphology in a savanna grassland, Mishra and Crews 2014, where 478 

found spectral classification features (mean NDVI or ratio NDVI) were the most significant for 479 

classifying vegetation morphology in a savanna grassland.  The variable importance plot from 480 

the combined data model also indicates that different months between years contribute highly to 481 

the classification accuracy.  Of the ten most important variables in the model, 6 were from 2015 482 

and 4 from 2016, suggesting additional data in the model is likely to yield greater classification 483 

accuracy.  Zhou et al. (2018) using RF models showed that a combination of four seasons of 484 

Sentinel-1 images and a GaoFen-1 satellite winter image produced the highest classification rate 485 

of urban land cover scenes over individual seasonal images.   Likewise, several otheryears’ data 486 

in the model is likely to yield greater classification accuracy.  studies have reported increases in 487 

classification accuracy in RF models with the addition of combined seasonal images, 488 
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hyperspectral data, LiDAR images, radar (SAR) images, and ancillary geographical data such as 489 

elevation and soil types (Corcoran et al. 2013; Pu et al. 2018; Shi et al. 2018; Xia et al. 2018; Yu 490 

et al. 2018).  RF models have the ability to handle highly dimensional correlated data, and data 491 

combined from multiple different data sources across different temporal scales. The internal 492 

information provided by the model, such as variable importance, can be a useful tool for 493 

researchers to select features of greatest importance to reduce computation times in the instance 494 

of large datasets.  At the size of our study area (810 ha) and a maximum of 50 variables, the 495 

combined 2015-16 data model only slightly added to computation time, but not enough to 496 

warrant feature trimming from the dataset.  Land managers looking to classify prairie dog 497 

colonies on more extensive grasslands may look to including only NDVI variables into training 498 

datasets to increase computational efficiency. 499 

Remote Sensing Prairie Dog Colonies 500 

Visual comparison of the predicted on-town plant communities versus off-town plant 501 

communities show a clearly defined boundary between areas colonized by prairie dogs and areas 502 

not colonized (Figure 6).  Results from mapping colony boundaries with a hand held GPS device 503 

estimated the colony to be 276 ha in 2012 to 186 ha in 2015.  Total colony acreage estimated 504 

from summing the pixel area occupied by the On-Grass and On-Forb community pixels from the 505 

combined 2015-2016 RF model was 246 ha.  Previous research has demonstrated that 506 

colonization by prairie dogs and subsequent increases in grazing pressure can result in significant 507 

differences between on- and off-town plant community composition and production (Coppock et 508 

al., 1983; Winter et al. 2002; Johnson-Nistler et al. 2004; Geaumont et al. 2019).  The results of 509 

our study demonstrate that these differences are significant enough to be identified using remote 510 

sensing techniques.  Interestingly, a considerable portion of the area misclassified as on-town is 511 
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from a previously colonized area that had been poisoned in 2013, suggesting that, at least 535 

spectrally, these areas still resemble plant communities similar to those actively colonized.  The 536 

higher area estimate from the RF model is likely the result of transition areas controlled two 537 

years prior.  Additionally, most other pixels misclassified as on-town are likely drainage areas 538 

with high bare ground off-town, whose variability was not captured in the dataset.  Results from 539 

mapping colony boundaries with a hand held GPS device estimated the colony to be 276 ha in 540 

2012 to 186 ha in 2015.  Total colony acreage estimated from summing the pixel area occupied 541 

by the On-Grass and On-Forb community pixels from the combined 2015-2016 RF model was 542 

246 ha.  As mentioned prior, the higher area estimate in from the RF model is likely the result of 543 

transition areas controlled two years prior.  One prior study had sought identify prairie dog 544 

colonies using 30m Landsat imagery, however concluded that the scale was too course for 545 

accurately measuring prairie dog towns (Wolbrink et al. 2002).  High resolution satellite imagery 546 

used in this study appears capable at capturing fine scale transitions that occur between plant 547 

communities along the on-town off-town gradient.     548 

The RF model was also able to accurately predict older core areas of prairie dog towns 549 

(On-forb) often characterized by a high percentage bare ground, low vegetation production, and 550 

dominance by annual forb and dwarf shrub species (Coppock et al., 1983).  Area estimates of 551 

On-Forb were 33 ha and 32 ha in 2015 and 2016 respectively.  State and transition models for 552 

prairie dog towns developed within Custer State Park South Dakota, found older core areas were 553 

considered undesirable for management due to losses of native grasses, increased bare ground, 554 

potential for erosion, extensive presence of exotic species, and increased inputs to restore to a 555 

more desirable state (Hendrix 2018).  The ability to monitor these older core areas of prairie dog 556 

towns remotely may help land managers limit sites from becoming highly degraded, and serve as 557 
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a useful tool for land managers concerned over balancing wildlife conservation with losses in 582 

livestock production.         583 

Conclusions  584 

Stability of models is important when applying similar techniques across different sites, 585 

plant communities, and in this case years.  Differences in year-to-year NDVI values may alter 586 

classification results, and the addition of two years’ worth of data likely resulted in improved 587 

classification accuracy.model performance.  One of the main benefits to RF classification in 588 

remote sensing is the relatively fast computing time (Belgiu and Drăguţ 2016), and, given the 589 

availability of free satellite imagery, researchers would be prudent to include multiple images 590 

across years and seasons in their model to improve accuracy.  Furthermore, while the desired 591 

outcome is often to produce thematic maps, recognizing that plant communities rarely exist in 592 

discrete communities is important when trying to interpret remotely sensed classification 593 

maps.selecting community types to map.  Combining plant community ordination results with 594 

remote sensing results can aid in understanding sources of model error and limitations of 595 

classification algorithms.  This is likely to be magnified as pixel size decreases, resulting in fine 596 

scale predictions which may be more susceptible to plant community transitions.  Lastly, results 597 

zones.  Results from this study indicate that plant community changes induced by prairie dogs 598 

are significant enough to be detected via remote sensing techniques.  Land managers looking to 599 

optimize rangeland health on pastures occupied by prairie dogs may potentially utilize high 600 

resolution imagery to monitor colony size and make recommendations of appropriate stocking 601 

rates based on extent of colonization.  602 
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 1014 

 1015 

 1016 

Tables and Figures 1017 

Table 1. Acquisition dates of Pleiades satellite imagery tasked for each month (June – October) in 

2015 and 2016. 

    

2015 Dates of Acquisition 2016 Dates of Acquisition 

6/1/2015 6/5/2016 

7/9/2015 7/2/2016 

8/4/2015 8/2/2016 

9/1/2015 9/11/2016 

10/8/2015 10/1/2016 

 1018 
 1019 

Table 2. Similarity index (Sorensen (Bray-Curtis) distance method) values averaged by plot 1020 
across plant commuinitiescommunities. 1021 

Community Comparison1 

SimiliaritySimilarity Index 

(%) 

Off-Cool vs. Off-Snow 28.2 

Off-Cool vs. Off-Warm 27.8 

Off-Cool vs. On-PDG 27.7 

Off-Snow vs. Off-Warm 21.6 

On-PDG vs. On-PDF 17.8 

Off-Snow vs. On-PDG 17.3 

Off-Warm vs. On-PDG 17.3 

Off-Cool vs. On-PDF 7.9 

Off-Snow vs. On-PDF 6.2 

Off-Warm vs. On-PDF 6.2 
 1022 
1Plant communities on prairie dog towns are grass-dominated (On-Grass) and forb-dominated 1023 
(On-Forb); plant communities in off-town areas are cool season grass-dominated (Off-Cool), 1024 
warm season grass-dominated (Off-Warm), and snowberry-dominated (Off-Snow). 1025 

 1026 
 1027 

 1028 
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 1029 

 1030 
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 1031 

Figure 1. NMS ordination plots for plant communities located on and off of prairie dog towns, 1032 
based on plant cover by species data collected in 2016 on the study site in north central South 1033 
Dakota.  The ‘+’ symbol followed by the community name represent the weighted mean 1034 
(centroid) of the multivariate dataset.  Plant communities on prairie dog towns are grass-1035 
dominated (On-Grass) and forb-dominated (On-Forb); plant communities in off-town areas are 1036 

cool season grass-dominated (Off-Cool), warm season grass-dominated (Off-Warm), and 1037 
snowberry-dominated (Off-Snow). 1038 

 1039 

 1040 

 1041 

 1042 
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 1078 

Table 3: Out of Bag misclassification error rates (%) for each plant community for 2015, 2016, and 

combined year random forest models. 

        

Plant Community1 2015 Model 2016 Model 2015-2016 Combined Model 

Off-Cool 0.20% 0.40% 0.04% 

Off-Snow 2.2% 1.9% 0.69% 

Off-Warm 3.2% 5.3% 0.73% 

On-Grass 0.40% 0.60% 0.09% 

On-Forb 0.60% 0.70% 0.19% 
1 Plant communities on prairie dog towns are grass-dominated (On-Grass) and forb-dominated 1079 

(On-Forb); plant communities in off-town areas are cool season grass-dominated (Off-Cool), 1080 
warm season grass-dominated (Off-Warm), and snowberry-dominated (Off-Snow). 1081 
 1082 
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 1118 
 1119 

Table 4: Percent of pixels within each plant community that remain unchanged and that changed 1120 
class belonging between 2015 and 2016 models. 1121 

 1122 

Transition 2015 PC1 2016 PC Total Pixels 

Percent of Total 

Pixels 

 Off-Cool Off-Cool 9712857 31.03 

 

On-

PDGGrass 

On-

PDGGrass 6427817 20.54 

Unchanged Pixels Off-Snow Off-Snow 3401264 10.87 

 

On-

PDFForb 

On-

PDFForb 887151 2.83 

 Off-Warm Off-Warm 555635 1.78 

 

On-

PDGGrass Off-Cool 2278390 7.28 

 Off-Cool Off-Snow 1468042 4.69 

 Off-Cool 

On-

PDGGrass 1262373 4.03 

 Off-Snow Off-Cool 1174565 3.75 

 Off-Warm Off-Cool 729511 2.33 

 Off-Cool Off-Warm 716503 2.29 

 Off-Warm Off-Snow 629212 2.01 

 

On-

PDGGrass Off-Snow 626695 2.00 

 

On-

PDGGrass 

On-

PDFForb 362417 1.16 

Changed Pixels 

On-

PDFForb 

On-

PDGGrass 343774 1.10 

 Off-Snow 

On-

PDGGrass 281061 0.90 

 Off-Snow Off-Warm 155213 0.50 

 

On-

PDGGrass Off-Warm 82450 0.26 

 

On-

PDFForb Off-Cool 72758 0.23 

 Off-Cool 

On-

PDFForb 69188 0.22 

 Off-Warm 

On-

PDGGrass 43132 0.14 

 

On-

PDFForb Off-Snow 19575 0.06 

 Off-Warm 

On-

PDFForb 573 0.00 
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On-

PDFForb Off-Warm 314 0.00 

 Off-Snow 

On-

PDFForb 17 0.00 
 1133 
1Plant communities (PC) on prairie dog towns are grass-dominated (On-Grass) and forb-1134 
dominated (On-Forb); plant communities in off-town areas are cool season grass-dominated 1135 
(Off-Cool), warm season grass-dominated (Off-Warm), and snowberry-dominated (Off-Snow). 1136 
 1137 
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 1148 
 1149 

 1150 

 1151 

Figure 4: Random forest classification maps from 2015 and 2016 of one pasture in the study area 1152 
in north central South Dakota.  Plant communities on prairie dog towns are grass-dominated 1153 

(On-Grass) and forb-dominated (On-Forb); plant communities in off-town areas are cool season 1154 
grass-dominated (Off-Cool), warm season grass-dominated (Off-Warm), and snowberry-1155 

dominated (Off-Snow). 1156 
 1157 
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 1158 

Figure 5: Variable importance reported as mean decrease in accuracy. Ten most important 1159 

variables are shown, with B1 and B4 corresponding to spectral bands 1 and 4 respectively from 1160 

Pleiades image.  Variable importance is determined by the model output as the decrease in 1161 

accuracy due to the exclusion of that variable during the out of bag error calculation process.  1162 

Higher mean decrease in accuracy variables are more important in classifying the data. 1163 

 1164 
 1165 
 1166 

 1167 
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 1168 
Figure 6: Random forest classification map created from predictions from the combined 2015 1169 

and 2016 models.  Off-town areas were created by combining the predicted off-town plant 1170 

communities (Off-Cool, Off-Warm, and Off-Snow) and on-town plant communities (On-Grass 1171 

and On-Forb).  The prairie dog boundary was mapped using a handheld GPS unit, the outlined 1172 

2012 prairie dog boundary was former prairie dog colony poisoned in 2013. 1173 
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