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ABSTRACT 28 

The use of high resolution imagery in remote sensing has the potential to improve 29 

understanding of patch level variability in plant structure and community composition that may 30 

be lost at coarser scales. Random forest (RF) is a machine learning technique that has gained 31 

considerable traction in remote sensing applications due to its ability to produce accurate 32 

classifications with highly dimensional data and relatively efficient computing times.  The aim of 33 

this study was to test the ability of RF to classify five plant communities located both on and off 34 

prairie dog towns in mixed grass prairie landscapes of north central South Dakota, assess the 35 

stability of RF models among different years, and determine the utility of utilizing remote 36 

sensing techniques to identity prairie dog colony extent.  During 2015 and 2016, Pleiades 37 

satellites were tasked to image the study site for a total of five monthly collections each summer 38 

(June-October).  Training polygons were mapped in 2016 for the five plant communities and 39 

used to train RF models.  Both the 2015 and 2016 RF models had low (1%) out of bag error 40 

rates.  However, comparisons between the predicted plant community maps using the 2015 41 

imagery and one created with the 2016 imagery indicate over 32.9% of pixels changed plant 42 

community class between 2015 and 2016.  The results show that while RF models may predict 43 

with a high degree of accuracy, overlap of plant communities and inter-annual differences in 44 

rainfall may cause instability in fitted models.  A final RF model combining both 2015 and 2016 45 

data yielded the lowest error rates, and was also highly accurate in determining prairie dog 46 

colony boundaries.    47 
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INTRODUCTION 51 

Remote sensing of rangelands greatly improves our ability to study and understand 52 

complex ecological interactions across the landscape. As technology advances, monitoring of 53 

rangelands via remote sensing platforms will facilitate research products freely available to land 54 

managers (Browning et al. 2015).   One of the main advantages of remote sensing data is its 55 

capacity to cover wide areas, allowing assessment of plant communities at landscape level scales 56 

as compared to traditional point-based assessments (Ramoelo et al. 2015; Yu et al. 2018).  57 

Numerous studies have demonstrated the utility of remote sensing applications in monitoring 58 

rangeland condition, including mapping of vegetation communities, plant species composition, 59 

biomass estimation, and impact of grazing intensity on the landscape (Blanco et al. 2008; Franke 60 

et al. 2012).  Additionally, successive images throughout a growing season may potentially 61 

capture phenological changes associated with differences in C-3 and C-4 plant species 62 

composition (Goodin and Henebry 1997).   63 

Advances in remote sensing technology have facilitated the mapping and assessment of a 64 

broad range of habitats at different scales (Corbane et al. 2015). For example, Schmidtlein et al. 65 

(2007) used hyperspectral imagery at 2m resolution in combination with ordination techniques to 66 

map functional plant group gradients in a Bavarian pasture.   Within the Delaware Gap National 67 

Recreation Area, multiple Landsat 7 scenes were used (30m resolution) with classification tree 68 

algorithms to map forest and plant communities for the National Park Service Vegetation 69 

Mapping Program (de Colstoun et al. 2003). In Majella National Park, Italy, 4m resolution 70 

imagery was used with normalized difference vegetation index (NDVI) to map and predict grass 71 

and herbaceous biomass variability over a 200 km2 area (Cho et al. 2007).  72 
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Many methods for accurately classifying plant communities using remote sensing 73 

techniques have been used in numerous ecological and natural resource studies. One method, 74 

random forest classification (RF), has gained considerable traction in the remote sensing 75 

community for its ability to produce accurate classifications, handle highly dimensional data, and 76 

provide efficient computing times (Belgiu and Drăguţ 2016). RF is seen as an improvement over 77 

simple classification tree analysis by reducing noise and misclassification of outliers (Laliberte et 78 

al. 2007; Nitze et al. 2015).  RF is an ensemble decision tree classifier which combines bootstrap 79 

sampling to construct several individual decision trees from which a class probability is assigned 80 

(Mellor et al. 2013).  RF builds each tree using a deterministic algorithm selecting a random set 81 

of variables and a random sample from the calibration data set (Ramoelo et al. 2015).   82 

The utility of random forest algorithms has been demonstrated in remote sensing 83 

applications at multiple scales.   Lowe and Kulkarni (2015) showed that RF was effective at 84 

producing highly accurate classification maps using two Landsat scenes (30m resolution).  85 

Ramoelo et al. (2015) successfully used RF modeling to predict leaf nitrogen content using 86 

World-View 2 satellite images (2m resolution) in grassland and forest communities.  Similarly, 87 

Mutanga et al. (2012) concluded that RF regression modelling provided an effective 88 

methodology for variable selection and predicting biomass in wetland environments using high 89 

resolution satellite imagery (2m).  90 

Considerable research has focused on the application of RF classification across different 91 

plant communities at various scales, however, concerns exist over the transferability of these 92 

models to different sites, across seasons, or years.  For example, Juel et al. 2015 showed that RF 93 

models have a high degree of classification accuracy for classifying fine scale coastal vegetation 94 

using digital elevation maps and high resolution orthophoto imagery, but model accuracy 95 
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decreased significantly when applied to spatially separated sites, showing a lack of stability in 96 

the model.  Corcoran et al. (2013) showed an improvement of RF model accuracy in classifying 97 

wetlands in northern Minnesota with the inclusion Landsat 5 images across two years using full 98 

season data versus summer only, and fall only models.  Jones et al. 2018 demonstrated the utility 99 

of using RF modeling with 30m Landsat data to monitor rangeland cover across the western 100 

United States over a 33 year period.  Results of these studies suggest the scale and seasonality of 101 

the imagery may play an important role in the stability of RF models to accurately map plant 102 

communities.  While classification rates are often reported in studies, the potential overlap in 103 

plant community composition is rarely explored as a potential source of error within the models.  104 

Most research studies focus solely on spectral differences in plant communities and fail to 105 

analyze community differences on the ground at the species level (de Colstoun et al. 2003; 106 

Geerken et al. 2005).  Lastly, while the focus of many of these remote sensing studies is on 107 

mapping plant communities at landscape scales to study land use changes and address 108 

conservation related issues, very little research has examined the impacts of animal species on 109 

plant community composition, and how this might affect classification accuracy.    110 

Within the mixed grass prairie ecosystem, black tailed prairie dog colonization is an issue 111 

of concern for livestock producers (Miller et al. 2007).  Competition between prairie dogs and 112 

livestock is a major concern for land managers looking to optimize beef production while still 113 

conserving wildlife species (Augustine and Springer 2013).  Prairie dogs can reduce availability 114 

of forage for livestock by directly reducing the quantity of forage available (through direct 115 

consumption, clipping plants to increase predator detection, and building soil mounds), and by 116 

changing species composition (Derner et al. 2006).  Older core areas of prairie dog towns often 117 

become characterized by extensive areas of bare ground and low vegetation production, which is 118 
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generally limited to annual forb and dwarf shrub species.  Pastures containing extensive areas of 119 

bare ground due to prairie dog colonization may potentially depress livestock forage intake rates 120 

and ultimately beef production.  The ability to accurately map prairie dog colonies using remote 121 

sensing will help improve our understanding of the impact of prairie dogs on plant communities, 122 

and help inform land management decisions within rangelands occupied by prairie dogs.   123 

A large collaborative study from 2012-2016 was conducted to evaluate livestock 124 

production on mixed-grass prairie pastures with varying levels of prairie dog occupation. A 125 

major goal of the larger study was to determine which plant communities on the pastures cattle 126 

preferred to graze, and how those preferences shifted within and between years. Plant 127 

communities on the site were categorized based on location (on- or off-town) and visually 128 

apparent dominant plant functional groups.  Thus, plant community as defined for this study was 129 

a collection of species within an area of a relatively uniform composition different from 130 

neighboring patches.  Differences in neighboring patches were evident by differences in 131 

dominant functional group (forb vs grass) or differences in photosynthetic pathways (C3 vs C4 132 

grasses).  We expected the plant communities to remain relatively stable during the study, 133 

however their signatures on satellite imagery could change within and between years as a result 134 

of the timing and magnitude of rainfall, timing of green up, phenological progression, and other 135 

factors. The overall goal of this paper, then, was to develop maps that accurately classify plant 136 

communities based on satellite imagery collected between years. Specific objectives of this study 137 

were to 1) determine differences in the five identified plant communities based on species 138 

composition, 2) assess the utility of using a RF model with high resolution satellite imagery to 139 

classify plant communities of interest within a mixed grass prairie ecosystem containing prairie 140 

dogs, 3) determine the stability of the RF model when using subsequent years of satellite 141 
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imagery with identical training data, and 4) determine the ability of high resolution satellite 142 

imagery to accurately classify prairie dog towns. Our ability to map and understand these plant 143 

communities’ at large scales will give researchers insight into applying RF models across years 144 

using high resolution imagery.  Research from this study will allow us to better assess how 145 

prairie dogs drive changes in plant communities, and provide a new tool to map the extent of 146 

prairie dog colonization on the landscape to better inform land management decisions. 147 

METHODS 148 

Study site 149 

The study area (45.74N, 100.65W) was located near McLaughlin, South Dakota on a 150 

northern mixed-grass prairie ecosystem.  Native prairie pastures (810 ha total area) were leased 151 

from 2012-2016; pastures were continuously stocked with yearling steers from June-October of 152 

each year to achieve 50% utilization.  Of the 810 ha, approximately 186 ha were occupied by 153 

black-tailed prairie dogs (Cynomys ludovicianus).  Predominant soils at the site were clays and 154 

loams. Ecological sites, and the plant communities they support vary widely; Loamy and Clayey 155 

were the predominant Ecological Sites at the site with inclusions of Dense Clay, Shallow Clay, 156 

and Thin Claypan (Barth et al. 2014).  Plant species dominating the site were largely native, 157 

including western wheatgrass (Pascopyrum smithii Rydb.), green needlegrass (Nassella viridula 158 

Trin.), and needle-and-thread (Hesperostipa comata Trin. & Rupr), intermixed with blue grama 159 

(Bouteloua gracilis Willd. Ex Kunth), buffalograss (Bouteloua dactyloides Nutt.), and sedges 160 

(Carex spp.). The most common non-native species on the site was Kentucky bluegrass (Poa 161 

pratensis Boivin & Love). Woody draws occupied moist drainage areas; vegetation consists 162 

primarily of bur oak (Quercus macrocarpa Nutt.), American plum (Prunus americana Marshall), 163 

and chokecherry (Prunus virginiana L.). These draws were frequently flanked by snowberry-164 
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dominated patches (Symphoricarpos occidentalis Hook.).  Plant communities on areas occupied 165 

by prairie dog towns on the site were largely dominated by western wheatgrass and shortgrasses 166 

(buffalograss, blue grama, and sedges) intermixed with patches of bare ground and annual forb 167 

dominated areas.  Common annual forbs on prairie dog towns included prostrate knotweed 168 

(Polygonum aviculare L.), fetid marigold (Dyssodia papposa Vent.), dwarf horseweed (Conyza 169 

ramosissima Cronquist), and scarlet globemallow (Sphaeralcea coccinea Nutt.).  A weather 170 

station has been maintained on site from May 2013 operated by South Dakota Mesonet.  Mean 171 

annual rainfall at the site is 446 mm and average growing season (May through September) 172 

temperature is 15.3ºC (South Dakota Climate and Weather 2017). 173 

 Five plant communities of interest for our study site were identified: 1) Forb-dominated 174 

sites on prairie dog towns (On-Forb), 2) Grass-dominated sites on prairie dog towns (On-Grass), 175 

3) Snowberry-dominated sites off-town (Off-Snow), 4) Cool season grass-dominated sites off-176 

town (Off-Cool), and 5) Warm season-dominated sites off-town (Off-Warm).  An additional 177 

plant community labeled ‘Draws’ was delineated visually within ArcGIS software due to 178 

difficulty in mapping these areas in the field.  As mentioned prior, these areas are dominated by 179 

bur oak, chokecherry, and American plum, and occupied lower lying drainage areas on the site.   180 

Training sites 181 

To facilitate classification, training site polygons were mapped for On-Forb, On-Grass, 182 

Off-Cool, Off-Warm, and Off-Snow plant communities using ArcPad for Trimble GPS units in 183 

the summer of 2016.  Twenty training sites were mapped for each of the plant communities 184 

except Off-Warm, for which only 8 sites were mapped due to the difficulty of finding 185 

homogenous stands of warm season grasses. Plant species in the Northern Great Plains are 186 

dominated by cool season species; warm season species, where they occur, are typically 187 
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intermixed into stands of cool season species. Training sites for each plant community were 188 

selected from across the entire study area to capture potential site differences across research 189 

pastures.  Sites were mapped in the field by walking the perimeter of the plant community patch 190 

with a Trimble GPS unit.  Training polygon perimeter boundaries were always at least 3 meters 191 

interior of patch edge to minimize error introduced to the training data as a result of GPS signal 192 

noise. Identified patches were then converted into a polygon shapefile within ArcGIS to be used 193 

as training polygons for the RF classification algorithm.  Within each training site polygon, three 194 

0.25 m2 plots were randomly located by tossing plot frames into the area of interest to determine 195 

sampling area.  Within each plot, percent cover by species was recorded in the summer of 2016 196 

at the time of polygon mapping. 197 

Plant Community Analysis 198 

Plant community analysis was performed on vegetation data collected from the three 199 

0.25m2 plots measured in each training polygon. Differences between plant community 200 

compositions were determined using a Multi-Response Permutation Procedure (MRPP) with the 201 

Sorensen Bray-Curtis distance method.  MRPP is a nonparametric procedure used for testing 202 

hypotheses between two or more groups (Mitchell et al. 2015).  Differences in community 203 

compositions were analyzed for all plant communities, and pairwise comparisons generated.  To 204 

analyze trends in species composition between plant community plots, Non-metric 205 

Multidimensional Scaling (NMS) ordination was used (Kruskal 1964).  Only species that 206 

occurred in 3 or more plots were included in the ordination analysis.  NMS analysis was 207 

conducted using the Sorensen Bray-Curtis distance method with 250 iterations and a stability 208 

criterion of 0.00001.  Analysis was repeated five times to confirm ordination pattern in the data.  209 

Similarity index matrices were generated to compare plot differences between plant communities 210 
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and averaged by plant community.  All ordination analyses (MRPP and NMS) were performed 211 

using PC-ORD 6 software (McCune and Mefford 2002). 212 

Imagery 213 

During the summers of 2015 and 2016, Pleiades satellites were tasked to image the study 214 

site.  Pleiades satellites, which are members of the SPOT family of satellites, are operated by 215 

AIRBUS Defense and Space.  This platform was chosen due to its high spatial resolution (0.5 m 216 

pan chromatic, 2 m multispectral) and four band spectral resolution: pan chromatic (480-830 217 

nm), red (600-720nm), green (490-610 nm), blue (430-550 nm), and near infrared (750-950 nm).  218 

Pleiades satellites were designed for commercial tasking and monitoring, allowing multiple 219 

revisits to a project site.  A total of ten image collections were acquired in the summer of 2015 220 

and 2016 (five each year) from June through October during the 1st-15th of each month (Table 1). 221 

Image collection times were chosen to correspond to the time periods when cattle were actively 222 

grazing on the site.  Multispectral images were pan-sharpened and orthorectified by the image 223 

provider (Apollo Imaging Corp).  Each monthly image collection was converted into an NDVI 224 

image.  Areas delineated as Draws were removed from the analysis area.  In addition, boundaries 225 

of the prairie dog town were mapped using a handheld Trimble GPS unit to compare predicted 226 

colony location with ground truth location.  227 

Random Forest model 228 

For the RF model, the Random Forest package of the Comprehensive R Archive Network 229 

(CRAN) implemented by Liaw and Wiener (2002) was utilized.  Training data were constructed 230 

by stacking all satellite imagery spectral bands (Red, Blue, Green, and NIR) and NDVI bands for 231 

each month of each year (25 total dimensions per year) to create a raster stack for each year’s 232 

imagery (2015 and 2016).  To train the model, pixel values were extracted from the satellite 233 
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imagery raster stack for each training polygon mapped in the field.  The random forest models 234 

were built using 200 decision trees and default number of nodes at each split (sqrt(n)), with plant 235 

community data as the response category (On-Grass, On-Forb, Off-Cool, Off-Warm, and Off-236 

Snow) and spectral band values as the predictor.  Models were checked for error stabilization, for 237 

all models error rates stabilized around 50 trees.  Yearly models (2015 and 2016) were built for 238 

output comparison.  A combined years model was also constructed using all available spectral 239 

data from 2015 and 2016 (50 dimensions).   240 

Within the random forest package, Out of Bag (OOB) error rates were calculated by 241 

reserving one-third of the training data to test the accuracy of the predictions.  Models were then 242 

used to predict class belonging for 2015 and 2016 raster stacks and the combined 2015 and 2016 243 

stack using the ‘predict’ function within program R.  To assess the stability of the RF models 244 

from year to year, the “crosstab” function in the raster package in program R was used to 245 

calculate the number of pixels that changed class from 2015 to 2016.  The output was used to 246 

calculate percent of pixels that were unchanged from 2015 to 2016 model predictions and 247 

percent of pixel change that occurred between years for plant community predictions.   248 

Results and Discussion 249 

Plant Community 250 

MRPP pairwise comparisons results showed a significant difference between all plant 251 

communities (P < 0.001).  Differences are evident between plant communities in the 2-D plot of 252 

the NMS ordination (final stress = 20.01, instability < 0.00001 after 66 iterations), with some 253 

overlap occurring between communities (Figure 1).  Plant communities on-town and off-town 254 

are clustered at opposite ends of the ordination plot, with the greatest distance being between On-255 

Forb and Off-Snow.  Archer et al. (1987) showed in a detrended correspondence analysis of 256 
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plant communities ranging from uncolonized, 2 years post colonization, and 4-6 years post 257 

colonization, that uncolonized sites were clustered at one extreme and the 4-6 year sites at the 258 

other extreme.  Interestingly, Off-Warm and On-Grass communities are clustered closer in 259 

ordination space.  Plant communities shifts on-town towards those dominated by shortgrass 260 

species have been documented (Agnew et al. 1986; Koford 1958), and is probably attributable to 261 

the high grazing resistance of the C4 species blue grama and buffalograss (Derner et al. 2006).  262 

While there is some overlap between plant communities, in general similarities between plant 263 

communities are low (< 29%), with the greatest similarity index differences generated from a 264 

Sorensen (Bray-Curtis) distance matrix occurring between the On-Forb communities and the off-265 

town communities (Table 2).  Based on how plant communities were selected in this study, we 266 

expected plant community composition to be distinct between groups.  Though plant 267 

communities are defined by dominant functional group in this study, the amount of overlap 268 

occurring demonstrates that other functional groups and species exist within these distinct 269 

patches, which may be a potential source of error in classification models.  270 

Random Forest Model Results 271 

  Results from the RF model show low OOB misclassification error rates for each 272 

individual plant community (Table 3) indicating a high degree of accuracy in the model.  Overall 273 

the OOB model error rates were 0.9% and 1.12% for the 2015 and 2016 model respectively.  274 

OOB accuracy is an unbiased estimate of the overall classification accuracy eliminating the need 275 

for cross-validation (Breiman 2001).   Lawrence et al. (2006) showed OOB error rates to be 276 

reliable estimates of class accuracy for identifying invasive species.  Similarly, OOB error rates 277 

have been reported to be reliable in mapping corn and soybean fields across multiple years 278 
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(Zhong et al. 2014).  Belgiu and Drăguţ (2016) acknowledge that the reliability of OOB error 279 

measurements needs to be further tested using a variety of datasets in different scenarios 280 

Consistency in error rates for plant communities appears to indicate stability in the 2015 281 

and 2016 RF models which used identical training sites on consecutive yearly satellite imagery.  282 

However, when comparing yearly predicted plant community maps, differences between 283 

community classifications are slightly more pronounced, indicating the models may not be as 284 

stable as predicted based solely on the OOB error rates.  Overall a total of 67.04% pixels 285 

remained unchanged in their plant community classification from 2015 to 2016 (Table 4).  The 286 

pixels changing from On-Grass to Off-Cool represented the highest percentage of pixels that 287 

changed plant community classification at 7.28%.  Johnson-Nistler et al. (2004) observed up to 7 288 

times more standing dead forage present on uncolonized sites compared to colonized areas, 289 

mainly attributed to prairie dogs clipping vegetation which greatly reduced the amount of grasses 290 

that reached maturity.  Areas either less maintained on-town or grazed by cattle repeatable off-291 

town may show up similar spectral signatures.  Additionally, On-Grass and Off-Cool plant 292 

communities have western wheatgrass as a dominant species, and similarity in species 293 

dominance between these communities may explain yearly shifts in predictions.  Of the pixels 294 

that changed classification between years, 15.13 were on-town to off-town transitions, 2.26 were 295 

on-town to on-town transitions, and 15.57 were off-town to off-town plant community 296 

transitions.   297 

It is unlikely in this northern mixed-grass prairie ecosystem that all the changes in plant 298 

communities indicated by classification of pixels were real changes from one plant community 299 

type to another over one year.  In the absence of a major disturbance event, such major shifts in 300 

species composition typically occur much more slowly. The results from the plant community 301 
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analysis indicate training sites were chosen appropriately to account for differences in species 302 

composition on the ground, therefore apparent changes are much more likely due to factors that 303 

affect the spectral signature of the vegetation. One explanation for the difference in year to year 304 

classification could be attributed to the interannual variability of rainfall between 2015 and 2016 305 

(Figure 2).  While overall total rainfall between years was similar, differences in timing of 306 

precipitation that occurred likely affected timing of green up and dormancy for many of the cool 307 

and warm season species on the site. This, then, would create different NDVI patterns between 308 

years (Figure 3). Wehlage et al. (2016) for example, found that yearly rainfall differences 309 

resulted in large differences in NDVI and biomass measurements across two years in a dry 310 

mixed-grass prairie. Goward and Prince (1995) suggested that the relationship between NDVI 311 

and annual rainfall in any given year also depends on the previous year history of rainfall at the 312 

site, and Oesterheld et al. (2001) showed that annual above ground primary production of 313 

shortgrass communities is related to current as well as previous two years precipitation. The 314 

above average rainfall at the study site in 2015 could have added to the increase in average 315 

NDVI in 2016 when compared to 2015 through an increase in cumulative biomass or production 316 

at the site.   317 

Another possible cause for changes in plant community classifications between years is 318 

overlap of plant community species where two plant communities share a boundary. The edges 319 

of plant communities in the NGP are seldom sharp; more often there is a transition zone, where 320 

species from each community intermingle. This, along with variability in phenological 321 

development of different plants (e.g. cool season vs. warm season) associated with precipitation, 322 

as mentioned above, could result in pixels appearing to be associated with one plant community 323 

in one year and its neighboring plant community the next. It should also be noted that plant 324 
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communities in the region, which are predominantly comprised of cool season grasses, often 325 

include varying levels of warm season species; and snowberry thickets often have an understory 326 

of grasses, especially near the perimeter. Thus one should expect some level of spectral mixing 327 

within each community, and the possibility that climatic factors could result in changes in NDVI 328 

values that, at least initially, might suggest apparent changes between plant communities.   329 

As noted above, one issue with using categorically classified vegetation maps is that plant 330 

communities in space are rarely mutually exclusive, and tend to change along a continuum with 331 

environmental gradients (Equihua 1990).  Thus, within both on-town and off-town plant 332 

communities, transition zones are likely to account for a portion of the classification change 333 

between plant communities between years (Figure 4).   Alternative approaches to mapping plant 334 

communities can be the recognition of fuzzy properties enabling a single point in space to exhibit 335 

characteristics of a number of plant communities (Duff et al. 2014; Fisher 2010).  For example, 336 

Schmidtlein et al. (2007) used NMS of species data in combination with imaging spectroscopy to 337 

produce ordination maps of community structure.  While fuzzy classification maps are more 338 

likely to give a better picture of plant community composition on a per pixel basis, they are also 339 

more difficult to use to draw inferences of species dominance and livestock use across 340 

landscapes.   341 

A final RF model combining all available bands and NDVI values for 2015 and 2016 342 

reduced error rates for all plant communities below 1% (Table 3).  While we have shown that 343 

error rates may not result in more stable predictions, using all available data for a model will 344 

likely improve accuracy and result in a more accurate thematic map.  The variable importance 345 

graph of the combined model indicates that NDVI variables contribute the most to the model 346 

over individual bands (Figure 5).  Similar results were observed by Mishra and Crews 2014, 347 
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where spectral classification features (mean NDVI or ratio NDVI) were the most significant for 348 

classifying vegetation morphology in a savanna grassland.  The variable importance plot from 349 

the combined data model also indicates that different months between years contribute highly to 350 

the classification accuracy.  Of the ten most important variables in the model, 6 were from 2015 351 

and 4 from 2016, suggesting additional data in the model is likely to yield greater classification 352 

accuracy.  Zhou et al. (2018) using RF models showed that a combination of four seasons of 353 

Sentinel-1 images and a GaoFen-1 satellite winter image produced the highest classification rate 354 

of urban land cover scenes over individual seasonal images.   Likewise, several other studies 355 

have reported increases in classification accuracy in RF models with the addition of combined 356 

seasonal images, hyperspectral data, LiDAR images, radar (SAR) images, and ancillary 357 

geographical data such as elevation and soil types (Corcoran et al. 2013; Pu et al. 2018; Shi et al. 358 

2018; Xia et al. 2018; Yu et al. 2018).  RF models have the ability to handle highly dimensional 359 

correlated data, and data combined from multiple different data sources across different temporal 360 

scales. The internal information provided by the model, such as variable importance, can be a 361 

useful tool for researchers to select features of greatest importance to reduce computation times 362 

in the instance of large datasets.  At the size of our study area (810 ha) and a maximum of 50 363 

variables, the combined 2015-16 data model only slightly added to computation time, but not 364 

enough to warrant feature trimming from the dataset. 365 

Remote Sensing Prairie Dog Colonies 366 

Visual comparison of the predicted on-town plant communities versus off-town plant 367 

communities show a clearly defined boundary between areas colonized by prairie dogs and areas 368 

not colonized (Figure 6).  Previous research has demonstrated that colonization by prairie dogs 369 

and subsequent increases in grazing pressure can result in significant differences between on- 370 
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and off-town plant community composition and production (Coppock et al., 1983; Winter et al. 371 

2002; Johnson-Nistler et al. 2004; Geaumont et al. 2019).  The results of our study demonstrate 372 

that these differences are significant enough to be identified using remote sensing techniques.  373 

Interestingly, a considerable portion of the area misclassified as on-town is from a previously 374 

colonized area that had been poisoned in 2013, suggesting that, at least spectrally, these areas 375 

still resemble plant communities similar to those actively colonized.  Additionally, most other 376 

pixels misclassified as on-town are likely drainage areas with high bare ground off-town, whose 377 

variability was not captured in the dataset.  Results from mapping colony boundaries with a hand 378 

held GPS device estimated the colony to be 276 ha in 2012 to 186 ha in 2015.  Total colony 379 

acreage estimated from summing the pixel area occupied by the On-Grass and On-Forb 380 

community pixels from the combined 2015-2016 RF model was 246 ha.  As mentioned prior, the 381 

higher area estimate in from the RF model is likely the result of transition areas controlled two 382 

years prior.  One prior study had sought identify prairie dog colonies using 30m Landsat 383 

imagery, however concluded that the scale was too course for accurately measuring prairie dog 384 

towns (Wolbrink et al. 2002).  High resolution satellite imagery used in this study appears 385 

capable at capturing fine scale transitions that occur between plant communities along the on-386 

town off-town gradient.     387 

   388 

Conclusions  389 

Stability of models is important when applying similar techniques across different sites, 390 

plant communities, and in this case years.  Differences in year-to-year NDVI values may alter 391 

classification results, and the addition of two years’ worth of data likely resulted in improved 392 

classification accuracy.  One of the main benefits to RF classification in remote sensing is the 393 
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relatively fast computing time (Belgiu and Drăguţ 2016), and, given the availability of free 394 

satellite imagery, researchers would be prudent to include multiple images across years and 395 

seasons in their model to improve accuracy.  Furthermore, while the desired outcome is often to 396 

produce thematic maps, recognizing that plant communities rarely exist in discrete communities 397 

is important when trying to interpret remotely sensed classification maps.  This is likely to be 398 

magnified as pixel size decreases, resulting in fine scale predictions which may be more 399 

susceptible to plant community transitions.  Lastly, results from this study indicate that plant 400 

community changes induced by prairie dogs are significant enough to be detected via remote 401 

sensing techniques.  Land managers looking to optimize rangeland health on pastures occupied 402 

by prairie dogs may potentially utilize high resolution imagery to monitor colony size and make 403 

recommendations of appropriate stocking rates based on extent of colonization.  404 
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Tables and Figures 607 

Table 1. Acquisition dates of Pleiades satellite imagery tasked for each month (June – October) in 

2015 and 2016. 

    

2015 Dates of Acquisition 2016 Dates of Acquisition 

6/1/2015 6/5/2016 

7/9/2015 7/2/2016 

8/4/2015 8/2/2016 

9/1/2015 9/11/2016 

10/8/2015 10/1/2016 

 608 
 609 
Table 2. Similarity index (Sorensen (Bray-Curtis) distance method) values averaged by plot 610 

across plant commuinities. 611 

Community Comparison1 Similiarity Index (%) 

Off-Cool vs. Off-Snow 28.2 

Off-Cool vs. Off-Warm 27.8 

Off-Cool vs. On-PDG 27.7 

Off-Snow vs. Off-Warm 21.6 

On-PDG vs. On-PDF 17.8 

Off-Snow vs. On-PDG 17.3 

Off-Warm vs. On-PDG 17.3 

Off-Cool vs. On-PDF 7.9 

Off-Snow vs. On-PDF 6.2 

Off-Warm vs. On-PDF 6.2 
 612 
1Plant communities on prairie dog towns are grass-dominated (On-Grass) and forb-dominated 613 

(On-Forb); plant communities in off-town areas are cool season grass-dominated (Off-Cool), 614 
warm season grass-dominated (Off-Warm), and snowberry-dominated (Off-Snow). 615 

 616 

 617 

 618 

 619 



24 
 

 620 

Figure 1. NMS ordination plots for plant communities located on and off of prairie dog towns, 621 
based on plant cover by species data collected in 2016 on the study site in north central South 622 

Dakota.  Plant communities on prairie dog towns are grass-dominated (On-Grass) and forb-623 
dominated (On-Forb); plant communities in off-town areas are cool season grass-dominated 624 

(Off-Cool), warm season grass-dominated (Off-Warm), and snowberry-dominated (Off-Snow). 625 

 626 

 627 

 628 

 629 

 630 
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Table 3: Out of Bag misclassification error rates (%) for each plant community for 2015, 2016, and combined year 
random forest models. 

        

Plant Community1 2015 Model 2016 Model 2015-2016 Combined Model 

Off-Cool 0.20% 0.40% 0.04% 

Off-Snow 2.2% 1.9% 0.69% 

Off-Warm 3.2% 5.3% 0.73% 

On-Grass 0.40% 0.60% 0.09% 

On-Forb 0.60% 0.70% 0.19% 
1 Plant communities on prairie dog towns are grass-dominated (On-Grass) and forb-dominated 631 
(On-Forb); plant communities in off-town areas are cool season grass-dominated (Off-Cool), 632 

warm season grass-dominated (Off-Warm), and snowberry-dominated (Off-Snow). 633 
 634 
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Table 4: Percent of pixels within each plant community that remain unchanged and that changed class 667 
belonging between 2015 and 2016 models. 668 

 669 

Transition 2015 PC1 2016 PC Total Pixels Percent of Total Pixels 

 Off-Cool Off-Cool 9712857 31.03 

 On-PDG On-PDG 6427817 20.54 

Unchanged Pixels Off-Snow Off-Snow 3401264 10.87 

 On-PDF On-PDF 887151 2.83 

 Off-Warm Off-Warm 555635 1.78 

 On-PDG Off-Cool 2278390 7.28 

 Off-Cool Off-Snow 1468042 4.69 

 Off-Cool On-PDG 1262373 4.03 

 Off-Snow Off-Cool 1174565 3.75 

 Off-Warm Off-Cool 729511 2.33 

 Off-Cool Off-Warm 716503 2.29 

 Off-Warm Off-Snow 629212 2.01 

 On-PDG Off-Snow 626695 2.00 

 On-PDG On-PDF 362417 1.16 

Changed Pixels On-PDF On-PDG 343774 1.10 

 Off-Snow On-PDG 281061 0.90 

 Off-Snow Off-Warm 155213 0.50 

 On-PDG Off-Warm 82450 0.26 

 On-PDF Off-Cool 72758 0.23 

 Off-Cool On-PDF 69188 0.22 

 Off-Warm On-PDG 43132 0.14 

 On-PDF Off-Snow 19575 0.06 

 Off-Warm On-PDF 573 0.00 

 On-PDF Off-Warm 314 0.00 

 Off-Snow On-PDF 17 0.00 
 670 
1Plant communities (PC) on prairie dog towns are grass-dominated (On-Grass) and forb-671 

dominated (On-Forb); plant communities in off-town areas are cool season grass-dominated 672 
(Off-Cool), warm season grass-dominated (Off-Warm), and snowberry-dominated (Off-Snow). 673 
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 684 
 685 

 686 

 687 

Figure 4: Random forest classification maps from 2015 and 2016 of one pasture in the study area 688 

in north central South Dakota.  Plant communities on prairie dog towns are grass-dominated 689 
(On-Grass) and forb-dominated (On-Forb); plant communities in off-town areas are cool season 690 

grass-dominated (Off-Cool), warm season grass-dominated (Off-Warm), and snowberry-691 
dominated (Off-Snow). 692 
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 694 

Figure 5: Variable importance reported as mean decrease in accuracy. Ten most important 695 

variables are shown, with B1 and B4 corresponding to spectral bands 1 and 4 respectively from 696 

Pleiades image.  Variable importance is determined by the model output as the decrease in 697 

accuracy due to the exclusion of that variable during the out of bag error calculation process.  698 

Higher mean decrease in accuracy variables are more important in classifying the data. 699 

 700 

 701 
 702 

 703 



31 
 

 704 
Figure 6: Random forest classification map created from predictions from the combined 2015 705 

and 2016 models.  Off-town areas were created by combining the predicted off-town plant 706 

communities (Off-Cool, Off-Warm, and Off-Snow) and on-town plant communities (On-Grass 707 

and On-Forb).  The prairie dog boundary was mapped using a handheld GPS unit, the outlined 708 

2012 prairie dog boundary was former prairie dog colony poisoned in 2013. 709 

 710 


