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ABSTRACT 28 

Black tailed prairie dogs (Cynomys ludovicianus) have been described as a keystone 29 

species and important for grassland conservation, yet many concerns exist over the impact of 30 

prairie dogs on plant biomass production and consequently livestock production.  The ability to 31 

map plant communities in pastures colonized by prairie dogs can provide land managers with an 32 

opportunity to optimize rangeland production while balancing conservation goals.  The aim of 33 

this study was to test the ability of random forest (RF) to classify five plant communities located 34 

on and off prairie dog towns in mixed grass prairie landscapes of north central South Dakota, 35 

assess the stability of RF models among different years, and determine the utility of utilizing 36 

remote sensing techniques to identity prairie dog colony extent.  During 2015 and 2016, Pleiades 37 

satellites were tasked to image the study site for a total of five monthly collections each summer 38 

(June-October).  Training polygons were mapped in 2016 for the five plant communities and 39 

used to train RF models.  Both the 2015 and 2016 RF models had low (1%) out of bag error 40 

rates.  However, comparisons between the predicted plant community maps using the 2015 41 

imagery and one created with the 2016 imagery indicate over 32.9% of pixels changed plant 42 

community class between 2015 and 2016.  The results show that while RF models may predict 43 

with a high degree of accuracy, overlap of plant communities and inter-annual differences in 44 

rainfall may cause instability in fitted models.  A final RF model combining both 2015 and 2016 45 

data yielded the lowest error rates, and was also highly accurate in determining prairie dog 46 

colony boundaries.    47 
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INTRODUCTION 51 

Within the Northern Great Plains mixed grass prairie ecosystem, black tailed prairie dog 52 

colonization is an issue of concern for livestock producers (Miller et al. 2007).  Competition 53 

between prairie dogs and livestock is a major concern for land managers looking to optimize 54 

beef production while still conserving wildlife species (Augustine and Springer 2013).  Prairie 55 

dogs have been identified as a keystone species, and are often seen as ecosystem engineers 56 

providing habitat to a number of other plant and wildlife species (Davidson et al. 2010; Kotliar et 57 

al. 1999).  Prairie dogs can also reduce availability of forage for livestock by directly reducing 58 

the quantity of forage available (through direct consumption, clipping plants to increase predator 59 

detection, and building soil mounds), and by changing species composition (Derner et al. 2006).  60 

Within the mixed grass prairie, C3 mid-grasses tend to decrease and C4 short-grasses increase 61 

along an increasing gradient of grazing intensity (Irisarri et al. 2016).  Due to repeated 62 

defoliation, older core areas of prairie dog towns often become characterized by extensive areas 63 

of bare ground and low vegetation production, which is generally limited to annual forb and 64 

dwarf shrub species.  Pastures containing extensive areas of bare ground due to prairie dog 65 

colonization may potentially depress livestock forage intake rates and ultimately beef production.  66 

The ability to map the extent and monitor the impact of prairie dogs on the landscape can help 67 

land managers looking to optimize livestock production on prairie dog occupied rangelands.    68 

Remote sensing of rangelands greatly improves our ability to study and understand 69 

complex ecological interactions across the landscape. As technology advances, monitoring of 70 

rangelands via remote sensing platforms will facilitate research products freely available to land 71 

managers (Browning et al. 2015).   One of the main advantages of remote sensing data is its 72 

capacity to cover wide areas, allowing assessment of plant communities at landscape level scales 73 
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as compared to traditional point-based assessments (Ramoelo et al. 2015; Yu et al. 2018).  74 

Numerous studies have demonstrated the utility of remote sensing applications in monitoring 75 

rangeland condition, including mapping of vegetation communities, plant species composition, 76 

biomass estimation, and impact of grazing intensity on the landscape (Goodin and Henebry 77 

1997; Blanco et al. 2008; Franke et al. 2012).   78 

Many methods for accurately classifying plant communities using remote sensing 79 

techniques have been used in ecological and natural resource studies. One method, random forest 80 

classification (RF), has gained considerable traction in the remote sensing community for its 81 

ability to produce accurate classifications, handle highly dimensional data, and provide efficient 82 

computing times (Belgiu and Drăguţ 2016).  RF is seen as an improvement over simple 83 

classification tree analysis by reducing noise and misclassification of outliers (Laliberte et al. 84 

2007; Nitze et al. 2015).  RF is an ensemble decision tree classifier which combines bootstrap 85 

sampling to construct several individual decision trees from which a class probability is assigned 86 

(Mellor et al. 2013).  RF builds each tree using a deterministic algorithm selecting a random set 87 

of variables and a random sample from the calibration data set (Ramoelo et al. 2015).   88 

The utility of random forest algorithms has been demonstrated in remote sensing 89 

applications across many plant communities at multiple scales (Mutanga et al. 2012; Lowe and 90 

Kulkarni 2015; Ramoelo et al. 2015).  Concerns exist, however, over the transferability of these 91 

models to different sites, across seasons, or years.  For example, RF models have shown to have 92 

a high degree of classification accuracy for mapping fine scale coastal vegetation using digital 93 

elevation maps and high resolution orthophoto imagery, but model accuracy decreased 94 

significantly when applied to spatially separated sites (Juel et al. 2015).  Selecting spatially 95 

releveant training data or including species level cover data may help improve or explain 96 
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differences observed when transferring models between sites.  Incorporating additional seasons 97 

of data may also improve RF model accuracy; previous research has shown an improvement of 98 

RF model accuracy in classifying wetlands in northern Minnesota with the inclusion Landsat 5 99 

images across two years using full season data versus summer only, and fall only models 100 

(Corcoran et al. 2013).  Longer term studies have also demonstrated the utility of using RF 101 

modeling with 30m Landsat data to monitor rangeland cover across the western United States 102 

over a 33 year period (Jones et al. 2018).  Results of these studies suggest the scale and 103 

seasonality of the imagery may play an important role in the stability and accuracy of RF 104 

models.   105 

The stability in RF models to accurately map plant communities within prairie dog 106 

occupied pastures may be particularly important for managers looking to monitor prairie dog 107 

colony expansion or contraction over time.  While classification rates are often reported in 108 

studies, the potential overlap in plant community composition is rarely explored as a potential 109 

source of error within the models.  Many research studies focus solely on spectral differences in 110 

plant communities and fail to analyze community differences on the ground at the species level 111 

(de Colstoun et al. 2003; Geerken et al. 2005).  This may be especially important within prairie 112 

dog occupied rangelands, where shifts in plant community composition may be driven more by 113 

the presence or absence of an herbivore species versus elevation, soils, or other landscape 114 

features.  These herbivory induced changes in plant community may facilitate or hamper 115 

classification schemes.  The ability to accurately map plant communities within prairie dog 116 

occupied pastures can help improve management of rangelands colonized by prairie dogs, yet 117 

little research has explored the possibility of utilizing remote sensing as a tool to do so. 118 
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A large collaborative study from 2012-2016 was conducted to evaluate livestock 119 

production on mixed-grass prairie pastures with varying levels of prairie dog occupation.  A 120 

major goal of the larger study was to determine which plant communities on the pastures cattle 121 

preferred to graze, and how those preferences shifted within and between years (Olson et al. 122 

2016). Plant communities on the site were categorized based on location (on- or off-town) and 123 

visually apparent dominant plant functional groups.  Thus, plant community as defined for this 124 

study was a collection of species within an area of a relatively uniform composition different 125 

from neighboring patches.  Differences in neighboring patches were evident by differences in 126 

dominant functional group (forb vs grass) or differences in photosynthetic pathways (C3 vs C4 127 

grasses).  The overall goal of this paper, then, was to develop maps that accurately classify plant 128 

communities based on satellite imagery collected between years. Specific objectives of this study 129 

were to 1) determine differences in the five identified plant communities based on species 130 

composition, 2) assess the utility of using a RF model with high resolution satellite imagery to 131 

classify plant communities of interest within a mixed grass prairie ecosystem containing prairie 132 

dogs, 3) determine the stability of the RF model when using subsequent years of satellite 133 

imagery with identical training data, and 4) determine the ability of high resolution satellite 134 

imagery to accurately map prairie dog towns. Our ability to map and understand these plant 135 

communities’ at large scales will give researchers insight into applying RF models across years 136 

using high resolution imagery.  Research from this study will allow us to better assess how 137 

prairie dogs drive changes in plant communities, and provide a new tool to map the extent and 138 

impact of prairie dog colonization on the landscape to better inform land management decisions. 139 

METHODS 140 

Study site 141 



7 
 

The study area (45.74N, 100.65W) was located near McLaughlin, South Dakota on a 142 

northern mixed-grass prairie ecosystem.  Native prairie pastures (810 ha total area) were leased 143 

from 2012-2016; pastures were continuously stocked with yearling steers from June-October of 144 

each year to achieve 50% utilization.  Of the 810 ha, approximately 186 ha were occupied by 145 

black-tailed prairie dogs (Cynomys ludovicianus).  Predominant soils at the site were clays and 146 

loams. Ecological sites, and the plant communities they support vary widely; Loamy and Clayey 147 

were the predominant Ecological Sites at the site with inclusions of Dense Clay, Shallow Clay, 148 

and Thin Claypan (Barth et al. 2014).  Plant species dominating the site were largely native, 149 

including western wheatgrass (Pascopyrum smithii Rydb.), green needlegrass (Nassella viridula 150 

Trin.), and needle-and-thread (Hesperostipa comata Trin. & Rupr), intermixed with blue grama 151 

(Bouteloua gracilis Willd. Ex Kunth), buffalograss (Bouteloua dactyloides Nutt.), and sedges 152 

(Carex spp.). The most common non-native species on the site was Kentucky bluegrass (Poa 153 

pratensis Boivin & Love). Woody draws occupied moist drainage areas; vegetation consists 154 

primarily of bur oak (Quercus macrocarpa Nutt.), American plum (Prunus americana Marshall), 155 

and chokecherry (Prunus virginiana L.). These draws were frequently flanked by snowberry-156 

dominated patches (Symphoricarpos occidentalis Hook.).  Plant communities on areas occupied 157 

by prairie dog towns on the site were largely dominated by western wheatgrass and shortgrasses 158 

(buffalograss, blue grama, and sedges) intermixed with patches of bare ground and annual forb 159 

dominated areas.  Common annual forbs on prairie dog towns included prostrate knotweed 160 

(Polygonum aviculare L.), fetid marigold (Dyssodia papposa Vent.), dwarf horseweed (Conyza 161 

ramosissima Cronquist), and scarlet globemallow (Sphaeralcea coccinea Nutt.).  A weather 162 

station has been maintained on site from May 2013 operated by South Dakota Mesonet.  Mean 163 
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annual rainfall at the site is 446 mm and average growing season (May through September) 164 

temperature is 15.3ºC (South Dakota Climate and Weather 2017). 165 

 Five plant communities of interest for our study site were identified: 1) Forb-dominated 166 

sites on prairie dog towns (On-Forb), 2) Grass-dominated sites on prairie dog towns (On-Grass), 167 

3) Snowberry-dominated sites off-town (Off-Snow), 4) Cool season grass-dominated sites off-168 

town (Off-Cool), and 5) Warm season-dominated sites off-town (Off-Warm).  An additional 169 

plant community labeled ‘Draws’ was delineated visually within ArcGIS software due to 170 

difficulty in mapping these areas in the field.  Areas delineated as Draws were removed from the 171 

analysis area.     172 

Training sites 173 

To facilitate classification, training site polygons were mapped for On-Forb, On-Grass, 174 

Off-Cool, Off-Warm, and Off-Snow plant communities using ArcPad for Trimble GPS units in 175 

the summer of 2016.  Twenty training sites were mapped for each of the plant communities 176 

except Off-Warm, for which only 8 sites were mapped due to the difficulty of finding 177 

homogenous stands of warm season grasses. Plant species in the Northern Great Plains are 178 

dominated by cool season species; warm season species, where they occur, are typically 179 

intermixed into stands of cool season species. Training sites for each plant community were 180 

selected from across the entire study area to capture potential site differences across research 181 

pastures.  Sites were mapped in the field by walking the perimeter of the plant community patch 182 

with a Trimble GPS unit.  Training polygon perimeter boundaries were always at least 3 meters 183 

interior of patch edge to minimize error introduced to the training data as a result of GPS signal 184 

noise. Identified patches were then converted into a polygon shapefile within ArcGIS to be used 185 

as training polygons for the RF classification algorithm.  Within each training site polygon, three 186 
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0.25 m2 plots were randomly located by tossing plot frames into the area of interest to determine 187 

sampling area.  Within each plot, percent cover by species was recorded in the summer of 2016 188 

at the time of polygon mapping. 189 

Plant Community Analysis 190 

Plant community analysis was performed on vegetation data collected from the three 191 

0.25m2 plots measured in each training polygon. Differences between plant community 192 

compositions were determined using a Multi-Response Permutation Procedure (MRPP) with the 193 

Sorensen Bray-Curtis distance method.  MRPP is a nonparametric procedure used for testing 194 

hypotheses between two or more groups (Mitchell et al. 2015).  Differences in community 195 

compositions were analyzed for all plant communities, and pairwise comparisons generated.  To 196 

analyze trends in species composition between plant community plots, Non-metric 197 

Multidimensional Scaling (NMS) ordination was used (Kruskal 1964).  Only species that 198 

occurred in 3 or more plots were included in the ordination analysis.  NMS analysis was 199 

conducted using the Sorensen Bray-Curtis distance method with 250 iterations and a stability 200 

criterion of 0.00001.  Analysis was repeated five times to confirm ordination pattern in the data.  201 

Similarity index matrices were generated to compare plot differences between plant communities 202 

and averaged by plant community.  All ordination analyses (MRPP and NMS) were performed 203 

using PC-ORD 6 software (McCune and Mefford 2002). 204 

Imagery 205 

During the summers of 2015 and 2016, Pleiades satellites were tasked to image the study 206 

site.  Pleiades satellites, which are members of the SPOT family of satellites, are operated by 207 

AIRBUS Defense and Space.  This platform was chosen due to its high spatial resolution (0.5 m 208 

pan chromatic, 2 m multispectral) and four band spectral resolution: pan chromatic (480-830 209 
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nm), red (600-720nm), green (490-610 nm), blue (430-550 nm), and near infrared (750-950 nm).  210 

Pleiades satellites were designed for commercial tasking and monitoring, allowing multiple 211 

revisits to a project site.  A total of ten image collections were acquired in the summer of 2015 212 

and 2016 (five each year) from June through October during the 1st-15th of each month (Table 1). 213 

Image collection times were chosen to correspond to the time periods when cattle were actively 214 

grazing on the site.  Multispectral images were pan-sharpened and orthorectified by the image 215 

provider (Apollo Imaging Corp).  Each monthly image collection was converted into an NDVI 216 

image.  In addition, boundaries of the prairie dog town were mapped using a handheld Trimble 217 

GPS unit to compare predicted colony location with ground truth location.  218 

Random Forest model 219 

For the RF model, the Random Forest package of the Comprehensive R Archive Network 220 

(CRAN) implemented by Liaw and Wiener (2002) was utilized.  Training data were constructed 221 

by stacking all satellite imagery spectral bands (Red, Blue, Green, and NIR) and NDVI bands for 222 

each month of each year (25 total dimensions per year) to create a raster stack for each year’s 223 

imagery (2015 and 2016).  To train the model, pixel values were extracted from the satellite 224 

imagery raster stack for each training polygon mapped in the field.  The random forest models 225 

were built using 200 decision trees and default number of nodes at each split (sqrt(n)), with plant 226 

community data as the response category (On-Grass, On-Forb, Off-Cool, Off-Warm, and Off-227 

Snow) and spectral band values as the predictor.  Models were checked for error stabilization, for 228 

all models error rates stabilized around 50 trees.  Yearly models (2015 and 2016) were built for 229 

output comparison.  A combined years model was also constructed using all available spectral 230 

data from 2015 and 2016 (50 dimensions).   231 
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Within the random forest package, Out of Bag (OOB) error rates were calculated by 232 

reserving one-third of the training data to test the accuracy of the predictions.  Models were then 233 

used to predict class belonging for 2015 and 2016 raster stacks and the combined 2015 and 2016 234 

stack using the ‘predict’ function within program R.  To assess the stability of the RF models 235 

from year to year, the “crosstab” function in the raster package in program R was used to 236 

calculate the number of pixels that changed class from 2015 to 2016.  The output was used to 237 

calculate percent of pixels that were unchanged from 2015 to 2016 model predictions and 238 

percent of pixel change that occurred between years for plant community predictions.   239 

Results and Discussion 240 

Plant Community 241 

MRPP pairwise comparisons results showed a significant difference between all plant 242 

communities (P < 0.001).  Differences are evident between plant communities in the 2-D plot of 243 

the NMS ordination (final stress = 20.01, instability < 0.00001 after 66 iterations), with some 244 

overlap occurring between communities (Figure 1).  Plant communities on-town and off-town 245 

are clustered at opposite ends of the ordination plot, with the greatest distance being between On-246 

Forb and Off-Snow.  Detrended correspondence analysis of plant communities ranging from 247 

uncolonized, 2 years post colonization, and 4-6 years post colonization showed that uncolonized 248 

sites were clustered at one extreme and the 4-6 year sites at the other extreme (Archer et al. 249 

1987).  Interestingly, Off-Warm and On-Grass communities are clustered closer in ordination 250 

space.  Plant communities shifts on-town towards those dominated by shortgrass species have 251 

been documented (Agnew et al. 1986; Koford 1958), and is probably attributable to the high 252 

grazing resistance of the C4 species blue grama and buffalograss (Derner et al. 2006).   253 
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Similarity index differences between plant communities were generated from a Sorensen 254 

(Bray-Curtis) distance matrix, and can be seen in Table 2.  While there is some overlap between 255 

plant communities, in general similarities are low (< 29%), with the greatest distance occurring 256 

between the On-Forb communities and the off-town communities (Table 2).  Based on how plant 257 

communities were selected in this study, we expected plant community composition to be 258 

distinct between groups.  Though plant communities are defined by dominant functional group in 259 

this study, the amount of overlap occurring demonstrates that other functional groups and species 260 

exist within these distinct patches, which may be a potential source of instability in classification 261 

models.  262 

Random Forest Model Results 263 

  Results from the RF models show low OOB misclassification error rates for each 264 

individual plant community (Table 3) indicating a high degree of accuracy in the model.  Overall 265 

the OOB model error rates were 0.9% and 1.12% for the 2015 and 2016 model respectively.  266 

OOB accuracy is an unbiased estimate of the overall classification accuracy eliminating the need 267 

for cross-validation (Breiman 2001).  OOB error rates have been shown to be reliable estimates 268 

of class accuracy for identifying invasive species (Lawrence et al. 2006), and mapping corn and 269 

soybean fields across multiple years (Zhong et al. 2014).  Belgiu and Drăguţ (2016) in their 270 

review of RF applications in remote sensing acknowledge that the reliability of OOB error 271 

measurements needs to be further tested using a variety of datasets in different scenarios 272 

Consistency in error rates for plant communities appears to indicate stability in the 2015 and 273 

2016 RF models which used identical training sites on consecutive yearly satellite imagery.  274 

However, when comparing yearly predicted plant community maps, differences between 275 
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community classifications are slightly more pronounced, indicating the models may not be as 276 

stable as predicted based solely on the OOB error rates.   277 

Overall a total of 67.04% pixels remained unchanged in their plant community 278 

classification from 2015 to 2016 (Table 4).  Of the pixels that changed classification between 279 

years, 15.13 were on-town to off-town transitions, 2.26 were on-town to on-town transitions, and 280 

15.57 were off-town to off-town plant community transitions.  It is unlikely in this northern 281 

mixed-grass prairie ecosystem that all the changes in plant communities indicated by 282 

classification of pixels were real changes from one plant community type to another over one 283 

year.  In the absence of a major disturbance event, such major shifts in species composition 284 

typically occur much more slowly (Vermeire et al. 2018). The results from the plant community 285 

analysis indicate training sites were chosen appropriately to account for differences in species 286 

composition on the ground, therefore apparent changes are much more likely due to factors that 287 

affect the spectral signature of the vegetation.  Factors that may potentially affect spectral 288 

signatures could include changes resulting from prairie dog herbivory, changes in precipitation 289 

regimes, or changes occurring along plant community transition zones. 290 

The pixels changing from On-Grass to Off-Cool represented the highest percentage of 291 

pixels that changed plant community classification at 7.28%; these are likely occurring along 292 

transition zones at the prairie dog colony edge.  Both On-Grass and Off-Cool plant communities 293 

have western wheatgrass as a dominant species.  Similarity in species dominance may explain 294 

some of the challenges to distinguishing between some on and off colony plant communities.  295 

Difficulty in classifying Off-Cool and On-PDG may also be due to subtle vegetation changes 296 

likely induced by the level of herbivory.  Research on a South Dakota mixed grass prairie 297 

showed that prairie dogs remove over four times more biomass than cattle grazing on-town 298 
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(Gabrielson 2009).  Up to 7 times more standing dead forage and 60% less standing crop 299 

biomass has been reported on uncolonized sites compared to colonized areas, mainly attributed 300 

to prairie dogs clipping vegetation which greatly reduced the amount of grasses that reached 301 

maturity (Johnson-Nistler et al. 2004).  Areas either less maintained on-town by prairie dogs or 302 

grazed by cattle repeatable off-town may show similar spectral signatures.   303 

Differences in year to year classification could also be attributed to the interannual 304 

variability of rainfall between 2015 and 2016 (Figure 2).  Yearly rainfall patterns can result in 305 

large differences in NDVI and biomass measurements across years (Wehlage et al. 2016).  While 306 

overall total rainfall between years was similar, differences in timing of precipitation that 307 

occurred likely affected timing of green up and dormancy for many of the cool and warm season 308 

species on the site. This, then, would create different NDVI patterns between years (Figure 3).  309 

Goward and Prince (1995) suggested that the relationship between NDVI and annual rainfall in 310 

any given year also depends on the previous year history of rainfall at the site.  Previous research 311 

has shown that annual above ground primary production of shortgrass communities is related to 312 

current as well as previous two years precipitation (Oesterheld et al. 2001).  The above average 313 

rainfall at the study site in 2015 could have added to the increase in average NDVI in 2016 when 314 

compared to 2015 through an increase in cumulative biomass or production at the site.  Increased 315 

cumulative biomass in 2016 may cause higher NDVI values for example in On-PDG plant 316 

communities resulting in classification shifts to Off-Cool; similarly, greater NDVI values in Off-317 

cool in 2016 may result in some of those pixels being classified as Off-Snow.   318 

Another possible cause for changes in plant community classifications between years is 319 

overlap of species where two communities share a boundary.  One issue with using categorically 320 

classified vegetation maps is that plant communities in space are rarely mutually exclusive, and 321 
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tend to change along a continuum with environmental gradients (Equihua 1990).  Plant 322 

communities in the region, which are predominantly comprised of cool season grasses, often 323 

include varying levels of warm season species; and snowberry thickets often have an understory 324 

of grasses, especially near the perimeter.  The challenge of accurately classifying plant 325 

communities along an ecological continuum may be further exacerbated by changes induced by 326 

prairie dogs, where transition zones are less defined by environmental gradients and more 327 

defined by the level of herbivory.  Thus, within and between on-town and off-town plant 328 

communities, transition zones are likely to account for a portion of the classification change 329 

between plant communities between years (Figure 4).  Alternative approaches to mapping plant 330 

communities can be the recognition of fuzzy properties enabling a single point in space to exhibit 331 

characteristics of a number of plant communities (Duff et al. 2014; Fisher 2010).  While fuzzy 332 

classification maps are more likely to give a better picture of plant community composition on a 333 

per pixel basis, they are also more difficult to use to draw inferences of species dominance, 334 

livestock use patterns, and extent of prairie dog colonization.   335 

A final RF model combining all available bands and NDVI values for 2015 and 2016 336 

reduced error rates for all plant communities below 1% (Table 3).  While we have shown that 337 

lower error rates may not result in more stable predictions, using all available data for a model 338 

will likely improve accuracy and result in a more accurate thematic map.  Other studies have 339 

reported increases in classification accuracy in RF models with the addition of combined 340 

seasonal images, hyperspectral data, LiDAR images, radar (SAR) images, and ancillary 341 

geographical data such as elevation and soil types (Corcoran et al. 2013; Pu et al. 2018; Shi et al. 342 

2018; Xia et al. 2018; Yu et al. 2018; Zhou et al. 2018).  RF models have the ability to handle 343 

highly dimensional correlated data, and data combined from multiple different data sources 344 
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across different temporal scales; however, one disadvantage to using non-parametric classifiers 345 

such as RF and decision trees is that they require a large number of observations to accurately 346 

estimate the mapping function (James et al. 2014).  Thus the incorporation of additional predictor 347 

variables as well as additional training data will likely result in higher accuracy rates.   348 

The variable importance graph of the combined model indicates that NDVI variables 349 

contribute the most to the model over individual bands (Figure 5).  In classifying vegetation 350 

morphology in a savanna grassland, Mishra and Crews 2014 found spectral classification 351 

features (mean NDVI or ratio NDVI) were the most significant.  The variable importance plot 352 

from the combined data model also indicates that different months between years contribute 353 

highly to the classification accuracy.  Of the ten most important variables in the model, 6 were 354 

from 2015 and 4 from 2016, suggesting additional years’ data in the model is likely to yield 355 

greater classification accuracy.  The internal information provided by the model, such as variable 356 

importance, can be a useful tool for researchers to select features of greatest importance to 357 

reduce computation times in the instance of large datasets.  At the size of our study area (810 ha) 358 

and a maximum of 50 variables, the combined 2015-16 data model only slightly added to 359 

computation time, but not enough to warrant feature trimming from the dataset.  Land managers 360 

looking to classify prairie dog colonies on more extensive grasslands may look to including only 361 

NDVI variables into training datasets to increase computational efficiency. 362 

Remote Sensing Prairie Dog Colonies 363 

Visual comparison of the predicted on-town plant communities versus off-town plant 364 

communities show a clearly defined boundary between areas colonized by prairie dogs and areas 365 

not colonized (Figure 6).  Results from mapping colony boundaries with a hand held GPS device 366 

estimated the colony to be 276 ha in 2012 to 186 ha in 2015.  Total colony acreage estimated 367 
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from summing the pixel area occupied by the On-Grass and On-Forb community pixels from the 368 

combined 2015-2016 RF model was 246 ha.  Previous research has demonstrated that 369 

colonization by prairie dogs and subsequent increases in grazing pressure can result in significant 370 

differences between on- and off-town plant community composition and production (Coppock et 371 

al., 1983; Winter et al. 2002; Johnson-Nistler et al. 2004; Geaumont et al. 2019).  The results of 372 

our study demonstrate that these differences are significant enough to be identified using remote 373 

sensing techniques.  Interestingly, a considerable portion of the area misclassified as on-town is 374 

from a previously colonized area that had been poisoned in 2013, suggesting that, at least 375 

spectrally, these areas still resemble plant communities similar to those actively colonized.  The 376 

higher area estimate from the RF model is likely the result of transition areas controlled two 377 

years prior.  Additionally, most other pixels misclassified as on-town are likely drainage areas 378 

with high bare ground off-town, whose variability was not captured in the dataset.  One prior 379 

study had sought identify prairie dog colonies using 30m Landsat imagery, however concluded 380 

that the scale was too course for accurately measuring prairie dog towns (Wolbrink et al. 2002).  381 

High resolution satellite imagery used in this study appears capable at capturing fine scale 382 

transitions that occur between plant communities along the on-town off-town gradient.   383 

The RF model was also able to accurately predict older core areas of prairie dog towns 384 

(On-forb) often characterized by a high percentage bare ground, low vegetation production, and 385 

dominance by annual forb and dwarf shrub species (Coppock et al., 1983).  Area estimates of 386 

On-Forb were 33 ha and 32 ha in 2015 and 2016 respectively.  State and transition models for 387 

prairie dog towns developed within Custer State Park South Dakota, found older core areas were 388 

considered undesirable for management due to losses of native grasses, increased bare ground, 389 

potential for erosion, extensive presence of exotic species, and increased inputs to restore to a 390 
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more desirable state (Hendrix 2018).  The ability to monitor these older core areas of prairie dog 391 

towns remotely may help land managers limit sites from becoming highly degraded, and serve as 392 

a useful tool for land managers concerned over balancing wildlife conservation with losses in 393 

livestock production.         394 

Conclusions  395 

Stability of models is important when applying similar techniques across different sites, 396 

plant communities, and in this case years.  Differences in year-to-year NDVI values may alter 397 

classification results, and the addition of two years’ worth of data likely resulted in improved 398 

model performance.  One of the main benefits to RF classification in remote sensing is the 399 

relatively fast computing time (Belgiu and Drăguţ 2016), and, given the availability of free 400 

satellite imagery, researchers would be prudent to include multiple images across years and 401 

seasons in their model to improve accuracy.  Furthermore, while the desired outcome is often to 402 

produce thematic maps, recognizing that plant communities rarely exist in discrete communities 403 

is important when selecting community types to map.  Combining plant community ordination 404 

results with remote sensing results can aid in understanding sources of model error and 405 

limitations of classification algorithms.  This is likely to be magnified as pixel size decreases, 406 

resulting in fine scale predictions which may be more susceptible to plant community transitions 407 

zones.  Results from this study indicate that plant community changes induced by prairie dogs 408 

are significant enough to be detected via remote sensing techniques.  Land managers looking to 409 

optimize rangeland health on pastures occupied by prairie dogs may potentially utilize high 410 

resolution imagery to monitor colony size and make recommendations of appropriate stocking 411 

rates based on extent of colonization.  412 
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 621 

Tables and Figures 622 

Table 1. Acquisition dates of Pleiades satellite imagery tasked for each month (June – October) in 

2015 and 2016. 

    

2015 Dates of Acquisition 2016 Dates of Acquisition 

6/1/2015 6/5/2016 

7/9/2015 7/2/2016 

8/4/2015 8/2/2016 

9/1/2015 9/11/2016 

10/8/2015 10/1/2016 

 623 
 624 
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Table 2. Similarity index (Sorensen (Bray-Curtis) distance method) values averaged by plot 625 
across plant communities. 626 

Community Comparison1 Similarity Index (%) 

Off-Cool vs. Off-Snow 28.2 

Off-Cool vs. Off-Warm 27.8 

Off-Cool vs. On-PDG 27.7 

Off-Snow vs. Off-Warm 21.6 

On-PDG vs. On-PDF 17.8 

Off-Snow vs. On-PDG 17.3 

Off-Warm vs. On-PDG 17.3 

Off-Cool vs. On-PDF 7.9 

Off-Snow vs. On-PDF 6.2 

Off-Warm vs. On-PDF 6.2 
 627 
1Plant communities on prairie dog towns are grass-dominated (On-Grass) and forb-dominated 628 
(On-Forb); plant communities in off-town areas are cool season grass-dominated (Off-Cool), 629 
warm season grass-dominated (Off-Warm), and snowberry-dominated (Off-Snow). 630 

 631 
 632 

 633 

Figure 1. NMS ordination plots for plant communities located on and off of prairie dog towns, 634 
based on plant cover by species data collected in 2016 on the study site in north central South 635 

Dakota.  The ‘+’ symbol followed by the community name represent the weighted mean 636 
(centroid) of the multivariate dataset.  Plant communities on prairie dog towns are grass-637 

dominated (On-Grass) and forb-dominated (On-Forb); plant communities in off-town areas are 638 
cool season grass-dominated (Off-Cool), warm season grass-dominated (Off-Warm), and 639 
snowberry-dominated (Off-Snow). 640 
 641 
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 643 

 644 

 645 

 646 

 647 
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 649 
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Table 3: Out of Bag misclassification error rates (%) for each plant community for 2015, 2016, and 

combined year random forest models. 

        

Plant Community1 2015 Model 2016 Model 2015-2016 Combined Model 

Off-Cool 0.20% 0.40% 0.04% 

Off-Snow 2.2% 1.9% 0.69% 

Off-Warm 3.2% 5.3% 0.73% 

On-Grass 0.40% 0.60% 0.09% 

On-Forb 0.60% 0.70% 0.19% 
1 Plant communities on prairie dog towns are grass-dominated (On-Grass) and forb-dominated 650 

(On-Forb); plant communities in off-town areas are cool season grass-dominated (Off-Cool), 651 
warm season grass-dominated (Off-Warm), and snowberry-dominated (Off-Snow). 652 
 653 
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Table 4: Percent of pixels within each plant community that remain unchanged and that changed 686 
class belonging between 2015 and 2016 models. 687 

 688 

Transition 2015 PC1 2016 PC Total Pixels 

Percent of Total 

Pixels 

 Off-Cool Off-Cool 9712857 31.03 

 On-Grass On-Grass 6427817 20.54 

Unchanged Pixels Off-Snow Off-Snow 3401264 10.87 

 On-Forb On-Forb 887151 2.83 

 Off-Warm Off-Warm 555635 1.78 

 On-Grass Off-Cool 2278390 7.28 

 Off-Cool Off-Snow 1468042 4.69 

 Off-Cool On-Grass 1262373 4.03 

 Off-Snow Off-Cool 1174565 3.75 

 Off-Warm Off-Cool 729511 2.33 

 Off-Cool Off-Warm 716503 2.29 

 Off-Warm Off-Snow 629212 2.01 

 On-Grass Off-Snow 626695 2.00 

 On-Grass On-Forb 362417 1.16 

Changed Pixels On-Forb On-Grass 343774 1.10 

 Off-Snow On-Grass 281061 0.90 

 Off-Snow Off-Warm 155213 0.50 

 On-Grass Off-Warm 82450 0.26 

 On-Forb Off-Cool 72758 0.23 

 Off-Cool On-Forb 69188 0.22 

 Off-Warm On-Grass 43132 0.14 

 On-Forb Off-Snow 19575 0.06 

 Off-Warm On-Forb 573 0.00 

 On-Forb Off-Warm 314 0.00 

 Off-Snow On-Forb 17 0.00 
 689 
1Plant communities (PC) on prairie dog towns are grass-dominated (On-Grass) and forb-690 
dominated (On-Forb); plant communities in off-town areas are cool season grass-dominated 691 

(Off-Cool), warm season grass-dominated (Off-Warm), and snowberry-dominated (Off-Snow). 692 
 693 

 694 

 695 

 696 

 697 
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Figure 2: Monthly and cumulative growing season precipitation patterns for 2015 and 2016 698 
recorded at a weather station located on the study area in north central SD (45.737296  N, -699 
100.657540 W)( South Dakota Mesonet 2018). 700 
 701 

Figure 3:  Comparison of mean monthly NDVI for training polygons in five plant communities 702 

on the study site in north central SD.  Plant communities on prairie dog towns are grass-703 

dominated (On-PDG) and forb-dominated (On-PDF); plant communities in off-town areas are 704 

cool season grass-dominated (Off-Cool), warm season grass-dominated (Off-Warm), and 705 

snowberry-dominated (Off-Snow). 706 

 707 

Figure 4: Random forest classification maps from 2015 and 2016 of one pasture in the study area 708 
in north central South Dakota.  Plant communities on prairie dog towns are grass-dominated 709 

(On-Grass) and forb-dominated (On-Forb); plant communities in off-town areas are cool season 710 
grass-dominated (Off-Cool), warm season grass-dominated (Off-Warm), and snowberry-711 
dominated (Off-Snow). 712 

 713 

Figure 5: Variable importance reported as mean decrease in accuracy. Ten most important 714 

variables are shown, with B1 and B4 corresponding to spectral bands 1 and 4 respectively from 715 

Pleiades image.  Variable importance is determined by the model output as the decrease in 716 

accuracy due to the exclusion of that variable during the out of bag error calculation process.  717 

Higher mean decrease in accuracy variables are more important in classifying the data. 718 

 719 
 720 
Figure 6: Random forest classification map created from predictions from the combined 2015 721 

and 2016 models.  Off-town areas were created by combining the predicted off-town plant 722 

communities (Off-Cool, Off-Warm, and Off-Snow) and on-town plant communities (On-Grass 723 

and On-Forb).  The prairie dog boundary was mapped using a handheld GPS unit, the outlined 724 

2012 prairie dog boundary was former prairie dog colony poisoned in 2013. 725 

 726 


