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ABSTRACT

The use of high resolution imagery in remote sensing has the potential to improve
understanding of patch level variability in plant structure and community composition that may
be lost at coarser scales. Random forest (RF) is a machine learning technique that has gained
considerable traction in remote sensing applications due to its ability to produce accurate
classifications with highly dimensional data and relatively efficient computing times. The aim of
this study was to test the ability of RF to classify five plant communities located both on and off
prairie dog towns in mixed grass prairie landscapes of north central South Dakota, assess the
stability of RF models among different years, and determine the utility of utilizing remote
sensing techniques to identity prairie dog colony extent. During 2015 and 2016, Pleiades
satellites were tasked to image the study site for a total of five monthly collections each summer
(June-October). Training polygons were mapped in 2016 for the five plant communities and
used to train RF models. Both the 2015 and 2016 RF models had low (1%) out of bag error
rates. However, comparisons between the predicted plant community maps using the 2015
imagery and one created with the 2016 imagery indicate over 32.9% of pixels changed plant
community class between 2015 and 2016. The results show that while RF models may predict
with a high degree of accuracy, overlap of plant communities and inter-annual differences in
rainfall may cause instability in fitted models. A final RF model combining both 2015 and 2016
data yielded the lowest error rates, and was also highly accurate in determining prairie dog

colony boundaries.
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INTRODUCTION

Remote sensing of rangelands greatly improves our ability to study and understand
complex ecological interactions across the landscape. As technology advances, monitoring of
rangelands via remote sensing platforms will facilitate research products freely available to land
managers (Browning et al. 2015). One of the main advantages of remote sensing data is its
capacity to cover wide areas, allowing assessment of plant communities at landscape level scales
as compared to traditional point-based assessments (Ramoelo et al. 2015; Yu et al. 2018).
Numerous studies have demonstrated the utility of remote sensing applications in monitoring
rangeland condition, including mapping of vegetation communities, plant species composition,
biomass estimation, and impact of grazing intensity on the landscape (Blanco et al. 2008; Franke
et al. 2012). Additionally, successive images throughout a growing season may potentially
capture phenological changes associated with differences in C-3 and C-4 plant species

composition (Goodin and Henebry 1997).

Advances in remote sensing technology have facilitated the mapping and assessment of a
broad range of habitats at different scales (Corbane et al. 2015). For example, Schmidtlein et al.
(2007) used hyperspectral imagery at 2m resolution in combination with ordination techniques to
map functional plant group gradients in a Bavarian pasture. Within the Delaware Gap National
Recreation Area, multiple Landsat 7 scenes were used (30m resolution) with classification tree
algorithms to map forest and plant communities for the National Park Service Vegetation
Mapping Program (de Colstoun et al. 2003). In Majella National Park, Italy, 4m resolution
imagery was used with normalized difference vegetation index (NDVI) to map and predict grass

and herbaceous biomass variability over a 200 km? area (Cho et al. 2007).
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Many methods for accurately classifying plant communities using remote sensing
techniques have been used in numerous ecological and natural resource studies. One method,
random forest classification (RF), has gained considerable traction in the remote sensing
community for its ability to produce accurate classifications, handle highly dimensional data, and
provide efficient computing times (Belgiu and Dragut 2016). RF is seen as an improvement over
simple classification tree analysis by reducing noise and misclassification of outliers (Laliberte et
al. 2007; Nitze et al. 2015). RF is an ensemble decision tree classifier which combines bootstrap
sampling to construct several individual decision trees from which a class probability is assigned
(Mellor et al. 2013). RF builds each tree using a deterministic algorithm selecting a random set
of variables and a random sample from the calibration data set (Ramoelo et al. 2015).

The utility of random forest algorithms has been demonstrated in remote sensing
applications at multiple scales. Lowe and Kulkarni (2015) showed that RF was effective at
producing highly accurate classification maps using two Landsat scenes (30m resolution).
Ramoelo et al. (2015) successfully used RF modeling to predict leaf nitrogen content using
World-View 2 satellite images (2m resolution) in grassland and forest communities. Similarly,
Mutanga et al. (2012) concluded that RF regression modelling provided an effective
methodology for variable selection and predicting biomass in wetland environments using high
resolution satellite imagery (2m).

Considerable research has focused on the application of RF classification across different
plant communities at various scales, however, concerns exist over the transferability of these
models to different sites, across seasons, or years. For example, Juel et al. 2015 showed that RF
models have a high degree of classification accuracy for classifying fine scale coastal vegetation

using digital elevation maps and high resolution orthophoto imagery, but model accuracy
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decreased significantly when applied to spatially separated sites, showing a lack of stability in
the model. Corcoran et al. (2013) showed an improvement of RF model accuracy in classifying
wetlands in northern Minnesota with the inclusion Landsat 5 images across two years using full
season data versus summer only, and fall only models. Jones et al. 2018 demonstrated the utility
of using RF modeling with 30m Landsat data to monitor rangeland cover across the western
United States over a 33 year period. Results of these studies suggest the scale and seasonality of
the imagery may play an important role in the stability of RF models to accurately map plant
communities. While classification rates are often reported in studies, the potential overlap in
plant community composition is rarely explored as a potential source of error within the models.
Most research studies focus solely on spectral differences in plant communities and fail to
analyze community differences on the ground at the species level (de Colstoun et al. 2003;
Geerken et al. 2005). Lastly, while the focus of many of these remote sensing studies is on
mapping plant communities at landscape scales to study land use changes and address
conservation related issues, very little research has examined the impacts of animal species on
plant community composition, and how this might affect classification accuracy.

Within the mixed grass prairie ecosystem, black tailed prairie dog colonization is an issue
of concern for livestock producers (Miller et al. 2007). Competition between prairie dogs and
livestock is a major concern for land managers looking to optimize beef production while still
conserving wildlife species (Augustine and Springer 2013). Prairie dogs can reduce availability
of forage for livestock by directly reducing the quantity of forage available (through direct
consumption, clipping plants to increase predator detection, and building soil mounds), and by
changing species composition (Derner et al. 2006). Older core areas of prairie dog towns often

become characterized by extensive areas of bare ground and low vegetation production, which is
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generally limited to annual forb and dwarf shrub species. Pastures containing extensive areas of
bare ground due to prairie dog colonization may potentially depress livestock forage intake rates
and ultimately beef production. The ability to accurately map prairie dog colonies using remote
sensing will help improve our understanding of the impact of prairie dogs on plant communities,

and help inform land management decisions within rangelands occupied by prairie dogs.

A large collaborative study from 2012-2016 was conducted to evaluate livestock
production on mixed-grass prairie pastures with varying levels of prairie dog occupation. A
major goal of the larger study was to determine which plant communities on the pastures cattle
preferred to graze, and how those preferences shifted within and between years. Plant
communities on the site were categorized based on location (on- or off-town) and visually
apparent dominant plant functional groups. Thus, plant community as defined for this study was
a collection of species within an area of a relatively uniform composition different from
neighboring patches. Differences in neighboring patches were evident by differences in
dominant functional group (forb vs grass) or differences in photosynthetic pathways (C3 vs C4
grasses). We expected the plant communities to remain relatively stable during the study,
however their signatures on satellite imagery could change within and between years as a result
of the timing and magnitude of rainfall, timing of green up, phenological progression, and other
factors. The overall goal of this paper, then, was to develop maps that accurately classify plant
communities based on satellite imagery collected between years. Specific objectives of this study
were to 1) determine differences in the five identified plant communities based on species
composition, 2) assess the utility of using a RF model with high resolution satellite imagery to
classify plant communities of interest within a mixed grass prairie ecosystem containing prairie

dogs, 3) determine the stability of the RF model when using subsequent years of satellite
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imagery with identical training data, and 4) determine the ability of high resolution satellite
imagery to accurately classify prairie dog towns. Our ability to map and understand these plant
communities’ at large scales will give researchers insight into applying RF models across years
using high resolution imagery. Research from this study will allow us to better assess how
prairie dogs drive changes in plant communities, and provide a new tool to map the extent of
prairie dog colonization on the landscape to better inform land management decisions.
METHODS

Study site

The study area (45.74N, 100.65W) was located near McLaughlin, South Dakota on a
northern mixed-grass prairie ecosystem. Native prairie pastures (810 ha total area) were leased
from 2012-2016; pastures were continuously stocked with yearling steers from June-October of
each year to achieve 50% utilization. Of the 810 ha, approximately 186 ha were occupied by
black-tailed prairie dogs (Cynomys ludovicianus). Predominant soils at the site were clays and
loams. Ecological sites, and the plant communities they support vary widely; Loamy and Clayey
were the predominant Ecological Sites at the site with inclusions of Dense Clay, Shallow Clay,
and Thin Claypan (Barth et al. 2014). Plant species dominating the site were largely native,
including western wheatgrass (Pascopyrum smithii Rydb.), green needlegrass (Nassella viridula
Trin.), and needle-and-thread (Hesperostipa comata Trin. & Rupr), intermixed with blue grama
(Bouteloua gracilis Willd. Ex Kunth), buffalograss (Bouteloua dactyloides Nutt.), and sedges
(Carex spp.). The most common non-native species on the site was Kentucky bluegrass (Poa
pratensis Boivin & Love). Woody draws occupied moist drainage areas; vegetation consists
primarily of bur oak (Quercus macrocarpa Nutt.), American plum (Prunus americana Marshall),

and chokecherry (Prunus virginiana L.). These draws were frequently flanked by snowberry-
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dominated patches (Symphoricarpos occidentalis Hook.). Plant communities on areas occupied
by prairie dog towns on the site were largely dominated by western wheatgrass and shortgrasses
(buffalograss, blue grama, and sedges) intermixed with patches of bare ground and annual forb
dominated areas. Common annual forbs on prairie dog towns included prostrate knotweed
(Polygonum aviculare L.), fetid marigold (Dyssodia papposa Vent.), dwarf horseweed (Conyza
ramosissima Cronquist), and scarlet globemallow (Sphaeralcea coccinea Nutt.). A weather
station has been maintained on site from May 2013 operated by South Dakota Mesonet. Mean
annual rainfall at the site is 446 mm and average growing season (May through September)

temperature is 15.3°C (South Dakota Climate and Weather 2017).

Five plant communities of interest for our study site were identified: 1) Forb-dominated
sites on prairie dog towns (On-Forb), 2) Grass-dominated sites on prairie dog towns (On-Grass),
3) Snowberry-dominated sites off-town (Off-Snow), 4) Cool season grass-dominated sites off-
town (Off-Cool), and 5) Warm season-dominated sites off-town (Off-Warm). An additional
plant community labeled ‘Draws’ was delineated visually within ArcGIS software due to
difficulty in mapping these areas in the field. As mentioned prior, these areas are dominated by
bur oak, chokecherry, and American plum, and occupied lower lying drainage areas on the site.
Training sites

To facilitate classification, training site polygons were mapped for On-Forb, On-Grass,
Off-Cool, Off-Warm, and Off-Snow plant communities using ArcPad for Trimble GPS units in
the summer of 2016. Twenty training sites were mapped for each of the plant communities
except Off-Warm, for which only 8 sites were mapped due to the difficulty of finding
homogenous stands of warm season grasses. Plant species in the Northern Great Plains are

dominated by cool season species; warm season species, where they occur, are typically
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intermixed into stands of cool season species. Training sites for each plant community were
selected from across the entire study area to capture potential site differences across research
pastures. Sites were mapped in the field by walking the perimeter of the plant community patch
with a Trimble GPS unit. Training polygon perimeter boundaries were always at least 3 meters
interior of patch edge to minimize error introduced to the training data as a result of GPS signal
noise. Identified patches were then converted into a polygon shapefile within ArcGIS to be used
as training polygons for the RF classification algorithm. Within each training site polygon, three
0.25 m? plots were randomly located by tossing plot frames into the area of interest to determine
sampling area. Within each plot, percent cover by species was recorded in the summer of 2016
at the time of polygon mapping.
Plant Community Analysis

Plant community analysis was performed on vegetation data collected from the three
0.25m? plots measured in each training polygon. Differences between plant community
compositions were determined using a Multi-Response Permutation Procedure (MRPP) with the
Sorensen Bray-Curtis distance method. MRPP is a nonparametric procedure used for testing
hypotheses between two or more groups (Mitchell et al. 2015). Differences in community
compositions were analyzed for all plant communities, and pairwise comparisons generated. To
analyze trends in species composition between plant community plots, Non-metric
Multidimensional Scaling (NMS) ordination was used (Kruskal 1964). Only species that
occurred in 3 or more plots were included in the ordination analysis. NMS analysis was
conducted using the Sorensen Bray-Curtis distance method with 250 iterations and a stability
criterion of 0.00001. Analysis was repeated five times to confirm ordination pattern in the data.

Similarity index matrices were generated to compare plot differences between plant communities
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and averaged by plant community. All ordination analyses (MRPP and NMS) were performed
using PC-ORD 6 software (McCune and Mefford 2002).
Imagery

During the summers of 2015 and 2016, Pleiades satellites were tasked to image the study
site. Pleiades satellites, which are members of the SPOT family of satellites, are operated by
AIRBUS Defense and Space. This platform was chosen due to its high spatial resolution (0.5 m
pan chromatic, 2 m multispectral) and four band spectral resolution: pan chromatic (480-830
nm), red (600-720nm), green (490-610 nm), blue (430-550 nm), and near infrared (750-950 nm).
Pleiades satellites were designed for commercial tasking and monitoring, allowing multiple
revisits to a project site. A total of ten image collections were acquired in the summer of 2015
and 2016 (five each year) from June through October during the 115" of each month (Table 1).
Image collection times were chosen to correspond to the time periods when cattle were actively
grazing on the site. Multispectral images were pan-sharpened and orthorectified by the image
provider (Apollo Imaging Corp). Each monthly image collection was converted into an NDVI
image. Areas delineated as Draws were removed from the analysis area. In addition, boundaries
of the prairie dog town were mapped using a handheld Trimble GPS unit to compare predicted
colony location with ground truth location.
Random Forest model

For the RF model, the Random Forest package of the Comprehensive R Archive Network
(CRAN) implemented by Liaw and Wiener (2002) was utilized. Training data were constructed
by stacking all satellite imagery spectral bands (Red, Blue, Green, and NIR) and NDVI bands for
each month of each year (25 total dimensions per year) to create a raster stack for each year’s

imagery (2015 and 2016). To train the model, pixel values were extracted from the satellite
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imagery raster stack for each training polygon mapped in the field. The random forest models
were built using 200 decision trees and default number of nodes at each split (sqrt(n)), with plant
community data as the response category (On-Grass, On-Forb, Off-Cool, Off-Warm, and Off-
Snow) and spectral band values as the predictor. Models were checked for error stabilization, for
all models error rates stabilized around 50 trees. Yearly models (2015 and 2016) were built for
output comparison. A combined years model was also constructed using all available spectral
data from 2015 and 2016 (50 dimensions).

Within the random forest package, Out of Bag (OOB) error rates were calculated by
reserving one-third of the training data to test the accuracy of the predictions. Models were then
used to predict class belonging for 2015 and 2016 raster stacks and the combined 2015 and 2016
stack using the ‘predict’ function within program R. To assess the stability of the RF models
from year to year, the “crosstab” function in the raster package in program R was used to
calculate the number of pixels that changed class from 2015 to 2016. The output was used to
calculate percent of pixels that were unchanged from 2015 to 2016 model predictions and
percent of pixel change that occurred between years for plant community predictions.

Results and Discussion
Plant Community

MRPP pairwise comparisons results showed a significant difference between all plant
communities (P < 0.001). Differences are evident between plant communities in the 2-D plot of
the NMS ordination (final stress = 20.01, instability < 0.00001 after 66 iterations), with some
overlap occurring between communities (Figure 1). Plant communities on-town and off-town
are clustered at opposite ends of the ordination plot, with the greatest distance being between On-

Forb and Off-Snow. Archer et al. (1987) showed in a detrended correspondence analysis of
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plant communities ranging from uncolonized, 2 years post colonization, and 4-6 years post
colonization, that uncolonized sites were clustered at one extreme and the 4-6 year sites at the
other extreme. Interestingly, Off-Warm and On-Grass communities are clustered closer in
ordination space. Plant communities shifts on-town towards those dominated by shortgrass
species have been documented (Agnew et al. 1986; Koford 1958), and is probably attributable to
the high grazing resistance of the C4 species blue grama and buffalograss (Derner et al. 2006).
While there is some overlap between plant communities, in general similarities between plant
communities are low (< 29%), with the greatest similarity index differences generated from a
Sorensen (Bray-Curtis) distance matrix occurring between the On-Forb communities and the off-
town communities (Table 2). Based on how plant communities were selected in this study, we
expected plant community composition to be distinct between groups. Though plant
communities are defined by dominant functional group in this study, the amount of overlap
occurring demonstrates that other functional groups and species exist within these distinct
patches, which may be a potential source of error in classification models.
Random Forest Model Results

Results from the RF model show low OOB misclassification error rates for each
individual plant community (Table 3) indicating a high degree of accuracy in the model. Overall
the OOB model error rates were 0.9% and 1.12% for the 2015 and 2016 model respectively.
OOB accuracy is an unbiased estimate of the overall classification accuracy eliminating the need
for cross-validation (Breiman 2001). Lawrence et al. (2006) showed OOB error rates to be
reliable estimates of class accuracy for identifying invasive species. Similarly, OOB error rates

have been reported to be reliable in mapping corn and soybean fields across multiple years

12



279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

(Zhong et al. 2014). Belgiu and Dragut (2016) acknowledge that the reliability of OOB error
measurements needs to be further tested using a variety of datasets in different scenarios

Consistency in error rates for plant communities appears to indicate stability in the 2015
and 2016 RF models which used identical training sites on consecutive yearly satellite imagery.
However, when comparing yearly predicted plant community maps, differences between
community classifications are slightly more pronounced, indicating the models may not be as
stable as predicted based solely on the OOB error rates. Overall a total of 67.04% pixels
remained unchanged in their plant community classification from 2015 to 2016 (Table 4). The
pixels changing from On-Grass to Off-Cool represented the highest percentage of pixels that
changed plant community classification at 7.28%. Johnson-Nistler et al. (2004) observed up to 7
times more standing dead forage present on uncolonized sites compared to colonized areas,
mainly attributed to prairie dogs clipping vegetation which greatly reduced the amount of grasses
that reached maturity. Areas either less maintained on-town or grazed by cattle repeatable off-
town may show up similar spectral signatures. Additionally, On-Grass and Off-Cool plant
communities have western wheatgrass as a dominant species, and similarity in species
dominance between these communities may explain yearly shifts in predictions. Of the pixels
that changed classification between years, 15.13 were on-town to off-town transitions, 2.26 were
on-town to on-town transitions, and 15.57 were off-town to off-town plant community
transitions.

It is unlikely in this northern mixed-grass prairie ecosystem that all the changes in plant
communities indicated by classification of pixels were real changes from one plant community
type to another over one year. In the absence of a major disturbance event, such major shifts in

species composition typically occur much more slowly. The results from the plant community
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analysis indicate training sites were chosen appropriately to account for differences in species
composition on the ground, therefore apparent changes are much more likely due to factors that
affect the spectral signature of the vegetation. One explanation for the difference in year to year
classification could be attributed to the interannual variability of rainfall between 2015 and 2016
(Figure 2). While overall total rainfall between years was similar, differences in timing of
precipitation that occurred likely affected timing of green up and dormancy for many of the cool
and warm season species on the site. This, then, would create different NDVI patterns between
years (Figure 3). Wehlage et al. (2016) for example, found that yearly rainfall differences
resulted in large differences in NDVI and biomass measurements across two years in a dry
mixed-grass prairie. Goward and Prince (1995) suggested that the relationship between NDVI
and annual rainfall in any given year also depends on the previous year history of rainfall at the
site, and Oesterheld et al. (2001) showed that annual above ground primary production of
shortgrass communities is related to current as well as previous two years precipitation. The
above average rainfall at the study site in 2015 could have added to the increase in average
NDVI in 2016 when compared to 2015 through an increase in cumulative biomass or production
at the site.

Another possible cause for changes in plant community classifications between years is
overlap of plant community species where two plant communities share a boundary. The edges
of plant communities in the NGP are seldom sharp; more often there is a transition zone, where
species from each community intermingle. This, along with variability in phenological
development of different plants (e.g. cool season vs. warm season) associated with precipitation,
as mentioned above, could result in pixels appearing to be associated with one plant community

in one year and its neighboring plant community the next. It should also be noted that plant
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communities in the region, which are predominantly comprised of cool season grasses, often
include varying levels of warm season species; and snowberry thickets often have an understory
of grasses, especially near the perimeter. Thus one should expect some level of spectral mixing
within each community, and the possibility that climatic factors could result in changes in NDVI
values that, at least initially, might suggest apparent changes between plant communities.

As noted above, one issue with using categorically classified vegetation maps is that plant
communities in space are rarely mutually exclusive, and tend to change along a continuum with
environmental gradients (Equihua 1990). Thus, within both on-town and off-town plant
communities, transition zones are likely to account for a portion of the classification change
between plant communities between years (Figure 4). Alternative approaches to mapping plant
communities can be the recognition of fuzzy properties enabling a single point in space to exhibit
characteristics of a number of plant communities (Duff et al. 2014; Fisher 2010). For example,
Schmidtlein et al. (2007) used NMS of species data in combination with imaging spectroscopy to
produce ordination maps of community structure. While fuzzy classification maps are more
likely to give a better picture of plant community composition on a per pixel basis, they are also
more difficult to use to draw inferences of species dominance and livestock use across
landscapes.

A final RF model combining all available bands and NDVI values for 2015 and 2016
reduced error rates for all plant communities below 1% (Table 3). While we have shown that
error rates may not result in more stable predictions, using all available data for a model will
likely improve accuracy and result in a more accurate thematic map. The variable importance
graph of the combined model indicates that NDV1 variables contribute the most to the model

over individual bands (Figure 5). Similar results were observed by Mishra and Crews 2014,
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where spectral classification features (mean NDVI or ratio NDVI) were the most significant for
classifying vegetation morphology in a savanna grassland. The variable importance plot from
the combined data model also indicates that different months between years contribute highly to
the classification accuracy. Of the ten most important variables in the model, 6 were from 2015
and 4 from 2016, suggesting additional data in the model is likely to yield greater classification
accuracy. Zhou et al. (2018) using RF models showed that a combination of four seasons of
Sentinel-1 images and a GaoFen-1 satellite winter image produced the highest classification rate
of urban land cover scenes over individual seasonal images. Likewise, several other studies
have reported increases in classification accuracy in RF models with the addition of combined
seasonal images, hyperspectral data, LIDAR images, radar (SAR) images, and ancillary
geographical data such as elevation and soil types (Corcoran et al. 2013; Pu et al. 2018; Shi et al.
2018; Xia et al. 2018; Yu et al. 2018). RF models have the ability to handle highly dimensional
correlated data, and data combined from multiple different data sources across different temporal
scales. The internal information provided by the model, such as variable importance, can be a
useful tool for researchers to select features of greatest importance to reduce computation times
in the instance of large datasets. At the size of our study area (810 ha) and a maximum of 50
variables, the combined 2015-16 data model only slightly added to computation time, but not
enough to warrant feature trimming from the dataset.
Remote Sensing Prairie Dog Colonies

Visual comparison of the predicted on-town plant communities versus off-town plant
communities show a clearly defined boundary between areas colonized by prairie dogs and areas
not colonized (Figure 6). Previous research has demonstrated that colonization by prairie dogs

and subsequent increases in grazing pressure can result in significant differences between on-
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and off-town plant community composition and production (Coppock et al., 1983; Winter et al.
2002; Johnson-Nistler et al. 2004; Geaumont et al. 2019). The results of our study demonstrate
that these differences are significant enough to be identified using remote sensing techniques.
Interestingly, a considerable portion of the area misclassified as on-town is from a previously
colonized area that had been poisoned in 2013, suggesting that, at least spectrally, these areas
still resemble plant communities similar to those actively colonized. Additionally, most other
pixels misclassified as on-town are likely drainage areas with high bare ground off-town, whose
variability was not captured in the dataset. Results from mapping colony boundaries with a hand
held GPS device estimated the colony to be 276 ha in 2012 to 186 ha in 2015. Total colony
acreage estimated from summing the pixel area occupied by the On-Grass and On-Forb
community pixels from the combined 2015-2016 RF model was 246 ha. As mentioned prior, the
higher area estimate in from the RF model is likely the result of transition areas controlled two
years prior. One prior study had sought identify prairie dog colonies using 30m Landsat
imagery, however concluded that the scale was too course for accurately measuring prairie dog
towns (Wolbrink et al. 2002). High resolution satellite imagery used in this study appears
capable at capturing fine scale transitions that occur between plant communities along the on-

town off-town gradient.

Conclusions

Stability of models is important when applying similar techniques across different sites,
plant communities, and in this case years. Differences in year-to-year NDVI values may alter
classification results, and the addition of two years’ worth of data likely resulted in improved

classification accuracy. One of the main benefits to RF classification in remote sensing is the
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relatively fast computing time (Belgiu and Dragut 2016), and, given the availability of free
satellite imagery, researchers would be prudent to include multiple images across years and
seasons in their model to improve accuracy. Furthermore, while the desired outcome is often to
produce thematic maps, recognizing that plant communities rarely exist in discrete communities
is important when trying to interpret remotely sensed classification maps. This is likely to be
magnified as pixel size decreases, resulting in fine scale predictions which may be more
susceptible to plant community transitions. Lastly, results from this study indicate that plant
community changes induced by prairie dogs are significant enough to be detected via remote
sensing techniques. Land managers looking to optimize rangeland health on pastures occupied
by prairie dogs may potentially utilize high resolution imagery to monitor colony size and make
recommendations of appropriate stocking rates based on extent of colonization.
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Tables and Figures

Table 1. Acquisition dates of Pleiades satellite imagery tasked for each month (June — October) in
2015 and 2016.

2015 Dates of Acquisition 2016 Dates of Acquisition
6/1/2015 6/5/2016
7/9/2015 7/2/2016
8/4/2015 8/2/2016
9/1/2015 9/11/2016
10/8/2015 10/1/2016

Table 2. Similarity index (Sorensen (Bray-Curtis) distance method) values averaged by plot
across plant commuinities.

Community Comparison* Similiarity Index (%)
Off-Cool vs. Off-Snow 28.2
Off-Cool vs. Off-Warm 27.8
Off-Cool vs. On-PDG 27.7
Off-Snow vs. Off-Warm 21.6

On-PDG vs. On-PDF 17.8
Off-Snow vs. On-PDG 17.3
Off-Warm vs. On-PDG 17.3

Off-Cool vs. On-PDF 7.9
Off-Snow vs. On-PDF 6.2
Off-Warm vs. On-PDF 6.2

Plant communities on prairie dog towns are grass-dominated (On-Grass) and forb-dominated
(On-Forb); plant communities in off-town areas are cool season grass-dominated (Off-Cool),
warm season grass-dominated (Off-Warm), and snowberry-dominated (Off-Snow).
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621  Figure 1. NMS ordination plots for plant communities located on and off of prairie dog towns,
622  based on plant cover by species data collected in 2016 on the study site in north central South
623  Dakota. Plant communities on prairie dog towns are grass-dominated (On-Grass) and forb-
624  dominated (On-Forb); plant communities in off-town areas are cool season grass-dominated
625  (Off-Cool), warm season grass-dominated (Off-Warm), and snowberry-dominated (Off-Snow).
626
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Table 3: Out of Bag misclassification error rates (%) for each plant community for 2015, 2016, and combined year
random forest models.

Plant Community* 2015 Model 2016 Model 2015-2016 Combined Model
Off-Cool 0.20% 0.40% 0.04%
Off-Snow 2.2% 1.9% 0.69%
Off-Warm 3.2% 5.3% 0.73%
On-Grass 0.40% 0.60% 0.09%
On-Forb 0.60% 0.70% 0.19%

631  lPlant communities on prairie dog towns are grass-dominated (On-Grass) and forb-dominated
632  (On-Forb); plant communities in off-town areas are cool season grass-dominated (Off-Cool),
633  warm season grass-dominated (Off-Warm), and snowberry-dominated (Off-Snow).
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667  Table 4: Percent of pixels within each plant community that remain unchanged and that changed class
668 belonging between 2015 and 2016 models.

669
Transition 2015 pct 2016 PC Total Pixels Percent of Total Pixels
Off-Cool Off-Cool 9712857 31.03
On-PDG On-PDG 6427817 20.54
Unchanged Pixels Off-Snow Off-Snow 3401264 10.87
On-PDF On-PDF 887151 2.83
Off-Warm  Off-Warm 555635 1.78
On-PDG Off-Cool 2278390 7.28
Off-Cool Off-Snow 1468042 4.69
Off-Cool On-PDG 1262373 4.03
Off-Snow Off-Cool 1174565 3.75
Off-Warm Off-Cool 729511 2.33
Off-Cool Off-Warm 716503 2.29
Off-Warm  Off-Snow 629212 2.01
On-PDG Off-Snow 626695 2.00
On-PDG On-PDF 362417 1.16
Changed Pixels On-PDF On-PDG 343774 1.10
Off-Snow On-PDG 281061 0.90
Off-Snow  Off-Warm 155213 0.50
On-PDG Off-Warm 82450 0.26
On-PDF Off-Cool 72758 0.23
Off-Cool On-PDF 69188 0.22
Off-Warm On-PDG 43132 0.14
On-PDF Off-Snow 19575 0.06
Off-Warm On-PDF 573 0.00
On-PDF Off-Warm 314 0.00
Off-Snow On-PDF 17 0.00
670

671  Plant communities (PC) on prairie dog towns are grass-dominated (On-Grass) and forb-

672  dominated (On-Forb); plant communities in off-town areas are cool season grass-dominated
673  (Off-Cool), warm season grass-dominated (Off-Warm), and snowberry-dominated (Off-Snow).
674
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Figure 2: Monthly and cumulative growing season precipitation patterns for 2015 and 2016 recorded at a weather station
located on the study area in north central SD (45.737296 N, -100.657540 W)( South Dakota Mesonet 2018).
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Figure 3: Comparison of mean monthly NDVI for training polygons in five plant communities on the study site in north central
SD. Plant communities on prairie dog towns are grass-dominated (PDG) and forb-dominated (PDF); plant communities in off-
town areas are cool season grass-dominated (COOL), warm season grass-dominated (WARM), and snowberry-dominated

(SNOW).
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Figure 4: Random forest classification maps from 2015 and 2016 of one pasture in the study area
in north central South Dakota. Plant communities on prairie dog towns are grass-dominated
(On-Grass) and forb-dominated (On-Forb); plant communities in off-town areas are cool season
grass-dominated (Off-Cool), warm season grass-dominated (Off-Warm), and snowberry-
dominated (Off-Snow).
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Figure 5: Variable importance reported as mean decrease in accuracy. Ten most important
variables are shown, with B1 and B4 corresponding to spectral bands 1 and 4 respectively from
Pleiades image. Variable importance is determined by the model output as the decrease in
accuracy due to the exclusion of that variable during the out of bag error calculation process.
Higher mean decrease in accuracy variables are more important in classifying the data.
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Figure 6: Random forest classification map created from predictions from the combined 2015
and 2016 models. Off-town areas were created by combining the predicted off-town plant
communities (Off-Cool, Off-Warm, and Off-Snow) and on-town plant communities (On-Grass
and On-Forb). The prairie dog boundary was mapped using a handheld GPS unit, the outlined
2012 prairie dog boundary was former prairie dog colony poisoned in 2013.
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